[IA64] Include Kconfig.preempt
[linux-2.6/cjktty.git] / arch / blackfin / kernel / process.c
blob6a7aefe4834639cd39b42b8d055187f4ad7e0d77
1 /*
2 * File: arch/blackfin/kernel/process.c
3 * Based on:
4 * Author:
6 * Created:
7 * Description: Blackfin architecture-dependent process handling.
9 * Modified:
10 * Copyright 2004-2006 Analog Devices Inc.
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <linux/module.h>
31 #include <linux/smp_lock.h>
32 #include <linux/unistd.h>
33 #include <linux/user.h>
34 #include <linux/a.out.h>
35 #include <linux/uaccess.h>
36 #include <linux/fs.h>
37 #include <linux/err.h>
39 #include <asm/blackfin.h>
40 #include <asm/fixed_code.h>
42 #define LED_ON 0
43 #define LED_OFF 1
45 asmlinkage void ret_from_fork(void);
47 /* Points to the SDRAM backup memory for the stack that is currently in
48 * L1 scratchpad memory.
50 void *current_l1_stack_save;
52 /* The number of tasks currently using a L1 stack area. The SRAM is
53 * allocated/deallocated whenever this changes from/to zero.
55 int nr_l1stack_tasks;
57 /* Start and length of the area in L1 scratchpad memory which we've allocated
58 * for process stacks.
60 void *l1_stack_base;
61 unsigned long l1_stack_len;
64 * Powermanagement idle function, if any..
66 void (*pm_idle)(void) = NULL;
67 EXPORT_SYMBOL(pm_idle);
69 void (*pm_power_off)(void) = NULL;
70 EXPORT_SYMBOL(pm_power_off);
73 * We are using a different LED from the one used to indicate timer interrupt.
75 #if defined(CONFIG_BFIN_IDLE_LED)
76 static inline void leds_switch(int flag)
78 unsigned short tmp = 0;
80 tmp = bfin_read_CONFIG_BFIN_IDLE_LED_PORT();
81 SSYNC();
83 if (flag == LED_ON)
84 tmp &= ~CONFIG_BFIN_IDLE_LED_PIN; /* light on */
85 else
86 tmp |= CONFIG_BFIN_IDLE_LED_PIN; /* light off */
88 bfin_write_CONFIG_BFIN_IDLE_LED_PORT(tmp);
89 SSYNC();
92 #else
93 static inline void leds_switch(int flag)
96 #endif
99 * The idle loop on BFIN
101 #ifdef CONFIG_IDLE_L1
102 void default_idle(void)__attribute__((l1_text));
103 void cpu_idle(void)__attribute__((l1_text));
104 #endif
106 void default_idle(void)
108 while (!need_resched()) {
109 leds_switch(LED_OFF);
110 local_irq_disable();
111 if (likely(!need_resched()))
112 idle_with_irq_disabled();
113 local_irq_enable();
114 leds_switch(LED_ON);
118 void (*idle)(void) = default_idle;
121 * The idle thread. There's no useful work to be
122 * done, so just try to conserve power and have a
123 * low exit latency (ie sit in a loop waiting for
124 * somebody to say that they'd like to reschedule)
126 void cpu_idle(void)
128 /* endless idle loop with no priority at all */
129 while (1) {
130 idle();
131 preempt_enable_no_resched();
132 schedule();
133 preempt_disable();
137 void machine_restart(char *__unused)
139 #if defined(CONFIG_BLKFIN_CACHE)
140 bfin_write_IMEM_CONTROL(0x01);
141 SSYNC();
142 #endif
143 bfin_reset();
144 /* Dont do anything till the reset occurs */
145 while (1) {
146 SSYNC();
150 void machine_halt(void)
152 for (;;)
153 asm volatile ("idle");
156 void machine_power_off(void)
158 for (;;)
159 asm volatile ("idle");
162 void show_regs(struct pt_regs *regs)
164 printk(KERN_NOTICE "\n");
165 printk(KERN_NOTICE
166 "PC: %08lu Status: %04lu SysStatus: %04lu RETS: %08lu\n",
167 regs->pc, regs->astat, regs->seqstat, regs->rets);
168 printk(KERN_NOTICE
169 "A0.x: %08lx A0.w: %08lx A1.x: %08lx A1.w: %08lx\n",
170 regs->a0x, regs->a0w, regs->a1x, regs->a1w);
171 printk(KERN_NOTICE "P0: %08lx P1: %08lx P2: %08lx P3: %08lx\n",
172 regs->p0, regs->p1, regs->p2, regs->p3);
173 printk(KERN_NOTICE "P4: %08lx P5: %08lx\n", regs->p4, regs->p5);
174 printk(KERN_NOTICE "R0: %08lx R1: %08lx R2: %08lx R3: %08lx\n",
175 regs->r0, regs->r1, regs->r2, regs->r3);
176 printk(KERN_NOTICE "R4: %08lx R5: %08lx R6: %08lx R7: %08lx\n",
177 regs->r4, regs->r5, regs->r6, regs->r7);
179 if (!regs->ipend)
180 printk(KERN_NOTICE "USP: %08lx\n", rdusp());
183 /* Fill in the fpu structure for a core dump. */
185 int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs)
187 return 1;
191 * This gets run with P1 containing the
192 * function to call, and R1 containing
193 * the "args". Note P0 is clobbered on the way here.
195 void kernel_thread_helper(void);
196 __asm__(".section .text\n"
197 ".align 4\n"
198 "_kernel_thread_helper:\n\t"
199 "\tsp += -12;\n\t"
200 "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
203 * Create a kernel thread.
205 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
207 struct pt_regs regs;
209 memset(&regs, 0, sizeof(regs));
211 regs.r1 = (unsigned long)arg;
212 regs.p1 = (unsigned long)fn;
213 regs.pc = (unsigned long)kernel_thread_helper;
214 regs.orig_p0 = -1;
215 /* Set bit 2 to tell ret_from_fork we should be returning to kernel
216 mode. */
217 regs.ipend = 0x8002;
218 __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
219 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
220 NULL);
223 void flush_thread(void)
227 asmlinkage int bfin_vfork(struct pt_regs *regs)
229 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
230 NULL);
233 asmlinkage int bfin_clone(struct pt_regs *regs)
235 unsigned long clone_flags;
236 unsigned long newsp;
238 /* syscall2 puts clone_flags in r0 and usp in r1 */
239 clone_flags = regs->r0;
240 newsp = regs->r1;
241 if (!newsp)
242 newsp = rdusp();
243 else
244 newsp -= 12;
245 return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
249 copy_thread(int nr, unsigned long clone_flags,
250 unsigned long usp, unsigned long topstk,
251 struct task_struct *p, struct pt_regs *regs)
253 struct pt_regs *childregs;
255 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
256 *childregs = *regs;
257 childregs->r0 = 0;
259 p->thread.usp = usp;
260 p->thread.ksp = (unsigned long)childregs;
261 p->thread.pc = (unsigned long)ret_from_fork;
263 return 0;
267 * fill in the user structure for a core dump..
269 void dump_thread(struct pt_regs *regs, struct user *dump)
271 dump->magic = CMAGIC;
272 dump->start_code = 0;
273 dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
274 dump->u_tsize = ((unsigned long)current->mm->end_code) >> PAGE_SHIFT;
275 dump->u_dsize = ((unsigned long)(current->mm->brk +
276 (PAGE_SIZE - 1))) >> PAGE_SHIFT;
277 dump->u_dsize -= dump->u_tsize;
278 dump->u_ssize = 0;
280 if (dump->start_stack < TASK_SIZE)
281 dump->u_ssize =
282 ((unsigned long)(TASK_SIZE -
283 dump->start_stack)) >> PAGE_SHIFT;
285 dump->u_ar0 = (struct user_regs_struct *)((int)&dump->regs - (int)dump);
287 dump->regs.r0 = regs->r0;
288 dump->regs.r1 = regs->r1;
289 dump->regs.r2 = regs->r2;
290 dump->regs.r3 = regs->r3;
291 dump->regs.r4 = regs->r4;
292 dump->regs.r5 = regs->r5;
293 dump->regs.r6 = regs->r6;
294 dump->regs.r7 = regs->r7;
295 dump->regs.p0 = regs->p0;
296 dump->regs.p1 = regs->p1;
297 dump->regs.p2 = regs->p2;
298 dump->regs.p3 = regs->p3;
299 dump->regs.p4 = regs->p4;
300 dump->regs.p5 = regs->p5;
301 dump->regs.orig_p0 = regs->orig_p0;
302 dump->regs.a0w = regs->a0w;
303 dump->regs.a1w = regs->a1w;
304 dump->regs.a0x = regs->a0x;
305 dump->regs.a1x = regs->a1x;
306 dump->regs.rets = regs->rets;
307 dump->regs.astat = regs->astat;
308 dump->regs.pc = regs->pc;
312 * sys_execve() executes a new program.
315 asmlinkage int sys_execve(char *name, char **argv, char **envp)
317 int error;
318 char *filename;
319 struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
321 lock_kernel();
322 filename = getname(name);
323 error = PTR_ERR(filename);
324 if (IS_ERR(filename))
325 goto out;
326 error = do_execve(filename, argv, envp, regs);
327 putname(filename);
328 out:
329 unlock_kernel();
330 return error;
333 unsigned long get_wchan(struct task_struct *p)
335 unsigned long fp, pc;
336 unsigned long stack_page;
337 int count = 0;
338 if (!p || p == current || p->state == TASK_RUNNING)
339 return 0;
341 stack_page = (unsigned long)p;
342 fp = p->thread.usp;
343 do {
344 if (fp < stack_page + sizeof(struct thread_info) ||
345 fp >= 8184 + stack_page)
346 return 0;
347 pc = ((unsigned long *)fp)[1];
348 if (!in_sched_functions(pc))
349 return pc;
350 fp = *(unsigned long *)fp;
352 while (count++ < 16);
353 return 0;
356 void finish_atomic_sections (struct pt_regs *regs)
358 if (regs->pc < ATOMIC_SEQS_START || regs->pc >= ATOMIC_SEQS_END)
359 return;
361 switch (regs->pc) {
362 case ATOMIC_XCHG32 + 2:
363 put_user(regs->r1, (int *)regs->p0);
364 regs->pc += 2;
365 break;
367 case ATOMIC_CAS32 + 2:
368 case ATOMIC_CAS32 + 4:
369 if (regs->r0 == regs->r1)
370 put_user(regs->r2, (int *)regs->p0);
371 regs->pc = ATOMIC_CAS32 + 8;
372 break;
373 case ATOMIC_CAS32 + 6:
374 put_user(regs->r2, (int *)regs->p0);
375 regs->pc += 2;
376 break;
378 case ATOMIC_ADD32 + 2:
379 regs->r0 = regs->r1 + regs->r0;
380 /* fall through */
381 case ATOMIC_ADD32 + 4:
382 put_user(regs->r0, (int *)regs->p0);
383 regs->pc = ATOMIC_ADD32 + 6;
384 break;
386 case ATOMIC_SUB32 + 2:
387 regs->r0 = regs->r1 - regs->r0;
388 /* fall through */
389 case ATOMIC_SUB32 + 4:
390 put_user(regs->r0, (int *)regs->p0);
391 regs->pc = ATOMIC_SUB32 + 6;
392 break;
394 case ATOMIC_IOR32 + 2:
395 regs->r0 = regs->r1 | regs->r0;
396 /* fall through */
397 case ATOMIC_IOR32 + 4:
398 put_user(regs->r0, (int *)regs->p0);
399 regs->pc = ATOMIC_IOR32 + 6;
400 break;
402 case ATOMIC_AND32 + 2:
403 regs->r0 = regs->r1 & regs->r0;
404 /* fall through */
405 case ATOMIC_AND32 + 4:
406 put_user(regs->r0, (int *)regs->p0);
407 regs->pc = ATOMIC_AND32 + 6;
408 break;
410 case ATOMIC_XOR32 + 2:
411 regs->r0 = regs->r1 ^ regs->r0;
412 /* fall through */
413 case ATOMIC_XOR32 + 4:
414 put_user(regs->r0, (int *)regs->p0);
415 regs->pc = ATOMIC_XOR32 + 6;
416 break;
420 #if defined(CONFIG_ACCESS_CHECK)
421 int _access_ok(unsigned long addr, unsigned long size)
424 if (addr > (addr + size))
425 return 0;
426 if (segment_eq(get_fs(), KERNEL_DS))
427 return 1;
428 #ifdef CONFIG_MTD_UCLINUX
429 if (addr >= memory_start && (addr + size) <= memory_end)
430 return 1;
431 if (addr >= memory_mtd_end && (addr + size) <= physical_mem_end)
432 return 1;
433 #else
434 if (addr >= memory_start && (addr + size) <= physical_mem_end)
435 return 1;
436 #endif
437 if (addr >= (unsigned long)__init_begin &&
438 addr + size <= (unsigned long)__init_end)
439 return 1;
440 if (addr >= L1_SCRATCH_START
441 && addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH)
442 return 1;
443 #if L1_CODE_LENGTH != 0
444 if (addr >= L1_CODE_START + (_etext_l1 - _stext_l1)
445 && addr + size <= L1_CODE_START + L1_CODE_LENGTH)
446 return 1;
447 #endif
448 #if L1_DATA_A_LENGTH != 0
449 if (addr >= L1_DATA_A_START + (_ebss_l1 - _sdata_l1)
450 && addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH)
451 return 1;
452 #endif
453 #if L1_DATA_B_LENGTH != 0
454 if (addr >= L1_DATA_B_START
455 && addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH)
456 return 1;
457 #endif
458 return 0;
460 EXPORT_SYMBOL(_access_ok);
461 #endif /* CONFIG_ACCESS_CHECK */