e1000e: update driver version number
[linux-2.6/cjktty.git] / drivers / net / ethernet / intel / e1000e / netdev.c
blob095a6be622a71697d193133e911b8679260d1213
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
55 #include "e1000.h"
57 #define DRV_EXTRAVERSION "-k"
59 #define DRV_VERSION "2.1.4" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
70 static const struct e1000_info *e1000_info_tbl[] = {
71 [board_82571] = &e1000_82571_info,
72 [board_82572] = &e1000_82572_info,
73 [board_82573] = &e1000_82573_info,
74 [board_82574] = &e1000_82574_info,
75 [board_82583] = &e1000_82583_info,
76 [board_80003es2lan] = &e1000_es2_info,
77 [board_ich8lan] = &e1000_ich8_info,
78 [board_ich9lan] = &e1000_ich9_info,
79 [board_ich10lan] = &e1000_ich10_info,
80 [board_pchlan] = &e1000_pch_info,
81 [board_pch2lan] = &e1000_pch2_info,
82 [board_pch_lpt] = &e1000_pch_lpt_info,
85 struct e1000_reg_info {
86 u32 ofs;
87 char *name;
90 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
91 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
92 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
93 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
94 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
96 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
97 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
98 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
99 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
100 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
102 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
104 /* General Registers */
105 {E1000_CTRL, "CTRL"},
106 {E1000_STATUS, "STATUS"},
107 {E1000_CTRL_EXT, "CTRL_EXT"},
109 /* Interrupt Registers */
110 {E1000_ICR, "ICR"},
112 /* Rx Registers */
113 {E1000_RCTL, "RCTL"},
114 {E1000_RDLEN(0), "RDLEN"},
115 {E1000_RDH(0), "RDH"},
116 {E1000_RDT(0), "RDT"},
117 {E1000_RDTR, "RDTR"},
118 {E1000_RXDCTL(0), "RXDCTL"},
119 {E1000_ERT, "ERT"},
120 {E1000_RDBAL(0), "RDBAL"},
121 {E1000_RDBAH(0), "RDBAH"},
122 {E1000_RDFH, "RDFH"},
123 {E1000_RDFT, "RDFT"},
124 {E1000_RDFHS, "RDFHS"},
125 {E1000_RDFTS, "RDFTS"},
126 {E1000_RDFPC, "RDFPC"},
128 /* Tx Registers */
129 {E1000_TCTL, "TCTL"},
130 {E1000_TDBAL(0), "TDBAL"},
131 {E1000_TDBAH(0), "TDBAH"},
132 {E1000_TDLEN(0), "TDLEN"},
133 {E1000_TDH(0), "TDH"},
134 {E1000_TDT(0), "TDT"},
135 {E1000_TIDV, "TIDV"},
136 {E1000_TXDCTL(0), "TXDCTL"},
137 {E1000_TADV, "TADV"},
138 {E1000_TARC(0), "TARC"},
139 {E1000_TDFH, "TDFH"},
140 {E1000_TDFT, "TDFT"},
141 {E1000_TDFHS, "TDFHS"},
142 {E1000_TDFTS, "TDFTS"},
143 {E1000_TDFPC, "TDFPC"},
145 /* List Terminator */
146 {0, NULL}
150 * e1000_regdump - register printout routine
152 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
154 int n = 0;
155 char rname[16];
156 u32 regs[8];
158 switch (reginfo->ofs) {
159 case E1000_RXDCTL(0):
160 for (n = 0; n < 2; n++)
161 regs[n] = __er32(hw, E1000_RXDCTL(n));
162 break;
163 case E1000_TXDCTL(0):
164 for (n = 0; n < 2; n++)
165 regs[n] = __er32(hw, E1000_TXDCTL(n));
166 break;
167 case E1000_TARC(0):
168 for (n = 0; n < 2; n++)
169 regs[n] = __er32(hw, E1000_TARC(n));
170 break;
171 default:
172 pr_info("%-15s %08x\n",
173 reginfo->name, __er32(hw, reginfo->ofs));
174 return;
177 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
181 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
182 struct e1000_buffer *bi)
184 int i;
185 struct e1000_ps_page *ps_page;
187 for (i = 0; i < adapter->rx_ps_pages; i++) {
188 ps_page = &bi->ps_pages[i];
190 if (ps_page->page) {
191 pr_info("packet dump for ps_page %d:\n", i);
192 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
193 16, 1, page_address(ps_page->page),
194 PAGE_SIZE, true);
200 * e1000e_dump - Print registers, Tx-ring and Rx-ring
202 static void e1000e_dump(struct e1000_adapter *adapter)
204 struct net_device *netdev = adapter->netdev;
205 struct e1000_hw *hw = &adapter->hw;
206 struct e1000_reg_info *reginfo;
207 struct e1000_ring *tx_ring = adapter->tx_ring;
208 struct e1000_tx_desc *tx_desc;
209 struct my_u0 {
210 __le64 a;
211 __le64 b;
212 } *u0;
213 struct e1000_buffer *buffer_info;
214 struct e1000_ring *rx_ring = adapter->rx_ring;
215 union e1000_rx_desc_packet_split *rx_desc_ps;
216 union e1000_rx_desc_extended *rx_desc;
217 struct my_u1 {
218 __le64 a;
219 __le64 b;
220 __le64 c;
221 __le64 d;
222 } *u1;
223 u32 staterr;
224 int i = 0;
226 if (!netif_msg_hw(adapter))
227 return;
229 /* Print netdevice Info */
230 if (netdev) {
231 dev_info(&adapter->pdev->dev, "Net device Info\n");
232 pr_info("Device Name state trans_start last_rx\n");
233 pr_info("%-15s %016lX %016lX %016lX\n",
234 netdev->name, netdev->state, netdev->trans_start,
235 netdev->last_rx);
238 /* Print Registers */
239 dev_info(&adapter->pdev->dev, "Register Dump\n");
240 pr_info(" Register Name Value\n");
241 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
242 reginfo->name; reginfo++) {
243 e1000_regdump(hw, reginfo);
246 /* Print Tx Ring Summary */
247 if (!netdev || !netif_running(netdev))
248 return;
250 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
251 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
252 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
253 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
254 0, tx_ring->next_to_use, tx_ring->next_to_clean,
255 (unsigned long long)buffer_info->dma,
256 buffer_info->length,
257 buffer_info->next_to_watch,
258 (unsigned long long)buffer_info->time_stamp);
260 /* Print Tx Ring */
261 if (!netif_msg_tx_done(adapter))
262 goto rx_ring_summary;
264 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
266 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
268 * Legacy Transmit Descriptor
269 * +--------------------------------------------------------------+
270 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
271 * +--------------------------------------------------------------+
272 * 8 | Special | CSS | Status | CMD | CSO | Length |
273 * +--------------------------------------------------------------+
274 * 63 48 47 36 35 32 31 24 23 16 15 0
276 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
277 * 63 48 47 40 39 32 31 16 15 8 7 0
278 * +----------------------------------------------------------------+
279 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
280 * +----------------------------------------------------------------+
281 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
282 * +----------------------------------------------------------------+
283 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
285 * Extended Data Descriptor (DTYP=0x1)
286 * +----------------------------------------------------------------+
287 * 0 | Buffer Address [63:0] |
288 * +----------------------------------------------------------------+
289 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
290 * +----------------------------------------------------------------+
291 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
293 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
294 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
295 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
296 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
297 const char *next_desc;
298 tx_desc = E1000_TX_DESC(*tx_ring, i);
299 buffer_info = &tx_ring->buffer_info[i];
300 u0 = (struct my_u0 *)tx_desc;
301 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
302 next_desc = " NTC/U";
303 else if (i == tx_ring->next_to_use)
304 next_desc = " NTU";
305 else if (i == tx_ring->next_to_clean)
306 next_desc = " NTC";
307 else
308 next_desc = "";
309 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
310 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
311 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
313 (unsigned long long)le64_to_cpu(u0->a),
314 (unsigned long long)le64_to_cpu(u0->b),
315 (unsigned long long)buffer_info->dma,
316 buffer_info->length, buffer_info->next_to_watch,
317 (unsigned long long)buffer_info->time_stamp,
318 buffer_info->skb, next_desc);
320 if (netif_msg_pktdata(adapter) && buffer_info->skb)
321 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
322 16, 1, buffer_info->skb->data,
323 buffer_info->skb->len, true);
326 /* Print Rx Ring Summary */
327 rx_ring_summary:
328 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
329 pr_info("Queue [NTU] [NTC]\n");
330 pr_info(" %5d %5X %5X\n",
331 0, rx_ring->next_to_use, rx_ring->next_to_clean);
333 /* Print Rx Ring */
334 if (!netif_msg_rx_status(adapter))
335 return;
337 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
338 switch (adapter->rx_ps_pages) {
339 case 1:
340 case 2:
341 case 3:
342 /* [Extended] Packet Split Receive Descriptor Format
344 * +-----------------------------------------------------+
345 * 0 | Buffer Address 0 [63:0] |
346 * +-----------------------------------------------------+
347 * 8 | Buffer Address 1 [63:0] |
348 * +-----------------------------------------------------+
349 * 16 | Buffer Address 2 [63:0] |
350 * +-----------------------------------------------------+
351 * 24 | Buffer Address 3 [63:0] |
352 * +-----------------------------------------------------+
354 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
355 /* [Extended] Receive Descriptor (Write-Back) Format
357 * 63 48 47 32 31 13 12 8 7 4 3 0
358 * +------------------------------------------------------+
359 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
360 * | Checksum | Ident | | Queue | | Type |
361 * +------------------------------------------------------+
362 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
363 * +------------------------------------------------------+
364 * 63 48 47 32 31 20 19 0
366 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
367 for (i = 0; i < rx_ring->count; i++) {
368 const char *next_desc;
369 buffer_info = &rx_ring->buffer_info[i];
370 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
371 u1 = (struct my_u1 *)rx_desc_ps;
372 staterr =
373 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
375 if (i == rx_ring->next_to_use)
376 next_desc = " NTU";
377 else if (i == rx_ring->next_to_clean)
378 next_desc = " NTC";
379 else
380 next_desc = "";
382 if (staterr & E1000_RXD_STAT_DD) {
383 /* Descriptor Done */
384 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
385 "RWB", i,
386 (unsigned long long)le64_to_cpu(u1->a),
387 (unsigned long long)le64_to_cpu(u1->b),
388 (unsigned long long)le64_to_cpu(u1->c),
389 (unsigned long long)le64_to_cpu(u1->d),
390 buffer_info->skb, next_desc);
391 } else {
392 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
393 "R ", i,
394 (unsigned long long)le64_to_cpu(u1->a),
395 (unsigned long long)le64_to_cpu(u1->b),
396 (unsigned long long)le64_to_cpu(u1->c),
397 (unsigned long long)le64_to_cpu(u1->d),
398 (unsigned long long)buffer_info->dma,
399 buffer_info->skb, next_desc);
401 if (netif_msg_pktdata(adapter))
402 e1000e_dump_ps_pages(adapter,
403 buffer_info);
406 break;
407 default:
408 case 0:
409 /* Extended Receive Descriptor (Read) Format
411 * +-----------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +-----------------------------------------------------+
414 * 8 | Reserved |
415 * +-----------------------------------------------------+
417 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
418 /* Extended Receive Descriptor (Write-Back) Format
420 * 63 48 47 32 31 24 23 4 3 0
421 * +------------------------------------------------------+
422 * | RSS Hash | | | |
423 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
424 * | Packet | IP | | | Type |
425 * | Checksum | Ident | | | |
426 * +------------------------------------------------------+
427 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
428 * +------------------------------------------------------+
429 * 63 48 47 32 31 20 19 0
431 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
433 for (i = 0; i < rx_ring->count; i++) {
434 const char *next_desc;
436 buffer_info = &rx_ring->buffer_info[i];
437 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
438 u1 = (struct my_u1 *)rx_desc;
439 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
441 if (i == rx_ring->next_to_use)
442 next_desc = " NTU";
443 else if (i == rx_ring->next_to_clean)
444 next_desc = " NTC";
445 else
446 next_desc = "";
448 if (staterr & E1000_RXD_STAT_DD) {
449 /* Descriptor Done */
450 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
451 "RWB", i,
452 (unsigned long long)le64_to_cpu(u1->a),
453 (unsigned long long)le64_to_cpu(u1->b),
454 buffer_info->skb, next_desc);
455 } else {
456 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
457 "R ", i,
458 (unsigned long long)le64_to_cpu(u1->a),
459 (unsigned long long)le64_to_cpu(u1->b),
460 (unsigned long long)buffer_info->dma,
461 buffer_info->skb, next_desc);
463 if (netif_msg_pktdata(adapter) &&
464 buffer_info->skb)
465 print_hex_dump(KERN_INFO, "",
466 DUMP_PREFIX_ADDRESS, 16,
468 buffer_info->skb->data,
469 adapter->rx_buffer_len,
470 true);
477 * e1000_desc_unused - calculate if we have unused descriptors
479 static int e1000_desc_unused(struct e1000_ring *ring)
481 if (ring->next_to_clean > ring->next_to_use)
482 return ring->next_to_clean - ring->next_to_use - 1;
484 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
488 * e1000_receive_skb - helper function to handle Rx indications
489 * @adapter: board private structure
490 * @status: descriptor status field as written by hardware
491 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
492 * @skb: pointer to sk_buff to be indicated to stack
494 static void e1000_receive_skb(struct e1000_adapter *adapter,
495 struct net_device *netdev, struct sk_buff *skb,
496 u8 status, __le16 vlan)
498 u16 tag = le16_to_cpu(vlan);
499 skb->protocol = eth_type_trans(skb, netdev);
501 if (status & E1000_RXD_STAT_VP)
502 __vlan_hwaccel_put_tag(skb, tag);
504 napi_gro_receive(&adapter->napi, skb);
508 * e1000_rx_checksum - Receive Checksum Offload
509 * @adapter: board private structure
510 * @status_err: receive descriptor status and error fields
511 * @csum: receive descriptor csum field
512 * @sk_buff: socket buffer with received data
514 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
515 struct sk_buff *skb)
517 u16 status = (u16)status_err;
518 u8 errors = (u8)(status_err >> 24);
520 skb_checksum_none_assert(skb);
522 /* Rx checksum disabled */
523 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
524 return;
526 /* Ignore Checksum bit is set */
527 if (status & E1000_RXD_STAT_IXSM)
528 return;
530 /* TCP/UDP checksum error bit or IP checksum error bit is set */
531 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
532 /* let the stack verify checksum errors */
533 adapter->hw_csum_err++;
534 return;
537 /* TCP/UDP Checksum has not been calculated */
538 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
539 return;
541 /* It must be a TCP or UDP packet with a valid checksum */
542 skb->ip_summed = CHECKSUM_UNNECESSARY;
543 adapter->hw_csum_good++;
546 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
548 struct e1000_adapter *adapter = rx_ring->adapter;
549 struct e1000_hw *hw = &adapter->hw;
550 s32 ret_val = __ew32_prepare(hw);
552 writel(i, rx_ring->tail);
554 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
555 u32 rctl = er32(RCTL);
556 ew32(RCTL, rctl & ~E1000_RCTL_EN);
557 e_err("ME firmware caused invalid RDT - resetting\n");
558 schedule_work(&adapter->reset_task);
562 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
564 struct e1000_adapter *adapter = tx_ring->adapter;
565 struct e1000_hw *hw = &adapter->hw;
566 s32 ret_val = __ew32_prepare(hw);
568 writel(i, tx_ring->tail);
570 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
571 u32 tctl = er32(TCTL);
572 ew32(TCTL, tctl & ~E1000_TCTL_EN);
573 e_err("ME firmware caused invalid TDT - resetting\n");
574 schedule_work(&adapter->reset_task);
579 * e1000_alloc_rx_buffers - Replace used receive buffers
580 * @rx_ring: Rx descriptor ring
582 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
583 int cleaned_count, gfp_t gfp)
585 struct e1000_adapter *adapter = rx_ring->adapter;
586 struct net_device *netdev = adapter->netdev;
587 struct pci_dev *pdev = adapter->pdev;
588 union e1000_rx_desc_extended *rx_desc;
589 struct e1000_buffer *buffer_info;
590 struct sk_buff *skb;
591 unsigned int i;
592 unsigned int bufsz = adapter->rx_buffer_len;
594 i = rx_ring->next_to_use;
595 buffer_info = &rx_ring->buffer_info[i];
597 while (cleaned_count--) {
598 skb = buffer_info->skb;
599 if (skb) {
600 skb_trim(skb, 0);
601 goto map_skb;
604 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
605 if (!skb) {
606 /* Better luck next round */
607 adapter->alloc_rx_buff_failed++;
608 break;
611 buffer_info->skb = skb;
612 map_skb:
613 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
614 adapter->rx_buffer_len,
615 DMA_FROM_DEVICE);
616 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
617 dev_err(&pdev->dev, "Rx DMA map failed\n");
618 adapter->rx_dma_failed++;
619 break;
622 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
623 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
625 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
627 * Force memory writes to complete before letting h/w
628 * know there are new descriptors to fetch. (Only
629 * applicable for weak-ordered memory model archs,
630 * such as IA-64).
632 wmb();
633 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
634 e1000e_update_rdt_wa(rx_ring, i);
635 else
636 writel(i, rx_ring->tail);
638 i++;
639 if (i == rx_ring->count)
640 i = 0;
641 buffer_info = &rx_ring->buffer_info[i];
644 rx_ring->next_to_use = i;
648 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
649 * @rx_ring: Rx descriptor ring
651 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
652 int cleaned_count, gfp_t gfp)
654 struct e1000_adapter *adapter = rx_ring->adapter;
655 struct net_device *netdev = adapter->netdev;
656 struct pci_dev *pdev = adapter->pdev;
657 union e1000_rx_desc_packet_split *rx_desc;
658 struct e1000_buffer *buffer_info;
659 struct e1000_ps_page *ps_page;
660 struct sk_buff *skb;
661 unsigned int i, j;
663 i = rx_ring->next_to_use;
664 buffer_info = &rx_ring->buffer_info[i];
666 while (cleaned_count--) {
667 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
669 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
670 ps_page = &buffer_info->ps_pages[j];
671 if (j >= adapter->rx_ps_pages) {
672 /* all unused desc entries get hw null ptr */
673 rx_desc->read.buffer_addr[j + 1] =
674 ~cpu_to_le64(0);
675 continue;
677 if (!ps_page->page) {
678 ps_page->page = alloc_page(gfp);
679 if (!ps_page->page) {
680 adapter->alloc_rx_buff_failed++;
681 goto no_buffers;
683 ps_page->dma = dma_map_page(&pdev->dev,
684 ps_page->page,
685 0, PAGE_SIZE,
686 DMA_FROM_DEVICE);
687 if (dma_mapping_error(&pdev->dev,
688 ps_page->dma)) {
689 dev_err(&adapter->pdev->dev,
690 "Rx DMA page map failed\n");
691 adapter->rx_dma_failed++;
692 goto no_buffers;
696 * Refresh the desc even if buffer_addrs
697 * didn't change because each write-back
698 * erases this info.
700 rx_desc->read.buffer_addr[j + 1] =
701 cpu_to_le64(ps_page->dma);
704 skb = __netdev_alloc_skb_ip_align(netdev,
705 adapter->rx_ps_bsize0,
706 gfp);
708 if (!skb) {
709 adapter->alloc_rx_buff_failed++;
710 break;
713 buffer_info->skb = skb;
714 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
715 adapter->rx_ps_bsize0,
716 DMA_FROM_DEVICE);
717 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
718 dev_err(&pdev->dev, "Rx DMA map failed\n");
719 adapter->rx_dma_failed++;
720 /* cleanup skb */
721 dev_kfree_skb_any(skb);
722 buffer_info->skb = NULL;
723 break;
726 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
728 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
730 * Force memory writes to complete before letting h/w
731 * know there are new descriptors to fetch. (Only
732 * applicable for weak-ordered memory model archs,
733 * such as IA-64).
735 wmb();
736 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
737 e1000e_update_rdt_wa(rx_ring, i << 1);
738 else
739 writel(i << 1, rx_ring->tail);
742 i++;
743 if (i == rx_ring->count)
744 i = 0;
745 buffer_info = &rx_ring->buffer_info[i];
748 no_buffers:
749 rx_ring->next_to_use = i;
753 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
754 * @rx_ring: Rx descriptor ring
755 * @cleaned_count: number of buffers to allocate this pass
758 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
759 int cleaned_count, gfp_t gfp)
761 struct e1000_adapter *adapter = rx_ring->adapter;
762 struct net_device *netdev = adapter->netdev;
763 struct pci_dev *pdev = adapter->pdev;
764 union e1000_rx_desc_extended *rx_desc;
765 struct e1000_buffer *buffer_info;
766 struct sk_buff *skb;
767 unsigned int i;
768 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
770 i = rx_ring->next_to_use;
771 buffer_info = &rx_ring->buffer_info[i];
773 while (cleaned_count--) {
774 skb = buffer_info->skb;
775 if (skb) {
776 skb_trim(skb, 0);
777 goto check_page;
780 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
781 if (unlikely(!skb)) {
782 /* Better luck next round */
783 adapter->alloc_rx_buff_failed++;
784 break;
787 buffer_info->skb = skb;
788 check_page:
789 /* allocate a new page if necessary */
790 if (!buffer_info->page) {
791 buffer_info->page = alloc_page(gfp);
792 if (unlikely(!buffer_info->page)) {
793 adapter->alloc_rx_buff_failed++;
794 break;
798 if (!buffer_info->dma)
799 buffer_info->dma = dma_map_page(&pdev->dev,
800 buffer_info->page, 0,
801 PAGE_SIZE,
802 DMA_FROM_DEVICE);
804 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
805 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
807 if (unlikely(++i == rx_ring->count))
808 i = 0;
809 buffer_info = &rx_ring->buffer_info[i];
812 if (likely(rx_ring->next_to_use != i)) {
813 rx_ring->next_to_use = i;
814 if (unlikely(i-- == 0))
815 i = (rx_ring->count - 1);
817 /* Force memory writes to complete before letting h/w
818 * know there are new descriptors to fetch. (Only
819 * applicable for weak-ordered memory model archs,
820 * such as IA-64). */
821 wmb();
822 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
823 e1000e_update_rdt_wa(rx_ring, i);
824 else
825 writel(i, rx_ring->tail);
829 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
830 struct sk_buff *skb)
832 if (netdev->features & NETIF_F_RXHASH)
833 skb->rxhash = le32_to_cpu(rss);
837 * e1000_clean_rx_irq - Send received data up the network stack
838 * @rx_ring: Rx descriptor ring
840 * the return value indicates whether actual cleaning was done, there
841 * is no guarantee that everything was cleaned
843 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
844 int work_to_do)
846 struct e1000_adapter *adapter = rx_ring->adapter;
847 struct net_device *netdev = adapter->netdev;
848 struct pci_dev *pdev = adapter->pdev;
849 struct e1000_hw *hw = &adapter->hw;
850 union e1000_rx_desc_extended *rx_desc, *next_rxd;
851 struct e1000_buffer *buffer_info, *next_buffer;
852 u32 length, staterr;
853 unsigned int i;
854 int cleaned_count = 0;
855 bool cleaned = false;
856 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
858 i = rx_ring->next_to_clean;
859 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
860 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
861 buffer_info = &rx_ring->buffer_info[i];
863 while (staterr & E1000_RXD_STAT_DD) {
864 struct sk_buff *skb;
866 if (*work_done >= work_to_do)
867 break;
868 (*work_done)++;
869 rmb(); /* read descriptor and rx_buffer_info after status DD */
871 skb = buffer_info->skb;
872 buffer_info->skb = NULL;
874 prefetch(skb->data - NET_IP_ALIGN);
876 i++;
877 if (i == rx_ring->count)
878 i = 0;
879 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
880 prefetch(next_rxd);
882 next_buffer = &rx_ring->buffer_info[i];
884 cleaned = true;
885 cleaned_count++;
886 dma_unmap_single(&pdev->dev,
887 buffer_info->dma,
888 adapter->rx_buffer_len,
889 DMA_FROM_DEVICE);
890 buffer_info->dma = 0;
892 length = le16_to_cpu(rx_desc->wb.upper.length);
895 * !EOP means multiple descriptors were used to store a single
896 * packet, if that's the case we need to toss it. In fact, we
897 * need to toss every packet with the EOP bit clear and the
898 * next frame that _does_ have the EOP bit set, as it is by
899 * definition only a frame fragment
901 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
902 adapter->flags2 |= FLAG2_IS_DISCARDING;
904 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
905 /* All receives must fit into a single buffer */
906 e_dbg("Receive packet consumed multiple buffers\n");
907 /* recycle */
908 buffer_info->skb = skb;
909 if (staterr & E1000_RXD_STAT_EOP)
910 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
911 goto next_desc;
914 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
915 !(netdev->features & NETIF_F_RXALL))) {
916 /* recycle */
917 buffer_info->skb = skb;
918 goto next_desc;
921 /* adjust length to remove Ethernet CRC */
922 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
923 /* If configured to store CRC, don't subtract FCS,
924 * but keep the FCS bytes out of the total_rx_bytes
925 * counter
927 if (netdev->features & NETIF_F_RXFCS)
928 total_rx_bytes -= 4;
929 else
930 length -= 4;
933 total_rx_bytes += length;
934 total_rx_packets++;
937 * code added for copybreak, this should improve
938 * performance for small packets with large amounts
939 * of reassembly being done in the stack
941 if (length < copybreak) {
942 struct sk_buff *new_skb =
943 netdev_alloc_skb_ip_align(netdev, length);
944 if (new_skb) {
945 skb_copy_to_linear_data_offset(new_skb,
946 -NET_IP_ALIGN,
947 (skb->data -
948 NET_IP_ALIGN),
949 (length +
950 NET_IP_ALIGN));
951 /* save the skb in buffer_info as good */
952 buffer_info->skb = skb;
953 skb = new_skb;
955 /* else just continue with the old one */
957 /* end copybreak code */
958 skb_put(skb, length);
960 /* Receive Checksum Offload */
961 e1000_rx_checksum(adapter, staterr, skb);
963 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
965 e1000_receive_skb(adapter, netdev, skb, staterr,
966 rx_desc->wb.upper.vlan);
968 next_desc:
969 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
971 /* return some buffers to hardware, one at a time is too slow */
972 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
973 adapter->alloc_rx_buf(rx_ring, cleaned_count,
974 GFP_ATOMIC);
975 cleaned_count = 0;
978 /* use prefetched values */
979 rx_desc = next_rxd;
980 buffer_info = next_buffer;
982 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
984 rx_ring->next_to_clean = i;
986 cleaned_count = e1000_desc_unused(rx_ring);
987 if (cleaned_count)
988 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
990 adapter->total_rx_bytes += total_rx_bytes;
991 adapter->total_rx_packets += total_rx_packets;
992 return cleaned;
995 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
996 struct e1000_buffer *buffer_info)
998 struct e1000_adapter *adapter = tx_ring->adapter;
1000 if (buffer_info->dma) {
1001 if (buffer_info->mapped_as_page)
1002 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1003 buffer_info->length, DMA_TO_DEVICE);
1004 else
1005 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1006 buffer_info->length, DMA_TO_DEVICE);
1007 buffer_info->dma = 0;
1009 if (buffer_info->skb) {
1010 dev_kfree_skb_any(buffer_info->skb);
1011 buffer_info->skb = NULL;
1013 buffer_info->time_stamp = 0;
1016 static void e1000_print_hw_hang(struct work_struct *work)
1018 struct e1000_adapter *adapter = container_of(work,
1019 struct e1000_adapter,
1020 print_hang_task);
1021 struct net_device *netdev = adapter->netdev;
1022 struct e1000_ring *tx_ring = adapter->tx_ring;
1023 unsigned int i = tx_ring->next_to_clean;
1024 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1025 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1026 struct e1000_hw *hw = &adapter->hw;
1027 u16 phy_status, phy_1000t_status, phy_ext_status;
1028 u16 pci_status;
1030 if (test_bit(__E1000_DOWN, &adapter->state))
1031 return;
1033 if (!adapter->tx_hang_recheck &&
1034 (adapter->flags2 & FLAG2_DMA_BURST)) {
1036 * May be block on write-back, flush and detect again
1037 * flush pending descriptor writebacks to memory
1039 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1040 /* execute the writes immediately */
1041 e1e_flush();
1043 * Due to rare timing issues, write to TIDV again to ensure
1044 * the write is successful
1046 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1047 /* execute the writes immediately */
1048 e1e_flush();
1049 adapter->tx_hang_recheck = true;
1050 return;
1052 /* Real hang detected */
1053 adapter->tx_hang_recheck = false;
1054 netif_stop_queue(netdev);
1056 e1e_rphy(hw, PHY_STATUS, &phy_status);
1057 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1058 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1060 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1062 /* detected Hardware unit hang */
1063 e_err("Detected Hardware Unit Hang:\n"
1064 " TDH <%x>\n"
1065 " TDT <%x>\n"
1066 " next_to_use <%x>\n"
1067 " next_to_clean <%x>\n"
1068 "buffer_info[next_to_clean]:\n"
1069 " time_stamp <%lx>\n"
1070 " next_to_watch <%x>\n"
1071 " jiffies <%lx>\n"
1072 " next_to_watch.status <%x>\n"
1073 "MAC Status <%x>\n"
1074 "PHY Status <%x>\n"
1075 "PHY 1000BASE-T Status <%x>\n"
1076 "PHY Extended Status <%x>\n"
1077 "PCI Status <%x>\n",
1078 readl(tx_ring->head),
1079 readl(tx_ring->tail),
1080 tx_ring->next_to_use,
1081 tx_ring->next_to_clean,
1082 tx_ring->buffer_info[eop].time_stamp,
1083 eop,
1084 jiffies,
1085 eop_desc->upper.fields.status,
1086 er32(STATUS),
1087 phy_status,
1088 phy_1000t_status,
1089 phy_ext_status,
1090 pci_status);
1092 /* Suggest workaround for known h/w issue */
1093 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1094 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1098 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1099 * @tx_ring: Tx descriptor ring
1101 * the return value indicates whether actual cleaning was done, there
1102 * is no guarantee that everything was cleaned
1104 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1106 struct e1000_adapter *adapter = tx_ring->adapter;
1107 struct net_device *netdev = adapter->netdev;
1108 struct e1000_hw *hw = &adapter->hw;
1109 struct e1000_tx_desc *tx_desc, *eop_desc;
1110 struct e1000_buffer *buffer_info;
1111 unsigned int i, eop;
1112 unsigned int count = 0;
1113 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1114 unsigned int bytes_compl = 0, pkts_compl = 0;
1116 i = tx_ring->next_to_clean;
1117 eop = tx_ring->buffer_info[i].next_to_watch;
1118 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1120 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1121 (count < tx_ring->count)) {
1122 bool cleaned = false;
1123 rmb(); /* read buffer_info after eop_desc */
1124 for (; !cleaned; count++) {
1125 tx_desc = E1000_TX_DESC(*tx_ring, i);
1126 buffer_info = &tx_ring->buffer_info[i];
1127 cleaned = (i == eop);
1129 if (cleaned) {
1130 total_tx_packets += buffer_info->segs;
1131 total_tx_bytes += buffer_info->bytecount;
1132 if (buffer_info->skb) {
1133 bytes_compl += buffer_info->skb->len;
1134 pkts_compl++;
1138 e1000_put_txbuf(tx_ring, buffer_info);
1139 tx_desc->upper.data = 0;
1141 i++;
1142 if (i == tx_ring->count)
1143 i = 0;
1146 if (i == tx_ring->next_to_use)
1147 break;
1148 eop = tx_ring->buffer_info[i].next_to_watch;
1149 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1152 tx_ring->next_to_clean = i;
1154 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1156 #define TX_WAKE_THRESHOLD 32
1157 if (count && netif_carrier_ok(netdev) &&
1158 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1159 /* Make sure that anybody stopping the queue after this
1160 * sees the new next_to_clean.
1162 smp_mb();
1164 if (netif_queue_stopped(netdev) &&
1165 !(test_bit(__E1000_DOWN, &adapter->state))) {
1166 netif_wake_queue(netdev);
1167 ++adapter->restart_queue;
1171 if (adapter->detect_tx_hung) {
1173 * Detect a transmit hang in hardware, this serializes the
1174 * check with the clearing of time_stamp and movement of i
1176 adapter->detect_tx_hung = false;
1177 if (tx_ring->buffer_info[i].time_stamp &&
1178 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1179 + (adapter->tx_timeout_factor * HZ)) &&
1180 !(er32(STATUS) & E1000_STATUS_TXOFF))
1181 schedule_work(&adapter->print_hang_task);
1182 else
1183 adapter->tx_hang_recheck = false;
1185 adapter->total_tx_bytes += total_tx_bytes;
1186 adapter->total_tx_packets += total_tx_packets;
1187 return count < tx_ring->count;
1191 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1192 * @rx_ring: Rx descriptor ring
1194 * the return value indicates whether actual cleaning was done, there
1195 * is no guarantee that everything was cleaned
1197 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1198 int work_to_do)
1200 struct e1000_adapter *adapter = rx_ring->adapter;
1201 struct e1000_hw *hw = &adapter->hw;
1202 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1203 struct net_device *netdev = adapter->netdev;
1204 struct pci_dev *pdev = adapter->pdev;
1205 struct e1000_buffer *buffer_info, *next_buffer;
1206 struct e1000_ps_page *ps_page;
1207 struct sk_buff *skb;
1208 unsigned int i, j;
1209 u32 length, staterr;
1210 int cleaned_count = 0;
1211 bool cleaned = false;
1212 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1214 i = rx_ring->next_to_clean;
1215 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1216 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1217 buffer_info = &rx_ring->buffer_info[i];
1219 while (staterr & E1000_RXD_STAT_DD) {
1220 if (*work_done >= work_to_do)
1221 break;
1222 (*work_done)++;
1223 skb = buffer_info->skb;
1224 rmb(); /* read descriptor and rx_buffer_info after status DD */
1226 /* in the packet split case this is header only */
1227 prefetch(skb->data - NET_IP_ALIGN);
1229 i++;
1230 if (i == rx_ring->count)
1231 i = 0;
1232 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1233 prefetch(next_rxd);
1235 next_buffer = &rx_ring->buffer_info[i];
1237 cleaned = true;
1238 cleaned_count++;
1239 dma_unmap_single(&pdev->dev, buffer_info->dma,
1240 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1241 buffer_info->dma = 0;
1243 /* see !EOP comment in other Rx routine */
1244 if (!(staterr & E1000_RXD_STAT_EOP))
1245 adapter->flags2 |= FLAG2_IS_DISCARDING;
1247 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1248 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1249 dev_kfree_skb_irq(skb);
1250 if (staterr & E1000_RXD_STAT_EOP)
1251 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1252 goto next_desc;
1255 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1256 !(netdev->features & NETIF_F_RXALL))) {
1257 dev_kfree_skb_irq(skb);
1258 goto next_desc;
1261 length = le16_to_cpu(rx_desc->wb.middle.length0);
1263 if (!length) {
1264 e_dbg("Last part of the packet spanning multiple descriptors\n");
1265 dev_kfree_skb_irq(skb);
1266 goto next_desc;
1269 /* Good Receive */
1270 skb_put(skb, length);
1274 * this looks ugly, but it seems compiler issues make
1275 * it more efficient than reusing j
1277 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1280 * page alloc/put takes too long and effects small
1281 * packet throughput, so unsplit small packets and
1282 * save the alloc/put only valid in softirq (napi)
1283 * context to call kmap_*
1285 if (l1 && (l1 <= copybreak) &&
1286 ((length + l1) <= adapter->rx_ps_bsize0)) {
1287 u8 *vaddr;
1289 ps_page = &buffer_info->ps_pages[0];
1292 * there is no documentation about how to call
1293 * kmap_atomic, so we can't hold the mapping
1294 * very long
1296 dma_sync_single_for_cpu(&pdev->dev,
1297 ps_page->dma,
1298 PAGE_SIZE,
1299 DMA_FROM_DEVICE);
1300 vaddr = kmap_atomic(ps_page->page);
1301 memcpy(skb_tail_pointer(skb), vaddr, l1);
1302 kunmap_atomic(vaddr);
1303 dma_sync_single_for_device(&pdev->dev,
1304 ps_page->dma,
1305 PAGE_SIZE,
1306 DMA_FROM_DEVICE);
1308 /* remove the CRC */
1309 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1310 if (!(netdev->features & NETIF_F_RXFCS))
1311 l1 -= 4;
1314 skb_put(skb, l1);
1315 goto copydone;
1316 } /* if */
1319 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1320 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1321 if (!length)
1322 break;
1324 ps_page = &buffer_info->ps_pages[j];
1325 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1326 DMA_FROM_DEVICE);
1327 ps_page->dma = 0;
1328 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1329 ps_page->page = NULL;
1330 skb->len += length;
1331 skb->data_len += length;
1332 skb->truesize += PAGE_SIZE;
1335 /* strip the ethernet crc, problem is we're using pages now so
1336 * this whole operation can get a little cpu intensive
1338 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1339 if (!(netdev->features & NETIF_F_RXFCS))
1340 pskb_trim(skb, skb->len - 4);
1343 copydone:
1344 total_rx_bytes += skb->len;
1345 total_rx_packets++;
1347 e1000_rx_checksum(adapter, staterr, skb);
1349 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1351 if (rx_desc->wb.upper.header_status &
1352 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1353 adapter->rx_hdr_split++;
1355 e1000_receive_skb(adapter, netdev, skb,
1356 staterr, rx_desc->wb.middle.vlan);
1358 next_desc:
1359 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1360 buffer_info->skb = NULL;
1362 /* return some buffers to hardware, one at a time is too slow */
1363 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1364 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1365 GFP_ATOMIC);
1366 cleaned_count = 0;
1369 /* use prefetched values */
1370 rx_desc = next_rxd;
1371 buffer_info = next_buffer;
1373 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1375 rx_ring->next_to_clean = i;
1377 cleaned_count = e1000_desc_unused(rx_ring);
1378 if (cleaned_count)
1379 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1381 adapter->total_rx_bytes += total_rx_bytes;
1382 adapter->total_rx_packets += total_rx_packets;
1383 return cleaned;
1387 * e1000_consume_page - helper function
1389 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1390 u16 length)
1392 bi->page = NULL;
1393 skb->len += length;
1394 skb->data_len += length;
1395 skb->truesize += PAGE_SIZE;
1399 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1400 * @adapter: board private structure
1402 * the return value indicates whether actual cleaning was done, there
1403 * is no guarantee that everything was cleaned
1405 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1406 int work_to_do)
1408 struct e1000_adapter *adapter = rx_ring->adapter;
1409 struct net_device *netdev = adapter->netdev;
1410 struct pci_dev *pdev = adapter->pdev;
1411 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1412 struct e1000_buffer *buffer_info, *next_buffer;
1413 u32 length, staterr;
1414 unsigned int i;
1415 int cleaned_count = 0;
1416 bool cleaned = false;
1417 unsigned int total_rx_bytes=0, total_rx_packets=0;
1419 i = rx_ring->next_to_clean;
1420 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1421 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1422 buffer_info = &rx_ring->buffer_info[i];
1424 while (staterr & E1000_RXD_STAT_DD) {
1425 struct sk_buff *skb;
1427 if (*work_done >= work_to_do)
1428 break;
1429 (*work_done)++;
1430 rmb(); /* read descriptor and rx_buffer_info after status DD */
1432 skb = buffer_info->skb;
1433 buffer_info->skb = NULL;
1435 ++i;
1436 if (i == rx_ring->count)
1437 i = 0;
1438 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1439 prefetch(next_rxd);
1441 next_buffer = &rx_ring->buffer_info[i];
1443 cleaned = true;
1444 cleaned_count++;
1445 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1446 DMA_FROM_DEVICE);
1447 buffer_info->dma = 0;
1449 length = le16_to_cpu(rx_desc->wb.upper.length);
1451 /* errors is only valid for DD + EOP descriptors */
1452 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1453 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1454 !(netdev->features & NETIF_F_RXALL)))) {
1455 /* recycle both page and skb */
1456 buffer_info->skb = skb;
1457 /* an error means any chain goes out the window too */
1458 if (rx_ring->rx_skb_top)
1459 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1460 rx_ring->rx_skb_top = NULL;
1461 goto next_desc;
1464 #define rxtop (rx_ring->rx_skb_top)
1465 if (!(staterr & E1000_RXD_STAT_EOP)) {
1466 /* this descriptor is only the beginning (or middle) */
1467 if (!rxtop) {
1468 /* this is the beginning of a chain */
1469 rxtop = skb;
1470 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1471 0, length);
1472 } else {
1473 /* this is the middle of a chain */
1474 skb_fill_page_desc(rxtop,
1475 skb_shinfo(rxtop)->nr_frags,
1476 buffer_info->page, 0, length);
1477 /* re-use the skb, only consumed the page */
1478 buffer_info->skb = skb;
1480 e1000_consume_page(buffer_info, rxtop, length);
1481 goto next_desc;
1482 } else {
1483 if (rxtop) {
1484 /* end of the chain */
1485 skb_fill_page_desc(rxtop,
1486 skb_shinfo(rxtop)->nr_frags,
1487 buffer_info->page, 0, length);
1488 /* re-use the current skb, we only consumed the
1489 * page */
1490 buffer_info->skb = skb;
1491 skb = rxtop;
1492 rxtop = NULL;
1493 e1000_consume_page(buffer_info, skb, length);
1494 } else {
1495 /* no chain, got EOP, this buf is the packet
1496 * copybreak to save the put_page/alloc_page */
1497 if (length <= copybreak &&
1498 skb_tailroom(skb) >= length) {
1499 u8 *vaddr;
1500 vaddr = kmap_atomic(buffer_info->page);
1501 memcpy(skb_tail_pointer(skb), vaddr,
1502 length);
1503 kunmap_atomic(vaddr);
1504 /* re-use the page, so don't erase
1505 * buffer_info->page */
1506 skb_put(skb, length);
1507 } else {
1508 skb_fill_page_desc(skb, 0,
1509 buffer_info->page, 0,
1510 length);
1511 e1000_consume_page(buffer_info, skb,
1512 length);
1517 /* Receive Checksum Offload */
1518 e1000_rx_checksum(adapter, staterr, skb);
1520 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1522 /* probably a little skewed due to removing CRC */
1523 total_rx_bytes += skb->len;
1524 total_rx_packets++;
1526 /* eth type trans needs skb->data to point to something */
1527 if (!pskb_may_pull(skb, ETH_HLEN)) {
1528 e_err("pskb_may_pull failed.\n");
1529 dev_kfree_skb_irq(skb);
1530 goto next_desc;
1533 e1000_receive_skb(adapter, netdev, skb, staterr,
1534 rx_desc->wb.upper.vlan);
1536 next_desc:
1537 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1539 /* return some buffers to hardware, one at a time is too slow */
1540 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1541 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1542 GFP_ATOMIC);
1543 cleaned_count = 0;
1546 /* use prefetched values */
1547 rx_desc = next_rxd;
1548 buffer_info = next_buffer;
1550 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1552 rx_ring->next_to_clean = i;
1554 cleaned_count = e1000_desc_unused(rx_ring);
1555 if (cleaned_count)
1556 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1558 adapter->total_rx_bytes += total_rx_bytes;
1559 adapter->total_rx_packets += total_rx_packets;
1560 return cleaned;
1564 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1565 * @rx_ring: Rx descriptor ring
1567 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1569 struct e1000_adapter *adapter = rx_ring->adapter;
1570 struct e1000_buffer *buffer_info;
1571 struct e1000_ps_page *ps_page;
1572 struct pci_dev *pdev = adapter->pdev;
1573 unsigned int i, j;
1575 /* Free all the Rx ring sk_buffs */
1576 for (i = 0; i < rx_ring->count; i++) {
1577 buffer_info = &rx_ring->buffer_info[i];
1578 if (buffer_info->dma) {
1579 if (adapter->clean_rx == e1000_clean_rx_irq)
1580 dma_unmap_single(&pdev->dev, buffer_info->dma,
1581 adapter->rx_buffer_len,
1582 DMA_FROM_DEVICE);
1583 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1584 dma_unmap_page(&pdev->dev, buffer_info->dma,
1585 PAGE_SIZE,
1586 DMA_FROM_DEVICE);
1587 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1588 dma_unmap_single(&pdev->dev, buffer_info->dma,
1589 adapter->rx_ps_bsize0,
1590 DMA_FROM_DEVICE);
1591 buffer_info->dma = 0;
1594 if (buffer_info->page) {
1595 put_page(buffer_info->page);
1596 buffer_info->page = NULL;
1599 if (buffer_info->skb) {
1600 dev_kfree_skb(buffer_info->skb);
1601 buffer_info->skb = NULL;
1604 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1605 ps_page = &buffer_info->ps_pages[j];
1606 if (!ps_page->page)
1607 break;
1608 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1609 DMA_FROM_DEVICE);
1610 ps_page->dma = 0;
1611 put_page(ps_page->page);
1612 ps_page->page = NULL;
1616 /* there also may be some cached data from a chained receive */
1617 if (rx_ring->rx_skb_top) {
1618 dev_kfree_skb(rx_ring->rx_skb_top);
1619 rx_ring->rx_skb_top = NULL;
1622 /* Zero out the descriptor ring */
1623 memset(rx_ring->desc, 0, rx_ring->size);
1625 rx_ring->next_to_clean = 0;
1626 rx_ring->next_to_use = 0;
1627 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1629 writel(0, rx_ring->head);
1630 if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1631 e1000e_update_rdt_wa(rx_ring, 0);
1632 else
1633 writel(0, rx_ring->tail);
1636 static void e1000e_downshift_workaround(struct work_struct *work)
1638 struct e1000_adapter *adapter = container_of(work,
1639 struct e1000_adapter, downshift_task);
1641 if (test_bit(__E1000_DOWN, &adapter->state))
1642 return;
1644 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1648 * e1000_intr_msi - Interrupt Handler
1649 * @irq: interrupt number
1650 * @data: pointer to a network interface device structure
1652 static irqreturn_t e1000_intr_msi(int irq, void *data)
1654 struct net_device *netdev = data;
1655 struct e1000_adapter *adapter = netdev_priv(netdev);
1656 struct e1000_hw *hw = &adapter->hw;
1657 u32 icr = er32(ICR);
1660 * read ICR disables interrupts using IAM
1663 if (icr & E1000_ICR_LSC) {
1664 hw->mac.get_link_status = true;
1666 * ICH8 workaround-- Call gig speed drop workaround on cable
1667 * disconnect (LSC) before accessing any PHY registers
1669 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1670 (!(er32(STATUS) & E1000_STATUS_LU)))
1671 schedule_work(&adapter->downshift_task);
1674 * 80003ES2LAN workaround-- For packet buffer work-around on
1675 * link down event; disable receives here in the ISR and reset
1676 * adapter in watchdog
1678 if (netif_carrier_ok(netdev) &&
1679 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1680 /* disable receives */
1681 u32 rctl = er32(RCTL);
1682 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1683 adapter->flags |= FLAG_RX_RESTART_NOW;
1685 /* guard against interrupt when we're going down */
1686 if (!test_bit(__E1000_DOWN, &adapter->state))
1687 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690 if (napi_schedule_prep(&adapter->napi)) {
1691 adapter->total_tx_bytes = 0;
1692 adapter->total_tx_packets = 0;
1693 adapter->total_rx_bytes = 0;
1694 adapter->total_rx_packets = 0;
1695 __napi_schedule(&adapter->napi);
1698 return IRQ_HANDLED;
1702 * e1000_intr - Interrupt Handler
1703 * @irq: interrupt number
1704 * @data: pointer to a network interface device structure
1706 static irqreturn_t e1000_intr(int irq, void *data)
1708 struct net_device *netdev = data;
1709 struct e1000_adapter *adapter = netdev_priv(netdev);
1710 struct e1000_hw *hw = &adapter->hw;
1711 u32 rctl, icr = er32(ICR);
1713 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1714 return IRQ_NONE; /* Not our interrupt */
1717 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1718 * not set, then the adapter didn't send an interrupt
1720 if (!(icr & E1000_ICR_INT_ASSERTED))
1721 return IRQ_NONE;
1724 * Interrupt Auto-Mask...upon reading ICR,
1725 * interrupts are masked. No need for the
1726 * IMC write
1729 if (icr & E1000_ICR_LSC) {
1730 hw->mac.get_link_status = true;
1732 * ICH8 workaround-- Call gig speed drop workaround on cable
1733 * disconnect (LSC) before accessing any PHY registers
1735 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1736 (!(er32(STATUS) & E1000_STATUS_LU)))
1737 schedule_work(&adapter->downshift_task);
1740 * 80003ES2LAN workaround--
1741 * For packet buffer work-around on link down event;
1742 * disable receives here in the ISR and
1743 * reset adapter in watchdog
1745 if (netif_carrier_ok(netdev) &&
1746 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1747 /* disable receives */
1748 rctl = er32(RCTL);
1749 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1750 adapter->flags |= FLAG_RX_RESTART_NOW;
1752 /* guard against interrupt when we're going down */
1753 if (!test_bit(__E1000_DOWN, &adapter->state))
1754 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1757 if (napi_schedule_prep(&adapter->napi)) {
1758 adapter->total_tx_bytes = 0;
1759 adapter->total_tx_packets = 0;
1760 adapter->total_rx_bytes = 0;
1761 adapter->total_rx_packets = 0;
1762 __napi_schedule(&adapter->napi);
1765 return IRQ_HANDLED;
1768 static irqreturn_t e1000_msix_other(int irq, void *data)
1770 struct net_device *netdev = data;
1771 struct e1000_adapter *adapter = netdev_priv(netdev);
1772 struct e1000_hw *hw = &adapter->hw;
1773 u32 icr = er32(ICR);
1775 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1776 if (!test_bit(__E1000_DOWN, &adapter->state))
1777 ew32(IMS, E1000_IMS_OTHER);
1778 return IRQ_NONE;
1781 if (icr & adapter->eiac_mask)
1782 ew32(ICS, (icr & adapter->eiac_mask));
1784 if (icr & E1000_ICR_OTHER) {
1785 if (!(icr & E1000_ICR_LSC))
1786 goto no_link_interrupt;
1787 hw->mac.get_link_status = true;
1788 /* guard against interrupt when we're going down */
1789 if (!test_bit(__E1000_DOWN, &adapter->state))
1790 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1793 no_link_interrupt:
1794 if (!test_bit(__E1000_DOWN, &adapter->state))
1795 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1797 return IRQ_HANDLED;
1801 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1803 struct net_device *netdev = data;
1804 struct e1000_adapter *adapter = netdev_priv(netdev);
1805 struct e1000_hw *hw = &adapter->hw;
1806 struct e1000_ring *tx_ring = adapter->tx_ring;
1809 adapter->total_tx_bytes = 0;
1810 adapter->total_tx_packets = 0;
1812 if (!e1000_clean_tx_irq(tx_ring))
1813 /* Ring was not completely cleaned, so fire another interrupt */
1814 ew32(ICS, tx_ring->ims_val);
1816 return IRQ_HANDLED;
1819 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1821 struct net_device *netdev = data;
1822 struct e1000_adapter *adapter = netdev_priv(netdev);
1823 struct e1000_ring *rx_ring = adapter->rx_ring;
1825 /* Write the ITR value calculated at the end of the
1826 * previous interrupt.
1828 if (rx_ring->set_itr) {
1829 writel(1000000000 / (rx_ring->itr_val * 256),
1830 rx_ring->itr_register);
1831 rx_ring->set_itr = 0;
1834 if (napi_schedule_prep(&adapter->napi)) {
1835 adapter->total_rx_bytes = 0;
1836 adapter->total_rx_packets = 0;
1837 __napi_schedule(&adapter->napi);
1839 return IRQ_HANDLED;
1843 * e1000_configure_msix - Configure MSI-X hardware
1845 * e1000_configure_msix sets up the hardware to properly
1846 * generate MSI-X interrupts.
1848 static void e1000_configure_msix(struct e1000_adapter *adapter)
1850 struct e1000_hw *hw = &adapter->hw;
1851 struct e1000_ring *rx_ring = adapter->rx_ring;
1852 struct e1000_ring *tx_ring = adapter->tx_ring;
1853 int vector = 0;
1854 u32 ctrl_ext, ivar = 0;
1856 adapter->eiac_mask = 0;
1858 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1859 if (hw->mac.type == e1000_82574) {
1860 u32 rfctl = er32(RFCTL);
1861 rfctl |= E1000_RFCTL_ACK_DIS;
1862 ew32(RFCTL, rfctl);
1865 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1866 /* Configure Rx vector */
1867 rx_ring->ims_val = E1000_IMS_RXQ0;
1868 adapter->eiac_mask |= rx_ring->ims_val;
1869 if (rx_ring->itr_val)
1870 writel(1000000000 / (rx_ring->itr_val * 256),
1871 rx_ring->itr_register);
1872 else
1873 writel(1, rx_ring->itr_register);
1874 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1876 /* Configure Tx vector */
1877 tx_ring->ims_val = E1000_IMS_TXQ0;
1878 vector++;
1879 if (tx_ring->itr_val)
1880 writel(1000000000 / (tx_ring->itr_val * 256),
1881 tx_ring->itr_register);
1882 else
1883 writel(1, tx_ring->itr_register);
1884 adapter->eiac_mask |= tx_ring->ims_val;
1885 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1887 /* set vector for Other Causes, e.g. link changes */
1888 vector++;
1889 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1890 if (rx_ring->itr_val)
1891 writel(1000000000 / (rx_ring->itr_val * 256),
1892 hw->hw_addr + E1000_EITR_82574(vector));
1893 else
1894 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1896 /* Cause Tx interrupts on every write back */
1897 ivar |= (1 << 31);
1899 ew32(IVAR, ivar);
1901 /* enable MSI-X PBA support */
1902 ctrl_ext = er32(CTRL_EXT);
1903 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1905 /* Auto-Mask Other interrupts upon ICR read */
1906 #define E1000_EIAC_MASK_82574 0x01F00000
1907 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1908 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1909 ew32(CTRL_EXT, ctrl_ext);
1910 e1e_flush();
1913 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1915 if (adapter->msix_entries) {
1916 pci_disable_msix(adapter->pdev);
1917 kfree(adapter->msix_entries);
1918 adapter->msix_entries = NULL;
1919 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1920 pci_disable_msi(adapter->pdev);
1921 adapter->flags &= ~FLAG_MSI_ENABLED;
1926 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1928 * Attempt to configure interrupts using the best available
1929 * capabilities of the hardware and kernel.
1931 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1933 int err;
1934 int i;
1936 switch (adapter->int_mode) {
1937 case E1000E_INT_MODE_MSIX:
1938 if (adapter->flags & FLAG_HAS_MSIX) {
1939 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1940 adapter->msix_entries = kcalloc(adapter->num_vectors,
1941 sizeof(struct msix_entry),
1942 GFP_KERNEL);
1943 if (adapter->msix_entries) {
1944 for (i = 0; i < adapter->num_vectors; i++)
1945 adapter->msix_entries[i].entry = i;
1947 err = pci_enable_msix(adapter->pdev,
1948 adapter->msix_entries,
1949 adapter->num_vectors);
1950 if (err == 0)
1951 return;
1953 /* MSI-X failed, so fall through and try MSI */
1954 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
1955 e1000e_reset_interrupt_capability(adapter);
1957 adapter->int_mode = E1000E_INT_MODE_MSI;
1958 /* Fall through */
1959 case E1000E_INT_MODE_MSI:
1960 if (!pci_enable_msi(adapter->pdev)) {
1961 adapter->flags |= FLAG_MSI_ENABLED;
1962 } else {
1963 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1964 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
1966 /* Fall through */
1967 case E1000E_INT_MODE_LEGACY:
1968 /* Don't do anything; this is the system default */
1969 break;
1972 /* store the number of vectors being used */
1973 adapter->num_vectors = 1;
1977 * e1000_request_msix - Initialize MSI-X interrupts
1979 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1980 * kernel.
1982 static int e1000_request_msix(struct e1000_adapter *adapter)
1984 struct net_device *netdev = adapter->netdev;
1985 int err = 0, vector = 0;
1987 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 snprintf(adapter->rx_ring->name,
1989 sizeof(adapter->rx_ring->name) - 1,
1990 "%s-rx-0", netdev->name);
1991 else
1992 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1993 err = request_irq(adapter->msix_entries[vector].vector,
1994 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1995 netdev);
1996 if (err)
1997 return err;
1998 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1999 E1000_EITR_82574(vector);
2000 adapter->rx_ring->itr_val = adapter->itr;
2001 vector++;
2003 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2004 snprintf(adapter->tx_ring->name,
2005 sizeof(adapter->tx_ring->name) - 1,
2006 "%s-tx-0", netdev->name);
2007 else
2008 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2009 err = request_irq(adapter->msix_entries[vector].vector,
2010 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2011 netdev);
2012 if (err)
2013 return err;
2014 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2015 E1000_EITR_82574(vector);
2016 adapter->tx_ring->itr_val = adapter->itr;
2017 vector++;
2019 err = request_irq(adapter->msix_entries[vector].vector,
2020 e1000_msix_other, 0, netdev->name, netdev);
2021 if (err)
2022 return err;
2024 e1000_configure_msix(adapter);
2026 return 0;
2030 * e1000_request_irq - initialize interrupts
2032 * Attempts to configure interrupts using the best available
2033 * capabilities of the hardware and kernel.
2035 static int e1000_request_irq(struct e1000_adapter *adapter)
2037 struct net_device *netdev = adapter->netdev;
2038 int err;
2040 if (adapter->msix_entries) {
2041 err = e1000_request_msix(adapter);
2042 if (!err)
2043 return err;
2044 /* fall back to MSI */
2045 e1000e_reset_interrupt_capability(adapter);
2046 adapter->int_mode = E1000E_INT_MODE_MSI;
2047 e1000e_set_interrupt_capability(adapter);
2049 if (adapter->flags & FLAG_MSI_ENABLED) {
2050 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2051 netdev->name, netdev);
2052 if (!err)
2053 return err;
2055 /* fall back to legacy interrupt */
2056 e1000e_reset_interrupt_capability(adapter);
2057 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2060 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2061 netdev->name, netdev);
2062 if (err)
2063 e_err("Unable to allocate interrupt, Error: %d\n", err);
2065 return err;
2068 static void e1000_free_irq(struct e1000_adapter *adapter)
2070 struct net_device *netdev = adapter->netdev;
2072 if (adapter->msix_entries) {
2073 int vector = 0;
2075 free_irq(adapter->msix_entries[vector].vector, netdev);
2076 vector++;
2078 free_irq(adapter->msix_entries[vector].vector, netdev);
2079 vector++;
2081 /* Other Causes interrupt vector */
2082 free_irq(adapter->msix_entries[vector].vector, netdev);
2083 return;
2086 free_irq(adapter->pdev->irq, netdev);
2090 * e1000_irq_disable - Mask off interrupt generation on the NIC
2092 static void e1000_irq_disable(struct e1000_adapter *adapter)
2094 struct e1000_hw *hw = &adapter->hw;
2096 ew32(IMC, ~0);
2097 if (adapter->msix_entries)
2098 ew32(EIAC_82574, 0);
2099 e1e_flush();
2101 if (adapter->msix_entries) {
2102 int i;
2103 for (i = 0; i < adapter->num_vectors; i++)
2104 synchronize_irq(adapter->msix_entries[i].vector);
2105 } else {
2106 synchronize_irq(adapter->pdev->irq);
2111 * e1000_irq_enable - Enable default interrupt generation settings
2113 static void e1000_irq_enable(struct e1000_adapter *adapter)
2115 struct e1000_hw *hw = &adapter->hw;
2117 if (adapter->msix_entries) {
2118 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2119 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2120 } else {
2121 ew32(IMS, IMS_ENABLE_MASK);
2123 e1e_flush();
2127 * e1000e_get_hw_control - get control of the h/w from f/w
2128 * @adapter: address of board private structure
2130 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2131 * For ASF and Pass Through versions of f/w this means that
2132 * the driver is loaded. For AMT version (only with 82573)
2133 * of the f/w this means that the network i/f is open.
2135 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2137 struct e1000_hw *hw = &adapter->hw;
2138 u32 ctrl_ext;
2139 u32 swsm;
2141 /* Let firmware know the driver has taken over */
2142 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2143 swsm = er32(SWSM);
2144 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2145 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2146 ctrl_ext = er32(CTRL_EXT);
2147 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2152 * e1000e_release_hw_control - release control of the h/w to f/w
2153 * @adapter: address of board private structure
2155 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2156 * For ASF and Pass Through versions of f/w this means that the
2157 * driver is no longer loaded. For AMT version (only with 82573) i
2158 * of the f/w this means that the network i/f is closed.
2161 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2163 struct e1000_hw *hw = &adapter->hw;
2164 u32 ctrl_ext;
2165 u32 swsm;
2167 /* Let firmware taken over control of h/w */
2168 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2169 swsm = er32(SWSM);
2170 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2171 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2172 ctrl_ext = er32(CTRL_EXT);
2173 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2178 * e1000_alloc_ring_dma - allocate memory for a ring structure
2180 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2181 struct e1000_ring *ring)
2183 struct pci_dev *pdev = adapter->pdev;
2185 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2186 GFP_KERNEL);
2187 if (!ring->desc)
2188 return -ENOMEM;
2190 return 0;
2194 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2195 * @tx_ring: Tx descriptor ring
2197 * Return 0 on success, negative on failure
2199 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2201 struct e1000_adapter *adapter = tx_ring->adapter;
2202 int err = -ENOMEM, size;
2204 size = sizeof(struct e1000_buffer) * tx_ring->count;
2205 tx_ring->buffer_info = vzalloc(size);
2206 if (!tx_ring->buffer_info)
2207 goto err;
2209 /* round up to nearest 4K */
2210 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2211 tx_ring->size = ALIGN(tx_ring->size, 4096);
2213 err = e1000_alloc_ring_dma(adapter, tx_ring);
2214 if (err)
2215 goto err;
2217 tx_ring->next_to_use = 0;
2218 tx_ring->next_to_clean = 0;
2220 return 0;
2221 err:
2222 vfree(tx_ring->buffer_info);
2223 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2224 return err;
2228 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2229 * @rx_ring: Rx descriptor ring
2231 * Returns 0 on success, negative on failure
2233 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2235 struct e1000_adapter *adapter = rx_ring->adapter;
2236 struct e1000_buffer *buffer_info;
2237 int i, size, desc_len, err = -ENOMEM;
2239 size = sizeof(struct e1000_buffer) * rx_ring->count;
2240 rx_ring->buffer_info = vzalloc(size);
2241 if (!rx_ring->buffer_info)
2242 goto err;
2244 for (i = 0; i < rx_ring->count; i++) {
2245 buffer_info = &rx_ring->buffer_info[i];
2246 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2247 sizeof(struct e1000_ps_page),
2248 GFP_KERNEL);
2249 if (!buffer_info->ps_pages)
2250 goto err_pages;
2253 desc_len = sizeof(union e1000_rx_desc_packet_split);
2255 /* Round up to nearest 4K */
2256 rx_ring->size = rx_ring->count * desc_len;
2257 rx_ring->size = ALIGN(rx_ring->size, 4096);
2259 err = e1000_alloc_ring_dma(adapter, rx_ring);
2260 if (err)
2261 goto err_pages;
2263 rx_ring->next_to_clean = 0;
2264 rx_ring->next_to_use = 0;
2265 rx_ring->rx_skb_top = NULL;
2267 return 0;
2269 err_pages:
2270 for (i = 0; i < rx_ring->count; i++) {
2271 buffer_info = &rx_ring->buffer_info[i];
2272 kfree(buffer_info->ps_pages);
2274 err:
2275 vfree(rx_ring->buffer_info);
2276 e_err("Unable to allocate memory for the receive descriptor ring\n");
2277 return err;
2281 * e1000_clean_tx_ring - Free Tx Buffers
2282 * @tx_ring: Tx descriptor ring
2284 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2286 struct e1000_adapter *adapter = tx_ring->adapter;
2287 struct e1000_buffer *buffer_info;
2288 unsigned long size;
2289 unsigned int i;
2291 for (i = 0; i < tx_ring->count; i++) {
2292 buffer_info = &tx_ring->buffer_info[i];
2293 e1000_put_txbuf(tx_ring, buffer_info);
2296 netdev_reset_queue(adapter->netdev);
2297 size = sizeof(struct e1000_buffer) * tx_ring->count;
2298 memset(tx_ring->buffer_info, 0, size);
2300 memset(tx_ring->desc, 0, tx_ring->size);
2302 tx_ring->next_to_use = 0;
2303 tx_ring->next_to_clean = 0;
2305 writel(0, tx_ring->head);
2306 if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2307 e1000e_update_tdt_wa(tx_ring, 0);
2308 else
2309 writel(0, tx_ring->tail);
2313 * e1000e_free_tx_resources - Free Tx Resources per Queue
2314 * @tx_ring: Tx descriptor ring
2316 * Free all transmit software resources
2318 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2320 struct e1000_adapter *adapter = tx_ring->adapter;
2321 struct pci_dev *pdev = adapter->pdev;
2323 e1000_clean_tx_ring(tx_ring);
2325 vfree(tx_ring->buffer_info);
2326 tx_ring->buffer_info = NULL;
2328 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2329 tx_ring->dma);
2330 tx_ring->desc = NULL;
2334 * e1000e_free_rx_resources - Free Rx Resources
2335 * @rx_ring: Rx descriptor ring
2337 * Free all receive software resources
2339 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2341 struct e1000_adapter *adapter = rx_ring->adapter;
2342 struct pci_dev *pdev = adapter->pdev;
2343 int i;
2345 e1000_clean_rx_ring(rx_ring);
2347 for (i = 0; i < rx_ring->count; i++)
2348 kfree(rx_ring->buffer_info[i].ps_pages);
2350 vfree(rx_ring->buffer_info);
2351 rx_ring->buffer_info = NULL;
2353 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2354 rx_ring->dma);
2355 rx_ring->desc = NULL;
2359 * e1000_update_itr - update the dynamic ITR value based on statistics
2360 * @adapter: pointer to adapter
2361 * @itr_setting: current adapter->itr
2362 * @packets: the number of packets during this measurement interval
2363 * @bytes: the number of bytes during this measurement interval
2365 * Stores a new ITR value based on packets and byte
2366 * counts during the last interrupt. The advantage of per interrupt
2367 * computation is faster updates and more accurate ITR for the current
2368 * traffic pattern. Constants in this function were computed
2369 * based on theoretical maximum wire speed and thresholds were set based
2370 * on testing data as well as attempting to minimize response time
2371 * while increasing bulk throughput. This functionality is controlled
2372 * by the InterruptThrottleRate module parameter.
2374 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2375 u16 itr_setting, int packets,
2376 int bytes)
2378 unsigned int retval = itr_setting;
2380 if (packets == 0)
2381 return itr_setting;
2383 switch (itr_setting) {
2384 case lowest_latency:
2385 /* handle TSO and jumbo frames */
2386 if (bytes/packets > 8000)
2387 retval = bulk_latency;
2388 else if ((packets < 5) && (bytes > 512))
2389 retval = low_latency;
2390 break;
2391 case low_latency: /* 50 usec aka 20000 ints/s */
2392 if (bytes > 10000) {
2393 /* this if handles the TSO accounting */
2394 if (bytes/packets > 8000)
2395 retval = bulk_latency;
2396 else if ((packets < 10) || ((bytes/packets) > 1200))
2397 retval = bulk_latency;
2398 else if ((packets > 35))
2399 retval = lowest_latency;
2400 } else if (bytes/packets > 2000) {
2401 retval = bulk_latency;
2402 } else if (packets <= 2 && bytes < 512) {
2403 retval = lowest_latency;
2405 break;
2406 case bulk_latency: /* 250 usec aka 4000 ints/s */
2407 if (bytes > 25000) {
2408 if (packets > 35)
2409 retval = low_latency;
2410 } else if (bytes < 6000) {
2411 retval = low_latency;
2413 break;
2416 return retval;
2419 static void e1000_set_itr(struct e1000_adapter *adapter)
2421 struct e1000_hw *hw = &adapter->hw;
2422 u16 current_itr;
2423 u32 new_itr = adapter->itr;
2425 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2426 if (adapter->link_speed != SPEED_1000) {
2427 current_itr = 0;
2428 new_itr = 4000;
2429 goto set_itr_now;
2432 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2433 new_itr = 0;
2434 goto set_itr_now;
2437 adapter->tx_itr = e1000_update_itr(adapter,
2438 adapter->tx_itr,
2439 adapter->total_tx_packets,
2440 adapter->total_tx_bytes);
2441 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2442 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2443 adapter->tx_itr = low_latency;
2445 adapter->rx_itr = e1000_update_itr(adapter,
2446 adapter->rx_itr,
2447 adapter->total_rx_packets,
2448 adapter->total_rx_bytes);
2449 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2450 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2451 adapter->rx_itr = low_latency;
2453 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2455 switch (current_itr) {
2456 /* counts and packets in update_itr are dependent on these numbers */
2457 case lowest_latency:
2458 new_itr = 70000;
2459 break;
2460 case low_latency:
2461 new_itr = 20000; /* aka hwitr = ~200 */
2462 break;
2463 case bulk_latency:
2464 new_itr = 4000;
2465 break;
2466 default:
2467 break;
2470 set_itr_now:
2471 if (new_itr != adapter->itr) {
2473 * this attempts to bias the interrupt rate towards Bulk
2474 * by adding intermediate steps when interrupt rate is
2475 * increasing
2477 new_itr = new_itr > adapter->itr ?
2478 min(adapter->itr + (new_itr >> 2), new_itr) :
2479 new_itr;
2480 adapter->itr = new_itr;
2481 adapter->rx_ring->itr_val = new_itr;
2482 if (adapter->msix_entries)
2483 adapter->rx_ring->set_itr = 1;
2484 else
2485 if (new_itr)
2486 ew32(ITR, 1000000000 / (new_itr * 256));
2487 else
2488 ew32(ITR, 0);
2493 * e1000e_write_itr - write the ITR value to the appropriate registers
2494 * @adapter: address of board private structure
2495 * @itr: new ITR value to program
2497 * e1000e_write_itr determines if the adapter is in MSI-X mode
2498 * and, if so, writes the EITR registers with the ITR value.
2499 * Otherwise, it writes the ITR value into the ITR register.
2501 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2503 struct e1000_hw *hw = &adapter->hw;
2504 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2506 if (adapter->msix_entries) {
2507 int vector;
2509 for (vector = 0; vector < adapter->num_vectors; vector++)
2510 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2511 } else {
2512 ew32(ITR, new_itr);
2517 * e1000_alloc_queues - Allocate memory for all rings
2518 * @adapter: board private structure to initialize
2520 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2522 int size = sizeof(struct e1000_ring);
2524 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2525 if (!adapter->tx_ring)
2526 goto err;
2527 adapter->tx_ring->count = adapter->tx_ring_count;
2528 adapter->tx_ring->adapter = adapter;
2530 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2531 if (!adapter->rx_ring)
2532 goto err;
2533 adapter->rx_ring->count = adapter->rx_ring_count;
2534 adapter->rx_ring->adapter = adapter;
2536 return 0;
2537 err:
2538 e_err("Unable to allocate memory for queues\n");
2539 kfree(adapter->rx_ring);
2540 kfree(adapter->tx_ring);
2541 return -ENOMEM;
2545 * e1000e_poll - NAPI Rx polling callback
2546 * @napi: struct associated with this polling callback
2547 * @weight: number of packets driver is allowed to process this poll
2549 static int e1000e_poll(struct napi_struct *napi, int weight)
2551 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2552 napi);
2553 struct e1000_hw *hw = &adapter->hw;
2554 struct net_device *poll_dev = adapter->netdev;
2555 int tx_cleaned = 1, work_done = 0;
2557 adapter = netdev_priv(poll_dev);
2559 if (!adapter->msix_entries ||
2560 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2561 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2563 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2565 if (!tx_cleaned)
2566 work_done = weight;
2568 /* If weight not fully consumed, exit the polling mode */
2569 if (work_done < weight) {
2570 if (adapter->itr_setting & 3)
2571 e1000_set_itr(adapter);
2572 napi_complete(napi);
2573 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2574 if (adapter->msix_entries)
2575 ew32(IMS, adapter->rx_ring->ims_val);
2576 else
2577 e1000_irq_enable(adapter);
2581 return work_done;
2584 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2586 struct e1000_adapter *adapter = netdev_priv(netdev);
2587 struct e1000_hw *hw = &adapter->hw;
2588 u32 vfta, index;
2590 /* don't update vlan cookie if already programmed */
2591 if ((adapter->hw.mng_cookie.status &
2592 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2593 (vid == adapter->mng_vlan_id))
2594 return 0;
2596 /* add VID to filter table */
2597 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2598 index = (vid >> 5) & 0x7F;
2599 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2600 vfta |= (1 << (vid & 0x1F));
2601 hw->mac.ops.write_vfta(hw, index, vfta);
2604 set_bit(vid, adapter->active_vlans);
2606 return 0;
2609 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2611 struct e1000_adapter *adapter = netdev_priv(netdev);
2612 struct e1000_hw *hw = &adapter->hw;
2613 u32 vfta, index;
2615 if ((adapter->hw.mng_cookie.status &
2616 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2617 (vid == adapter->mng_vlan_id)) {
2618 /* release control to f/w */
2619 e1000e_release_hw_control(adapter);
2620 return 0;
2623 /* remove VID from filter table */
2624 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2625 index = (vid >> 5) & 0x7F;
2626 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2627 vfta &= ~(1 << (vid & 0x1F));
2628 hw->mac.ops.write_vfta(hw, index, vfta);
2631 clear_bit(vid, adapter->active_vlans);
2633 return 0;
2637 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2638 * @adapter: board private structure to initialize
2640 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2642 struct net_device *netdev = adapter->netdev;
2643 struct e1000_hw *hw = &adapter->hw;
2644 u32 rctl;
2646 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2647 /* disable VLAN receive filtering */
2648 rctl = er32(RCTL);
2649 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2650 ew32(RCTL, rctl);
2652 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2653 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2654 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2660 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2661 * @adapter: board private structure to initialize
2663 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2665 struct e1000_hw *hw = &adapter->hw;
2666 u32 rctl;
2668 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2669 /* enable VLAN receive filtering */
2670 rctl = er32(RCTL);
2671 rctl |= E1000_RCTL_VFE;
2672 rctl &= ~E1000_RCTL_CFIEN;
2673 ew32(RCTL, rctl);
2678 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2679 * @adapter: board private structure to initialize
2681 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2683 struct e1000_hw *hw = &adapter->hw;
2684 u32 ctrl;
2686 /* disable VLAN tag insert/strip */
2687 ctrl = er32(CTRL);
2688 ctrl &= ~E1000_CTRL_VME;
2689 ew32(CTRL, ctrl);
2693 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2694 * @adapter: board private structure to initialize
2696 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2698 struct e1000_hw *hw = &adapter->hw;
2699 u32 ctrl;
2701 /* enable VLAN tag insert/strip */
2702 ctrl = er32(CTRL);
2703 ctrl |= E1000_CTRL_VME;
2704 ew32(CTRL, ctrl);
2707 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2709 struct net_device *netdev = adapter->netdev;
2710 u16 vid = adapter->hw.mng_cookie.vlan_id;
2711 u16 old_vid = adapter->mng_vlan_id;
2713 if (adapter->hw.mng_cookie.status &
2714 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2715 e1000_vlan_rx_add_vid(netdev, vid);
2716 adapter->mng_vlan_id = vid;
2719 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2720 e1000_vlan_rx_kill_vid(netdev, old_vid);
2723 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2725 u16 vid;
2727 e1000_vlan_rx_add_vid(adapter->netdev, 0);
2729 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2730 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2733 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2735 struct e1000_hw *hw = &adapter->hw;
2736 u32 manc, manc2h, mdef, i, j;
2738 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2739 return;
2741 manc = er32(MANC);
2744 * enable receiving management packets to the host. this will probably
2745 * generate destination unreachable messages from the host OS, but
2746 * the packets will be handled on SMBUS
2748 manc |= E1000_MANC_EN_MNG2HOST;
2749 manc2h = er32(MANC2H);
2751 switch (hw->mac.type) {
2752 default:
2753 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2754 break;
2755 case e1000_82574:
2756 case e1000_82583:
2758 * Check if IPMI pass-through decision filter already exists;
2759 * if so, enable it.
2761 for (i = 0, j = 0; i < 8; i++) {
2762 mdef = er32(MDEF(i));
2764 /* Ignore filters with anything other than IPMI ports */
2765 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2766 continue;
2768 /* Enable this decision filter in MANC2H */
2769 if (mdef)
2770 manc2h |= (1 << i);
2772 j |= mdef;
2775 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2776 break;
2778 /* Create new decision filter in an empty filter */
2779 for (i = 0, j = 0; i < 8; i++)
2780 if (er32(MDEF(i)) == 0) {
2781 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2782 E1000_MDEF_PORT_664));
2783 manc2h |= (1 << 1);
2784 j++;
2785 break;
2788 if (!j)
2789 e_warn("Unable to create IPMI pass-through filter\n");
2790 break;
2793 ew32(MANC2H, manc2h);
2794 ew32(MANC, manc);
2798 * e1000_configure_tx - Configure Transmit Unit after Reset
2799 * @adapter: board private structure
2801 * Configure the Tx unit of the MAC after a reset.
2803 static void e1000_configure_tx(struct e1000_adapter *adapter)
2805 struct e1000_hw *hw = &adapter->hw;
2806 struct e1000_ring *tx_ring = adapter->tx_ring;
2807 u64 tdba;
2808 u32 tdlen, tarc;
2810 /* Setup the HW Tx Head and Tail descriptor pointers */
2811 tdba = tx_ring->dma;
2812 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2813 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2814 ew32(TDBAH(0), (tdba >> 32));
2815 ew32(TDLEN(0), tdlen);
2816 ew32(TDH(0), 0);
2817 ew32(TDT(0), 0);
2818 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2819 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2821 /* Set the Tx Interrupt Delay register */
2822 ew32(TIDV, adapter->tx_int_delay);
2823 /* Tx irq moderation */
2824 ew32(TADV, adapter->tx_abs_int_delay);
2826 if (adapter->flags2 & FLAG2_DMA_BURST) {
2827 u32 txdctl = er32(TXDCTL(0));
2828 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2829 E1000_TXDCTL_WTHRESH);
2831 * set up some performance related parameters to encourage the
2832 * hardware to use the bus more efficiently in bursts, depends
2833 * on the tx_int_delay to be enabled,
2834 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2835 * hthresh = 1 ==> prefetch when one or more available
2836 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2837 * BEWARE: this seems to work but should be considered first if
2838 * there are Tx hangs or other Tx related bugs
2840 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2841 ew32(TXDCTL(0), txdctl);
2843 /* erratum work around: set txdctl the same for both queues */
2844 ew32(TXDCTL(1), er32(TXDCTL(0)));
2846 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2847 tarc = er32(TARC(0));
2849 * set the speed mode bit, we'll clear it if we're not at
2850 * gigabit link later
2852 #define SPEED_MODE_BIT (1 << 21)
2853 tarc |= SPEED_MODE_BIT;
2854 ew32(TARC(0), tarc);
2857 /* errata: program both queues to unweighted RR */
2858 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2859 tarc = er32(TARC(0));
2860 tarc |= 1;
2861 ew32(TARC(0), tarc);
2862 tarc = er32(TARC(1));
2863 tarc |= 1;
2864 ew32(TARC(1), tarc);
2867 /* Setup Transmit Descriptor Settings for eop descriptor */
2868 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2870 /* only set IDE if we are delaying interrupts using the timers */
2871 if (adapter->tx_int_delay)
2872 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2874 /* enable Report Status bit */
2875 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2877 hw->mac.ops.config_collision_dist(hw);
2881 * e1000_setup_rctl - configure the receive control registers
2882 * @adapter: Board private structure
2884 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2885 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2886 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2888 struct e1000_hw *hw = &adapter->hw;
2889 u32 rctl, rfctl;
2890 u32 pages = 0;
2892 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2893 if (hw->mac.type >= e1000_pch2lan) {
2894 s32 ret_val;
2896 if (adapter->netdev->mtu > ETH_DATA_LEN)
2897 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2898 else
2899 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2901 if (ret_val)
2902 e_dbg("failed to enable jumbo frame workaround mode\n");
2905 /* Program MC offset vector base */
2906 rctl = er32(RCTL);
2907 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2908 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2909 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2910 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2912 /* Do not Store bad packets */
2913 rctl &= ~E1000_RCTL_SBP;
2915 /* Enable Long Packet receive */
2916 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2917 rctl &= ~E1000_RCTL_LPE;
2918 else
2919 rctl |= E1000_RCTL_LPE;
2921 /* Some systems expect that the CRC is included in SMBUS traffic. The
2922 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2923 * host memory when this is enabled
2925 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2926 rctl |= E1000_RCTL_SECRC;
2928 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2929 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2930 u16 phy_data;
2932 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2933 phy_data &= 0xfff8;
2934 phy_data |= (1 << 2);
2935 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2937 e1e_rphy(hw, 22, &phy_data);
2938 phy_data &= 0x0fff;
2939 phy_data |= (1 << 14);
2940 e1e_wphy(hw, 0x10, 0x2823);
2941 e1e_wphy(hw, 0x11, 0x0003);
2942 e1e_wphy(hw, 22, phy_data);
2945 /* Setup buffer sizes */
2946 rctl &= ~E1000_RCTL_SZ_4096;
2947 rctl |= E1000_RCTL_BSEX;
2948 switch (adapter->rx_buffer_len) {
2949 case 2048:
2950 default:
2951 rctl |= E1000_RCTL_SZ_2048;
2952 rctl &= ~E1000_RCTL_BSEX;
2953 break;
2954 case 4096:
2955 rctl |= E1000_RCTL_SZ_4096;
2956 break;
2957 case 8192:
2958 rctl |= E1000_RCTL_SZ_8192;
2959 break;
2960 case 16384:
2961 rctl |= E1000_RCTL_SZ_16384;
2962 break;
2965 /* Enable Extended Status in all Receive Descriptors */
2966 rfctl = er32(RFCTL);
2967 rfctl |= E1000_RFCTL_EXTEN;
2968 ew32(RFCTL, rfctl);
2971 * 82571 and greater support packet-split where the protocol
2972 * header is placed in skb->data and the packet data is
2973 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2974 * In the case of a non-split, skb->data is linearly filled,
2975 * followed by the page buffers. Therefore, skb->data is
2976 * sized to hold the largest protocol header.
2978 * allocations using alloc_page take too long for regular MTU
2979 * so only enable packet split for jumbo frames
2981 * Using pages when the page size is greater than 16k wastes
2982 * a lot of memory, since we allocate 3 pages at all times
2983 * per packet.
2985 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2986 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2987 adapter->rx_ps_pages = pages;
2988 else
2989 adapter->rx_ps_pages = 0;
2991 if (adapter->rx_ps_pages) {
2992 u32 psrctl = 0;
2994 /* Enable Packet split descriptors */
2995 rctl |= E1000_RCTL_DTYP_PS;
2997 psrctl |= adapter->rx_ps_bsize0 >>
2998 E1000_PSRCTL_BSIZE0_SHIFT;
3000 switch (adapter->rx_ps_pages) {
3001 case 3:
3002 psrctl |= PAGE_SIZE <<
3003 E1000_PSRCTL_BSIZE3_SHIFT;
3004 case 2:
3005 psrctl |= PAGE_SIZE <<
3006 E1000_PSRCTL_BSIZE2_SHIFT;
3007 case 1:
3008 psrctl |= PAGE_SIZE >>
3009 E1000_PSRCTL_BSIZE1_SHIFT;
3010 break;
3013 ew32(PSRCTL, psrctl);
3016 /* This is useful for sniffing bad packets. */
3017 if (adapter->netdev->features & NETIF_F_RXALL) {
3018 /* UPE and MPE will be handled by normal PROMISC logic
3019 * in e1000e_set_rx_mode */
3020 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3021 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3022 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3024 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3025 E1000_RCTL_DPF | /* Allow filtered pause */
3026 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3027 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3028 * and that breaks VLANs.
3032 ew32(RCTL, rctl);
3033 /* just started the receive unit, no need to restart */
3034 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3038 * e1000_configure_rx - Configure Receive Unit after Reset
3039 * @adapter: board private structure
3041 * Configure the Rx unit of the MAC after a reset.
3043 static void e1000_configure_rx(struct e1000_adapter *adapter)
3045 struct e1000_hw *hw = &adapter->hw;
3046 struct e1000_ring *rx_ring = adapter->rx_ring;
3047 u64 rdba;
3048 u32 rdlen, rctl, rxcsum, ctrl_ext;
3050 if (adapter->rx_ps_pages) {
3051 /* this is a 32 byte descriptor */
3052 rdlen = rx_ring->count *
3053 sizeof(union e1000_rx_desc_packet_split);
3054 adapter->clean_rx = e1000_clean_rx_irq_ps;
3055 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3056 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3057 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3058 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3059 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3060 } else {
3061 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3062 adapter->clean_rx = e1000_clean_rx_irq;
3063 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3066 /* disable receives while setting up the descriptors */
3067 rctl = er32(RCTL);
3068 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3069 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3070 e1e_flush();
3071 usleep_range(10000, 20000);
3073 if (adapter->flags2 & FLAG2_DMA_BURST) {
3075 * set the writeback threshold (only takes effect if the RDTR
3076 * is set). set GRAN=1 and write back up to 0x4 worth, and
3077 * enable prefetching of 0x20 Rx descriptors
3078 * granularity = 01
3079 * wthresh = 04,
3080 * hthresh = 04,
3081 * pthresh = 0x20
3083 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3084 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3087 * override the delay timers for enabling bursting, only if
3088 * the value was not set by the user via module options
3090 if (adapter->rx_int_delay == DEFAULT_RDTR)
3091 adapter->rx_int_delay = BURST_RDTR;
3092 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3093 adapter->rx_abs_int_delay = BURST_RADV;
3096 /* set the Receive Delay Timer Register */
3097 ew32(RDTR, adapter->rx_int_delay);
3099 /* irq moderation */
3100 ew32(RADV, adapter->rx_abs_int_delay);
3101 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3102 e1000e_write_itr(adapter, adapter->itr);
3104 ctrl_ext = er32(CTRL_EXT);
3105 /* Auto-Mask interrupts upon ICR access */
3106 ctrl_ext |= E1000_CTRL_EXT_IAME;
3107 ew32(IAM, 0xffffffff);
3108 ew32(CTRL_EXT, ctrl_ext);
3109 e1e_flush();
3112 * Setup the HW Rx Head and Tail Descriptor Pointers and
3113 * the Base and Length of the Rx Descriptor Ring
3115 rdba = rx_ring->dma;
3116 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3117 ew32(RDBAH(0), (rdba >> 32));
3118 ew32(RDLEN(0), rdlen);
3119 ew32(RDH(0), 0);
3120 ew32(RDT(0), 0);
3121 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3122 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3124 /* Enable Receive Checksum Offload for TCP and UDP */
3125 rxcsum = er32(RXCSUM);
3126 if (adapter->netdev->features & NETIF_F_RXCSUM)
3127 rxcsum |= E1000_RXCSUM_TUOFL;
3128 else
3129 rxcsum &= ~E1000_RXCSUM_TUOFL;
3130 ew32(RXCSUM, rxcsum);
3132 if (adapter->hw.mac.type == e1000_pch2lan) {
3134 * With jumbo frames, excessive C-state transition
3135 * latencies result in dropped transactions.
3137 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3138 u32 rxdctl = er32(RXDCTL(0));
3139 ew32(RXDCTL(0), rxdctl | 0x3);
3140 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3141 } else {
3142 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3143 PM_QOS_DEFAULT_VALUE);
3147 /* Enable Receives */
3148 ew32(RCTL, rctl);
3152 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3153 * @netdev: network interface device structure
3155 * Writes multicast address list to the MTA hash table.
3156 * Returns: -ENOMEM on failure
3157 * 0 on no addresses written
3158 * X on writing X addresses to MTA
3160 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3162 struct e1000_adapter *adapter = netdev_priv(netdev);
3163 struct e1000_hw *hw = &adapter->hw;
3164 struct netdev_hw_addr *ha;
3165 u8 *mta_list;
3166 int i;
3168 if (netdev_mc_empty(netdev)) {
3169 /* nothing to program, so clear mc list */
3170 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3171 return 0;
3174 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3175 if (!mta_list)
3176 return -ENOMEM;
3178 /* update_mc_addr_list expects a packed array of only addresses. */
3179 i = 0;
3180 netdev_for_each_mc_addr(ha, netdev)
3181 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3183 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3184 kfree(mta_list);
3186 return netdev_mc_count(netdev);
3190 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3191 * @netdev: network interface device structure
3193 * Writes unicast address list to the RAR table.
3194 * Returns: -ENOMEM on failure/insufficient address space
3195 * 0 on no addresses written
3196 * X on writing X addresses to the RAR table
3198 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3200 struct e1000_adapter *adapter = netdev_priv(netdev);
3201 struct e1000_hw *hw = &adapter->hw;
3202 unsigned int rar_entries = hw->mac.rar_entry_count;
3203 int count = 0;
3205 /* save a rar entry for our hardware address */
3206 rar_entries--;
3208 /* save a rar entry for the LAA workaround */
3209 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3210 rar_entries--;
3212 /* return ENOMEM indicating insufficient memory for addresses */
3213 if (netdev_uc_count(netdev) > rar_entries)
3214 return -ENOMEM;
3216 if (!netdev_uc_empty(netdev) && rar_entries) {
3217 struct netdev_hw_addr *ha;
3220 * write the addresses in reverse order to avoid write
3221 * combining
3223 netdev_for_each_uc_addr(ha, netdev) {
3224 if (!rar_entries)
3225 break;
3226 hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3227 count++;
3231 /* zero out the remaining RAR entries not used above */
3232 for (; rar_entries > 0; rar_entries--) {
3233 ew32(RAH(rar_entries), 0);
3234 ew32(RAL(rar_entries), 0);
3236 e1e_flush();
3238 return count;
3242 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3243 * @netdev: network interface device structure
3245 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3246 * address list or the network interface flags are updated. This routine is
3247 * responsible for configuring the hardware for proper unicast, multicast,
3248 * promiscuous mode, and all-multi behavior.
3250 static void e1000e_set_rx_mode(struct net_device *netdev)
3252 struct e1000_adapter *adapter = netdev_priv(netdev);
3253 struct e1000_hw *hw = &adapter->hw;
3254 u32 rctl;
3256 /* Check for Promiscuous and All Multicast modes */
3257 rctl = er32(RCTL);
3259 /* clear the affected bits */
3260 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3262 if (netdev->flags & IFF_PROMISC) {
3263 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3264 /* Do not hardware filter VLANs in promisc mode */
3265 e1000e_vlan_filter_disable(adapter);
3266 } else {
3267 int count;
3269 if (netdev->flags & IFF_ALLMULTI) {
3270 rctl |= E1000_RCTL_MPE;
3271 } else {
3273 * Write addresses to the MTA, if the attempt fails
3274 * then we should just turn on promiscuous mode so
3275 * that we can at least receive multicast traffic
3277 count = e1000e_write_mc_addr_list(netdev);
3278 if (count < 0)
3279 rctl |= E1000_RCTL_MPE;
3281 e1000e_vlan_filter_enable(adapter);
3283 * Write addresses to available RAR registers, if there is not
3284 * sufficient space to store all the addresses then enable
3285 * unicast promiscuous mode
3287 count = e1000e_write_uc_addr_list(netdev);
3288 if (count < 0)
3289 rctl |= E1000_RCTL_UPE;
3292 ew32(RCTL, rctl);
3294 if (netdev->features & NETIF_F_HW_VLAN_RX)
3295 e1000e_vlan_strip_enable(adapter);
3296 else
3297 e1000e_vlan_strip_disable(adapter);
3300 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3302 struct e1000_hw *hw = &adapter->hw;
3303 u32 mrqc, rxcsum;
3304 int i;
3305 static const u32 rsskey[10] = {
3306 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3307 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3310 /* Fill out hash function seed */
3311 for (i = 0; i < 10; i++)
3312 ew32(RSSRK(i), rsskey[i]);
3314 /* Direct all traffic to queue 0 */
3315 for (i = 0; i < 32; i++)
3316 ew32(RETA(i), 0);
3319 * Disable raw packet checksumming so that RSS hash is placed in
3320 * descriptor on writeback.
3322 rxcsum = er32(RXCSUM);
3323 rxcsum |= E1000_RXCSUM_PCSD;
3325 ew32(RXCSUM, rxcsum);
3327 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3328 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3329 E1000_MRQC_RSS_FIELD_IPV6 |
3330 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3331 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3333 ew32(MRQC, mrqc);
3337 * e1000_configure - configure the hardware for Rx and Tx
3338 * @adapter: private board structure
3340 static void e1000_configure(struct e1000_adapter *adapter)
3342 struct e1000_ring *rx_ring = adapter->rx_ring;
3344 e1000e_set_rx_mode(adapter->netdev);
3346 e1000_restore_vlan(adapter);
3347 e1000_init_manageability_pt(adapter);
3349 e1000_configure_tx(adapter);
3351 if (adapter->netdev->features & NETIF_F_RXHASH)
3352 e1000e_setup_rss_hash(adapter);
3353 e1000_setup_rctl(adapter);
3354 e1000_configure_rx(adapter);
3355 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3359 * e1000e_power_up_phy - restore link in case the phy was powered down
3360 * @adapter: address of board private structure
3362 * The phy may be powered down to save power and turn off link when the
3363 * driver is unloaded and wake on lan is not enabled (among others)
3364 * *** this routine MUST be followed by a call to e1000e_reset ***
3366 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3368 if (adapter->hw.phy.ops.power_up)
3369 adapter->hw.phy.ops.power_up(&adapter->hw);
3371 adapter->hw.mac.ops.setup_link(&adapter->hw);
3375 * e1000_power_down_phy - Power down the PHY
3377 * Power down the PHY so no link is implied when interface is down.
3378 * The PHY cannot be powered down if management or WoL is active.
3380 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3382 /* WoL is enabled */
3383 if (adapter->wol)
3384 return;
3386 if (adapter->hw.phy.ops.power_down)
3387 adapter->hw.phy.ops.power_down(&adapter->hw);
3391 * e1000e_reset - bring the hardware into a known good state
3393 * This function boots the hardware and enables some settings that
3394 * require a configuration cycle of the hardware - those cannot be
3395 * set/changed during runtime. After reset the device needs to be
3396 * properly configured for Rx, Tx etc.
3398 void e1000e_reset(struct e1000_adapter *adapter)
3400 struct e1000_mac_info *mac = &adapter->hw.mac;
3401 struct e1000_fc_info *fc = &adapter->hw.fc;
3402 struct e1000_hw *hw = &adapter->hw;
3403 u32 tx_space, min_tx_space, min_rx_space;
3404 u32 pba = adapter->pba;
3405 u16 hwm;
3407 /* reset Packet Buffer Allocation to default */
3408 ew32(PBA, pba);
3410 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3412 * To maintain wire speed transmits, the Tx FIFO should be
3413 * large enough to accommodate two full transmit packets,
3414 * rounded up to the next 1KB and expressed in KB. Likewise,
3415 * the Rx FIFO should be large enough to accommodate at least
3416 * one full receive packet and is similarly rounded up and
3417 * expressed in KB.
3419 pba = er32(PBA);
3420 /* upper 16 bits has Tx packet buffer allocation size in KB */
3421 tx_space = pba >> 16;
3422 /* lower 16 bits has Rx packet buffer allocation size in KB */
3423 pba &= 0xffff;
3425 * the Tx fifo also stores 16 bytes of information about the Tx
3426 * but don't include ethernet FCS because hardware appends it
3428 min_tx_space = (adapter->max_frame_size +
3429 sizeof(struct e1000_tx_desc) -
3430 ETH_FCS_LEN) * 2;
3431 min_tx_space = ALIGN(min_tx_space, 1024);
3432 min_tx_space >>= 10;
3433 /* software strips receive CRC, so leave room for it */
3434 min_rx_space = adapter->max_frame_size;
3435 min_rx_space = ALIGN(min_rx_space, 1024);
3436 min_rx_space >>= 10;
3439 * If current Tx allocation is less than the min Tx FIFO size,
3440 * and the min Tx FIFO size is less than the current Rx FIFO
3441 * allocation, take space away from current Rx allocation
3443 if ((tx_space < min_tx_space) &&
3444 ((min_tx_space - tx_space) < pba)) {
3445 pba -= min_tx_space - tx_space;
3448 * if short on Rx space, Rx wins and must trump Tx
3449 * adjustment
3451 if (pba < min_rx_space)
3452 pba = min_rx_space;
3455 ew32(PBA, pba);
3459 * flow control settings
3461 * The high water mark must be low enough to fit one full frame
3462 * (or the size used for early receive) above it in the Rx FIFO.
3463 * Set it to the lower of:
3464 * - 90% of the Rx FIFO size, and
3465 * - the full Rx FIFO size minus one full frame
3467 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3468 fc->pause_time = 0xFFFF;
3469 else
3470 fc->pause_time = E1000_FC_PAUSE_TIME;
3471 fc->send_xon = true;
3472 fc->current_mode = fc->requested_mode;
3474 switch (hw->mac.type) {
3475 case e1000_ich9lan:
3476 case e1000_ich10lan:
3477 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3478 pba = 14;
3479 ew32(PBA, pba);
3480 fc->high_water = 0x2800;
3481 fc->low_water = fc->high_water - 8;
3482 break;
3484 /* fall-through */
3485 default:
3486 hwm = min(((pba << 10) * 9 / 10),
3487 ((pba << 10) - adapter->max_frame_size));
3489 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3490 fc->low_water = fc->high_water - 8;
3491 break;
3492 case e1000_pchlan:
3494 * Workaround PCH LOM adapter hangs with certain network
3495 * loads. If hangs persist, try disabling Tx flow control.
3497 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3498 fc->high_water = 0x3500;
3499 fc->low_water = 0x1500;
3500 } else {
3501 fc->high_water = 0x5000;
3502 fc->low_water = 0x3000;
3504 fc->refresh_time = 0x1000;
3505 break;
3506 case e1000_pch2lan:
3507 case e1000_pch_lpt:
3508 fc->high_water = 0x05C20;
3509 fc->low_water = 0x05048;
3510 fc->pause_time = 0x0650;
3511 fc->refresh_time = 0x0400;
3512 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3513 pba = 14;
3514 ew32(PBA, pba);
3516 break;
3520 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3521 * fit in receive buffer.
3523 if (adapter->itr_setting & 0x3) {
3524 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3525 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3526 dev_info(&adapter->pdev->dev,
3527 "Interrupt Throttle Rate turned off\n");
3528 adapter->flags2 |= FLAG2_DISABLE_AIM;
3529 e1000e_write_itr(adapter, 0);
3531 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3532 dev_info(&adapter->pdev->dev,
3533 "Interrupt Throttle Rate turned on\n");
3534 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3535 adapter->itr = 20000;
3536 e1000e_write_itr(adapter, adapter->itr);
3540 /* Allow time for pending master requests to run */
3541 mac->ops.reset_hw(hw);
3544 * For parts with AMT enabled, let the firmware know
3545 * that the network interface is in control
3547 if (adapter->flags & FLAG_HAS_AMT)
3548 e1000e_get_hw_control(adapter);
3550 ew32(WUC, 0);
3552 if (mac->ops.init_hw(hw))
3553 e_err("Hardware Error\n");
3555 e1000_update_mng_vlan(adapter);
3557 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3558 ew32(VET, ETH_P_8021Q);
3560 e1000e_reset_adaptive(hw);
3562 if (!netif_running(adapter->netdev) &&
3563 !test_bit(__E1000_TESTING, &adapter->state)) {
3564 e1000_power_down_phy(adapter);
3565 return;
3568 e1000_get_phy_info(hw);
3570 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3571 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3572 u16 phy_data = 0;
3574 * speed up time to link by disabling smart power down, ignore
3575 * the return value of this function because there is nothing
3576 * different we would do if it failed
3578 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3579 phy_data &= ~IGP02E1000_PM_SPD;
3580 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3584 int e1000e_up(struct e1000_adapter *adapter)
3586 struct e1000_hw *hw = &adapter->hw;
3588 /* hardware has been reset, we need to reload some things */
3589 e1000_configure(adapter);
3591 clear_bit(__E1000_DOWN, &adapter->state);
3593 if (adapter->msix_entries)
3594 e1000_configure_msix(adapter);
3595 e1000_irq_enable(adapter);
3597 netif_start_queue(adapter->netdev);
3599 /* fire a link change interrupt to start the watchdog */
3600 if (adapter->msix_entries)
3601 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3602 else
3603 ew32(ICS, E1000_ICS_LSC);
3605 return 0;
3608 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3610 struct e1000_hw *hw = &adapter->hw;
3612 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3613 return;
3615 /* flush pending descriptor writebacks to memory */
3616 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3617 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3619 /* execute the writes immediately */
3620 e1e_flush();
3623 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3624 * write is successful
3626 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3627 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3629 /* execute the writes immediately */
3630 e1e_flush();
3633 static void e1000e_update_stats(struct e1000_adapter *adapter);
3635 void e1000e_down(struct e1000_adapter *adapter)
3637 struct net_device *netdev = adapter->netdev;
3638 struct e1000_hw *hw = &adapter->hw;
3639 u32 tctl, rctl;
3642 * signal that we're down so the interrupt handler does not
3643 * reschedule our watchdog timer
3645 set_bit(__E1000_DOWN, &adapter->state);
3647 /* disable receives in the hardware */
3648 rctl = er32(RCTL);
3649 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3650 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3651 /* flush and sleep below */
3653 netif_stop_queue(netdev);
3655 /* disable transmits in the hardware */
3656 tctl = er32(TCTL);
3657 tctl &= ~E1000_TCTL_EN;
3658 ew32(TCTL, tctl);
3660 /* flush both disables and wait for them to finish */
3661 e1e_flush();
3662 usleep_range(10000, 20000);
3664 e1000_irq_disable(adapter);
3666 del_timer_sync(&adapter->watchdog_timer);
3667 del_timer_sync(&adapter->phy_info_timer);
3669 netif_carrier_off(netdev);
3671 spin_lock(&adapter->stats64_lock);
3672 e1000e_update_stats(adapter);
3673 spin_unlock(&adapter->stats64_lock);
3675 e1000e_flush_descriptors(adapter);
3676 e1000_clean_tx_ring(adapter->tx_ring);
3677 e1000_clean_rx_ring(adapter->rx_ring);
3679 adapter->link_speed = 0;
3680 adapter->link_duplex = 0;
3682 if (!pci_channel_offline(adapter->pdev))
3683 e1000e_reset(adapter);
3686 * TODO: for power management, we could drop the link and
3687 * pci_disable_device here.
3691 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3693 might_sleep();
3694 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3695 usleep_range(1000, 2000);
3696 e1000e_down(adapter);
3697 e1000e_up(adapter);
3698 clear_bit(__E1000_RESETTING, &adapter->state);
3702 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3703 * @adapter: board private structure to initialize
3705 * e1000_sw_init initializes the Adapter private data structure.
3706 * Fields are initialized based on PCI device information and
3707 * OS network device settings (MTU size).
3709 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3711 struct net_device *netdev = adapter->netdev;
3713 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3714 adapter->rx_ps_bsize0 = 128;
3715 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3716 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3717 adapter->tx_ring_count = E1000_DEFAULT_TXD;
3718 adapter->rx_ring_count = E1000_DEFAULT_RXD;
3720 spin_lock_init(&adapter->stats64_lock);
3722 e1000e_set_interrupt_capability(adapter);
3724 if (e1000_alloc_queues(adapter))
3725 return -ENOMEM;
3727 /* Explicitly disable IRQ since the NIC can be in any state. */
3728 e1000_irq_disable(adapter);
3730 set_bit(__E1000_DOWN, &adapter->state);
3731 return 0;
3735 * e1000_intr_msi_test - Interrupt Handler
3736 * @irq: interrupt number
3737 * @data: pointer to a network interface device structure
3739 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3741 struct net_device *netdev = data;
3742 struct e1000_adapter *adapter = netdev_priv(netdev);
3743 struct e1000_hw *hw = &adapter->hw;
3744 u32 icr = er32(ICR);
3746 e_dbg("icr is %08X\n", icr);
3747 if (icr & E1000_ICR_RXSEQ) {
3748 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3750 * Force memory writes to complete before acknowledging the
3751 * interrupt is handled.
3753 wmb();
3756 return IRQ_HANDLED;
3760 * e1000_test_msi_interrupt - Returns 0 for successful test
3761 * @adapter: board private struct
3763 * code flow taken from tg3.c
3765 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3767 struct net_device *netdev = adapter->netdev;
3768 struct e1000_hw *hw = &adapter->hw;
3769 int err;
3771 /* poll_enable hasn't been called yet, so don't need disable */
3772 /* clear any pending events */
3773 er32(ICR);
3775 /* free the real vector and request a test handler */
3776 e1000_free_irq(adapter);
3777 e1000e_reset_interrupt_capability(adapter);
3779 /* Assume that the test fails, if it succeeds then the test
3780 * MSI irq handler will unset this flag */
3781 adapter->flags |= FLAG_MSI_TEST_FAILED;
3783 err = pci_enable_msi(adapter->pdev);
3784 if (err)
3785 goto msi_test_failed;
3787 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3788 netdev->name, netdev);
3789 if (err) {
3790 pci_disable_msi(adapter->pdev);
3791 goto msi_test_failed;
3795 * Force memory writes to complete before enabling and firing an
3796 * interrupt.
3798 wmb();
3800 e1000_irq_enable(adapter);
3802 /* fire an unusual interrupt on the test handler */
3803 ew32(ICS, E1000_ICS_RXSEQ);
3804 e1e_flush();
3805 msleep(100);
3807 e1000_irq_disable(adapter);
3809 rmb(); /* read flags after interrupt has been fired */
3811 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3812 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3813 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3814 } else {
3815 e_dbg("MSI interrupt test succeeded!\n");
3818 free_irq(adapter->pdev->irq, netdev);
3819 pci_disable_msi(adapter->pdev);
3821 msi_test_failed:
3822 e1000e_set_interrupt_capability(adapter);
3823 return e1000_request_irq(adapter);
3827 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3828 * @adapter: board private struct
3830 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3832 static int e1000_test_msi(struct e1000_adapter *adapter)
3834 int err;
3835 u16 pci_cmd;
3837 if (!(adapter->flags & FLAG_MSI_ENABLED))
3838 return 0;
3840 /* disable SERR in case the MSI write causes a master abort */
3841 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3842 if (pci_cmd & PCI_COMMAND_SERR)
3843 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3844 pci_cmd & ~PCI_COMMAND_SERR);
3846 err = e1000_test_msi_interrupt(adapter);
3848 /* re-enable SERR */
3849 if (pci_cmd & PCI_COMMAND_SERR) {
3850 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3851 pci_cmd |= PCI_COMMAND_SERR;
3852 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3855 return err;
3859 * e1000_open - Called when a network interface is made active
3860 * @netdev: network interface device structure
3862 * Returns 0 on success, negative value on failure
3864 * The open entry point is called when a network interface is made
3865 * active by the system (IFF_UP). At this point all resources needed
3866 * for transmit and receive operations are allocated, the interrupt
3867 * handler is registered with the OS, the watchdog timer is started,
3868 * and the stack is notified that the interface is ready.
3870 static int e1000_open(struct net_device *netdev)
3872 struct e1000_adapter *adapter = netdev_priv(netdev);
3873 struct e1000_hw *hw = &adapter->hw;
3874 struct pci_dev *pdev = adapter->pdev;
3875 int err;
3877 /* disallow open during test */
3878 if (test_bit(__E1000_TESTING, &adapter->state))
3879 return -EBUSY;
3881 pm_runtime_get_sync(&pdev->dev);
3883 netif_carrier_off(netdev);
3885 /* allocate transmit descriptors */
3886 err = e1000e_setup_tx_resources(adapter->tx_ring);
3887 if (err)
3888 goto err_setup_tx;
3890 /* allocate receive descriptors */
3891 err = e1000e_setup_rx_resources(adapter->rx_ring);
3892 if (err)
3893 goto err_setup_rx;
3896 * If AMT is enabled, let the firmware know that the network
3897 * interface is now open and reset the part to a known state.
3899 if (adapter->flags & FLAG_HAS_AMT) {
3900 e1000e_get_hw_control(adapter);
3901 e1000e_reset(adapter);
3904 e1000e_power_up_phy(adapter);
3906 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3907 if ((adapter->hw.mng_cookie.status &
3908 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3909 e1000_update_mng_vlan(adapter);
3911 /* DMA latency requirement to workaround jumbo issue */
3912 if (adapter->hw.mac.type == e1000_pch2lan)
3913 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3914 PM_QOS_CPU_DMA_LATENCY,
3915 PM_QOS_DEFAULT_VALUE);
3918 * before we allocate an interrupt, we must be ready to handle it.
3919 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3920 * as soon as we call pci_request_irq, so we have to setup our
3921 * clean_rx handler before we do so.
3923 e1000_configure(adapter);
3925 err = e1000_request_irq(adapter);
3926 if (err)
3927 goto err_req_irq;
3930 * Work around PCIe errata with MSI interrupts causing some chipsets to
3931 * ignore e1000e MSI messages, which means we need to test our MSI
3932 * interrupt now
3934 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3935 err = e1000_test_msi(adapter);
3936 if (err) {
3937 e_err("Interrupt allocation failed\n");
3938 goto err_req_irq;
3942 /* From here on the code is the same as e1000e_up() */
3943 clear_bit(__E1000_DOWN, &adapter->state);
3945 napi_enable(&adapter->napi);
3947 e1000_irq_enable(adapter);
3949 adapter->tx_hang_recheck = false;
3950 netif_start_queue(netdev);
3952 adapter->idle_check = true;
3953 pm_runtime_put(&pdev->dev);
3955 /* fire a link status change interrupt to start the watchdog */
3956 if (adapter->msix_entries)
3957 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3958 else
3959 ew32(ICS, E1000_ICS_LSC);
3961 return 0;
3963 err_req_irq:
3964 e1000e_release_hw_control(adapter);
3965 e1000_power_down_phy(adapter);
3966 e1000e_free_rx_resources(adapter->rx_ring);
3967 err_setup_rx:
3968 e1000e_free_tx_resources(adapter->tx_ring);
3969 err_setup_tx:
3970 e1000e_reset(adapter);
3971 pm_runtime_put_sync(&pdev->dev);
3973 return err;
3977 * e1000_close - Disables a network interface
3978 * @netdev: network interface device structure
3980 * Returns 0, this is not allowed to fail
3982 * The close entry point is called when an interface is de-activated
3983 * by the OS. The hardware is still under the drivers control, but
3984 * needs to be disabled. A global MAC reset is issued to stop the
3985 * hardware, and all transmit and receive resources are freed.
3987 static int e1000_close(struct net_device *netdev)
3989 struct e1000_adapter *adapter = netdev_priv(netdev);
3990 struct pci_dev *pdev = adapter->pdev;
3991 int count = E1000_CHECK_RESET_COUNT;
3993 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3994 usleep_range(10000, 20000);
3996 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3998 pm_runtime_get_sync(&pdev->dev);
4000 napi_disable(&adapter->napi);
4002 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4003 e1000e_down(adapter);
4004 e1000_free_irq(adapter);
4006 e1000_power_down_phy(adapter);
4008 e1000e_free_tx_resources(adapter->tx_ring);
4009 e1000e_free_rx_resources(adapter->rx_ring);
4012 * kill manageability vlan ID if supported, but not if a vlan with
4013 * the same ID is registered on the host OS (let 8021q kill it)
4015 if (adapter->hw.mng_cookie.status &
4016 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4017 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4020 * If AMT is enabled, let the firmware know that the network
4021 * interface is now closed
4023 if ((adapter->flags & FLAG_HAS_AMT) &&
4024 !test_bit(__E1000_TESTING, &adapter->state))
4025 e1000e_release_hw_control(adapter);
4027 if (adapter->hw.mac.type == e1000_pch2lan)
4028 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4030 pm_runtime_put_sync(&pdev->dev);
4032 return 0;
4035 * e1000_set_mac - Change the Ethernet Address of the NIC
4036 * @netdev: network interface device structure
4037 * @p: pointer to an address structure
4039 * Returns 0 on success, negative on failure
4041 static int e1000_set_mac(struct net_device *netdev, void *p)
4043 struct e1000_adapter *adapter = netdev_priv(netdev);
4044 struct e1000_hw *hw = &adapter->hw;
4045 struct sockaddr *addr = p;
4047 if (!is_valid_ether_addr(addr->sa_data))
4048 return -EADDRNOTAVAIL;
4050 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4051 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4053 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4055 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4056 /* activate the work around */
4057 e1000e_set_laa_state_82571(&adapter->hw, 1);
4060 * Hold a copy of the LAA in RAR[14] This is done so that
4061 * between the time RAR[0] gets clobbered and the time it
4062 * gets fixed (in e1000_watchdog), the actual LAA is in one
4063 * of the RARs and no incoming packets directed to this port
4064 * are dropped. Eventually the LAA will be in RAR[0] and
4065 * RAR[14]
4067 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4068 adapter->hw.mac.rar_entry_count - 1);
4071 return 0;
4075 * e1000e_update_phy_task - work thread to update phy
4076 * @work: pointer to our work struct
4078 * this worker thread exists because we must acquire a
4079 * semaphore to read the phy, which we could msleep while
4080 * waiting for it, and we can't msleep in a timer.
4082 static void e1000e_update_phy_task(struct work_struct *work)
4084 struct e1000_adapter *adapter = container_of(work,
4085 struct e1000_adapter, update_phy_task);
4087 if (test_bit(__E1000_DOWN, &adapter->state))
4088 return;
4090 e1000_get_phy_info(&adapter->hw);
4094 * Need to wait a few seconds after link up to get diagnostic information from
4095 * the phy
4097 static void e1000_update_phy_info(unsigned long data)
4099 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4101 if (test_bit(__E1000_DOWN, &adapter->state))
4102 return;
4104 schedule_work(&adapter->update_phy_task);
4108 * e1000e_update_phy_stats - Update the PHY statistics counters
4109 * @adapter: board private structure
4111 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4113 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4115 struct e1000_hw *hw = &adapter->hw;
4116 s32 ret_val;
4117 u16 phy_data;
4119 ret_val = hw->phy.ops.acquire(hw);
4120 if (ret_val)
4121 return;
4124 * A page set is expensive so check if already on desired page.
4125 * If not, set to the page with the PHY status registers.
4127 hw->phy.addr = 1;
4128 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4129 &phy_data);
4130 if (ret_val)
4131 goto release;
4132 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4133 ret_val = hw->phy.ops.set_page(hw,
4134 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4135 if (ret_val)
4136 goto release;
4139 /* Single Collision Count */
4140 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4141 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4142 if (!ret_val)
4143 adapter->stats.scc += phy_data;
4145 /* Excessive Collision Count */
4146 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4147 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4148 if (!ret_val)
4149 adapter->stats.ecol += phy_data;
4151 /* Multiple Collision Count */
4152 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4153 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4154 if (!ret_val)
4155 adapter->stats.mcc += phy_data;
4157 /* Late Collision Count */
4158 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4159 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4160 if (!ret_val)
4161 adapter->stats.latecol += phy_data;
4163 /* Collision Count - also used for adaptive IFS */
4164 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4165 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4166 if (!ret_val)
4167 hw->mac.collision_delta = phy_data;
4169 /* Defer Count */
4170 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4171 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4172 if (!ret_val)
4173 adapter->stats.dc += phy_data;
4175 /* Transmit with no CRS */
4176 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4177 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4178 if (!ret_val)
4179 adapter->stats.tncrs += phy_data;
4181 release:
4182 hw->phy.ops.release(hw);
4186 * e1000e_update_stats - Update the board statistics counters
4187 * @adapter: board private structure
4189 static void e1000e_update_stats(struct e1000_adapter *adapter)
4191 struct net_device *netdev = adapter->netdev;
4192 struct e1000_hw *hw = &adapter->hw;
4193 struct pci_dev *pdev = adapter->pdev;
4196 * Prevent stats update while adapter is being reset, or if the pci
4197 * connection is down.
4199 if (adapter->link_speed == 0)
4200 return;
4201 if (pci_channel_offline(pdev))
4202 return;
4204 adapter->stats.crcerrs += er32(CRCERRS);
4205 adapter->stats.gprc += er32(GPRC);
4206 adapter->stats.gorc += er32(GORCL);
4207 er32(GORCH); /* Clear gorc */
4208 adapter->stats.bprc += er32(BPRC);
4209 adapter->stats.mprc += er32(MPRC);
4210 adapter->stats.roc += er32(ROC);
4212 adapter->stats.mpc += er32(MPC);
4214 /* Half-duplex statistics */
4215 if (adapter->link_duplex == HALF_DUPLEX) {
4216 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4217 e1000e_update_phy_stats(adapter);
4218 } else {
4219 adapter->stats.scc += er32(SCC);
4220 adapter->stats.ecol += er32(ECOL);
4221 adapter->stats.mcc += er32(MCC);
4222 adapter->stats.latecol += er32(LATECOL);
4223 adapter->stats.dc += er32(DC);
4225 hw->mac.collision_delta = er32(COLC);
4227 if ((hw->mac.type != e1000_82574) &&
4228 (hw->mac.type != e1000_82583))
4229 adapter->stats.tncrs += er32(TNCRS);
4231 adapter->stats.colc += hw->mac.collision_delta;
4234 adapter->stats.xonrxc += er32(XONRXC);
4235 adapter->stats.xontxc += er32(XONTXC);
4236 adapter->stats.xoffrxc += er32(XOFFRXC);
4237 adapter->stats.xofftxc += er32(XOFFTXC);
4238 adapter->stats.gptc += er32(GPTC);
4239 adapter->stats.gotc += er32(GOTCL);
4240 er32(GOTCH); /* Clear gotc */
4241 adapter->stats.rnbc += er32(RNBC);
4242 adapter->stats.ruc += er32(RUC);
4244 adapter->stats.mptc += er32(MPTC);
4245 adapter->stats.bptc += er32(BPTC);
4247 /* used for adaptive IFS */
4249 hw->mac.tx_packet_delta = er32(TPT);
4250 adapter->stats.tpt += hw->mac.tx_packet_delta;
4252 adapter->stats.algnerrc += er32(ALGNERRC);
4253 adapter->stats.rxerrc += er32(RXERRC);
4254 adapter->stats.cexterr += er32(CEXTERR);
4255 adapter->stats.tsctc += er32(TSCTC);
4256 adapter->stats.tsctfc += er32(TSCTFC);
4258 /* Fill out the OS statistics structure */
4259 netdev->stats.multicast = adapter->stats.mprc;
4260 netdev->stats.collisions = adapter->stats.colc;
4262 /* Rx Errors */
4265 * RLEC on some newer hardware can be incorrect so build
4266 * our own version based on RUC and ROC
4268 netdev->stats.rx_errors = adapter->stats.rxerrc +
4269 adapter->stats.crcerrs + adapter->stats.algnerrc +
4270 adapter->stats.ruc + adapter->stats.roc +
4271 adapter->stats.cexterr;
4272 netdev->stats.rx_length_errors = adapter->stats.ruc +
4273 adapter->stats.roc;
4274 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4275 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4276 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4278 /* Tx Errors */
4279 netdev->stats.tx_errors = adapter->stats.ecol +
4280 adapter->stats.latecol;
4281 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4282 netdev->stats.tx_window_errors = adapter->stats.latecol;
4283 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4285 /* Tx Dropped needs to be maintained elsewhere */
4287 /* Management Stats */
4288 adapter->stats.mgptc += er32(MGTPTC);
4289 adapter->stats.mgprc += er32(MGTPRC);
4290 adapter->stats.mgpdc += er32(MGTPDC);
4294 * e1000_phy_read_status - Update the PHY register status snapshot
4295 * @adapter: board private structure
4297 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4299 struct e1000_hw *hw = &adapter->hw;
4300 struct e1000_phy_regs *phy = &adapter->phy_regs;
4302 if ((er32(STATUS) & E1000_STATUS_LU) &&
4303 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4304 int ret_val;
4306 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4307 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4308 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4309 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4310 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4311 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4312 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4313 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4314 if (ret_val)
4315 e_warn("Error reading PHY register\n");
4316 } else {
4318 * Do not read PHY registers if link is not up
4319 * Set values to typical power-on defaults
4321 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4322 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4323 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4324 BMSR_ERCAP);
4325 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4326 ADVERTISE_ALL | ADVERTISE_CSMA);
4327 phy->lpa = 0;
4328 phy->expansion = EXPANSION_ENABLENPAGE;
4329 phy->ctrl1000 = ADVERTISE_1000FULL;
4330 phy->stat1000 = 0;
4331 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4335 static void e1000_print_link_info(struct e1000_adapter *adapter)
4337 struct e1000_hw *hw = &adapter->hw;
4338 u32 ctrl = er32(CTRL);
4340 /* Link status message must follow this format for user tools */
4341 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4342 adapter->netdev->name,
4343 adapter->link_speed,
4344 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4345 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4346 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4347 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4350 static bool e1000e_has_link(struct e1000_adapter *adapter)
4352 struct e1000_hw *hw = &adapter->hw;
4353 bool link_active = false;
4354 s32 ret_val = 0;
4357 * get_link_status is set on LSC (link status) interrupt or
4358 * Rx sequence error interrupt. get_link_status will stay
4359 * false until the check_for_link establishes link
4360 * for copper adapters ONLY
4362 switch (hw->phy.media_type) {
4363 case e1000_media_type_copper:
4364 if (hw->mac.get_link_status) {
4365 ret_val = hw->mac.ops.check_for_link(hw);
4366 link_active = !hw->mac.get_link_status;
4367 } else {
4368 link_active = true;
4370 break;
4371 case e1000_media_type_fiber:
4372 ret_val = hw->mac.ops.check_for_link(hw);
4373 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4374 break;
4375 case e1000_media_type_internal_serdes:
4376 ret_val = hw->mac.ops.check_for_link(hw);
4377 link_active = adapter->hw.mac.serdes_has_link;
4378 break;
4379 default:
4380 case e1000_media_type_unknown:
4381 break;
4384 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4385 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4386 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4387 e_info("Gigabit has been disabled, downgrading speed\n");
4390 return link_active;
4393 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4395 /* make sure the receive unit is started */
4396 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4397 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4398 struct e1000_hw *hw = &adapter->hw;
4399 u32 rctl = er32(RCTL);
4400 ew32(RCTL, rctl | E1000_RCTL_EN);
4401 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4405 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4407 struct e1000_hw *hw = &adapter->hw;
4410 * With 82574 controllers, PHY needs to be checked periodically
4411 * for hung state and reset, if two calls return true
4413 if (e1000_check_phy_82574(hw))
4414 adapter->phy_hang_count++;
4415 else
4416 adapter->phy_hang_count = 0;
4418 if (adapter->phy_hang_count > 1) {
4419 adapter->phy_hang_count = 0;
4420 schedule_work(&adapter->reset_task);
4425 * e1000_watchdog - Timer Call-back
4426 * @data: pointer to adapter cast into an unsigned long
4428 static void e1000_watchdog(unsigned long data)
4430 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4432 /* Do the rest outside of interrupt context */
4433 schedule_work(&adapter->watchdog_task);
4435 /* TODO: make this use queue_delayed_work() */
4438 static void e1000_watchdog_task(struct work_struct *work)
4440 struct e1000_adapter *adapter = container_of(work,
4441 struct e1000_adapter, watchdog_task);
4442 struct net_device *netdev = adapter->netdev;
4443 struct e1000_mac_info *mac = &adapter->hw.mac;
4444 struct e1000_phy_info *phy = &adapter->hw.phy;
4445 struct e1000_ring *tx_ring = adapter->tx_ring;
4446 struct e1000_hw *hw = &adapter->hw;
4447 u32 link, tctl;
4449 if (test_bit(__E1000_DOWN, &adapter->state))
4450 return;
4452 link = e1000e_has_link(adapter);
4453 if ((netif_carrier_ok(netdev)) && link) {
4454 /* Cancel scheduled suspend requests. */
4455 pm_runtime_resume(netdev->dev.parent);
4457 e1000e_enable_receives(adapter);
4458 goto link_up;
4461 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4462 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4463 e1000_update_mng_vlan(adapter);
4465 if (link) {
4466 if (!netif_carrier_ok(netdev)) {
4467 bool txb2b = true;
4469 /* Cancel scheduled suspend requests. */
4470 pm_runtime_resume(netdev->dev.parent);
4472 /* update snapshot of PHY registers on LSC */
4473 e1000_phy_read_status(adapter);
4474 mac->ops.get_link_up_info(&adapter->hw,
4475 &adapter->link_speed,
4476 &adapter->link_duplex);
4477 e1000_print_link_info(adapter);
4479 * On supported PHYs, check for duplex mismatch only
4480 * if link has autonegotiated at 10/100 half
4482 if ((hw->phy.type == e1000_phy_igp_3 ||
4483 hw->phy.type == e1000_phy_bm) &&
4484 (hw->mac.autoneg == true) &&
4485 (adapter->link_speed == SPEED_10 ||
4486 adapter->link_speed == SPEED_100) &&
4487 (adapter->link_duplex == HALF_DUPLEX)) {
4488 u16 autoneg_exp;
4490 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4492 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4493 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4496 /* adjust timeout factor according to speed/duplex */
4497 adapter->tx_timeout_factor = 1;
4498 switch (adapter->link_speed) {
4499 case SPEED_10:
4500 txb2b = false;
4501 adapter->tx_timeout_factor = 16;
4502 break;
4503 case SPEED_100:
4504 txb2b = false;
4505 adapter->tx_timeout_factor = 10;
4506 break;
4510 * workaround: re-program speed mode bit after
4511 * link-up event
4513 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4514 !txb2b) {
4515 u32 tarc0;
4516 tarc0 = er32(TARC(0));
4517 tarc0 &= ~SPEED_MODE_BIT;
4518 ew32(TARC(0), tarc0);
4522 * disable TSO for pcie and 10/100 speeds, to avoid
4523 * some hardware issues
4525 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4526 switch (adapter->link_speed) {
4527 case SPEED_10:
4528 case SPEED_100:
4529 e_info("10/100 speed: disabling TSO\n");
4530 netdev->features &= ~NETIF_F_TSO;
4531 netdev->features &= ~NETIF_F_TSO6;
4532 break;
4533 case SPEED_1000:
4534 netdev->features |= NETIF_F_TSO;
4535 netdev->features |= NETIF_F_TSO6;
4536 break;
4537 default:
4538 /* oops */
4539 break;
4544 * enable transmits in the hardware, need to do this
4545 * after setting TARC(0)
4547 tctl = er32(TCTL);
4548 tctl |= E1000_TCTL_EN;
4549 ew32(TCTL, tctl);
4552 * Perform any post-link-up configuration before
4553 * reporting link up.
4555 if (phy->ops.cfg_on_link_up)
4556 phy->ops.cfg_on_link_up(hw);
4558 netif_carrier_on(netdev);
4560 if (!test_bit(__E1000_DOWN, &adapter->state))
4561 mod_timer(&adapter->phy_info_timer,
4562 round_jiffies(jiffies + 2 * HZ));
4564 } else {
4565 if (netif_carrier_ok(netdev)) {
4566 adapter->link_speed = 0;
4567 adapter->link_duplex = 0;
4568 /* Link status message must follow this format */
4569 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4570 adapter->netdev->name);
4571 netif_carrier_off(netdev);
4572 if (!test_bit(__E1000_DOWN, &adapter->state))
4573 mod_timer(&adapter->phy_info_timer,
4574 round_jiffies(jiffies + 2 * HZ));
4576 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4577 schedule_work(&adapter->reset_task);
4578 else
4579 pm_schedule_suspend(netdev->dev.parent,
4580 LINK_TIMEOUT);
4584 link_up:
4585 spin_lock(&adapter->stats64_lock);
4586 e1000e_update_stats(adapter);
4588 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4589 adapter->tpt_old = adapter->stats.tpt;
4590 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4591 adapter->colc_old = adapter->stats.colc;
4593 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4594 adapter->gorc_old = adapter->stats.gorc;
4595 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4596 adapter->gotc_old = adapter->stats.gotc;
4597 spin_unlock(&adapter->stats64_lock);
4599 e1000e_update_adaptive(&adapter->hw);
4601 if (!netif_carrier_ok(netdev) &&
4602 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4604 * We've lost link, so the controller stops DMA,
4605 * but we've got queued Tx work that's never going
4606 * to get done, so reset controller to flush Tx.
4607 * (Do the reset outside of interrupt context).
4609 schedule_work(&adapter->reset_task);
4610 /* return immediately since reset is imminent */
4611 return;
4614 /* Simple mode for Interrupt Throttle Rate (ITR) */
4615 if (adapter->itr_setting == 4) {
4617 * Symmetric Tx/Rx gets a reduced ITR=2000;
4618 * Total asymmetrical Tx or Rx gets ITR=8000;
4619 * everyone else is between 2000-8000.
4621 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4622 u32 dif = (adapter->gotc > adapter->gorc ?
4623 adapter->gotc - adapter->gorc :
4624 adapter->gorc - adapter->gotc) / 10000;
4625 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4627 e1000e_write_itr(adapter, itr);
4630 /* Cause software interrupt to ensure Rx ring is cleaned */
4631 if (adapter->msix_entries)
4632 ew32(ICS, adapter->rx_ring->ims_val);
4633 else
4634 ew32(ICS, E1000_ICS_RXDMT0);
4636 /* flush pending descriptors to memory before detecting Tx hang */
4637 e1000e_flush_descriptors(adapter);
4639 /* Force detection of hung controller every watchdog period */
4640 adapter->detect_tx_hung = true;
4643 * With 82571 controllers, LAA may be overwritten due to controller
4644 * reset from the other port. Set the appropriate LAA in RAR[0]
4646 if (e1000e_get_laa_state_82571(hw))
4647 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4649 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4650 e1000e_check_82574_phy_workaround(adapter);
4652 /* Reset the timer */
4653 if (!test_bit(__E1000_DOWN, &adapter->state))
4654 mod_timer(&adapter->watchdog_timer,
4655 round_jiffies(jiffies + 2 * HZ));
4658 #define E1000_TX_FLAGS_CSUM 0x00000001
4659 #define E1000_TX_FLAGS_VLAN 0x00000002
4660 #define E1000_TX_FLAGS_TSO 0x00000004
4661 #define E1000_TX_FLAGS_IPV4 0x00000008
4662 #define E1000_TX_FLAGS_NO_FCS 0x00000010
4663 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4664 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4666 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4668 struct e1000_context_desc *context_desc;
4669 struct e1000_buffer *buffer_info;
4670 unsigned int i;
4671 u32 cmd_length = 0;
4672 u16 ipcse = 0, mss;
4673 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4675 if (!skb_is_gso(skb))
4676 return 0;
4678 if (skb_header_cloned(skb)) {
4679 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4681 if (err)
4682 return err;
4685 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4686 mss = skb_shinfo(skb)->gso_size;
4687 if (skb->protocol == htons(ETH_P_IP)) {
4688 struct iphdr *iph = ip_hdr(skb);
4689 iph->tot_len = 0;
4690 iph->check = 0;
4691 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4692 0, IPPROTO_TCP, 0);
4693 cmd_length = E1000_TXD_CMD_IP;
4694 ipcse = skb_transport_offset(skb) - 1;
4695 } else if (skb_is_gso_v6(skb)) {
4696 ipv6_hdr(skb)->payload_len = 0;
4697 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4698 &ipv6_hdr(skb)->daddr,
4699 0, IPPROTO_TCP, 0);
4700 ipcse = 0;
4702 ipcss = skb_network_offset(skb);
4703 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4704 tucss = skb_transport_offset(skb);
4705 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4707 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4708 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4710 i = tx_ring->next_to_use;
4711 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4712 buffer_info = &tx_ring->buffer_info[i];
4714 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4715 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4716 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4717 context_desc->upper_setup.tcp_fields.tucss = tucss;
4718 context_desc->upper_setup.tcp_fields.tucso = tucso;
4719 context_desc->upper_setup.tcp_fields.tucse = 0;
4720 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4721 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4722 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4724 buffer_info->time_stamp = jiffies;
4725 buffer_info->next_to_watch = i;
4727 i++;
4728 if (i == tx_ring->count)
4729 i = 0;
4730 tx_ring->next_to_use = i;
4732 return 1;
4735 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4737 struct e1000_adapter *adapter = tx_ring->adapter;
4738 struct e1000_context_desc *context_desc;
4739 struct e1000_buffer *buffer_info;
4740 unsigned int i;
4741 u8 css;
4742 u32 cmd_len = E1000_TXD_CMD_DEXT;
4743 __be16 protocol;
4745 if (skb->ip_summed != CHECKSUM_PARTIAL)
4746 return 0;
4748 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4749 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4750 else
4751 protocol = skb->protocol;
4753 switch (protocol) {
4754 case cpu_to_be16(ETH_P_IP):
4755 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4756 cmd_len |= E1000_TXD_CMD_TCP;
4757 break;
4758 case cpu_to_be16(ETH_P_IPV6):
4759 /* XXX not handling all IPV6 headers */
4760 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4761 cmd_len |= E1000_TXD_CMD_TCP;
4762 break;
4763 default:
4764 if (unlikely(net_ratelimit()))
4765 e_warn("checksum_partial proto=%x!\n",
4766 be16_to_cpu(protocol));
4767 break;
4770 css = skb_checksum_start_offset(skb);
4772 i = tx_ring->next_to_use;
4773 buffer_info = &tx_ring->buffer_info[i];
4774 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4776 context_desc->lower_setup.ip_config = 0;
4777 context_desc->upper_setup.tcp_fields.tucss = css;
4778 context_desc->upper_setup.tcp_fields.tucso =
4779 css + skb->csum_offset;
4780 context_desc->upper_setup.tcp_fields.tucse = 0;
4781 context_desc->tcp_seg_setup.data = 0;
4782 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4784 buffer_info->time_stamp = jiffies;
4785 buffer_info->next_to_watch = i;
4787 i++;
4788 if (i == tx_ring->count)
4789 i = 0;
4790 tx_ring->next_to_use = i;
4792 return 1;
4795 #define E1000_MAX_PER_TXD 8192
4796 #define E1000_MAX_TXD_PWR 12
4798 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4799 unsigned int first, unsigned int max_per_txd,
4800 unsigned int nr_frags, unsigned int mss)
4802 struct e1000_adapter *adapter = tx_ring->adapter;
4803 struct pci_dev *pdev = adapter->pdev;
4804 struct e1000_buffer *buffer_info;
4805 unsigned int len = skb_headlen(skb);
4806 unsigned int offset = 0, size, count = 0, i;
4807 unsigned int f, bytecount, segs;
4809 i = tx_ring->next_to_use;
4811 while (len) {
4812 buffer_info = &tx_ring->buffer_info[i];
4813 size = min(len, max_per_txd);
4815 buffer_info->length = size;
4816 buffer_info->time_stamp = jiffies;
4817 buffer_info->next_to_watch = i;
4818 buffer_info->dma = dma_map_single(&pdev->dev,
4819 skb->data + offset,
4820 size, DMA_TO_DEVICE);
4821 buffer_info->mapped_as_page = false;
4822 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4823 goto dma_error;
4825 len -= size;
4826 offset += size;
4827 count++;
4829 if (len) {
4830 i++;
4831 if (i == tx_ring->count)
4832 i = 0;
4836 for (f = 0; f < nr_frags; f++) {
4837 const struct skb_frag_struct *frag;
4839 frag = &skb_shinfo(skb)->frags[f];
4840 len = skb_frag_size(frag);
4841 offset = 0;
4843 while (len) {
4844 i++;
4845 if (i == tx_ring->count)
4846 i = 0;
4848 buffer_info = &tx_ring->buffer_info[i];
4849 size = min(len, max_per_txd);
4851 buffer_info->length = size;
4852 buffer_info->time_stamp = jiffies;
4853 buffer_info->next_to_watch = i;
4854 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4855 offset, size, DMA_TO_DEVICE);
4856 buffer_info->mapped_as_page = true;
4857 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4858 goto dma_error;
4860 len -= size;
4861 offset += size;
4862 count++;
4866 segs = skb_shinfo(skb)->gso_segs ? : 1;
4867 /* multiply data chunks by size of headers */
4868 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4870 tx_ring->buffer_info[i].skb = skb;
4871 tx_ring->buffer_info[i].segs = segs;
4872 tx_ring->buffer_info[i].bytecount = bytecount;
4873 tx_ring->buffer_info[first].next_to_watch = i;
4875 return count;
4877 dma_error:
4878 dev_err(&pdev->dev, "Tx DMA map failed\n");
4879 buffer_info->dma = 0;
4880 if (count)
4881 count--;
4883 while (count--) {
4884 if (i == 0)
4885 i += tx_ring->count;
4886 i--;
4887 buffer_info = &tx_ring->buffer_info[i];
4888 e1000_put_txbuf(tx_ring, buffer_info);
4891 return 0;
4894 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4896 struct e1000_adapter *adapter = tx_ring->adapter;
4897 struct e1000_tx_desc *tx_desc = NULL;
4898 struct e1000_buffer *buffer_info;
4899 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4900 unsigned int i;
4902 if (tx_flags & E1000_TX_FLAGS_TSO) {
4903 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4904 E1000_TXD_CMD_TSE;
4905 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4907 if (tx_flags & E1000_TX_FLAGS_IPV4)
4908 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4911 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4912 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4913 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4916 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4917 txd_lower |= E1000_TXD_CMD_VLE;
4918 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4921 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4922 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4924 i = tx_ring->next_to_use;
4926 do {
4927 buffer_info = &tx_ring->buffer_info[i];
4928 tx_desc = E1000_TX_DESC(*tx_ring, i);
4929 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4930 tx_desc->lower.data =
4931 cpu_to_le32(txd_lower | buffer_info->length);
4932 tx_desc->upper.data = cpu_to_le32(txd_upper);
4934 i++;
4935 if (i == tx_ring->count)
4936 i = 0;
4937 } while (--count > 0);
4939 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4941 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4942 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4943 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4946 * Force memory writes to complete before letting h/w
4947 * know there are new descriptors to fetch. (Only
4948 * applicable for weak-ordered memory model archs,
4949 * such as IA-64).
4951 wmb();
4953 tx_ring->next_to_use = i;
4955 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4956 e1000e_update_tdt_wa(tx_ring, i);
4957 else
4958 writel(i, tx_ring->tail);
4961 * we need this if more than one processor can write to our tail
4962 * at a time, it synchronizes IO on IA64/Altix systems
4964 mmiowb();
4967 #define MINIMUM_DHCP_PACKET_SIZE 282
4968 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4969 struct sk_buff *skb)
4971 struct e1000_hw *hw = &adapter->hw;
4972 u16 length, offset;
4974 if (vlan_tx_tag_present(skb)) {
4975 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4976 (adapter->hw.mng_cookie.status &
4977 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4978 return 0;
4981 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4982 return 0;
4984 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4985 return 0;
4988 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4989 struct udphdr *udp;
4991 if (ip->protocol != IPPROTO_UDP)
4992 return 0;
4994 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4995 if (ntohs(udp->dest) != 67)
4996 return 0;
4998 offset = (u8 *)udp + 8 - skb->data;
4999 length = skb->len - offset;
5000 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5003 return 0;
5006 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5008 struct e1000_adapter *adapter = tx_ring->adapter;
5010 netif_stop_queue(adapter->netdev);
5012 * Herbert's original patch had:
5013 * smp_mb__after_netif_stop_queue();
5014 * but since that doesn't exist yet, just open code it.
5016 smp_mb();
5019 * We need to check again in a case another CPU has just
5020 * made room available.
5022 if (e1000_desc_unused(tx_ring) < size)
5023 return -EBUSY;
5025 /* A reprieve! */
5026 netif_start_queue(adapter->netdev);
5027 ++adapter->restart_queue;
5028 return 0;
5031 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5033 if (e1000_desc_unused(tx_ring) >= size)
5034 return 0;
5035 return __e1000_maybe_stop_tx(tx_ring, size);
5038 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5039 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5040 struct net_device *netdev)
5042 struct e1000_adapter *adapter = netdev_priv(netdev);
5043 struct e1000_ring *tx_ring = adapter->tx_ring;
5044 unsigned int first;
5045 unsigned int max_per_txd = E1000_MAX_PER_TXD;
5046 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5047 unsigned int tx_flags = 0;
5048 unsigned int len = skb_headlen(skb);
5049 unsigned int nr_frags;
5050 unsigned int mss;
5051 int count = 0;
5052 int tso;
5053 unsigned int f;
5055 if (test_bit(__E1000_DOWN, &adapter->state)) {
5056 dev_kfree_skb_any(skb);
5057 return NETDEV_TX_OK;
5060 if (skb->len <= 0) {
5061 dev_kfree_skb_any(skb);
5062 return NETDEV_TX_OK;
5065 mss = skb_shinfo(skb)->gso_size;
5067 * The controller does a simple calculation to
5068 * make sure there is enough room in the FIFO before
5069 * initiating the DMA for each buffer. The calc is:
5070 * 4 = ceil(buffer len/mss). To make sure we don't
5071 * overrun the FIFO, adjust the max buffer len if mss
5072 * drops.
5074 if (mss) {
5075 u8 hdr_len;
5076 max_per_txd = min(mss << 2, max_per_txd);
5077 max_txd_pwr = fls(max_per_txd) - 1;
5080 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5081 * points to just header, pull a few bytes of payload from
5082 * frags into skb->data
5084 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5086 * we do this workaround for ES2LAN, but it is un-necessary,
5087 * avoiding it could save a lot of cycles
5089 if (skb->data_len && (hdr_len == len)) {
5090 unsigned int pull_size;
5092 pull_size = min_t(unsigned int, 4, skb->data_len);
5093 if (!__pskb_pull_tail(skb, pull_size)) {
5094 e_err("__pskb_pull_tail failed.\n");
5095 dev_kfree_skb_any(skb);
5096 return NETDEV_TX_OK;
5098 len = skb_headlen(skb);
5102 /* reserve a descriptor for the offload context */
5103 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5104 count++;
5105 count++;
5107 count += TXD_USE_COUNT(len, max_txd_pwr);
5109 nr_frags = skb_shinfo(skb)->nr_frags;
5110 for (f = 0; f < nr_frags; f++)
5111 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5112 max_txd_pwr);
5114 if (adapter->hw.mac.tx_pkt_filtering)
5115 e1000_transfer_dhcp_info(adapter, skb);
5118 * need: count + 2 desc gap to keep tail from touching
5119 * head, otherwise try next time
5121 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5122 return NETDEV_TX_BUSY;
5124 if (vlan_tx_tag_present(skb)) {
5125 tx_flags |= E1000_TX_FLAGS_VLAN;
5126 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5129 first = tx_ring->next_to_use;
5131 tso = e1000_tso(tx_ring, skb);
5132 if (tso < 0) {
5133 dev_kfree_skb_any(skb);
5134 return NETDEV_TX_OK;
5137 if (tso)
5138 tx_flags |= E1000_TX_FLAGS_TSO;
5139 else if (e1000_tx_csum(tx_ring, skb))
5140 tx_flags |= E1000_TX_FLAGS_CSUM;
5143 * Old method was to assume IPv4 packet by default if TSO was enabled.
5144 * 82571 hardware supports TSO capabilities for IPv6 as well...
5145 * no longer assume, we must.
5147 if (skb->protocol == htons(ETH_P_IP))
5148 tx_flags |= E1000_TX_FLAGS_IPV4;
5150 if (unlikely(skb->no_fcs))
5151 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5153 /* if count is 0 then mapping error has occurred */
5154 count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5155 if (count) {
5156 skb_tx_timestamp(skb);
5158 netdev_sent_queue(netdev, skb->len);
5159 e1000_tx_queue(tx_ring, tx_flags, count);
5160 /* Make sure there is space in the ring for the next send. */
5161 e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5163 } else {
5164 dev_kfree_skb_any(skb);
5165 tx_ring->buffer_info[first].time_stamp = 0;
5166 tx_ring->next_to_use = first;
5169 return NETDEV_TX_OK;
5173 * e1000_tx_timeout - Respond to a Tx Hang
5174 * @netdev: network interface device structure
5176 static void e1000_tx_timeout(struct net_device *netdev)
5178 struct e1000_adapter *adapter = netdev_priv(netdev);
5180 /* Do the reset outside of interrupt context */
5181 adapter->tx_timeout_count++;
5182 schedule_work(&adapter->reset_task);
5185 static void e1000_reset_task(struct work_struct *work)
5187 struct e1000_adapter *adapter;
5188 adapter = container_of(work, struct e1000_adapter, reset_task);
5190 /* don't run the task if already down */
5191 if (test_bit(__E1000_DOWN, &adapter->state))
5192 return;
5194 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5195 (adapter->flags & FLAG_RX_RESTART_NOW))) {
5196 e1000e_dump(adapter);
5197 e_err("Reset adapter\n");
5199 e1000e_reinit_locked(adapter);
5203 * e1000_get_stats64 - Get System Network Statistics
5204 * @netdev: network interface device structure
5205 * @stats: rtnl_link_stats64 pointer
5207 * Returns the address of the device statistics structure.
5209 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5210 struct rtnl_link_stats64 *stats)
5212 struct e1000_adapter *adapter = netdev_priv(netdev);
5214 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5215 spin_lock(&adapter->stats64_lock);
5216 e1000e_update_stats(adapter);
5217 /* Fill out the OS statistics structure */
5218 stats->rx_bytes = adapter->stats.gorc;
5219 stats->rx_packets = adapter->stats.gprc;
5220 stats->tx_bytes = adapter->stats.gotc;
5221 stats->tx_packets = adapter->stats.gptc;
5222 stats->multicast = adapter->stats.mprc;
5223 stats->collisions = adapter->stats.colc;
5225 /* Rx Errors */
5228 * RLEC on some newer hardware can be incorrect so build
5229 * our own version based on RUC and ROC
5231 stats->rx_errors = adapter->stats.rxerrc +
5232 adapter->stats.crcerrs + adapter->stats.algnerrc +
5233 adapter->stats.ruc + adapter->stats.roc +
5234 adapter->stats.cexterr;
5235 stats->rx_length_errors = adapter->stats.ruc +
5236 adapter->stats.roc;
5237 stats->rx_crc_errors = adapter->stats.crcerrs;
5238 stats->rx_frame_errors = adapter->stats.algnerrc;
5239 stats->rx_missed_errors = adapter->stats.mpc;
5241 /* Tx Errors */
5242 stats->tx_errors = adapter->stats.ecol +
5243 adapter->stats.latecol;
5244 stats->tx_aborted_errors = adapter->stats.ecol;
5245 stats->tx_window_errors = adapter->stats.latecol;
5246 stats->tx_carrier_errors = adapter->stats.tncrs;
5248 /* Tx Dropped needs to be maintained elsewhere */
5250 spin_unlock(&adapter->stats64_lock);
5251 return stats;
5255 * e1000_change_mtu - Change the Maximum Transfer Unit
5256 * @netdev: network interface device structure
5257 * @new_mtu: new value for maximum frame size
5259 * Returns 0 on success, negative on failure
5261 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5263 struct e1000_adapter *adapter = netdev_priv(netdev);
5264 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5266 /* Jumbo frame support */
5267 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5268 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5269 e_err("Jumbo Frames not supported.\n");
5270 return -EINVAL;
5273 /* Supported frame sizes */
5274 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5275 (max_frame > adapter->max_hw_frame_size)) {
5276 e_err("Unsupported MTU setting\n");
5277 return -EINVAL;
5280 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5281 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5282 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5283 (new_mtu > ETH_DATA_LEN)) {
5284 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5285 return -EINVAL;
5288 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5289 usleep_range(1000, 2000);
5290 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5291 adapter->max_frame_size = max_frame;
5292 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5293 netdev->mtu = new_mtu;
5294 if (netif_running(netdev))
5295 e1000e_down(adapter);
5298 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5299 * means we reserve 2 more, this pushes us to allocate from the next
5300 * larger slab size.
5301 * i.e. RXBUFFER_2048 --> size-4096 slab
5302 * However with the new *_jumbo_rx* routines, jumbo receives will use
5303 * fragmented skbs
5306 if (max_frame <= 2048)
5307 adapter->rx_buffer_len = 2048;
5308 else
5309 adapter->rx_buffer_len = 4096;
5311 /* adjust allocation if LPE protects us, and we aren't using SBP */
5312 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5313 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5314 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5315 + ETH_FCS_LEN;
5317 if (netif_running(netdev))
5318 e1000e_up(adapter);
5319 else
5320 e1000e_reset(adapter);
5322 clear_bit(__E1000_RESETTING, &adapter->state);
5324 return 0;
5327 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5328 int cmd)
5330 struct e1000_adapter *adapter = netdev_priv(netdev);
5331 struct mii_ioctl_data *data = if_mii(ifr);
5333 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5334 return -EOPNOTSUPP;
5336 switch (cmd) {
5337 case SIOCGMIIPHY:
5338 data->phy_id = adapter->hw.phy.addr;
5339 break;
5340 case SIOCGMIIREG:
5341 e1000_phy_read_status(adapter);
5343 switch (data->reg_num & 0x1F) {
5344 case MII_BMCR:
5345 data->val_out = adapter->phy_regs.bmcr;
5346 break;
5347 case MII_BMSR:
5348 data->val_out = adapter->phy_regs.bmsr;
5349 break;
5350 case MII_PHYSID1:
5351 data->val_out = (adapter->hw.phy.id >> 16);
5352 break;
5353 case MII_PHYSID2:
5354 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5355 break;
5356 case MII_ADVERTISE:
5357 data->val_out = adapter->phy_regs.advertise;
5358 break;
5359 case MII_LPA:
5360 data->val_out = adapter->phy_regs.lpa;
5361 break;
5362 case MII_EXPANSION:
5363 data->val_out = adapter->phy_regs.expansion;
5364 break;
5365 case MII_CTRL1000:
5366 data->val_out = adapter->phy_regs.ctrl1000;
5367 break;
5368 case MII_STAT1000:
5369 data->val_out = adapter->phy_regs.stat1000;
5370 break;
5371 case MII_ESTATUS:
5372 data->val_out = adapter->phy_regs.estatus;
5373 break;
5374 default:
5375 return -EIO;
5377 break;
5378 case SIOCSMIIREG:
5379 default:
5380 return -EOPNOTSUPP;
5382 return 0;
5385 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5387 switch (cmd) {
5388 case SIOCGMIIPHY:
5389 case SIOCGMIIREG:
5390 case SIOCSMIIREG:
5391 return e1000_mii_ioctl(netdev, ifr, cmd);
5392 default:
5393 return -EOPNOTSUPP;
5397 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5399 struct e1000_hw *hw = &adapter->hw;
5400 u32 i, mac_reg;
5401 u16 phy_reg, wuc_enable;
5402 int retval = 0;
5404 /* copy MAC RARs to PHY RARs */
5405 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5407 retval = hw->phy.ops.acquire(hw);
5408 if (retval) {
5409 e_err("Could not acquire PHY\n");
5410 return retval;
5413 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5414 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5415 if (retval)
5416 goto release;
5418 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5419 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5420 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5421 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5422 (u16)(mac_reg & 0xFFFF));
5423 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5424 (u16)((mac_reg >> 16) & 0xFFFF));
5427 /* configure PHY Rx Control register */
5428 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5429 mac_reg = er32(RCTL);
5430 if (mac_reg & E1000_RCTL_UPE)
5431 phy_reg |= BM_RCTL_UPE;
5432 if (mac_reg & E1000_RCTL_MPE)
5433 phy_reg |= BM_RCTL_MPE;
5434 phy_reg &= ~(BM_RCTL_MO_MASK);
5435 if (mac_reg & E1000_RCTL_MO_3)
5436 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5437 << BM_RCTL_MO_SHIFT);
5438 if (mac_reg & E1000_RCTL_BAM)
5439 phy_reg |= BM_RCTL_BAM;
5440 if (mac_reg & E1000_RCTL_PMCF)
5441 phy_reg |= BM_RCTL_PMCF;
5442 mac_reg = er32(CTRL);
5443 if (mac_reg & E1000_CTRL_RFCE)
5444 phy_reg |= BM_RCTL_RFCE;
5445 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5447 /* enable PHY wakeup in MAC register */
5448 ew32(WUFC, wufc);
5449 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5451 /* configure and enable PHY wakeup in PHY registers */
5452 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5453 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5455 /* activate PHY wakeup */
5456 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5457 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5458 if (retval)
5459 e_err("Could not set PHY Host Wakeup bit\n");
5460 release:
5461 hw->phy.ops.release(hw);
5463 return retval;
5466 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5467 bool runtime)
5469 struct net_device *netdev = pci_get_drvdata(pdev);
5470 struct e1000_adapter *adapter = netdev_priv(netdev);
5471 struct e1000_hw *hw = &adapter->hw;
5472 u32 ctrl, ctrl_ext, rctl, status;
5473 /* Runtime suspend should only enable wakeup for link changes */
5474 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5475 int retval = 0;
5477 netif_device_detach(netdev);
5479 if (netif_running(netdev)) {
5480 int count = E1000_CHECK_RESET_COUNT;
5482 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5483 usleep_range(10000, 20000);
5485 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5486 e1000e_down(adapter);
5487 e1000_free_irq(adapter);
5489 e1000e_reset_interrupt_capability(adapter);
5491 retval = pci_save_state(pdev);
5492 if (retval)
5493 return retval;
5495 status = er32(STATUS);
5496 if (status & E1000_STATUS_LU)
5497 wufc &= ~E1000_WUFC_LNKC;
5499 if (wufc) {
5500 e1000_setup_rctl(adapter);
5501 e1000e_set_rx_mode(netdev);
5503 /* turn on all-multi mode if wake on multicast is enabled */
5504 if (wufc & E1000_WUFC_MC) {
5505 rctl = er32(RCTL);
5506 rctl |= E1000_RCTL_MPE;
5507 ew32(RCTL, rctl);
5510 ctrl = er32(CTRL);
5511 /* advertise wake from D3Cold */
5512 #define E1000_CTRL_ADVD3WUC 0x00100000
5513 /* phy power management enable */
5514 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5515 ctrl |= E1000_CTRL_ADVD3WUC;
5516 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5517 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5518 ew32(CTRL, ctrl);
5520 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5521 adapter->hw.phy.media_type ==
5522 e1000_media_type_internal_serdes) {
5523 /* keep the laser running in D3 */
5524 ctrl_ext = er32(CTRL_EXT);
5525 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5526 ew32(CTRL_EXT, ctrl_ext);
5529 if (adapter->flags & FLAG_IS_ICH)
5530 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5532 /* Allow time for pending master requests to run */
5533 e1000e_disable_pcie_master(&adapter->hw);
5535 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5536 /* enable wakeup by the PHY */
5537 retval = e1000_init_phy_wakeup(adapter, wufc);
5538 if (retval)
5539 return retval;
5540 } else {
5541 /* enable wakeup by the MAC */
5542 ew32(WUFC, wufc);
5543 ew32(WUC, E1000_WUC_PME_EN);
5545 } else {
5546 ew32(WUC, 0);
5547 ew32(WUFC, 0);
5550 *enable_wake = !!wufc;
5552 /* make sure adapter isn't asleep if manageability is enabled */
5553 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5554 (hw->mac.ops.check_mng_mode(hw)))
5555 *enable_wake = true;
5557 if (adapter->hw.phy.type == e1000_phy_igp_3)
5558 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5561 * Release control of h/w to f/w. If f/w is AMT enabled, this
5562 * would have already happened in close and is redundant.
5564 e1000e_release_hw_control(adapter);
5566 pci_disable_device(pdev);
5568 return 0;
5571 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5573 if (sleep && wake) {
5574 pci_prepare_to_sleep(pdev);
5575 return;
5578 pci_wake_from_d3(pdev, wake);
5579 pci_set_power_state(pdev, PCI_D3hot);
5582 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5583 bool wake)
5585 struct net_device *netdev = pci_get_drvdata(pdev);
5586 struct e1000_adapter *adapter = netdev_priv(netdev);
5589 * The pci-e switch on some quad port adapters will report a
5590 * correctable error when the MAC transitions from D0 to D3. To
5591 * prevent this we need to mask off the correctable errors on the
5592 * downstream port of the pci-e switch.
5594 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5595 struct pci_dev *us_dev = pdev->bus->self;
5596 int pos = pci_pcie_cap(us_dev);
5597 u16 devctl;
5599 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5600 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5601 (devctl & ~PCI_EXP_DEVCTL_CERE));
5603 e1000_power_off(pdev, sleep, wake);
5605 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5606 } else {
5607 e1000_power_off(pdev, sleep, wake);
5611 #ifdef CONFIG_PCIEASPM
5612 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5614 pci_disable_link_state_locked(pdev, state);
5616 #else
5617 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5619 int pos;
5620 u16 reg16;
5623 * Both device and parent should have the same ASPM setting.
5624 * Disable ASPM in downstream component first and then upstream.
5626 pos = pci_pcie_cap(pdev);
5627 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5628 reg16 &= ~state;
5629 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5631 if (!pdev->bus->self)
5632 return;
5634 pos = pci_pcie_cap(pdev->bus->self);
5635 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5636 reg16 &= ~state;
5637 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5639 #endif
5640 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5642 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5643 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5644 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5646 __e1000e_disable_aspm(pdev, state);
5649 #ifdef CONFIG_PM
5650 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5652 return !!adapter->tx_ring->buffer_info;
5655 static int __e1000_resume(struct pci_dev *pdev)
5657 struct net_device *netdev = pci_get_drvdata(pdev);
5658 struct e1000_adapter *adapter = netdev_priv(netdev);
5659 struct e1000_hw *hw = &adapter->hw;
5660 u16 aspm_disable_flag = 0;
5661 u32 err;
5663 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5664 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5665 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5666 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5667 if (aspm_disable_flag)
5668 e1000e_disable_aspm(pdev, aspm_disable_flag);
5670 pci_set_power_state(pdev, PCI_D0);
5671 pci_restore_state(pdev);
5672 pci_save_state(pdev);
5674 e1000e_set_interrupt_capability(adapter);
5675 if (netif_running(netdev)) {
5676 err = e1000_request_irq(adapter);
5677 if (err)
5678 return err;
5681 if (hw->mac.type >= e1000_pch2lan)
5682 e1000_resume_workarounds_pchlan(&adapter->hw);
5684 e1000e_power_up_phy(adapter);
5686 /* report the system wakeup cause from S3/S4 */
5687 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5688 u16 phy_data;
5690 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5691 if (phy_data) {
5692 e_info("PHY Wakeup cause - %s\n",
5693 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5694 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5695 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5696 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5697 phy_data & E1000_WUS_LNKC ?
5698 "Link Status Change" : "other");
5700 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5701 } else {
5702 u32 wus = er32(WUS);
5703 if (wus) {
5704 e_info("MAC Wakeup cause - %s\n",
5705 wus & E1000_WUS_EX ? "Unicast Packet" :
5706 wus & E1000_WUS_MC ? "Multicast Packet" :
5707 wus & E1000_WUS_BC ? "Broadcast Packet" :
5708 wus & E1000_WUS_MAG ? "Magic Packet" :
5709 wus & E1000_WUS_LNKC ? "Link Status Change" :
5710 "other");
5712 ew32(WUS, ~0);
5715 e1000e_reset(adapter);
5717 e1000_init_manageability_pt(adapter);
5719 if (netif_running(netdev))
5720 e1000e_up(adapter);
5722 netif_device_attach(netdev);
5725 * If the controller has AMT, do not set DRV_LOAD until the interface
5726 * is up. For all other cases, let the f/w know that the h/w is now
5727 * under the control of the driver.
5729 if (!(adapter->flags & FLAG_HAS_AMT))
5730 e1000e_get_hw_control(adapter);
5732 return 0;
5735 #ifdef CONFIG_PM_SLEEP
5736 static int e1000_suspend(struct device *dev)
5738 struct pci_dev *pdev = to_pci_dev(dev);
5739 int retval;
5740 bool wake;
5742 retval = __e1000_shutdown(pdev, &wake, false);
5743 if (!retval)
5744 e1000_complete_shutdown(pdev, true, wake);
5746 return retval;
5749 static int e1000_resume(struct device *dev)
5751 struct pci_dev *pdev = to_pci_dev(dev);
5752 struct net_device *netdev = pci_get_drvdata(pdev);
5753 struct e1000_adapter *adapter = netdev_priv(netdev);
5755 if (e1000e_pm_ready(adapter))
5756 adapter->idle_check = true;
5758 return __e1000_resume(pdev);
5760 #endif /* CONFIG_PM_SLEEP */
5762 #ifdef CONFIG_PM_RUNTIME
5763 static int e1000_runtime_suspend(struct device *dev)
5765 struct pci_dev *pdev = to_pci_dev(dev);
5766 struct net_device *netdev = pci_get_drvdata(pdev);
5767 struct e1000_adapter *adapter = netdev_priv(netdev);
5769 if (e1000e_pm_ready(adapter)) {
5770 bool wake;
5772 __e1000_shutdown(pdev, &wake, true);
5775 return 0;
5778 static int e1000_idle(struct device *dev)
5780 struct pci_dev *pdev = to_pci_dev(dev);
5781 struct net_device *netdev = pci_get_drvdata(pdev);
5782 struct e1000_adapter *adapter = netdev_priv(netdev);
5784 if (!e1000e_pm_ready(adapter))
5785 return 0;
5787 if (adapter->idle_check) {
5788 adapter->idle_check = false;
5789 if (!e1000e_has_link(adapter))
5790 pm_schedule_suspend(dev, MSEC_PER_SEC);
5793 return -EBUSY;
5796 static int e1000_runtime_resume(struct device *dev)
5798 struct pci_dev *pdev = to_pci_dev(dev);
5799 struct net_device *netdev = pci_get_drvdata(pdev);
5800 struct e1000_adapter *adapter = netdev_priv(netdev);
5802 if (!e1000e_pm_ready(adapter))
5803 return 0;
5805 adapter->idle_check = !dev->power.runtime_auto;
5806 return __e1000_resume(pdev);
5808 #endif /* CONFIG_PM_RUNTIME */
5809 #endif /* CONFIG_PM */
5811 static void e1000_shutdown(struct pci_dev *pdev)
5813 bool wake = false;
5815 __e1000_shutdown(pdev, &wake, false);
5817 if (system_state == SYSTEM_POWER_OFF)
5818 e1000_complete_shutdown(pdev, false, wake);
5821 #ifdef CONFIG_NET_POLL_CONTROLLER
5823 static irqreturn_t e1000_intr_msix(int irq, void *data)
5825 struct net_device *netdev = data;
5826 struct e1000_adapter *adapter = netdev_priv(netdev);
5828 if (adapter->msix_entries) {
5829 int vector, msix_irq;
5831 vector = 0;
5832 msix_irq = adapter->msix_entries[vector].vector;
5833 disable_irq(msix_irq);
5834 e1000_intr_msix_rx(msix_irq, netdev);
5835 enable_irq(msix_irq);
5837 vector++;
5838 msix_irq = adapter->msix_entries[vector].vector;
5839 disable_irq(msix_irq);
5840 e1000_intr_msix_tx(msix_irq, netdev);
5841 enable_irq(msix_irq);
5843 vector++;
5844 msix_irq = adapter->msix_entries[vector].vector;
5845 disable_irq(msix_irq);
5846 e1000_msix_other(msix_irq, netdev);
5847 enable_irq(msix_irq);
5850 return IRQ_HANDLED;
5854 * Polling 'interrupt' - used by things like netconsole to send skbs
5855 * without having to re-enable interrupts. It's not called while
5856 * the interrupt routine is executing.
5858 static void e1000_netpoll(struct net_device *netdev)
5860 struct e1000_adapter *adapter = netdev_priv(netdev);
5862 switch (adapter->int_mode) {
5863 case E1000E_INT_MODE_MSIX:
5864 e1000_intr_msix(adapter->pdev->irq, netdev);
5865 break;
5866 case E1000E_INT_MODE_MSI:
5867 disable_irq(adapter->pdev->irq);
5868 e1000_intr_msi(adapter->pdev->irq, netdev);
5869 enable_irq(adapter->pdev->irq);
5870 break;
5871 default: /* E1000E_INT_MODE_LEGACY */
5872 disable_irq(adapter->pdev->irq);
5873 e1000_intr(adapter->pdev->irq, netdev);
5874 enable_irq(adapter->pdev->irq);
5875 break;
5878 #endif
5881 * e1000_io_error_detected - called when PCI error is detected
5882 * @pdev: Pointer to PCI device
5883 * @state: The current pci connection state
5885 * This function is called after a PCI bus error affecting
5886 * this device has been detected.
5888 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5889 pci_channel_state_t state)
5891 struct net_device *netdev = pci_get_drvdata(pdev);
5892 struct e1000_adapter *adapter = netdev_priv(netdev);
5894 netif_device_detach(netdev);
5896 if (state == pci_channel_io_perm_failure)
5897 return PCI_ERS_RESULT_DISCONNECT;
5899 if (netif_running(netdev))
5900 e1000e_down(adapter);
5901 pci_disable_device(pdev);
5903 /* Request a slot slot reset. */
5904 return PCI_ERS_RESULT_NEED_RESET;
5908 * e1000_io_slot_reset - called after the pci bus has been reset.
5909 * @pdev: Pointer to PCI device
5911 * Restart the card from scratch, as if from a cold-boot. Implementation
5912 * resembles the first-half of the e1000_resume routine.
5914 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5916 struct net_device *netdev = pci_get_drvdata(pdev);
5917 struct e1000_adapter *adapter = netdev_priv(netdev);
5918 struct e1000_hw *hw = &adapter->hw;
5919 u16 aspm_disable_flag = 0;
5920 int err;
5921 pci_ers_result_t result;
5923 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5924 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5925 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5926 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5927 if (aspm_disable_flag)
5928 e1000e_disable_aspm(pdev, aspm_disable_flag);
5930 err = pci_enable_device_mem(pdev);
5931 if (err) {
5932 dev_err(&pdev->dev,
5933 "Cannot re-enable PCI device after reset.\n");
5934 result = PCI_ERS_RESULT_DISCONNECT;
5935 } else {
5936 pci_set_master(pdev);
5937 pdev->state_saved = true;
5938 pci_restore_state(pdev);
5940 pci_enable_wake(pdev, PCI_D3hot, 0);
5941 pci_enable_wake(pdev, PCI_D3cold, 0);
5943 e1000e_reset(adapter);
5944 ew32(WUS, ~0);
5945 result = PCI_ERS_RESULT_RECOVERED;
5948 pci_cleanup_aer_uncorrect_error_status(pdev);
5950 return result;
5954 * e1000_io_resume - called when traffic can start flowing again.
5955 * @pdev: Pointer to PCI device
5957 * This callback is called when the error recovery driver tells us that
5958 * its OK to resume normal operation. Implementation resembles the
5959 * second-half of the e1000_resume routine.
5961 static void e1000_io_resume(struct pci_dev *pdev)
5963 struct net_device *netdev = pci_get_drvdata(pdev);
5964 struct e1000_adapter *adapter = netdev_priv(netdev);
5966 e1000_init_manageability_pt(adapter);
5968 if (netif_running(netdev)) {
5969 if (e1000e_up(adapter)) {
5970 dev_err(&pdev->dev,
5971 "can't bring device back up after reset\n");
5972 return;
5976 netif_device_attach(netdev);
5979 * If the controller has AMT, do not set DRV_LOAD until the interface
5980 * is up. For all other cases, let the f/w know that the h/w is now
5981 * under the control of the driver.
5983 if (!(adapter->flags & FLAG_HAS_AMT))
5984 e1000e_get_hw_control(adapter);
5988 static void e1000_print_device_info(struct e1000_adapter *adapter)
5990 struct e1000_hw *hw = &adapter->hw;
5991 struct net_device *netdev = adapter->netdev;
5992 u32 ret_val;
5993 u8 pba_str[E1000_PBANUM_LENGTH];
5995 /* print bus type/speed/width info */
5996 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5997 /* bus width */
5998 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5999 "Width x1"),
6000 /* MAC address */
6001 netdev->dev_addr);
6002 e_info("Intel(R) PRO/%s Network Connection\n",
6003 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6004 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6005 E1000_PBANUM_LENGTH);
6006 if (ret_val)
6007 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6008 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6009 hw->mac.type, hw->phy.type, pba_str);
6012 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6014 struct e1000_hw *hw = &adapter->hw;
6015 int ret_val;
6016 u16 buf = 0;
6018 if (hw->mac.type != e1000_82573)
6019 return;
6021 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6022 le16_to_cpus(&buf);
6023 if (!ret_val && (!(buf & (1 << 0)))) {
6024 /* Deep Smart Power Down (DSPD) */
6025 dev_warn(&adapter->pdev->dev,
6026 "Warning: detected DSPD enabled in EEPROM\n");
6030 static int e1000_set_features(struct net_device *netdev,
6031 netdev_features_t features)
6033 struct e1000_adapter *adapter = netdev_priv(netdev);
6034 netdev_features_t changed = features ^ netdev->features;
6036 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6037 adapter->flags |= FLAG_TSO_FORCE;
6039 if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6040 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6041 NETIF_F_RXALL)))
6042 return 0;
6044 if (changed & NETIF_F_RXFCS) {
6045 if (features & NETIF_F_RXFCS) {
6046 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6047 } else {
6048 /* We need to take it back to defaults, which might mean
6049 * stripping is still disabled at the adapter level.
6051 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6052 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6053 else
6054 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6058 netdev->features = features;
6060 if (netif_running(netdev))
6061 e1000e_reinit_locked(adapter);
6062 else
6063 e1000e_reset(adapter);
6065 return 0;
6068 static const struct net_device_ops e1000e_netdev_ops = {
6069 .ndo_open = e1000_open,
6070 .ndo_stop = e1000_close,
6071 .ndo_start_xmit = e1000_xmit_frame,
6072 .ndo_get_stats64 = e1000e_get_stats64,
6073 .ndo_set_rx_mode = e1000e_set_rx_mode,
6074 .ndo_set_mac_address = e1000_set_mac,
6075 .ndo_change_mtu = e1000_change_mtu,
6076 .ndo_do_ioctl = e1000_ioctl,
6077 .ndo_tx_timeout = e1000_tx_timeout,
6078 .ndo_validate_addr = eth_validate_addr,
6080 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6081 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6082 #ifdef CONFIG_NET_POLL_CONTROLLER
6083 .ndo_poll_controller = e1000_netpoll,
6084 #endif
6085 .ndo_set_features = e1000_set_features,
6089 * e1000_probe - Device Initialization Routine
6090 * @pdev: PCI device information struct
6091 * @ent: entry in e1000_pci_tbl
6093 * Returns 0 on success, negative on failure
6095 * e1000_probe initializes an adapter identified by a pci_dev structure.
6096 * The OS initialization, configuring of the adapter private structure,
6097 * and a hardware reset occur.
6099 static int __devinit e1000_probe(struct pci_dev *pdev,
6100 const struct pci_device_id *ent)
6102 struct net_device *netdev;
6103 struct e1000_adapter *adapter;
6104 struct e1000_hw *hw;
6105 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6106 resource_size_t mmio_start, mmio_len;
6107 resource_size_t flash_start, flash_len;
6108 static int cards_found;
6109 u16 aspm_disable_flag = 0;
6110 int i, err, pci_using_dac;
6111 u16 eeprom_data = 0;
6112 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6114 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6115 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6116 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6117 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6118 if (aspm_disable_flag)
6119 e1000e_disable_aspm(pdev, aspm_disable_flag);
6121 err = pci_enable_device_mem(pdev);
6122 if (err)
6123 return err;
6125 pci_using_dac = 0;
6126 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6127 if (!err) {
6128 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6129 if (!err)
6130 pci_using_dac = 1;
6131 } else {
6132 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6133 if (err) {
6134 err = dma_set_coherent_mask(&pdev->dev,
6135 DMA_BIT_MASK(32));
6136 if (err) {
6137 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6138 goto err_dma;
6143 err = pci_request_selected_regions_exclusive(pdev,
6144 pci_select_bars(pdev, IORESOURCE_MEM),
6145 e1000e_driver_name);
6146 if (err)
6147 goto err_pci_reg;
6149 /* AER (Advanced Error Reporting) hooks */
6150 pci_enable_pcie_error_reporting(pdev);
6152 pci_set_master(pdev);
6153 /* PCI config space info */
6154 err = pci_save_state(pdev);
6155 if (err)
6156 goto err_alloc_etherdev;
6158 err = -ENOMEM;
6159 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6160 if (!netdev)
6161 goto err_alloc_etherdev;
6163 SET_NETDEV_DEV(netdev, &pdev->dev);
6165 netdev->irq = pdev->irq;
6167 pci_set_drvdata(pdev, netdev);
6168 adapter = netdev_priv(netdev);
6169 hw = &adapter->hw;
6170 adapter->netdev = netdev;
6171 adapter->pdev = pdev;
6172 adapter->ei = ei;
6173 adapter->pba = ei->pba;
6174 adapter->flags = ei->flags;
6175 adapter->flags2 = ei->flags2;
6176 adapter->hw.adapter = adapter;
6177 adapter->hw.mac.type = ei->mac;
6178 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6179 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6181 mmio_start = pci_resource_start(pdev, 0);
6182 mmio_len = pci_resource_len(pdev, 0);
6184 err = -EIO;
6185 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6186 if (!adapter->hw.hw_addr)
6187 goto err_ioremap;
6189 if ((adapter->flags & FLAG_HAS_FLASH) &&
6190 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6191 flash_start = pci_resource_start(pdev, 1);
6192 flash_len = pci_resource_len(pdev, 1);
6193 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6194 if (!adapter->hw.flash_address)
6195 goto err_flashmap;
6198 /* construct the net_device struct */
6199 netdev->netdev_ops = &e1000e_netdev_ops;
6200 e1000e_set_ethtool_ops(netdev);
6201 netdev->watchdog_timeo = 5 * HZ;
6202 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6203 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6205 netdev->mem_start = mmio_start;
6206 netdev->mem_end = mmio_start + mmio_len;
6208 adapter->bd_number = cards_found++;
6210 e1000e_check_options(adapter);
6212 /* setup adapter struct */
6213 err = e1000_sw_init(adapter);
6214 if (err)
6215 goto err_sw_init;
6217 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6218 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6219 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6221 err = ei->get_variants(adapter);
6222 if (err)
6223 goto err_hw_init;
6225 if ((adapter->flags & FLAG_IS_ICH) &&
6226 (adapter->flags & FLAG_READ_ONLY_NVM))
6227 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6229 hw->mac.ops.get_bus_info(&adapter->hw);
6231 adapter->hw.phy.autoneg_wait_to_complete = 0;
6233 /* Copper options */
6234 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6235 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6236 adapter->hw.phy.disable_polarity_correction = 0;
6237 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6240 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6241 dev_info(&pdev->dev,
6242 "PHY reset is blocked due to SOL/IDER session.\n");
6244 /* Set initial default active device features */
6245 netdev->features = (NETIF_F_SG |
6246 NETIF_F_HW_VLAN_RX |
6247 NETIF_F_HW_VLAN_TX |
6248 NETIF_F_TSO |
6249 NETIF_F_TSO6 |
6250 NETIF_F_RXHASH |
6251 NETIF_F_RXCSUM |
6252 NETIF_F_HW_CSUM);
6254 /* Set user-changeable features (subset of all device features) */
6255 netdev->hw_features = netdev->features;
6256 netdev->hw_features |= NETIF_F_RXFCS;
6257 netdev->priv_flags |= IFF_SUPP_NOFCS;
6258 netdev->hw_features |= NETIF_F_RXALL;
6260 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6261 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6263 netdev->vlan_features |= (NETIF_F_SG |
6264 NETIF_F_TSO |
6265 NETIF_F_TSO6 |
6266 NETIF_F_HW_CSUM);
6268 netdev->priv_flags |= IFF_UNICAST_FLT;
6270 if (pci_using_dac) {
6271 netdev->features |= NETIF_F_HIGHDMA;
6272 netdev->vlan_features |= NETIF_F_HIGHDMA;
6275 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6276 adapter->flags |= FLAG_MNG_PT_ENABLED;
6279 * before reading the NVM, reset the controller to
6280 * put the device in a known good starting state
6282 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6285 * systems with ASPM and others may see the checksum fail on the first
6286 * attempt. Let's give it a few tries
6288 for (i = 0;; i++) {
6289 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6290 break;
6291 if (i == 2) {
6292 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6293 err = -EIO;
6294 goto err_eeprom;
6298 e1000_eeprom_checks(adapter);
6300 /* copy the MAC address */
6301 if (e1000e_read_mac_addr(&adapter->hw))
6302 dev_err(&pdev->dev,
6303 "NVM Read Error while reading MAC address\n");
6305 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6306 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6308 if (!is_valid_ether_addr(netdev->perm_addr)) {
6309 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6310 netdev->perm_addr);
6311 err = -EIO;
6312 goto err_eeprom;
6315 init_timer(&adapter->watchdog_timer);
6316 adapter->watchdog_timer.function = e1000_watchdog;
6317 adapter->watchdog_timer.data = (unsigned long) adapter;
6319 init_timer(&adapter->phy_info_timer);
6320 adapter->phy_info_timer.function = e1000_update_phy_info;
6321 adapter->phy_info_timer.data = (unsigned long) adapter;
6323 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6324 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6325 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6326 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6327 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6329 /* Initialize link parameters. User can change them with ethtool */
6330 adapter->hw.mac.autoneg = 1;
6331 adapter->fc_autoneg = true;
6332 adapter->hw.fc.requested_mode = e1000_fc_default;
6333 adapter->hw.fc.current_mode = e1000_fc_default;
6334 adapter->hw.phy.autoneg_advertised = 0x2f;
6336 /* ring size defaults */
6337 adapter->rx_ring->count = 256;
6338 adapter->tx_ring->count = 256;
6341 * Initial Wake on LAN setting - If APM wake is enabled in
6342 * the EEPROM, enable the ACPI Magic Packet filter
6344 if (adapter->flags & FLAG_APME_IN_WUC) {
6345 /* APME bit in EEPROM is mapped to WUC.APME */
6346 eeprom_data = er32(WUC);
6347 eeprom_apme_mask = E1000_WUC_APME;
6348 if ((hw->mac.type > e1000_ich10lan) &&
6349 (eeprom_data & E1000_WUC_PHY_WAKE))
6350 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6351 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6352 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6353 (adapter->hw.bus.func == 1))
6354 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6355 1, &eeprom_data);
6356 else
6357 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6358 1, &eeprom_data);
6361 /* fetch WoL from EEPROM */
6362 if (eeprom_data & eeprom_apme_mask)
6363 adapter->eeprom_wol |= E1000_WUFC_MAG;
6366 * now that we have the eeprom settings, apply the special cases
6367 * where the eeprom may be wrong or the board simply won't support
6368 * wake on lan on a particular port
6370 if (!(adapter->flags & FLAG_HAS_WOL))
6371 adapter->eeprom_wol = 0;
6373 /* initialize the wol settings based on the eeprom settings */
6374 adapter->wol = adapter->eeprom_wol;
6375 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6377 /* save off EEPROM version number */
6378 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6380 /* reset the hardware with the new settings */
6381 e1000e_reset(adapter);
6384 * If the controller has AMT, do not set DRV_LOAD until the interface
6385 * is up. For all other cases, let the f/w know that the h/w is now
6386 * under the control of the driver.
6388 if (!(adapter->flags & FLAG_HAS_AMT))
6389 e1000e_get_hw_control(adapter);
6391 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6392 err = register_netdev(netdev);
6393 if (err)
6394 goto err_register;
6396 /* carrier off reporting is important to ethtool even BEFORE open */
6397 netif_carrier_off(netdev);
6399 e1000_print_device_info(adapter);
6401 if (pci_dev_run_wake(pdev))
6402 pm_runtime_put_noidle(&pdev->dev);
6404 return 0;
6406 err_register:
6407 if (!(adapter->flags & FLAG_HAS_AMT))
6408 e1000e_release_hw_control(adapter);
6409 err_eeprom:
6410 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6411 e1000_phy_hw_reset(&adapter->hw);
6412 err_hw_init:
6413 kfree(adapter->tx_ring);
6414 kfree(adapter->rx_ring);
6415 err_sw_init:
6416 if (adapter->hw.flash_address)
6417 iounmap(adapter->hw.flash_address);
6418 e1000e_reset_interrupt_capability(adapter);
6419 err_flashmap:
6420 iounmap(adapter->hw.hw_addr);
6421 err_ioremap:
6422 free_netdev(netdev);
6423 err_alloc_etherdev:
6424 pci_release_selected_regions(pdev,
6425 pci_select_bars(pdev, IORESOURCE_MEM));
6426 err_pci_reg:
6427 err_dma:
6428 pci_disable_device(pdev);
6429 return err;
6433 * e1000_remove - Device Removal Routine
6434 * @pdev: PCI device information struct
6436 * e1000_remove is called by the PCI subsystem to alert the driver
6437 * that it should release a PCI device. The could be caused by a
6438 * Hot-Plug event, or because the driver is going to be removed from
6439 * memory.
6441 static void __devexit e1000_remove(struct pci_dev *pdev)
6443 struct net_device *netdev = pci_get_drvdata(pdev);
6444 struct e1000_adapter *adapter = netdev_priv(netdev);
6445 bool down = test_bit(__E1000_DOWN, &adapter->state);
6448 * The timers may be rescheduled, so explicitly disable them
6449 * from being rescheduled.
6451 if (!down)
6452 set_bit(__E1000_DOWN, &adapter->state);
6453 del_timer_sync(&adapter->watchdog_timer);
6454 del_timer_sync(&adapter->phy_info_timer);
6456 cancel_work_sync(&adapter->reset_task);
6457 cancel_work_sync(&adapter->watchdog_task);
6458 cancel_work_sync(&adapter->downshift_task);
6459 cancel_work_sync(&adapter->update_phy_task);
6460 cancel_work_sync(&adapter->print_hang_task);
6462 if (!(netdev->flags & IFF_UP))
6463 e1000_power_down_phy(adapter);
6465 /* Don't lie to e1000_close() down the road. */
6466 if (!down)
6467 clear_bit(__E1000_DOWN, &adapter->state);
6468 unregister_netdev(netdev);
6470 if (pci_dev_run_wake(pdev))
6471 pm_runtime_get_noresume(&pdev->dev);
6474 * Release control of h/w to f/w. If f/w is AMT enabled, this
6475 * would have already happened in close and is redundant.
6477 e1000e_release_hw_control(adapter);
6479 e1000e_reset_interrupt_capability(adapter);
6480 kfree(adapter->tx_ring);
6481 kfree(adapter->rx_ring);
6483 iounmap(adapter->hw.hw_addr);
6484 if (adapter->hw.flash_address)
6485 iounmap(adapter->hw.flash_address);
6486 pci_release_selected_regions(pdev,
6487 pci_select_bars(pdev, IORESOURCE_MEM));
6489 free_netdev(netdev);
6491 /* AER disable */
6492 pci_disable_pcie_error_reporting(pdev);
6494 pci_disable_device(pdev);
6497 /* PCI Error Recovery (ERS) */
6498 static struct pci_error_handlers e1000_err_handler = {
6499 .error_detected = e1000_io_error_detected,
6500 .slot_reset = e1000_io_slot_reset,
6501 .resume = e1000_io_resume,
6504 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6509 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6524 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6526 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6528 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6529 board_80003es2lan },
6530 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6531 board_80003es2lan },
6532 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6533 board_80003es2lan },
6534 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6535 board_80003es2lan },
6537 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6538 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6539 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6540 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6541 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6542 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6543 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6544 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6546 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6547 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6548 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6549 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6550 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6551 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6552 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6553 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6554 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6556 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6557 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6558 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6560 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6561 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6562 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6564 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6565 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6566 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6567 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6569 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6570 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6572 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6573 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6575 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6577 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6579 #ifdef CONFIG_PM
6580 static const struct dev_pm_ops e1000_pm_ops = {
6581 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6582 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6583 e1000_runtime_resume, e1000_idle)
6585 #endif
6587 /* PCI Device API Driver */
6588 static struct pci_driver e1000_driver = {
6589 .name = e1000e_driver_name,
6590 .id_table = e1000_pci_tbl,
6591 .probe = e1000_probe,
6592 .remove = __devexit_p(e1000_remove),
6593 #ifdef CONFIG_PM
6594 .driver = {
6595 .pm = &e1000_pm_ops,
6597 #endif
6598 .shutdown = e1000_shutdown,
6599 .err_handler = &e1000_err_handler
6603 * e1000_init_module - Driver Registration Routine
6605 * e1000_init_module is the first routine called when the driver is
6606 * loaded. All it does is register with the PCI subsystem.
6608 static int __init e1000_init_module(void)
6610 int ret;
6611 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6612 e1000e_driver_version);
6613 pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6614 ret = pci_register_driver(&e1000_driver);
6616 return ret;
6618 module_init(e1000_init_module);
6621 * e1000_exit_module - Driver Exit Cleanup Routine
6623 * e1000_exit_module is called just before the driver is removed
6624 * from memory.
6626 static void __exit e1000_exit_module(void)
6628 pci_unregister_driver(&e1000_driver);
6630 module_exit(e1000_exit_module);
6633 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6634 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6635 MODULE_LICENSE("GPL");
6636 MODULE_VERSION(DRV_VERSION);
6638 /* netdev.c */