6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct
*mm
,
50 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
51 unsigned long start
, unsigned long end
);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map
[16] = {
75 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
76 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
79 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
81 return __pgprot(pgprot_val(protection_map
[vm_flags
&
82 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
85 EXPORT_SYMBOL(vm_get_page_prot
);
87 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
114 unsigned long free
, allowed
;
116 vm_acct_memory(pages
);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
124 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
125 free
= global_page_state(NR_FREE_PAGES
);
126 free
+= global_page_state(NR_FILE_PAGES
);
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
134 free
-= global_page_state(NR_SHMEM
);
136 free
+= nr_swap_pages
;
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
144 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (free
<= totalreserve_pages
)
152 free
-= totalreserve_pages
;
155 * Leave the last 3% for root
166 allowed
= (totalram_pages
- hugetlb_total_pages())
167 * sysctl_overcommit_ratio
/ 100;
169 * Leave the last 3% for root
172 allowed
-= allowed
/ 32;
173 allowed
+= total_swap_pages
;
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
178 allowed
-= mm
->total_vm
/ 32;
180 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
183 vm_unacct_memory(pages
);
189 * Requires inode->i_mapping->i_mmap_mutex
191 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
192 struct file
*file
, struct address_space
*mapping
)
194 if (vma
->vm_flags
& VM_DENYWRITE
)
195 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
196 if (vma
->vm_flags
& VM_SHARED
)
197 mapping
->i_mmap_writable
--;
199 flush_dcache_mmap_lock(mapping
);
200 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
201 list_del_init(&vma
->shared
.vm_set
.list
);
203 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
204 flush_dcache_mmap_unlock(mapping
);
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
211 void unlink_file_vma(struct vm_area_struct
*vma
)
213 struct file
*file
= vma
->vm_file
;
216 struct address_space
*mapping
= file
->f_mapping
;
217 mutex_lock(&mapping
->i_mmap_mutex
);
218 __remove_shared_vm_struct(vma
, file
, mapping
);
219 mutex_unlock(&mapping
->i_mmap_mutex
);
224 * Close a vm structure and free it, returning the next.
226 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
228 struct vm_area_struct
*next
= vma
->vm_next
;
231 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
232 vma
->vm_ops
->close(vma
);
235 if (vma
->vm_flags
& VM_EXECUTABLE
)
236 removed_exe_file_vma(vma
->vm_mm
);
238 mpol_put(vma_policy(vma
));
239 kmem_cache_free(vm_area_cachep
, vma
);
243 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
245 unsigned long rlim
, retval
;
246 unsigned long newbrk
, oldbrk
;
247 struct mm_struct
*mm
= current
->mm
;
248 unsigned long min_brk
;
250 down_write(&mm
->mmap_sem
);
252 #ifdef CONFIG_COMPAT_BRK
254 * CONFIG_COMPAT_BRK can still be overridden by setting
255 * randomize_va_space to 2, which will still cause mm->start_brk
256 * to be arbitrarily shifted
258 if (current
->brk_randomized
)
259 min_brk
= mm
->start_brk
;
261 min_brk
= mm
->end_data
;
263 min_brk
= mm
->start_brk
;
269 * Check against rlimit here. If this check is done later after the test
270 * of oldbrk with newbrk then it can escape the test and let the data
271 * segment grow beyond its set limit the in case where the limit is
272 * not page aligned -Ram Gupta
274 rlim
= rlimit(RLIMIT_DATA
);
275 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
276 (mm
->end_data
- mm
->start_data
) > rlim
)
279 newbrk
= PAGE_ALIGN(brk
);
280 oldbrk
= PAGE_ALIGN(mm
->brk
);
281 if (oldbrk
== newbrk
)
284 /* Always allow shrinking brk. */
285 if (brk
<= mm
->brk
) {
286 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
291 /* Check against existing mmap mappings. */
292 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
295 /* Ok, looks good - let it rip. */
296 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
302 up_write(&mm
->mmap_sem
);
307 static int browse_rb(struct rb_root
*root
)
310 struct rb_node
*nd
, *pn
= NULL
;
311 unsigned long prev
= 0, pend
= 0;
313 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
314 struct vm_area_struct
*vma
;
315 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
316 if (vma
->vm_start
< prev
)
317 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
318 if (vma
->vm_start
< pend
)
319 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
320 if (vma
->vm_start
> vma
->vm_end
)
321 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
324 prev
= vma
->vm_start
;
328 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
332 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
336 void validate_mm(struct mm_struct
*mm
)
340 struct vm_area_struct
*tmp
= mm
->mmap
;
345 if (i
!= mm
->map_count
)
346 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
347 i
= browse_rb(&mm
->mm_rb
);
348 if (i
!= mm
->map_count
)
349 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
353 #define validate_mm(mm) do { } while (0)
356 static struct vm_area_struct
*
357 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
358 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
359 struct rb_node
** rb_parent
)
361 struct vm_area_struct
* vma
;
362 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
364 __rb_link
= &mm
->mm_rb
.rb_node
;
365 rb_prev
= __rb_parent
= NULL
;
369 struct vm_area_struct
*vma_tmp
;
371 __rb_parent
= *__rb_link
;
372 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
374 if (vma_tmp
->vm_end
> addr
) {
376 if (vma_tmp
->vm_start
<= addr
)
378 __rb_link
= &__rb_parent
->rb_left
;
380 rb_prev
= __rb_parent
;
381 __rb_link
= &__rb_parent
->rb_right
;
387 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
388 *rb_link
= __rb_link
;
389 *rb_parent
= __rb_parent
;
393 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
394 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
396 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
397 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
400 static void __vma_link_file(struct vm_area_struct
*vma
)
406 struct address_space
*mapping
= file
->f_mapping
;
408 if (vma
->vm_flags
& VM_DENYWRITE
)
409 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
410 if (vma
->vm_flags
& VM_SHARED
)
411 mapping
->i_mmap_writable
++;
413 flush_dcache_mmap_lock(mapping
);
414 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
415 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
417 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
418 flush_dcache_mmap_unlock(mapping
);
423 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
424 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
425 struct rb_node
*rb_parent
)
427 __vma_link_list(mm
, vma
, prev
, rb_parent
);
428 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
431 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
432 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
433 struct rb_node
*rb_parent
)
435 struct address_space
*mapping
= NULL
;
438 mapping
= vma
->vm_file
->f_mapping
;
441 mutex_lock(&mapping
->i_mmap_mutex
);
443 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
444 __vma_link_file(vma
);
447 mutex_unlock(&mapping
->i_mmap_mutex
);
454 * Helper for vma_adjust in the split_vma insert case:
455 * insert vm structure into list and rbtree and anon_vma,
456 * but it has already been inserted into prio_tree earlier.
458 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
460 struct vm_area_struct
*__vma
, *prev
;
461 struct rb_node
**rb_link
, *rb_parent
;
463 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
464 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
465 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
470 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
471 struct vm_area_struct
*prev
)
473 struct vm_area_struct
*next
= vma
->vm_next
;
475 prev
->vm_next
= next
;
477 next
->vm_prev
= prev
;
478 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
479 if (mm
->mmap_cache
== vma
)
480 mm
->mmap_cache
= prev
;
484 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485 * is already present in an i_mmap tree without adjusting the tree.
486 * The following helper function should be used when such adjustments
487 * are necessary. The "insert" vma (if any) is to be inserted
488 * before we drop the necessary locks.
490 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
491 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
493 struct mm_struct
*mm
= vma
->vm_mm
;
494 struct vm_area_struct
*next
= vma
->vm_next
;
495 struct vm_area_struct
*importer
= NULL
;
496 struct address_space
*mapping
= NULL
;
497 struct prio_tree_root
*root
= NULL
;
498 struct anon_vma
*anon_vma
= NULL
;
499 struct file
*file
= vma
->vm_file
;
500 long adjust_next
= 0;
503 if (next
&& !insert
) {
504 struct vm_area_struct
*exporter
= NULL
;
506 if (end
>= next
->vm_end
) {
508 * vma expands, overlapping all the next, and
509 * perhaps the one after too (mprotect case 6).
511 again
: remove_next
= 1 + (end
> next
->vm_end
);
515 } else if (end
> next
->vm_start
) {
517 * vma expands, overlapping part of the next:
518 * mprotect case 5 shifting the boundary up.
520 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
523 } else if (end
< vma
->vm_end
) {
525 * vma shrinks, and !insert tells it's not
526 * split_vma inserting another: so it must be
527 * mprotect case 4 shifting the boundary down.
529 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
535 * Easily overlooked: when mprotect shifts the boundary,
536 * make sure the expanding vma has anon_vma set if the
537 * shrinking vma had, to cover any anon pages imported.
539 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
540 if (anon_vma_clone(importer
, exporter
))
542 importer
->anon_vma
= exporter
->anon_vma
;
547 mapping
= file
->f_mapping
;
548 if (!(vma
->vm_flags
& VM_NONLINEAR
))
549 root
= &mapping
->i_mmap
;
550 mutex_lock(&mapping
->i_mmap_mutex
);
553 * Put into prio_tree now, so instantiated pages
554 * are visible to arm/parisc __flush_dcache_page
555 * throughout; but we cannot insert into address
556 * space until vma start or end is updated.
558 __vma_link_file(insert
);
562 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
565 * When changing only vma->vm_end, we don't really need anon_vma
566 * lock. This is a fairly rare case by itself, but the anon_vma
567 * lock may be shared between many sibling processes. Skipping
568 * the lock for brk adjustments makes a difference sometimes.
570 if (vma
->anon_vma
&& (importer
|| start
!= vma
->vm_start
)) {
571 anon_vma
= vma
->anon_vma
;
572 anon_vma_lock(anon_vma
);
576 flush_dcache_mmap_lock(mapping
);
577 vma_prio_tree_remove(vma
, root
);
579 vma_prio_tree_remove(next
, root
);
582 vma
->vm_start
= start
;
584 vma
->vm_pgoff
= pgoff
;
586 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
587 next
->vm_pgoff
+= adjust_next
;
592 vma_prio_tree_insert(next
, root
);
593 vma_prio_tree_insert(vma
, root
);
594 flush_dcache_mmap_unlock(mapping
);
599 * vma_merge has merged next into vma, and needs
600 * us to remove next before dropping the locks.
602 __vma_unlink(mm
, next
, vma
);
604 __remove_shared_vm_struct(next
, file
, mapping
);
607 * split_vma has split insert from vma, and needs
608 * us to insert it before dropping the locks
609 * (it may either follow vma or precede it).
611 __insert_vm_struct(mm
, insert
);
615 anon_vma_unlock(anon_vma
);
617 mutex_unlock(&mapping
->i_mmap_mutex
);
622 if (next
->vm_flags
& VM_EXECUTABLE
)
623 removed_exe_file_vma(mm
);
626 anon_vma_merge(vma
, next
);
628 mpol_put(vma_policy(next
));
629 kmem_cache_free(vm_area_cachep
, next
);
631 * In mprotect's case 6 (see comments on vma_merge),
632 * we must remove another next too. It would clutter
633 * up the code too much to do both in one go.
635 if (remove_next
== 2) {
647 * If the vma has a ->close operation then the driver probably needs to release
648 * per-vma resources, so we don't attempt to merge those.
650 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
651 struct file
*file
, unsigned long vm_flags
)
653 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
654 if ((vma
->vm_flags
^ vm_flags
) & ~VM_CAN_NONLINEAR
)
656 if (vma
->vm_file
!= file
)
658 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
663 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
664 struct anon_vma
*anon_vma2
,
665 struct vm_area_struct
*vma
)
668 * The list_is_singular() test is to avoid merging VMA cloned from
669 * parents. This can improve scalability caused by anon_vma lock.
671 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
672 list_is_singular(&vma
->anon_vma_chain
)))
674 return anon_vma1
== anon_vma2
;
678 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
679 * in front of (at a lower virtual address and file offset than) the vma.
681 * We cannot merge two vmas if they have differently assigned (non-NULL)
682 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
684 * We don't check here for the merged mmap wrapping around the end of pagecache
685 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
686 * wrap, nor mmaps which cover the final page at index -1UL.
689 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
690 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
692 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
693 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
694 if (vma
->vm_pgoff
== vm_pgoff
)
701 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
702 * beyond (at a higher virtual address and file offset than) the vma.
704 * We cannot merge two vmas if they have differently assigned (non-NULL)
705 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
708 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
709 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
711 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
712 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
714 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
715 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
722 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
723 * whether that can be merged with its predecessor or its successor.
724 * Or both (it neatly fills a hole).
726 * In most cases - when called for mmap, brk or mremap - [addr,end) is
727 * certain not to be mapped by the time vma_merge is called; but when
728 * called for mprotect, it is certain to be already mapped (either at
729 * an offset within prev, or at the start of next), and the flags of
730 * this area are about to be changed to vm_flags - and the no-change
731 * case has already been eliminated.
733 * The following mprotect cases have to be considered, where AAAA is
734 * the area passed down from mprotect_fixup, never extending beyond one
735 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
737 * AAAA AAAA AAAA AAAA
738 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
739 * cannot merge might become might become might become
740 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
741 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
742 * mremap move: PPPPNNNNNNNN 8
744 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
745 * might become case 1 below case 2 below case 3 below
747 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
748 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
750 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
751 struct vm_area_struct
*prev
, unsigned long addr
,
752 unsigned long end
, unsigned long vm_flags
,
753 struct anon_vma
*anon_vma
, struct file
*file
,
754 pgoff_t pgoff
, struct mempolicy
*policy
)
756 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
757 struct vm_area_struct
*area
, *next
;
761 * We later require that vma->vm_flags == vm_flags,
762 * so this tests vma->vm_flags & VM_SPECIAL, too.
764 if (vm_flags
& VM_SPECIAL
)
768 next
= prev
->vm_next
;
772 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
773 next
= next
->vm_next
;
776 * Can it merge with the predecessor?
778 if (prev
&& prev
->vm_end
== addr
&&
779 mpol_equal(vma_policy(prev
), policy
) &&
780 can_vma_merge_after(prev
, vm_flags
,
781 anon_vma
, file
, pgoff
)) {
783 * OK, it can. Can we now merge in the successor as well?
785 if (next
&& end
== next
->vm_start
&&
786 mpol_equal(policy
, vma_policy(next
)) &&
787 can_vma_merge_before(next
, vm_flags
,
788 anon_vma
, file
, pgoff
+pglen
) &&
789 is_mergeable_anon_vma(prev
->anon_vma
,
790 next
->anon_vma
, NULL
)) {
792 err
= vma_adjust(prev
, prev
->vm_start
,
793 next
->vm_end
, prev
->vm_pgoff
, NULL
);
794 } else /* cases 2, 5, 7 */
795 err
= vma_adjust(prev
, prev
->vm_start
,
796 end
, prev
->vm_pgoff
, NULL
);
799 khugepaged_enter_vma_merge(prev
);
804 * Can this new request be merged in front of next?
806 if (next
&& end
== next
->vm_start
&&
807 mpol_equal(policy
, vma_policy(next
)) &&
808 can_vma_merge_before(next
, vm_flags
,
809 anon_vma
, file
, pgoff
+pglen
)) {
810 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
811 err
= vma_adjust(prev
, prev
->vm_start
,
812 addr
, prev
->vm_pgoff
, NULL
);
813 else /* cases 3, 8 */
814 err
= vma_adjust(area
, addr
, next
->vm_end
,
815 next
->vm_pgoff
- pglen
, NULL
);
818 khugepaged_enter_vma_merge(area
);
826 * Rough compatbility check to quickly see if it's even worth looking
827 * at sharing an anon_vma.
829 * They need to have the same vm_file, and the flags can only differ
830 * in things that mprotect may change.
832 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
833 * we can merge the two vma's. For example, we refuse to merge a vma if
834 * there is a vm_ops->close() function, because that indicates that the
835 * driver is doing some kind of reference counting. But that doesn't
836 * really matter for the anon_vma sharing case.
838 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
840 return a
->vm_end
== b
->vm_start
&&
841 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
842 a
->vm_file
== b
->vm_file
&&
843 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
844 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
848 * Do some basic sanity checking to see if we can re-use the anon_vma
849 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
850 * the same as 'old', the other will be the new one that is trying
851 * to share the anon_vma.
853 * NOTE! This runs with mm_sem held for reading, so it is possible that
854 * the anon_vma of 'old' is concurrently in the process of being set up
855 * by another page fault trying to merge _that_. But that's ok: if it
856 * is being set up, that automatically means that it will be a singleton
857 * acceptable for merging, so we can do all of this optimistically. But
858 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
860 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
861 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
862 * is to return an anon_vma that is "complex" due to having gone through
865 * We also make sure that the two vma's are compatible (adjacent,
866 * and with the same memory policies). That's all stable, even with just
867 * a read lock on the mm_sem.
869 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
871 if (anon_vma_compatible(a
, b
)) {
872 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
874 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
881 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
882 * neighbouring vmas for a suitable anon_vma, before it goes off
883 * to allocate a new anon_vma. It checks because a repetitive
884 * sequence of mprotects and faults may otherwise lead to distinct
885 * anon_vmas being allocated, preventing vma merge in subsequent
888 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
890 struct anon_vma
*anon_vma
;
891 struct vm_area_struct
*near
;
897 anon_vma
= reusable_anon_vma(near
, vma
, near
);
905 anon_vma
= reusable_anon_vma(near
, near
, vma
);
910 * There's no absolute need to look only at touching neighbours:
911 * we could search further afield for "compatible" anon_vmas.
912 * But it would probably just be a waste of time searching,
913 * or lead to too many vmas hanging off the same anon_vma.
914 * We're trying to allow mprotect remerging later on,
915 * not trying to minimize memory used for anon_vmas.
920 #ifdef CONFIG_PROC_FS
921 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
922 struct file
*file
, long pages
)
924 const unsigned long stack_flags
925 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
928 mm
->shared_vm
+= pages
;
929 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
930 mm
->exec_vm
+= pages
;
931 } else if (flags
& stack_flags
)
932 mm
->stack_vm
+= pages
;
933 if (flags
& (VM_RESERVED
|VM_IO
))
934 mm
->reserved_vm
+= pages
;
936 #endif /* CONFIG_PROC_FS */
939 * The caller must hold down_write(¤t->mm->mmap_sem).
942 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
943 unsigned long len
, unsigned long prot
,
944 unsigned long flags
, unsigned long pgoff
)
946 struct mm_struct
* mm
= current
->mm
;
950 unsigned long reqprot
= prot
;
953 * Does the application expect PROT_READ to imply PROT_EXEC?
955 * (the exception is when the underlying filesystem is noexec
956 * mounted, in which case we dont add PROT_EXEC.)
958 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
959 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
965 if (!(flags
& MAP_FIXED
))
966 addr
= round_hint_to_min(addr
);
968 /* Careful about overflows.. */
969 len
= PAGE_ALIGN(len
);
973 /* offset overflow? */
974 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
977 /* Too many mappings? */
978 if (mm
->map_count
> sysctl_max_map_count
)
981 /* Obtain the address to map to. we verify (or select) it and ensure
982 * that it represents a valid section of the address space.
984 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
985 if (addr
& ~PAGE_MASK
)
988 /* Do simple checking here so the lower-level routines won't have
989 * to. we assume access permissions have been handled by the open
990 * of the memory object, so we don't do any here.
992 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
993 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
995 if (flags
& MAP_LOCKED
)
999 /* mlock MCL_FUTURE? */
1000 if (vm_flags
& VM_LOCKED
) {
1001 unsigned long locked
, lock_limit
;
1002 locked
= len
>> PAGE_SHIFT
;
1003 locked
+= mm
->locked_vm
;
1004 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1005 lock_limit
>>= PAGE_SHIFT
;
1006 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1010 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1013 switch (flags
& MAP_TYPE
) {
1015 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1019 * Make sure we don't allow writing to an append-only
1022 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1026 * Make sure there are no mandatory locks on the file.
1028 if (locks_verify_locked(inode
))
1031 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1032 if (!(file
->f_mode
& FMODE_WRITE
))
1033 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1037 if (!(file
->f_mode
& FMODE_READ
))
1039 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1040 if (vm_flags
& VM_EXEC
)
1042 vm_flags
&= ~VM_MAYEXEC
;
1045 if (!file
->f_op
|| !file
->f_op
->mmap
)
1053 switch (flags
& MAP_TYPE
) {
1059 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1063 * Set pgoff according to addr for anon_vma.
1065 pgoff
= addr
>> PAGE_SHIFT
;
1072 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1076 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1078 EXPORT_SYMBOL(do_mmap_pgoff
);
1080 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1081 unsigned long, prot
, unsigned long, flags
,
1082 unsigned long, fd
, unsigned long, pgoff
)
1084 struct file
*file
= NULL
;
1085 unsigned long retval
= -EBADF
;
1087 if (!(flags
& MAP_ANONYMOUS
)) {
1088 audit_mmap_fd(fd
, flags
);
1089 if (unlikely(flags
& MAP_HUGETLB
))
1094 } else if (flags
& MAP_HUGETLB
) {
1095 struct user_struct
*user
= NULL
;
1097 * VM_NORESERVE is used because the reservations will be
1098 * taken when vm_ops->mmap() is called
1099 * A dummy user value is used because we are not locking
1100 * memory so no accounting is necessary
1102 len
= ALIGN(len
, huge_page_size(&default_hstate
));
1103 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
, VM_NORESERVE
,
1104 &user
, HUGETLB_ANONHUGE_INODE
);
1106 return PTR_ERR(file
);
1109 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1111 down_write(¤t
->mm
->mmap_sem
);
1112 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1113 up_write(¤t
->mm
->mmap_sem
);
1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1122 struct mmap_arg_struct
{
1126 unsigned long flags
;
1128 unsigned long offset
;
1131 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1133 struct mmap_arg_struct a
;
1135 if (copy_from_user(&a
, arg
, sizeof(a
)))
1137 if (a
.offset
& ~PAGE_MASK
)
1140 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1141 a
.offset
>> PAGE_SHIFT
);
1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1146 * Some shared mappigns will want the pages marked read-only
1147 * to track write events. If so, we'll downgrade vm_page_prot
1148 * to the private version (using protection_map[] without the
1151 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1153 vm_flags_t vm_flags
= vma
->vm_flags
;
1155 /* If it was private or non-writable, the write bit is already clear */
1156 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1159 /* The backer wishes to know when pages are first written to? */
1160 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1163 /* The open routine did something to the protections already? */
1164 if (pgprot_val(vma
->vm_page_prot
) !=
1165 pgprot_val(vm_get_page_prot(vm_flags
)))
1168 /* Specialty mapping? */
1169 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1172 /* Can the mapping track the dirty pages? */
1173 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1174 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1178 * We account for memory if it's a private writeable mapping,
1179 * not hugepages and VM_NORESERVE wasn't set.
1181 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1184 * hugetlb has its own accounting separate from the core VM
1185 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1187 if (file
&& is_file_hugepages(file
))
1190 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1193 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1194 unsigned long len
, unsigned long flags
,
1195 vm_flags_t vm_flags
, unsigned long pgoff
)
1197 struct mm_struct
*mm
= current
->mm
;
1198 struct vm_area_struct
*vma
, *prev
;
1199 int correct_wcount
= 0;
1201 struct rb_node
**rb_link
, *rb_parent
;
1202 unsigned long charged
= 0;
1203 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1205 /* Clear old maps */
1208 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1209 if (vma
&& vma
->vm_start
< addr
+ len
) {
1210 if (do_munmap(mm
, addr
, len
))
1215 /* Check against address space limit. */
1216 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1220 * Set 'VM_NORESERVE' if we should not account for the
1221 * memory use of this mapping.
1223 if ((flags
& MAP_NORESERVE
)) {
1224 /* We honor MAP_NORESERVE if allowed to overcommit */
1225 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1226 vm_flags
|= VM_NORESERVE
;
1228 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229 if (file
&& is_file_hugepages(file
))
1230 vm_flags
|= VM_NORESERVE
;
1234 * Private writable mapping: check memory availability
1236 if (accountable_mapping(file
, vm_flags
)) {
1237 charged
= len
>> PAGE_SHIFT
;
1238 if (security_vm_enough_memory(charged
))
1240 vm_flags
|= VM_ACCOUNT
;
1244 * Can we just expand an old mapping?
1246 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1251 * Determine the object being mapped and call the appropriate
1252 * specific mapper. the address has already been validated, but
1253 * not unmapped, but the maps are removed from the list.
1255 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1262 vma
->vm_start
= addr
;
1263 vma
->vm_end
= addr
+ len
;
1264 vma
->vm_flags
= vm_flags
;
1265 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1266 vma
->vm_pgoff
= pgoff
;
1267 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1271 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1273 if (vm_flags
& VM_DENYWRITE
) {
1274 error
= deny_write_access(file
);
1279 vma
->vm_file
= file
;
1281 error
= file
->f_op
->mmap(file
, vma
);
1283 goto unmap_and_free_vma
;
1284 if (vm_flags
& VM_EXECUTABLE
)
1285 added_exe_file_vma(mm
);
1287 /* Can addr have changed??
1289 * Answer: Yes, several device drivers can do it in their
1290 * f_op->mmap method. -DaveM
1292 addr
= vma
->vm_start
;
1293 pgoff
= vma
->vm_pgoff
;
1294 vm_flags
= vma
->vm_flags
;
1295 } else if (vm_flags
& VM_SHARED
) {
1296 error
= shmem_zero_setup(vma
);
1301 if (vma_wants_writenotify(vma
)) {
1302 pgprot_t pprot
= vma
->vm_page_prot
;
1304 /* Can vma->vm_page_prot have changed??
1306 * Answer: Yes, drivers may have changed it in their
1307 * f_op->mmap method.
1309 * Ensures that vmas marked as uncached stay that way.
1311 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1312 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1313 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1316 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1317 file
= vma
->vm_file
;
1319 /* Once vma denies write, undo our temporary denial count */
1321 atomic_inc(&inode
->i_writecount
);
1323 perf_event_mmap(vma
);
1325 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1326 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1327 if (vm_flags
& VM_LOCKED
) {
1328 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
1329 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1330 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1331 make_pages_present(addr
, addr
+ len
);
1336 atomic_inc(&inode
->i_writecount
);
1337 vma
->vm_file
= NULL
;
1340 /* Undo any partial mapping done by a device driver. */
1341 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1344 kmem_cache_free(vm_area_cachep
, vma
);
1347 vm_unacct_memory(charged
);
1351 /* Get an address range which is currently unmapped.
1352 * For shmat() with addr=0.
1354 * Ugly calling convention alert:
1355 * Return value with the low bits set means error value,
1357 * if (ret & ~PAGE_MASK)
1360 * This function "knows" that -ENOMEM has the bits set.
1362 #ifndef HAVE_ARCH_UNMAPPED_AREA
1364 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1365 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1367 struct mm_struct
*mm
= current
->mm
;
1368 struct vm_area_struct
*vma
;
1369 unsigned long start_addr
;
1371 if (len
> TASK_SIZE
)
1374 if (flags
& MAP_FIXED
)
1378 addr
= PAGE_ALIGN(addr
);
1379 vma
= find_vma(mm
, addr
);
1380 if (TASK_SIZE
- len
>= addr
&&
1381 (!vma
|| addr
+ len
<= vma
->vm_start
))
1384 if (len
> mm
->cached_hole_size
) {
1385 start_addr
= addr
= mm
->free_area_cache
;
1387 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1388 mm
->cached_hole_size
= 0;
1392 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1393 /* At this point: (!vma || addr < vma->vm_end). */
1394 if (TASK_SIZE
- len
< addr
) {
1396 * Start a new search - just in case we missed
1399 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1400 addr
= TASK_UNMAPPED_BASE
;
1402 mm
->cached_hole_size
= 0;
1407 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1409 * Remember the place where we stopped the search:
1411 mm
->free_area_cache
= addr
+ len
;
1414 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1415 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1421 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1424 * Is this a new hole at the lowest possible address?
1426 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1427 mm
->free_area_cache
= addr
;
1428 mm
->cached_hole_size
= ~0UL;
1433 * This mmap-allocator allocates new areas top-down from below the
1434 * stack's low limit (the base):
1436 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1438 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1439 const unsigned long len
, const unsigned long pgoff
,
1440 const unsigned long flags
)
1442 struct vm_area_struct
*vma
;
1443 struct mm_struct
*mm
= current
->mm
;
1444 unsigned long addr
= addr0
;
1446 /* requested length too big for entire address space */
1447 if (len
> TASK_SIZE
)
1450 if (flags
& MAP_FIXED
)
1453 /* requesting a specific address */
1455 addr
= PAGE_ALIGN(addr
);
1456 vma
= find_vma(mm
, addr
);
1457 if (TASK_SIZE
- len
>= addr
&&
1458 (!vma
|| addr
+ len
<= vma
->vm_start
))
1462 /* check if free_area_cache is useful for us */
1463 if (len
<= mm
->cached_hole_size
) {
1464 mm
->cached_hole_size
= 0;
1465 mm
->free_area_cache
= mm
->mmap_base
;
1468 /* either no address requested or can't fit in requested address hole */
1469 addr
= mm
->free_area_cache
;
1471 /* make sure it can fit in the remaining address space */
1473 vma
= find_vma(mm
, addr
-len
);
1474 if (!vma
|| addr
<= vma
->vm_start
)
1475 /* remember the address as a hint for next time */
1476 return (mm
->free_area_cache
= addr
-len
);
1479 if (mm
->mmap_base
< len
)
1482 addr
= mm
->mmap_base
-len
;
1486 * Lookup failure means no vma is above this address,
1487 * else if new region fits below vma->vm_start,
1488 * return with success:
1490 vma
= find_vma(mm
, addr
);
1491 if (!vma
|| addr
+len
<= vma
->vm_start
)
1492 /* remember the address as a hint for next time */
1493 return (mm
->free_area_cache
= addr
);
1495 /* remember the largest hole we saw so far */
1496 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1497 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1499 /* try just below the current vma->vm_start */
1500 addr
= vma
->vm_start
-len
;
1501 } while (len
< vma
->vm_start
);
1505 * A failed mmap() very likely causes application failure,
1506 * so fall back to the bottom-up function here. This scenario
1507 * can happen with large stack limits and large mmap()
1510 mm
->cached_hole_size
= ~0UL;
1511 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1512 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1514 * Restore the topdown base:
1516 mm
->free_area_cache
= mm
->mmap_base
;
1517 mm
->cached_hole_size
= ~0UL;
1523 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1526 * Is this a new hole at the highest possible address?
1528 if (addr
> mm
->free_area_cache
)
1529 mm
->free_area_cache
= addr
;
1531 /* dont allow allocations above current base */
1532 if (mm
->free_area_cache
> mm
->mmap_base
)
1533 mm
->free_area_cache
= mm
->mmap_base
;
1537 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1538 unsigned long pgoff
, unsigned long flags
)
1540 unsigned long (*get_area
)(struct file
*, unsigned long,
1541 unsigned long, unsigned long, unsigned long);
1543 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1547 /* Careful about overflows.. */
1548 if (len
> TASK_SIZE
)
1551 get_area
= current
->mm
->get_unmapped_area
;
1552 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1553 get_area
= file
->f_op
->get_unmapped_area
;
1554 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1555 if (IS_ERR_VALUE(addr
))
1558 if (addr
> TASK_SIZE
- len
)
1560 if (addr
& ~PAGE_MASK
)
1563 return arch_rebalance_pgtables(addr
, len
);
1566 EXPORT_SYMBOL(get_unmapped_area
);
1568 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1569 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1571 struct vm_area_struct
*vma
= NULL
;
1574 /* Check the cache first. */
1575 /* (Cache hit rate is typically around 35%.) */
1576 vma
= mm
->mmap_cache
;
1577 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1578 struct rb_node
* rb_node
;
1580 rb_node
= mm
->mm_rb
.rb_node
;
1584 struct vm_area_struct
* vma_tmp
;
1586 vma_tmp
= rb_entry(rb_node
,
1587 struct vm_area_struct
, vm_rb
);
1589 if (vma_tmp
->vm_end
> addr
) {
1591 if (vma_tmp
->vm_start
<= addr
)
1593 rb_node
= rb_node
->rb_left
;
1595 rb_node
= rb_node
->rb_right
;
1598 mm
->mmap_cache
= vma
;
1604 EXPORT_SYMBOL(find_vma
);
1607 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1608 * Note: pprev is set to NULL when return value is NULL.
1610 struct vm_area_struct
*
1611 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1612 struct vm_area_struct
**pprev
)
1614 struct vm_area_struct
*vma
;
1616 vma
= find_vma(mm
, addr
);
1617 *pprev
= vma
? vma
->vm_prev
: NULL
;
1622 * Verify that the stack growth is acceptable and
1623 * update accounting. This is shared with both the
1624 * grow-up and grow-down cases.
1626 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1628 struct mm_struct
*mm
= vma
->vm_mm
;
1629 struct rlimit
*rlim
= current
->signal
->rlim
;
1630 unsigned long new_start
;
1632 /* address space limit tests */
1633 if (!may_expand_vm(mm
, grow
))
1636 /* Stack limit test */
1637 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1640 /* mlock limit tests */
1641 if (vma
->vm_flags
& VM_LOCKED
) {
1642 unsigned long locked
;
1643 unsigned long limit
;
1644 locked
= mm
->locked_vm
+ grow
;
1645 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
1646 limit
>>= PAGE_SHIFT
;
1647 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1651 /* Check to ensure the stack will not grow into a hugetlb-only region */
1652 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1654 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1658 * Overcommit.. This must be the final test, as it will
1659 * update security statistics.
1661 if (security_vm_enough_memory_mm(mm
, grow
))
1664 /* Ok, everything looks good - let it rip */
1665 mm
->total_vm
+= grow
;
1666 if (vma
->vm_flags
& VM_LOCKED
)
1667 mm
->locked_vm
+= grow
;
1668 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1672 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1674 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1675 * vma is the last one with address > vma->vm_end. Have to extend vma.
1677 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1681 if (!(vma
->vm_flags
& VM_GROWSUP
))
1685 * We must make sure the anon_vma is allocated
1686 * so that the anon_vma locking is not a noop.
1688 if (unlikely(anon_vma_prepare(vma
)))
1690 vma_lock_anon_vma(vma
);
1693 * vma->vm_start/vm_end cannot change under us because the caller
1694 * is required to hold the mmap_sem in read mode. We need the
1695 * anon_vma lock to serialize against concurrent expand_stacks.
1696 * Also guard against wrapping around to address 0.
1698 if (address
< PAGE_ALIGN(address
+4))
1699 address
= PAGE_ALIGN(address
+4);
1701 vma_unlock_anon_vma(vma
);
1706 /* Somebody else might have raced and expanded it already */
1707 if (address
> vma
->vm_end
) {
1708 unsigned long size
, grow
;
1710 size
= address
- vma
->vm_start
;
1711 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1714 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
1715 error
= acct_stack_growth(vma
, size
, grow
);
1717 vma
->vm_end
= address
;
1718 perf_event_mmap(vma
);
1722 vma_unlock_anon_vma(vma
);
1723 khugepaged_enter_vma_merge(vma
);
1726 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1729 * vma is the first one with address < vma->vm_start. Have to extend vma.
1731 int expand_downwards(struct vm_area_struct
*vma
,
1732 unsigned long address
)
1737 * We must make sure the anon_vma is allocated
1738 * so that the anon_vma locking is not a noop.
1740 if (unlikely(anon_vma_prepare(vma
)))
1743 address
&= PAGE_MASK
;
1744 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1748 vma_lock_anon_vma(vma
);
1751 * vma->vm_start/vm_end cannot change under us because the caller
1752 * is required to hold the mmap_sem in read mode. We need the
1753 * anon_vma lock to serialize against concurrent expand_stacks.
1756 /* Somebody else might have raced and expanded it already */
1757 if (address
< vma
->vm_start
) {
1758 unsigned long size
, grow
;
1760 size
= vma
->vm_end
- address
;
1761 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1764 if (grow
<= vma
->vm_pgoff
) {
1765 error
= acct_stack_growth(vma
, size
, grow
);
1767 vma
->vm_start
= address
;
1768 vma
->vm_pgoff
-= grow
;
1769 perf_event_mmap(vma
);
1773 vma_unlock_anon_vma(vma
);
1774 khugepaged_enter_vma_merge(vma
);
1778 #ifdef CONFIG_STACK_GROWSUP
1779 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1781 return expand_upwards(vma
, address
);
1784 struct vm_area_struct
*
1785 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1787 struct vm_area_struct
*vma
, *prev
;
1790 vma
= find_vma_prev(mm
, addr
, &prev
);
1791 if (vma
&& (vma
->vm_start
<= addr
))
1793 if (!prev
|| expand_stack(prev
, addr
))
1795 if (prev
->vm_flags
& VM_LOCKED
) {
1796 mlock_vma_pages_range(prev
, addr
, prev
->vm_end
);
1801 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1803 return expand_downwards(vma
, address
);
1806 struct vm_area_struct
*
1807 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1809 struct vm_area_struct
* vma
;
1810 unsigned long start
;
1813 vma
= find_vma(mm
,addr
);
1816 if (vma
->vm_start
<= addr
)
1818 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1820 start
= vma
->vm_start
;
1821 if (expand_stack(vma
, addr
))
1823 if (vma
->vm_flags
& VM_LOCKED
) {
1824 mlock_vma_pages_range(vma
, addr
, start
);
1831 * Ok - we have the memory areas we should free on the vma list,
1832 * so release them, and do the vma updates.
1834 * Called with the mm semaphore held.
1836 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1838 /* Update high watermark before we lower total_vm */
1839 update_hiwater_vm(mm
);
1841 long nrpages
= vma_pages(vma
);
1843 mm
->total_vm
-= nrpages
;
1844 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1845 vma
= remove_vma(vma
);
1851 * Get rid of page table information in the indicated region.
1853 * Called with the mm semaphore held.
1855 static void unmap_region(struct mm_struct
*mm
,
1856 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1857 unsigned long start
, unsigned long end
)
1859 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1860 struct mmu_gather tlb
;
1861 unsigned long nr_accounted
= 0;
1864 tlb_gather_mmu(&tlb
, mm
, 0);
1865 update_hiwater_rss(mm
);
1866 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1867 vm_unacct_memory(nr_accounted
);
1868 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1869 next
? next
->vm_start
: 0);
1870 tlb_finish_mmu(&tlb
, start
, end
);
1874 * Create a list of vma's touched by the unmap, removing them from the mm's
1875 * vma list as we go..
1878 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1879 struct vm_area_struct
*prev
, unsigned long end
)
1881 struct vm_area_struct
**insertion_point
;
1882 struct vm_area_struct
*tail_vma
= NULL
;
1885 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1886 vma
->vm_prev
= NULL
;
1888 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1892 } while (vma
&& vma
->vm_start
< end
);
1893 *insertion_point
= vma
;
1895 vma
->vm_prev
= prev
;
1896 tail_vma
->vm_next
= NULL
;
1897 if (mm
->unmap_area
== arch_unmap_area
)
1898 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1900 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1901 mm
->unmap_area(mm
, addr
);
1902 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1906 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1907 * munmap path where it doesn't make sense to fail.
1909 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1910 unsigned long addr
, int new_below
)
1912 struct mempolicy
*pol
;
1913 struct vm_area_struct
*new;
1916 if (is_vm_hugetlb_page(vma
) && (addr
&
1917 ~(huge_page_mask(hstate_vma(vma
)))))
1920 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1924 /* most fields are the same, copy all, and then fixup */
1927 INIT_LIST_HEAD(&new->anon_vma_chain
);
1932 new->vm_start
= addr
;
1933 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1936 pol
= mpol_dup(vma_policy(vma
));
1941 vma_set_policy(new, pol
);
1943 if (anon_vma_clone(new, vma
))
1947 get_file(new->vm_file
);
1948 if (vma
->vm_flags
& VM_EXECUTABLE
)
1949 added_exe_file_vma(mm
);
1952 if (new->vm_ops
&& new->vm_ops
->open
)
1953 new->vm_ops
->open(new);
1956 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1957 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1959 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1965 /* Clean everything up if vma_adjust failed. */
1966 if (new->vm_ops
&& new->vm_ops
->close
)
1967 new->vm_ops
->close(new);
1969 if (vma
->vm_flags
& VM_EXECUTABLE
)
1970 removed_exe_file_vma(mm
);
1973 unlink_anon_vmas(new);
1977 kmem_cache_free(vm_area_cachep
, new);
1983 * Split a vma into two pieces at address 'addr', a new vma is allocated
1984 * either for the first part or the tail.
1986 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1987 unsigned long addr
, int new_below
)
1989 if (mm
->map_count
>= sysctl_max_map_count
)
1992 return __split_vma(mm
, vma
, addr
, new_below
);
1995 /* Munmap is split into 2 main parts -- this part which finds
1996 * what needs doing, and the areas themselves, which do the
1997 * work. This now handles partial unmappings.
1998 * Jeremy Fitzhardinge <jeremy@goop.org>
2000 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2003 struct vm_area_struct
*vma
, *prev
, *last
;
2005 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2008 if ((len
= PAGE_ALIGN(len
)) == 0)
2011 /* Find the first overlapping VMA */
2012 vma
= find_vma(mm
, start
);
2015 prev
= vma
->vm_prev
;
2016 /* we have start < vma->vm_end */
2018 /* if it doesn't overlap, we have nothing.. */
2020 if (vma
->vm_start
>= end
)
2024 * If we need to split any vma, do it now to save pain later.
2026 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2027 * unmapped vm_area_struct will remain in use: so lower split_vma
2028 * places tmp vma above, and higher split_vma places tmp vma below.
2030 if (start
> vma
->vm_start
) {
2034 * Make sure that map_count on return from munmap() will
2035 * not exceed its limit; but let map_count go just above
2036 * its limit temporarily, to help free resources as expected.
2038 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2041 error
= __split_vma(mm
, vma
, start
, 0);
2047 /* Does it split the last one? */
2048 last
= find_vma(mm
, end
);
2049 if (last
&& end
> last
->vm_start
) {
2050 int error
= __split_vma(mm
, last
, end
, 1);
2054 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2057 * unlock any mlock()ed ranges before detaching vmas
2059 if (mm
->locked_vm
) {
2060 struct vm_area_struct
*tmp
= vma
;
2061 while (tmp
&& tmp
->vm_start
< end
) {
2062 if (tmp
->vm_flags
& VM_LOCKED
) {
2063 mm
->locked_vm
-= vma_pages(tmp
);
2064 munlock_vma_pages_all(tmp
);
2071 * Remove the vma's, and unmap the actual pages
2073 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2074 unmap_region(mm
, vma
, prev
, start
, end
);
2076 /* Fix up all other VM information */
2077 remove_vma_list(mm
, vma
);
2082 EXPORT_SYMBOL(do_munmap
);
2084 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2087 struct mm_struct
*mm
= current
->mm
;
2089 profile_munmap(addr
);
2091 down_write(&mm
->mmap_sem
);
2092 ret
= do_munmap(mm
, addr
, len
);
2093 up_write(&mm
->mmap_sem
);
2097 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2099 #ifdef CONFIG_DEBUG_VM
2100 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2102 up_read(&mm
->mmap_sem
);
2108 * this is really a simplified "do_mmap". it only handles
2109 * anonymous maps. eventually we may be able to do some
2110 * brk-specific accounting here.
2112 unsigned long do_brk(unsigned long addr
, unsigned long len
)
2114 struct mm_struct
* mm
= current
->mm
;
2115 struct vm_area_struct
* vma
, * prev
;
2116 unsigned long flags
;
2117 struct rb_node
** rb_link
, * rb_parent
;
2118 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2121 len
= PAGE_ALIGN(len
);
2125 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2129 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2131 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2132 if (error
& ~PAGE_MASK
)
2138 if (mm
->def_flags
& VM_LOCKED
) {
2139 unsigned long locked
, lock_limit
;
2140 locked
= len
>> PAGE_SHIFT
;
2141 locked
+= mm
->locked_vm
;
2142 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2143 lock_limit
>>= PAGE_SHIFT
;
2144 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2149 * mm->mmap_sem is required to protect against another thread
2150 * changing the mappings in case we sleep.
2152 verify_mm_writelocked(mm
);
2155 * Clear old maps. this also does some error checking for us
2158 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2159 if (vma
&& vma
->vm_start
< addr
+ len
) {
2160 if (do_munmap(mm
, addr
, len
))
2165 /* Check against address space limits *after* clearing old maps... */
2166 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2169 if (mm
->map_count
> sysctl_max_map_count
)
2172 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2175 /* Can we just expand an old private anonymous mapping? */
2176 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2177 NULL
, NULL
, pgoff
, NULL
);
2182 * create a vma struct for an anonymous mapping
2184 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2186 vm_unacct_memory(len
>> PAGE_SHIFT
);
2190 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2192 vma
->vm_start
= addr
;
2193 vma
->vm_end
= addr
+ len
;
2194 vma
->vm_pgoff
= pgoff
;
2195 vma
->vm_flags
= flags
;
2196 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2197 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2199 perf_event_mmap(vma
);
2200 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2201 if (flags
& VM_LOCKED
) {
2202 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2203 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2208 EXPORT_SYMBOL(do_brk
);
2210 /* Release all mmaps. */
2211 void exit_mmap(struct mm_struct
*mm
)
2213 struct mmu_gather tlb
;
2214 struct vm_area_struct
*vma
;
2215 unsigned long nr_accounted
= 0;
2218 /* mm's last user has gone, and its about to be pulled down */
2219 mmu_notifier_release(mm
);
2221 if (mm
->locked_vm
) {
2224 if (vma
->vm_flags
& VM_LOCKED
)
2225 munlock_vma_pages_all(vma
);
2233 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2238 tlb_gather_mmu(&tlb
, mm
, 1);
2239 /* update_hiwater_rss(mm) here? but nobody should be looking */
2240 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2241 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2242 vm_unacct_memory(nr_accounted
);
2244 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2245 tlb_finish_mmu(&tlb
, 0, end
);
2248 * Walk the list again, actually closing and freeing it,
2249 * with preemption enabled, without holding any MM locks.
2252 vma
= remove_vma(vma
);
2254 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2257 /* Insert vm structure into process list sorted by address
2258 * and into the inode's i_mmap tree. If vm_file is non-NULL
2259 * then i_mmap_mutex is taken here.
2261 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2263 struct vm_area_struct
* __vma
, * prev
;
2264 struct rb_node
** rb_link
, * rb_parent
;
2267 * The vm_pgoff of a purely anonymous vma should be irrelevant
2268 * until its first write fault, when page's anon_vma and index
2269 * are set. But now set the vm_pgoff it will almost certainly
2270 * end up with (unless mremap moves it elsewhere before that
2271 * first wfault), so /proc/pid/maps tells a consistent story.
2273 * By setting it to reflect the virtual start address of the
2274 * vma, merges and splits can happen in a seamless way, just
2275 * using the existing file pgoff checks and manipulations.
2276 * Similarly in do_mmap_pgoff and in do_brk.
2278 if (!vma
->vm_file
) {
2279 BUG_ON(vma
->anon_vma
);
2280 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2282 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2283 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2285 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2286 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2288 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2293 * Copy the vma structure to a new location in the same mm,
2294 * prior to moving page table entries, to effect an mremap move.
2296 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2297 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2299 struct vm_area_struct
*vma
= *vmap
;
2300 unsigned long vma_start
= vma
->vm_start
;
2301 struct mm_struct
*mm
= vma
->vm_mm
;
2302 struct vm_area_struct
*new_vma
, *prev
;
2303 struct rb_node
**rb_link
, *rb_parent
;
2304 struct mempolicy
*pol
;
2305 bool faulted_in_anon_vma
= true;
2308 * If anonymous vma has not yet been faulted, update new pgoff
2309 * to match new location, to increase its chance of merging.
2311 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2312 pgoff
= addr
>> PAGE_SHIFT
;
2313 faulted_in_anon_vma
= false;
2316 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2317 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2318 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2321 * Source vma may have been merged into new_vma
2323 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2324 vma_start
< new_vma
->vm_end
)) {
2326 * The only way we can get a vma_merge with
2327 * self during an mremap is if the vma hasn't
2328 * been faulted in yet and we were allowed to
2329 * reset the dst vma->vm_pgoff to the
2330 * destination address of the mremap to allow
2331 * the merge to happen. mremap must change the
2332 * vm_pgoff linearity between src and dst vmas
2333 * (in turn preventing a vma_merge) to be
2334 * safe. It is only safe to keep the vm_pgoff
2335 * linear if there are no pages mapped yet.
2337 VM_BUG_ON(faulted_in_anon_vma
);
2340 anon_vma_moveto_tail(new_vma
);
2342 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2345 pol
= mpol_dup(vma_policy(vma
));
2348 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2349 if (anon_vma_clone(new_vma
, vma
))
2350 goto out_free_mempol
;
2351 vma_set_policy(new_vma
, pol
);
2352 new_vma
->vm_start
= addr
;
2353 new_vma
->vm_end
= addr
+ len
;
2354 new_vma
->vm_pgoff
= pgoff
;
2355 if (new_vma
->vm_file
) {
2356 get_file(new_vma
->vm_file
);
2357 if (vma
->vm_flags
& VM_EXECUTABLE
)
2358 added_exe_file_vma(mm
);
2360 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2361 new_vma
->vm_ops
->open(new_vma
);
2362 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2370 kmem_cache_free(vm_area_cachep
, new_vma
);
2375 * Return true if the calling process may expand its vm space by the passed
2378 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2380 unsigned long cur
= mm
->total_vm
; /* pages */
2383 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2385 if (cur
+ npages
> lim
)
2391 static int special_mapping_fault(struct vm_area_struct
*vma
,
2392 struct vm_fault
*vmf
)
2395 struct page
**pages
;
2398 * special mappings have no vm_file, and in that case, the mm
2399 * uses vm_pgoff internally. So we have to subtract it from here.
2400 * We are allowed to do this because we are the mm; do not copy
2401 * this code into drivers!
2403 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2405 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2409 struct page
*page
= *pages
;
2415 return VM_FAULT_SIGBUS
;
2419 * Having a close hook prevents vma merging regardless of flags.
2421 static void special_mapping_close(struct vm_area_struct
*vma
)
2425 static const struct vm_operations_struct special_mapping_vmops
= {
2426 .close
= special_mapping_close
,
2427 .fault
= special_mapping_fault
,
2431 * Called with mm->mmap_sem held for writing.
2432 * Insert a new vma covering the given region, with the given flags.
2433 * Its pages are supplied by the given array of struct page *.
2434 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2435 * The region past the last page supplied will always produce SIGBUS.
2436 * The array pointer and the pages it points to are assumed to stay alive
2437 * for as long as this mapping might exist.
2439 int install_special_mapping(struct mm_struct
*mm
,
2440 unsigned long addr
, unsigned long len
,
2441 unsigned long vm_flags
, struct page
**pages
)
2444 struct vm_area_struct
*vma
;
2446 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2447 if (unlikely(vma
== NULL
))
2450 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2452 vma
->vm_start
= addr
;
2453 vma
->vm_end
= addr
+ len
;
2455 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2456 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2458 vma
->vm_ops
= &special_mapping_vmops
;
2459 vma
->vm_private_data
= pages
;
2461 ret
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
2465 ret
= insert_vm_struct(mm
, vma
);
2469 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2471 perf_event_mmap(vma
);
2476 kmem_cache_free(vm_area_cachep
, vma
);
2480 static DEFINE_MUTEX(mm_all_locks_mutex
);
2482 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2484 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2486 * The LSB of head.next can't change from under us
2487 * because we hold the mm_all_locks_mutex.
2489 mutex_lock_nest_lock(&anon_vma
->root
->mutex
, &mm
->mmap_sem
);
2491 * We can safely modify head.next after taking the
2492 * anon_vma->root->mutex. If some other vma in this mm shares
2493 * the same anon_vma we won't take it again.
2495 * No need of atomic instructions here, head.next
2496 * can't change from under us thanks to the
2497 * anon_vma->root->mutex.
2499 if (__test_and_set_bit(0, (unsigned long *)
2500 &anon_vma
->root
->head
.next
))
2505 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2507 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2509 * AS_MM_ALL_LOCKS can't change from under us because
2510 * we hold the mm_all_locks_mutex.
2512 * Operations on ->flags have to be atomic because
2513 * even if AS_MM_ALL_LOCKS is stable thanks to the
2514 * mm_all_locks_mutex, there may be other cpus
2515 * changing other bitflags in parallel to us.
2517 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2519 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
2524 * This operation locks against the VM for all pte/vma/mm related
2525 * operations that could ever happen on a certain mm. This includes
2526 * vmtruncate, try_to_unmap, and all page faults.
2528 * The caller must take the mmap_sem in write mode before calling
2529 * mm_take_all_locks(). The caller isn't allowed to release the
2530 * mmap_sem until mm_drop_all_locks() returns.
2532 * mmap_sem in write mode is required in order to block all operations
2533 * that could modify pagetables and free pages without need of
2534 * altering the vma layout (for example populate_range() with
2535 * nonlinear vmas). It's also needed in write mode to avoid new
2536 * anon_vmas to be associated with existing vmas.
2538 * A single task can't take more than one mm_take_all_locks() in a row
2539 * or it would deadlock.
2541 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2542 * mapping->flags avoid to take the same lock twice, if more than one
2543 * vma in this mm is backed by the same anon_vma or address_space.
2545 * We can take all the locks in random order because the VM code
2546 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2547 * takes more than one of them in a row. Secondly we're protected
2548 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2550 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2551 * that may have to take thousand of locks.
2553 * mm_take_all_locks() can fail if it's interrupted by signals.
2555 int mm_take_all_locks(struct mm_struct
*mm
)
2557 struct vm_area_struct
*vma
;
2558 struct anon_vma_chain
*avc
;
2560 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2562 mutex_lock(&mm_all_locks_mutex
);
2564 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2565 if (signal_pending(current
))
2567 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2568 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2571 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2572 if (signal_pending(current
))
2575 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2576 vm_lock_anon_vma(mm
, avc
->anon_vma
);
2582 mm_drop_all_locks(mm
);
2586 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2588 if (test_bit(0, (unsigned long *) &anon_vma
->root
->head
.next
)) {
2590 * The LSB of head.next can't change to 0 from under
2591 * us because we hold the mm_all_locks_mutex.
2593 * We must however clear the bitflag before unlocking
2594 * the vma so the users using the anon_vma->head will
2595 * never see our bitflag.
2597 * No need of atomic instructions here, head.next
2598 * can't change from under us until we release the
2599 * anon_vma->root->mutex.
2601 if (!__test_and_clear_bit(0, (unsigned long *)
2602 &anon_vma
->root
->head
.next
))
2604 anon_vma_unlock(anon_vma
);
2608 static void vm_unlock_mapping(struct address_space
*mapping
)
2610 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2612 * AS_MM_ALL_LOCKS can't change to 0 from under us
2613 * because we hold the mm_all_locks_mutex.
2615 mutex_unlock(&mapping
->i_mmap_mutex
);
2616 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2623 * The mmap_sem cannot be released by the caller until
2624 * mm_drop_all_locks() returns.
2626 void mm_drop_all_locks(struct mm_struct
*mm
)
2628 struct vm_area_struct
*vma
;
2629 struct anon_vma_chain
*avc
;
2631 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2632 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2634 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2636 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
2637 vm_unlock_anon_vma(avc
->anon_vma
);
2638 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2639 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2642 mutex_unlock(&mm_all_locks_mutex
);
2646 * initialise the VMA slab
2648 void __init
mmap_init(void)
2652 ret
= percpu_counter_init(&vm_committed_as
, 0);