4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
105 * Kmemleak configuration and common defines.
107 #define MAX_TRACE 16 /* stack trace length */
108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
113 #define BYTES_PER_POINTER sizeof(void *)
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 __GFP_NORETRY | __GFP_NOMEMALLOC | \
120 /* scanning area inside a memory block */
121 struct kmemleak_scan_area
{
122 struct hlist_node node
;
127 #define KMEMLEAK_GREY 0
128 #define KMEMLEAK_BLACK -1
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * tree_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
138 struct kmemleak_object
{
140 unsigned long flags
; /* object status flags */
141 struct list_head object_list
;
142 struct list_head gray_list
;
143 struct prio_tree_node tree_node
;
144 struct rcu_head rcu
; /* object_list lockless traversal */
145 /* object usage count; object freed when use_count == 0 */
147 unsigned long pointer
;
149 /* minimum number of a pointers found before it is considered leak */
151 /* the total number of pointers found pointing to this object */
153 /* checksum for detecting modified objects */
155 /* memory ranges to be scanned inside an object (empty for all) */
156 struct hlist_head area_list
;
157 unsigned long trace
[MAX_TRACE
];
158 unsigned int trace_len
;
159 unsigned long jiffies
; /* creation timestamp */
160 pid_t pid
; /* pid of the current task */
161 char comm
[TASK_COMM_LEN
]; /* executable name */
164 /* flag representing the memory block allocation status */
165 #define OBJECT_ALLOCATED (1 << 0)
166 /* flag set after the first reporting of an unreference object */
167 #define OBJECT_REPORTED (1 << 1)
168 /* flag set to not scan the object */
169 #define OBJECT_NO_SCAN (1 << 2)
171 /* number of bytes to print per line; must be 16 or 32 */
172 #define HEX_ROW_SIZE 16
173 /* number of bytes to print at a time (1, 2, 4, 8) */
174 #define HEX_GROUP_SIZE 1
175 /* include ASCII after the hex output */
177 /* max number of lines to be printed */
178 #define HEX_MAX_LINES 2
180 /* the list of all allocated objects */
181 static LIST_HEAD(object_list
);
182 /* the list of gray-colored objects (see color_gray comment below) */
183 static LIST_HEAD(gray_list
);
184 /* prio search tree for object boundaries */
185 static struct prio_tree_root object_tree_root
;
186 /* rw_lock protecting the access to object_list and prio_tree_root */
187 static DEFINE_RWLOCK(kmemleak_lock
);
189 /* allocation caches for kmemleak internal data */
190 static struct kmem_cache
*object_cache
;
191 static struct kmem_cache
*scan_area_cache
;
193 /* set if tracing memory operations is enabled */
194 static atomic_t kmemleak_enabled
= ATOMIC_INIT(0);
195 /* set in the late_initcall if there were no errors */
196 static atomic_t kmemleak_initialized
= ATOMIC_INIT(0);
197 /* enables or disables early logging of the memory operations */
198 static atomic_t kmemleak_early_log
= ATOMIC_INIT(1);
199 /* set if a fata kmemleak error has occurred */
200 static atomic_t kmemleak_error
= ATOMIC_INIT(0);
202 /* minimum and maximum address that may be valid pointers */
203 static unsigned long min_addr
= ULONG_MAX
;
204 static unsigned long max_addr
;
206 static struct task_struct
*scan_thread
;
207 /* used to avoid reporting of recently allocated objects */
208 static unsigned long jiffies_min_age
;
209 static unsigned long jiffies_last_scan
;
210 /* delay between automatic memory scannings */
211 static signed long jiffies_scan_wait
;
212 /* enables or disables the task stacks scanning */
213 static int kmemleak_stack_scan
= 1;
214 /* protects the memory scanning, parameters and debug/kmemleak file access */
215 static DEFINE_MUTEX(scan_mutex
);
216 /* setting kmemleak=on, will set this var, skipping the disable */
217 static int kmemleak_skip_disable
;
221 * Early object allocation/freeing logging. Kmemleak is initialized after the
222 * kernel allocator. However, both the kernel allocator and kmemleak may
223 * allocate memory blocks which need to be tracked. Kmemleak defines an
224 * arbitrary buffer to hold the allocation/freeing information before it is
228 /* kmemleak operation type for early logging */
240 * Structure holding the information passed to kmemleak callbacks during the
244 int op_type
; /* kmemleak operation type */
245 const void *ptr
; /* allocated/freed memory block */
246 size_t size
; /* memory block size */
247 int min_count
; /* minimum reference count */
248 unsigned long trace
[MAX_TRACE
]; /* stack trace */
249 unsigned int trace_len
; /* stack trace length */
252 /* early logging buffer and current position */
253 static struct early_log
254 early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
] __initdata
;
255 static int crt_early_log __initdata
;
257 static void kmemleak_disable(void);
260 * Print a warning and dump the stack trace.
262 #define kmemleak_warn(x...) do { \
268 * Macro invoked when a serious kmemleak condition occurred and cannot be
269 * recovered from. Kmemleak will be disabled and further allocation/freeing
270 * tracing no longer available.
272 #define kmemleak_stop(x...) do { \
274 kmemleak_disable(); \
278 * Printing of the objects hex dump to the seq file. The number of lines to be
279 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
280 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
281 * with the object->lock held.
283 static void hex_dump_object(struct seq_file
*seq
,
284 struct kmemleak_object
*object
)
286 const u8
*ptr
= (const u8
*)object
->pointer
;
287 int i
, len
, remaining
;
288 unsigned char linebuf
[HEX_ROW_SIZE
* 5];
290 /* limit the number of lines to HEX_MAX_LINES */
292 min(object
->size
, (size_t)(HEX_MAX_LINES
* HEX_ROW_SIZE
));
294 seq_printf(seq
, " hex dump (first %d bytes):\n", len
);
295 for (i
= 0; i
< len
; i
+= HEX_ROW_SIZE
) {
296 int linelen
= min(remaining
, HEX_ROW_SIZE
);
298 remaining
-= HEX_ROW_SIZE
;
299 hex_dump_to_buffer(ptr
+ i
, linelen
, HEX_ROW_SIZE
,
300 HEX_GROUP_SIZE
, linebuf
, sizeof(linebuf
),
302 seq_printf(seq
, " %s\n", linebuf
);
307 * Object colors, encoded with count and min_count:
308 * - white - orphan object, not enough references to it (count < min_count)
309 * - gray - not orphan, not marked as false positive (min_count == 0) or
310 * sufficient references to it (count >= min_count)
311 * - black - ignore, it doesn't contain references (e.g. text section)
312 * (min_count == -1). No function defined for this color.
313 * Newly created objects don't have any color assigned (object->count == -1)
314 * before the next memory scan when they become white.
316 static bool color_white(const struct kmemleak_object
*object
)
318 return object
->count
!= KMEMLEAK_BLACK
&&
319 object
->count
< object
->min_count
;
322 static bool color_gray(const struct kmemleak_object
*object
)
324 return object
->min_count
!= KMEMLEAK_BLACK
&&
325 object
->count
>= object
->min_count
;
329 * Objects are considered unreferenced only if their color is white, they have
330 * not be deleted and have a minimum age to avoid false positives caused by
331 * pointers temporarily stored in CPU registers.
333 static bool unreferenced_object(struct kmemleak_object
*object
)
335 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
336 time_before_eq(object
->jiffies
+ jiffies_min_age
,
341 * Printing of the unreferenced objects information to the seq file. The
342 * print_unreferenced function must be called with the object->lock held.
344 static void print_unreferenced(struct seq_file
*seq
,
345 struct kmemleak_object
*object
)
348 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
350 seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
351 object
->pointer
, object
->size
);
352 seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
353 object
->comm
, object
->pid
, object
->jiffies
,
354 msecs_age
/ 1000, msecs_age
% 1000);
355 hex_dump_object(seq
, object
);
356 seq_printf(seq
, " backtrace:\n");
358 for (i
= 0; i
< object
->trace_len
; i
++) {
359 void *ptr
= (void *)object
->trace
[i
];
360 seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
365 * Print the kmemleak_object information. This function is used mainly for
366 * debugging special cases when kmemleak operations. It must be called with
367 * the object->lock held.
369 static void dump_object_info(struct kmemleak_object
*object
)
371 struct stack_trace trace
;
373 trace
.nr_entries
= object
->trace_len
;
374 trace
.entries
= object
->trace
;
376 pr_notice("Object 0x%08lx (size %zu):\n",
377 object
->tree_node
.start
, object
->size
);
378 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
379 object
->comm
, object
->pid
, object
->jiffies
);
380 pr_notice(" min_count = %d\n", object
->min_count
);
381 pr_notice(" count = %d\n", object
->count
);
382 pr_notice(" flags = 0x%lx\n", object
->flags
);
383 pr_notice(" checksum = %d\n", object
->checksum
);
384 pr_notice(" backtrace:\n");
385 print_stack_trace(&trace
, 4);
389 * Look-up a memory block metadata (kmemleak_object) in the priority search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
394 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
396 struct prio_tree_node
*node
;
397 struct prio_tree_iter iter
;
398 struct kmemleak_object
*object
;
400 prio_tree_iter_init(&iter
, &object_tree_root
, ptr
, ptr
);
401 node
= prio_tree_next(&iter
);
403 object
= prio_tree_entry(node
, struct kmemleak_object
,
405 if (!alias
&& object
->pointer
!= ptr
) {
406 pr_warning("Found object by alias at 0x%08lx\n", ptr
);
408 dump_object_info(object
);
418 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
419 * that once an object's use_count reached 0, the RCU freeing was already
420 * registered and the object should no longer be used. This function must be
421 * called under the protection of rcu_read_lock().
423 static int get_object(struct kmemleak_object
*object
)
425 return atomic_inc_not_zero(&object
->use_count
);
429 * RCU callback to free a kmemleak_object.
431 static void free_object_rcu(struct rcu_head
*rcu
)
433 struct hlist_node
*elem
, *tmp
;
434 struct kmemleak_scan_area
*area
;
435 struct kmemleak_object
*object
=
436 container_of(rcu
, struct kmemleak_object
, rcu
);
439 * Once use_count is 0 (guaranteed by put_object), there is no other
440 * code accessing this object, hence no need for locking.
442 hlist_for_each_entry_safe(area
, elem
, tmp
, &object
->area_list
, node
) {
444 kmem_cache_free(scan_area_cache
, area
);
446 kmem_cache_free(object_cache
, object
);
450 * Decrement the object use_count. Once the count is 0, free the object using
451 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
452 * delete_object() path, the delayed RCU freeing ensures that there is no
453 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
456 static void put_object(struct kmemleak_object
*object
)
458 if (!atomic_dec_and_test(&object
->use_count
))
461 /* should only get here after delete_object was called */
462 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
464 call_rcu(&object
->rcu
, free_object_rcu
);
468 * Look up an object in the prio search tree and increase its use_count.
470 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
473 struct kmemleak_object
*object
= NULL
;
476 read_lock_irqsave(&kmemleak_lock
, flags
);
477 if (ptr
>= min_addr
&& ptr
< max_addr
)
478 object
= lookup_object(ptr
, alias
);
479 read_unlock_irqrestore(&kmemleak_lock
, flags
);
481 /* check whether the object is still available */
482 if (object
&& !get_object(object
))
490 * Save stack trace to the given array of MAX_TRACE size.
492 static int __save_stack_trace(unsigned long *trace
)
494 struct stack_trace stack_trace
;
496 stack_trace
.max_entries
= MAX_TRACE
;
497 stack_trace
.nr_entries
= 0;
498 stack_trace
.entries
= trace
;
499 stack_trace
.skip
= 2;
500 save_stack_trace(&stack_trace
);
502 return stack_trace
.nr_entries
;
506 * Create the metadata (struct kmemleak_object) corresponding to an allocated
507 * memory block and add it to the object_list and object_tree_root.
509 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
510 int min_count
, gfp_t gfp
)
513 struct kmemleak_object
*object
;
514 struct prio_tree_node
*node
;
516 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
518 pr_warning("Cannot allocate a kmemleak_object structure\n");
523 INIT_LIST_HEAD(&object
->object_list
);
524 INIT_LIST_HEAD(&object
->gray_list
);
525 INIT_HLIST_HEAD(&object
->area_list
);
526 spin_lock_init(&object
->lock
);
527 atomic_set(&object
->use_count
, 1);
528 object
->flags
= OBJECT_ALLOCATED
;
529 object
->pointer
= ptr
;
531 object
->min_count
= min_count
;
532 object
->count
= 0; /* white color initially */
533 object
->jiffies
= jiffies
;
534 object
->checksum
= 0;
536 /* task information */
539 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
540 } else if (in_softirq()) {
542 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
544 object
->pid
= current
->pid
;
546 * There is a small chance of a race with set_task_comm(),
547 * however using get_task_comm() here may cause locking
548 * dependency issues with current->alloc_lock. In the worst
549 * case, the command line is not correct.
551 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
554 /* kernel backtrace */
555 object
->trace_len
= __save_stack_trace(object
->trace
);
557 INIT_PRIO_TREE_NODE(&object
->tree_node
);
558 object
->tree_node
.start
= ptr
;
559 object
->tree_node
.last
= ptr
+ size
- 1;
561 write_lock_irqsave(&kmemleak_lock
, flags
);
563 min_addr
= min(min_addr
, ptr
);
564 max_addr
= max(max_addr
, ptr
+ size
);
565 node
= prio_tree_insert(&object_tree_root
, &object
->tree_node
);
567 * The code calling the kernel does not yet have the pointer to the
568 * memory block to be able to free it. However, we still hold the
569 * kmemleak_lock here in case parts of the kernel started freeing
570 * random memory blocks.
572 if (node
!= &object
->tree_node
) {
573 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
574 "(already existing)\n", ptr
);
575 object
= lookup_object(ptr
, 1);
576 spin_lock(&object
->lock
);
577 dump_object_info(object
);
578 spin_unlock(&object
->lock
);
582 list_add_tail_rcu(&object
->object_list
, &object_list
);
584 write_unlock_irqrestore(&kmemleak_lock
, flags
);
589 * Remove the metadata (struct kmemleak_object) for a memory block from the
590 * object_list and object_tree_root and decrement its use_count.
592 static void __delete_object(struct kmemleak_object
*object
)
596 write_lock_irqsave(&kmemleak_lock
, flags
);
597 prio_tree_remove(&object_tree_root
, &object
->tree_node
);
598 list_del_rcu(&object
->object_list
);
599 write_unlock_irqrestore(&kmemleak_lock
, flags
);
601 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
602 WARN_ON(atomic_read(&object
->use_count
) < 2);
605 * Locking here also ensures that the corresponding memory block
606 * cannot be freed when it is being scanned.
608 spin_lock_irqsave(&object
->lock
, flags
);
609 object
->flags
&= ~OBJECT_ALLOCATED
;
610 spin_unlock_irqrestore(&object
->lock
, flags
);
615 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
618 static void delete_object_full(unsigned long ptr
)
620 struct kmemleak_object
*object
;
622 object
= find_and_get_object(ptr
, 0);
625 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
630 __delete_object(object
);
635 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
636 * delete it. If the memory block is partially freed, the function may create
637 * additional metadata for the remaining parts of the block.
639 static void delete_object_part(unsigned long ptr
, size_t size
)
641 struct kmemleak_object
*object
;
642 unsigned long start
, end
;
644 object
= find_and_get_object(ptr
, 1);
647 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
648 "(size %zu)\n", ptr
, size
);
652 __delete_object(object
);
655 * Create one or two objects that may result from the memory block
656 * split. Note that partial freeing is only done by free_bootmem() and
657 * this happens before kmemleak_init() is called. The path below is
658 * only executed during early log recording in kmemleak_init(), so
659 * GFP_KERNEL is enough.
661 start
= object
->pointer
;
662 end
= object
->pointer
+ object
->size
;
664 create_object(start
, ptr
- start
, object
->min_count
,
666 if (ptr
+ size
< end
)
667 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
673 static void __paint_it(struct kmemleak_object
*object
, int color
)
675 object
->min_count
= color
;
676 if (color
== KMEMLEAK_BLACK
)
677 object
->flags
|= OBJECT_NO_SCAN
;
680 static void paint_it(struct kmemleak_object
*object
, int color
)
684 spin_lock_irqsave(&object
->lock
, flags
);
685 __paint_it(object
, color
);
686 spin_unlock_irqrestore(&object
->lock
, flags
);
689 static void paint_ptr(unsigned long ptr
, int color
)
691 struct kmemleak_object
*object
;
693 object
= find_and_get_object(ptr
, 0);
695 kmemleak_warn("Trying to color unknown object "
696 "at 0x%08lx as %s\n", ptr
,
697 (color
== KMEMLEAK_GREY
) ? "Grey" :
698 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
701 paint_it(object
, color
);
706 * Mark an object permanently as gray-colored so that it can no longer be
707 * reported as a leak. This is used in general to mark a false positive.
709 static void make_gray_object(unsigned long ptr
)
711 paint_ptr(ptr
, KMEMLEAK_GREY
);
715 * Mark the object as black-colored so that it is ignored from scans and
718 static void make_black_object(unsigned long ptr
)
720 paint_ptr(ptr
, KMEMLEAK_BLACK
);
724 * Add a scanning area to the object. If at least one such area is added,
725 * kmemleak will only scan these ranges rather than the whole memory block.
727 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
730 struct kmemleak_object
*object
;
731 struct kmemleak_scan_area
*area
;
733 object
= find_and_get_object(ptr
, 1);
735 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
740 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
742 pr_warning("Cannot allocate a scan area\n");
746 spin_lock_irqsave(&object
->lock
, flags
);
747 if (ptr
+ size
> object
->pointer
+ object
->size
) {
748 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
749 dump_object_info(object
);
750 kmem_cache_free(scan_area_cache
, area
);
754 INIT_HLIST_NODE(&area
->node
);
758 hlist_add_head(&area
->node
, &object
->area_list
);
760 spin_unlock_irqrestore(&object
->lock
, flags
);
766 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
767 * pointer. Such object will not be scanned by kmemleak but references to it
770 static void object_no_scan(unsigned long ptr
)
773 struct kmemleak_object
*object
;
775 object
= find_and_get_object(ptr
, 0);
777 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
781 spin_lock_irqsave(&object
->lock
, flags
);
782 object
->flags
|= OBJECT_NO_SCAN
;
783 spin_unlock_irqrestore(&object
->lock
, flags
);
788 * Log an early kmemleak_* call to the early_log buffer. These calls will be
789 * processed later once kmemleak is fully initialized.
791 static void __init
log_early(int op_type
, const void *ptr
, size_t size
,
795 struct early_log
*log
;
797 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
798 pr_warning("Early log buffer exceeded, "
799 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
805 * There is no need for locking since the kernel is still in UP mode
806 * at this stage. Disabling the IRQs is enough.
808 local_irq_save(flags
);
809 log
= &early_log
[crt_early_log
];
810 log
->op_type
= op_type
;
813 log
->min_count
= min_count
;
814 if (op_type
== KMEMLEAK_ALLOC
)
815 log
->trace_len
= __save_stack_trace(log
->trace
);
817 local_irq_restore(flags
);
821 * Log an early allocated block and populate the stack trace.
823 static void early_alloc(struct early_log
*log
)
825 struct kmemleak_object
*object
;
829 if (!atomic_read(&kmemleak_enabled
) || !log
->ptr
|| IS_ERR(log
->ptr
))
833 * RCU locking needed to ensure object is not freed via put_object().
836 object
= create_object((unsigned long)log
->ptr
, log
->size
,
837 log
->min_count
, GFP_ATOMIC
);
840 spin_lock_irqsave(&object
->lock
, flags
);
841 for (i
= 0; i
< log
->trace_len
; i
++)
842 object
->trace
[i
] = log
->trace
[i
];
843 object
->trace_len
= log
->trace_len
;
844 spin_unlock_irqrestore(&object
->lock
, flags
);
850 * kmemleak_alloc - register a newly allocated object
851 * @ptr: pointer to beginning of the object
852 * @size: size of the object
853 * @min_count: minimum number of references to this object. If during memory
854 * scanning a number of references less than @min_count is found,
855 * the object is reported as a memory leak. If @min_count is 0,
856 * the object is never reported as a leak. If @min_count is -1,
857 * the object is ignored (not scanned and not reported as a leak)
858 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
860 * This function is called from the kernel allocators when a new object
861 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
863 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
866 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
868 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
869 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
870 else if (atomic_read(&kmemleak_early_log
))
871 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
);
873 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
876 * kmemleak_free - unregister a previously registered object
877 * @ptr: pointer to beginning of the object
879 * This function is called from the kernel allocators when an object (memory
880 * block) is freed (kmem_cache_free, kfree, vfree etc.).
882 void __ref
kmemleak_free(const void *ptr
)
884 pr_debug("%s(0x%p)\n", __func__
, ptr
);
886 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
887 delete_object_full((unsigned long)ptr
);
888 else if (atomic_read(&kmemleak_early_log
))
889 log_early(KMEMLEAK_FREE
, ptr
, 0, 0);
891 EXPORT_SYMBOL_GPL(kmemleak_free
);
894 * kmemleak_free_part - partially unregister a previously registered object
895 * @ptr: pointer to the beginning or inside the object. This also
896 * represents the start of the range to be freed
897 * @size: size to be unregistered
899 * This function is called when only a part of a memory block is freed
900 * (usually from the bootmem allocator).
902 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
904 pr_debug("%s(0x%p)\n", __func__
, ptr
);
906 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
907 delete_object_part((unsigned long)ptr
, size
);
908 else if (atomic_read(&kmemleak_early_log
))
909 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0);
911 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
914 * kmemleak_not_leak - mark an allocated object as false positive
915 * @ptr: pointer to beginning of the object
917 * Calling this function on an object will cause the memory block to no longer
918 * be reported as leak and always be scanned.
920 void __ref
kmemleak_not_leak(const void *ptr
)
922 pr_debug("%s(0x%p)\n", __func__
, ptr
);
924 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
925 make_gray_object((unsigned long)ptr
);
926 else if (atomic_read(&kmemleak_early_log
))
927 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0);
929 EXPORT_SYMBOL(kmemleak_not_leak
);
932 * kmemleak_ignore - ignore an allocated object
933 * @ptr: pointer to beginning of the object
935 * Calling this function on an object will cause the memory block to be
936 * ignored (not scanned and not reported as a leak). This is usually done when
937 * it is known that the corresponding block is not a leak and does not contain
938 * any references to other allocated memory blocks.
940 void __ref
kmemleak_ignore(const void *ptr
)
942 pr_debug("%s(0x%p)\n", __func__
, ptr
);
944 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
945 make_black_object((unsigned long)ptr
);
946 else if (atomic_read(&kmemleak_early_log
))
947 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0);
949 EXPORT_SYMBOL(kmemleak_ignore
);
952 * kmemleak_scan_area - limit the range to be scanned in an allocated object
953 * @ptr: pointer to beginning or inside the object. This also
954 * represents the start of the scan area
955 * @size: size of the scan area
956 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
958 * This function is used when it is known that only certain parts of an object
959 * contain references to other objects. Kmemleak will only scan these areas
960 * reducing the number false negatives.
962 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
964 pr_debug("%s(0x%p)\n", __func__
, ptr
);
966 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
967 add_scan_area((unsigned long)ptr
, size
, gfp
);
968 else if (atomic_read(&kmemleak_early_log
))
969 log_early(KMEMLEAK_SCAN_AREA
, ptr
, size
, 0);
971 EXPORT_SYMBOL(kmemleak_scan_area
);
974 * kmemleak_no_scan - do not scan an allocated object
975 * @ptr: pointer to beginning of the object
977 * This function notifies kmemleak not to scan the given memory block. Useful
978 * in situations where it is known that the given object does not contain any
979 * references to other objects. Kmemleak will not scan such objects reducing
980 * the number of false negatives.
982 void __ref
kmemleak_no_scan(const void *ptr
)
984 pr_debug("%s(0x%p)\n", __func__
, ptr
);
986 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
987 object_no_scan((unsigned long)ptr
);
988 else if (atomic_read(&kmemleak_early_log
))
989 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0);
991 EXPORT_SYMBOL(kmemleak_no_scan
);
994 * Update an object's checksum and return true if it was modified.
996 static bool update_checksum(struct kmemleak_object
*object
)
998 u32 old_csum
= object
->checksum
;
1000 if (!kmemcheck_is_obj_initialized(object
->pointer
, object
->size
))
1003 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1004 return object
->checksum
!= old_csum
;
1008 * Memory scanning is a long process and it needs to be interruptable. This
1009 * function checks whether such interrupt condition occurred.
1011 static int scan_should_stop(void)
1013 if (!atomic_read(&kmemleak_enabled
))
1017 * This function may be called from either process or kthread context,
1018 * hence the need to check for both stop conditions.
1021 return signal_pending(current
);
1023 return kthread_should_stop();
1029 * Scan a memory block (exclusive range) for valid pointers and add those
1030 * found to the gray list.
1032 static void scan_block(void *_start
, void *_end
,
1033 struct kmemleak_object
*scanned
, int allow_resched
)
1036 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1037 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1039 for (ptr
= start
; ptr
< end
; ptr
++) {
1040 struct kmemleak_object
*object
;
1041 unsigned long flags
;
1042 unsigned long pointer
;
1046 if (scan_should_stop())
1049 /* don't scan uninitialized memory */
1050 if (!kmemcheck_is_obj_initialized((unsigned long)ptr
,
1056 object
= find_and_get_object(pointer
, 1);
1059 if (object
== scanned
) {
1060 /* self referenced, ignore */
1066 * Avoid the lockdep recursive warning on object->lock being
1067 * previously acquired in scan_object(). These locks are
1068 * enclosed by scan_mutex.
1070 spin_lock_irqsave_nested(&object
->lock
, flags
,
1071 SINGLE_DEPTH_NESTING
);
1072 if (!color_white(object
)) {
1073 /* non-orphan, ignored or new */
1074 spin_unlock_irqrestore(&object
->lock
, flags
);
1080 * Increase the object's reference count (number of pointers
1081 * to the memory block). If this count reaches the required
1082 * minimum, the object's color will become gray and it will be
1083 * added to the gray_list.
1086 if (color_gray(object
)) {
1087 list_add_tail(&object
->gray_list
, &gray_list
);
1088 spin_unlock_irqrestore(&object
->lock
, flags
);
1092 spin_unlock_irqrestore(&object
->lock
, flags
);
1098 * Scan a memory block corresponding to a kmemleak_object. A condition is
1099 * that object->use_count >= 1.
1101 static void scan_object(struct kmemleak_object
*object
)
1103 struct kmemleak_scan_area
*area
;
1104 struct hlist_node
*elem
;
1105 unsigned long flags
;
1108 * Once the object->lock is acquired, the corresponding memory block
1109 * cannot be freed (the same lock is acquired in delete_object).
1111 spin_lock_irqsave(&object
->lock
, flags
);
1112 if (object
->flags
& OBJECT_NO_SCAN
)
1114 if (!(object
->flags
& OBJECT_ALLOCATED
))
1115 /* already freed object */
1117 if (hlist_empty(&object
->area_list
)) {
1118 void *start
= (void *)object
->pointer
;
1119 void *end
= (void *)(object
->pointer
+ object
->size
);
1121 while (start
< end
&& (object
->flags
& OBJECT_ALLOCATED
) &&
1122 !(object
->flags
& OBJECT_NO_SCAN
)) {
1123 scan_block(start
, min(start
+ MAX_SCAN_SIZE
, end
),
1125 start
+= MAX_SCAN_SIZE
;
1127 spin_unlock_irqrestore(&object
->lock
, flags
);
1129 spin_lock_irqsave(&object
->lock
, flags
);
1132 hlist_for_each_entry(area
, elem
, &object
->area_list
, node
)
1133 scan_block((void *)area
->start
,
1134 (void *)(area
->start
+ area
->size
),
1137 spin_unlock_irqrestore(&object
->lock
, flags
);
1141 * Scan the objects already referenced (gray objects). More objects will be
1142 * referenced and, if there are no memory leaks, all the objects are scanned.
1144 static void scan_gray_list(void)
1146 struct kmemleak_object
*object
, *tmp
;
1149 * The list traversal is safe for both tail additions and removals
1150 * from inside the loop. The kmemleak objects cannot be freed from
1151 * outside the loop because their use_count was incremented.
1153 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1154 while (&object
->gray_list
!= &gray_list
) {
1157 /* may add new objects to the list */
1158 if (!scan_should_stop())
1159 scan_object(object
);
1161 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1164 /* remove the object from the list and release it */
1165 list_del(&object
->gray_list
);
1170 WARN_ON(!list_empty(&gray_list
));
1174 * Scan data sections and all the referenced memory blocks allocated via the
1175 * kernel's standard allocators. This function must be called with the
1178 static void kmemleak_scan(void)
1180 unsigned long flags
;
1181 struct kmemleak_object
*object
;
1185 jiffies_last_scan
= jiffies
;
1187 /* prepare the kmemleak_object's */
1189 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1190 spin_lock_irqsave(&object
->lock
, flags
);
1193 * With a few exceptions there should be a maximum of
1194 * 1 reference to any object at this point.
1196 if (atomic_read(&object
->use_count
) > 1) {
1197 pr_debug("object->use_count = %d\n",
1198 atomic_read(&object
->use_count
));
1199 dump_object_info(object
);
1202 /* reset the reference count (whiten the object) */
1204 if (color_gray(object
) && get_object(object
))
1205 list_add_tail(&object
->gray_list
, &gray_list
);
1207 spin_unlock_irqrestore(&object
->lock
, flags
);
1211 /* data/bss scanning */
1212 scan_block(_sdata
, _edata
, NULL
, 1);
1213 scan_block(__bss_start
, __bss_stop
, NULL
, 1);
1216 /* per-cpu sections scanning */
1217 for_each_possible_cpu(i
)
1218 scan_block(__per_cpu_start
+ per_cpu_offset(i
),
1219 __per_cpu_end
+ per_cpu_offset(i
), NULL
, 1);
1223 * Struct page scanning for each node. The code below is not yet safe
1224 * with MEMORY_HOTPLUG.
1226 for_each_online_node(i
) {
1227 pg_data_t
*pgdat
= NODE_DATA(i
);
1228 unsigned long start_pfn
= pgdat
->node_start_pfn
;
1229 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
1232 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1235 if (!pfn_valid(pfn
))
1237 page
= pfn_to_page(pfn
);
1238 /* only scan if page is in use */
1239 if (page_count(page
) == 0)
1241 scan_block(page
, page
+ 1, NULL
, 1);
1246 * Scanning the task stacks (may introduce false negatives).
1248 if (kmemleak_stack_scan
) {
1249 struct task_struct
*p
, *g
;
1251 read_lock(&tasklist_lock
);
1252 do_each_thread(g
, p
) {
1253 scan_block(task_stack_page(p
), task_stack_page(p
) +
1254 THREAD_SIZE
, NULL
, 0);
1255 } while_each_thread(g
, p
);
1256 read_unlock(&tasklist_lock
);
1260 * Scan the objects already referenced from the sections scanned
1266 * Check for new or unreferenced objects modified since the previous
1267 * scan and color them gray until the next scan.
1270 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1271 spin_lock_irqsave(&object
->lock
, flags
);
1272 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1273 && update_checksum(object
) && get_object(object
)) {
1274 /* color it gray temporarily */
1275 object
->count
= object
->min_count
;
1276 list_add_tail(&object
->gray_list
, &gray_list
);
1278 spin_unlock_irqrestore(&object
->lock
, flags
);
1283 * Re-scan the gray list for modified unreferenced objects.
1288 * If scanning was stopped do not report any new unreferenced objects.
1290 if (scan_should_stop())
1294 * Scanning result reporting.
1297 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1298 spin_lock_irqsave(&object
->lock
, flags
);
1299 if (unreferenced_object(object
) &&
1300 !(object
->flags
& OBJECT_REPORTED
)) {
1301 object
->flags
|= OBJECT_REPORTED
;
1304 spin_unlock_irqrestore(&object
->lock
, flags
);
1309 pr_info("%d new suspected memory leaks (see "
1310 "/sys/kernel/debug/kmemleak)\n", new_leaks
);
1315 * Thread function performing automatic memory scanning. Unreferenced objects
1316 * at the end of a memory scan are reported but only the first time.
1318 static int kmemleak_scan_thread(void *arg
)
1320 static int first_run
= 1;
1322 pr_info("Automatic memory scanning thread started\n");
1323 set_user_nice(current
, 10);
1326 * Wait before the first scan to allow the system to fully initialize.
1330 ssleep(SECS_FIRST_SCAN
);
1333 while (!kthread_should_stop()) {
1334 signed long timeout
= jiffies_scan_wait
;
1336 mutex_lock(&scan_mutex
);
1338 mutex_unlock(&scan_mutex
);
1340 /* wait before the next scan */
1341 while (timeout
&& !kthread_should_stop())
1342 timeout
= schedule_timeout_interruptible(timeout
);
1345 pr_info("Automatic memory scanning thread ended\n");
1351 * Start the automatic memory scanning thread. This function must be called
1352 * with the scan_mutex held.
1354 static void start_scan_thread(void)
1358 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1359 if (IS_ERR(scan_thread
)) {
1360 pr_warning("Failed to create the scan thread\n");
1366 * Stop the automatic memory scanning thread. This function must be called
1367 * with the scan_mutex held.
1369 static void stop_scan_thread(void)
1372 kthread_stop(scan_thread
);
1378 * Iterate over the object_list and return the first valid object at or after
1379 * the required position with its use_count incremented. The function triggers
1380 * a memory scanning when the pos argument points to the first position.
1382 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1384 struct kmemleak_object
*object
;
1388 err
= mutex_lock_interruptible(&scan_mutex
);
1390 return ERR_PTR(err
);
1393 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1396 if (get_object(object
))
1405 * Return the next object in the object_list. The function decrements the
1406 * use_count of the previous object and increases that of the next one.
1408 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1410 struct kmemleak_object
*prev_obj
= v
;
1411 struct kmemleak_object
*next_obj
= NULL
;
1412 struct list_head
*n
= &prev_obj
->object_list
;
1416 list_for_each_continue_rcu(n
, &object_list
) {
1417 struct kmemleak_object
*obj
=
1418 list_entry(n
, struct kmemleak_object
, object_list
);
1419 if (get_object(obj
)) {
1425 put_object(prev_obj
);
1430 * Decrement the use_count of the last object required, if any.
1432 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1436 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1437 * waiting was interrupted, so only release it if !IS_ERR.
1440 mutex_unlock(&scan_mutex
);
1447 * Print the information for an unreferenced object to the seq file.
1449 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1451 struct kmemleak_object
*object
= v
;
1452 unsigned long flags
;
1454 spin_lock_irqsave(&object
->lock
, flags
);
1455 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1456 print_unreferenced(seq
, object
);
1457 spin_unlock_irqrestore(&object
->lock
, flags
);
1461 static const struct seq_operations kmemleak_seq_ops
= {
1462 .start
= kmemleak_seq_start
,
1463 .next
= kmemleak_seq_next
,
1464 .stop
= kmemleak_seq_stop
,
1465 .show
= kmemleak_seq_show
,
1468 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1470 if (!atomic_read(&kmemleak_enabled
))
1473 return seq_open(file
, &kmemleak_seq_ops
);
1476 static int kmemleak_release(struct inode
*inode
, struct file
*file
)
1478 return seq_release(inode
, file
);
1481 static int dump_str_object_info(const char *str
)
1483 unsigned long flags
;
1484 struct kmemleak_object
*object
;
1487 addr
= simple_strtoul(str
, NULL
, 0);
1488 object
= find_and_get_object(addr
, 0);
1490 pr_info("Unknown object at 0x%08lx\n", addr
);
1494 spin_lock_irqsave(&object
->lock
, flags
);
1495 dump_object_info(object
);
1496 spin_unlock_irqrestore(&object
->lock
, flags
);
1503 * We use grey instead of black to ensure we can do future scans on the same
1504 * objects. If we did not do future scans these black objects could
1505 * potentially contain references to newly allocated objects in the future and
1506 * we'd end up with false positives.
1508 static void kmemleak_clear(void)
1510 struct kmemleak_object
*object
;
1511 unsigned long flags
;
1514 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1515 spin_lock_irqsave(&object
->lock
, flags
);
1516 if ((object
->flags
& OBJECT_REPORTED
) &&
1517 unreferenced_object(object
))
1518 __paint_it(object
, KMEMLEAK_GREY
);
1519 spin_unlock_irqrestore(&object
->lock
, flags
);
1525 * File write operation to configure kmemleak at run-time. The following
1526 * commands can be written to the /sys/kernel/debug/kmemleak file:
1527 * off - disable kmemleak (irreversible)
1528 * stack=on - enable the task stacks scanning
1529 * stack=off - disable the tasks stacks scanning
1530 * scan=on - start the automatic memory scanning thread
1531 * scan=off - stop the automatic memory scanning thread
1532 * scan=... - set the automatic memory scanning period in seconds (0 to
1534 * scan - trigger a memory scan
1535 * clear - mark all current reported unreferenced kmemleak objects as
1536 * grey to ignore printing them
1537 * dump=... - dump information about the object found at the given address
1539 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1540 size_t size
, loff_t
*ppos
)
1546 buf_size
= min(size
, (sizeof(buf
) - 1));
1547 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1551 ret
= mutex_lock_interruptible(&scan_mutex
);
1555 if (strncmp(buf
, "off", 3) == 0)
1557 else if (strncmp(buf
, "stack=on", 8) == 0)
1558 kmemleak_stack_scan
= 1;
1559 else if (strncmp(buf
, "stack=off", 9) == 0)
1560 kmemleak_stack_scan
= 0;
1561 else if (strncmp(buf
, "scan=on", 7) == 0)
1562 start_scan_thread();
1563 else if (strncmp(buf
, "scan=off", 8) == 0)
1565 else if (strncmp(buf
, "scan=", 5) == 0) {
1568 ret
= strict_strtoul(buf
+ 5, 0, &secs
);
1573 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1574 start_scan_thread();
1576 } else if (strncmp(buf
, "scan", 4) == 0)
1578 else if (strncmp(buf
, "clear", 5) == 0)
1580 else if (strncmp(buf
, "dump=", 5) == 0)
1581 ret
= dump_str_object_info(buf
+ 5);
1586 mutex_unlock(&scan_mutex
);
1590 /* ignore the rest of the buffer, only one command at a time */
1595 static const struct file_operations kmemleak_fops
= {
1596 .owner
= THIS_MODULE
,
1597 .open
= kmemleak_open
,
1599 .write
= kmemleak_write
,
1600 .llseek
= seq_lseek
,
1601 .release
= kmemleak_release
,
1605 * Perform the freeing of the kmemleak internal objects after waiting for any
1606 * current memory scan to complete.
1608 static void kmemleak_do_cleanup(struct work_struct
*work
)
1610 struct kmemleak_object
*object
;
1612 mutex_lock(&scan_mutex
);
1616 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1617 delete_object_full(object
->pointer
);
1619 mutex_unlock(&scan_mutex
);
1622 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1625 * Disable kmemleak. No memory allocation/freeing will be traced once this
1626 * function is called. Disabling kmemleak is an irreversible operation.
1628 static void kmemleak_disable(void)
1630 /* atomically check whether it was already invoked */
1631 if (atomic_cmpxchg(&kmemleak_error
, 0, 1))
1634 /* stop any memory operation tracing */
1635 atomic_set(&kmemleak_early_log
, 0);
1636 atomic_set(&kmemleak_enabled
, 0);
1638 /* check whether it is too early for a kernel thread */
1639 if (atomic_read(&kmemleak_initialized
))
1640 schedule_work(&cleanup_work
);
1642 pr_info("Kernel memory leak detector disabled\n");
1646 * Allow boot-time kmemleak disabling (enabled by default).
1648 static int kmemleak_boot_config(char *str
)
1652 if (strcmp(str
, "off") == 0)
1654 else if (strcmp(str
, "on") == 0)
1655 kmemleak_skip_disable
= 1;
1660 early_param("kmemleak", kmemleak_boot_config
);
1663 * Kmemleak initialization.
1665 void __init
kmemleak_init(void)
1668 unsigned long flags
;
1670 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1671 if (!kmemleak_skip_disable
) {
1677 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
1678 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
1680 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
1681 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
1682 INIT_PRIO_TREE_ROOT(&object_tree_root
);
1684 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1685 local_irq_save(flags
);
1686 if (!atomic_read(&kmemleak_error
)) {
1687 atomic_set(&kmemleak_enabled
, 1);
1688 atomic_set(&kmemleak_early_log
, 0);
1690 local_irq_restore(flags
);
1693 * This is the point where tracking allocations is safe. Automatic
1694 * scanning is started during the late initcall. Add the early logged
1695 * callbacks to the kmemleak infrastructure.
1697 for (i
= 0; i
< crt_early_log
; i
++) {
1698 struct early_log
*log
= &early_log
[i
];
1700 switch (log
->op_type
) {
1701 case KMEMLEAK_ALLOC
:
1705 kmemleak_free(log
->ptr
);
1707 case KMEMLEAK_FREE_PART
:
1708 kmemleak_free_part(log
->ptr
, log
->size
);
1710 case KMEMLEAK_NOT_LEAK
:
1711 kmemleak_not_leak(log
->ptr
);
1713 case KMEMLEAK_IGNORE
:
1714 kmemleak_ignore(log
->ptr
);
1716 case KMEMLEAK_SCAN_AREA
:
1717 kmemleak_scan_area(log
->ptr
, log
->size
, GFP_KERNEL
);
1719 case KMEMLEAK_NO_SCAN
:
1720 kmemleak_no_scan(log
->ptr
);
1729 * Late initialization function.
1731 static int __init
kmemleak_late_init(void)
1733 struct dentry
*dentry
;
1735 atomic_set(&kmemleak_initialized
, 1);
1737 if (atomic_read(&kmemleak_error
)) {
1739 * Some error occurred and kmemleak was disabled. There is a
1740 * small chance that kmemleak_disable() was called immediately
1741 * after setting kmemleak_initialized and we may end up with
1742 * two clean-up threads but serialized by scan_mutex.
1744 schedule_work(&cleanup_work
);
1748 dentry
= debugfs_create_file("kmemleak", S_IRUGO
, NULL
, NULL
,
1751 pr_warning("Failed to create the debugfs kmemleak file\n");
1752 mutex_lock(&scan_mutex
);
1753 start_scan_thread();
1754 mutex_unlock(&scan_mutex
);
1756 pr_info("Kernel memory leak detector initialized\n");
1760 late_initcall(kmemleak_late_init
);