3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126 * 0 for faster, smaller code (especially in the critical paths).
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 #ifdef CONFIG_DEBUG_SLAB
137 #define FORCED_DEBUG 1
141 #define FORCED_DEBUG 0
144 /* Shouldn't this be in a header file somewhere? */
145 #define BYTES_PER_WORD sizeof(void *)
146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
148 #ifndef ARCH_KMALLOC_FLAGS
149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 /* Legal flag mask for kmem_cache_create(). */
154 # define CREATE_MASK (SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
172 * Bufctl's are used for linking objs within a slab
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 typedef unsigned int kmem_bufctl_t
;
189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU. This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking. We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
209 struct rcu_head head
;
210 struct kmem_cache
*cachep
;
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct list_head list
;
225 unsigned long colouroff
;
226 void *s_mem
; /* including colour offset */
227 unsigned int inuse
; /* num of objs active in slab */
229 unsigned short nodeid
;
231 struct slab_rcu __slab_cover_slab_rcu
;
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
243 * The limit is stored in the per-cpu structure to reduce the data cache
250 unsigned int batchcount
;
251 unsigned int touched
;
254 * Must have this definition in here for the proper
255 * alignment of array_cache. Also simplifies accessing
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
264 #define BOOT_CPUCACHE_ENTRIES 1
265 struct arraycache_init
{
266 struct array_cache cache
;
267 void *entries
[BOOT_CPUCACHE_ENTRIES
];
271 * The slab lists for all objects.
274 struct list_head slabs_partial
; /* partial list first, better asm code */
275 struct list_head slabs_full
;
276 struct list_head slabs_free
;
277 unsigned long free_objects
;
278 unsigned int free_limit
;
279 unsigned int colour_next
; /* Per-node cache coloring */
280 spinlock_t list_lock
;
281 struct array_cache
*shared
; /* shared per node */
282 struct array_cache
**alien
; /* on other nodes */
283 unsigned long next_reap
; /* updated without locking */
284 int free_touched
; /* updated without locking */
288 * Need this for bootstrapping a per node allocator.
290 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
292 #define CACHE_CACHE 0
293 #define SIZE_AC MAX_NUMNODES
294 #define SIZE_L3 (2 * MAX_NUMNODES)
296 static int drain_freelist(struct kmem_cache
*cache
,
297 struct kmem_list3
*l3
, int tofree
);
298 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
300 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
301 static void cache_reap(struct work_struct
*unused
);
304 * This function must be completely optimized away if a constant is passed to
305 * it. Mostly the same as what is in linux/slab.h except it returns an index.
307 static __always_inline
int index_of(const size_t size
)
309 extern void __bad_size(void);
311 if (__builtin_constant_p(size
)) {
319 #include <linux/kmalloc_sizes.h>
327 static int slab_early_init
= 1;
329 #define INDEX_AC index_of(sizeof(struct arraycache_init))
330 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
332 static void kmem_list3_init(struct kmem_list3
*parent
)
334 INIT_LIST_HEAD(&parent
->slabs_full
);
335 INIT_LIST_HEAD(&parent
->slabs_partial
);
336 INIT_LIST_HEAD(&parent
->slabs_free
);
337 parent
->shared
= NULL
;
338 parent
->alien
= NULL
;
339 parent
->colour_next
= 0;
340 spin_lock_init(&parent
->list_lock
);
341 parent
->free_objects
= 0;
342 parent
->free_touched
= 0;
345 #define MAKE_LIST(cachep, listp, slab, nodeid) \
347 INIT_LIST_HEAD(listp); \
348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
351 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 #define CFLGS_OFF_SLAB (0x80000000UL)
359 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
361 #define BATCHREFILL_LIMIT 16
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
366 * OTOH the cpuarrays can contain lots of objects,
367 * which could lock up otherwise freeable slabs.
369 #define REAPTIMEOUT_CPUC (2*HZ)
370 #define REAPTIMEOUT_LIST3 (4*HZ)
373 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
374 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
375 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
376 #define STATS_INC_GROWN(x) ((x)->grown++)
377 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
378 #define STATS_SET_HIGH(x) \
380 if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
383 #define STATS_INC_ERR(x) ((x)->errors++)
384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
385 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
386 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
387 #define STATS_SET_FREEABLE(x, i) \
389 if ((x)->max_freeable < i) \
390 (x)->max_freeable = i; \
392 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
393 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
394 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
395 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
397 #define STATS_INC_ACTIVE(x) do { } while (0)
398 #define STATS_DEC_ACTIVE(x) do { } while (0)
399 #define STATS_INC_ALLOCED(x) do { } while (0)
400 #define STATS_INC_GROWN(x) do { } while (0)
401 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
402 #define STATS_SET_HIGH(x) do { } while (0)
403 #define STATS_INC_ERR(x) do { } while (0)
404 #define STATS_INC_NODEALLOCS(x) do { } while (0)
405 #define STATS_INC_NODEFREES(x) do { } while (0)
406 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
407 #define STATS_SET_FREEABLE(x, i) do { } while (0)
408 #define STATS_INC_ALLOCHIT(x) do { } while (0)
409 #define STATS_INC_ALLOCMISS(x) do { } while (0)
410 #define STATS_INC_FREEHIT(x) do { } while (0)
411 #define STATS_INC_FREEMISS(x) do { } while (0)
417 * memory layout of objects:
419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
420 * the end of an object is aligned with the end of the real
421 * allocation. Catches writes behind the end of the allocation.
422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 * [BYTES_PER_WORD long]
429 static int obj_offset(struct kmem_cache
*cachep
)
431 return cachep
->obj_offset
;
434 static int obj_size(struct kmem_cache
*cachep
)
436 return cachep
->obj_size
;
439 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
441 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
442 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
443 sizeof(unsigned long long));
446 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
448 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
449 if (cachep
->flags
& SLAB_STORE_USER
)
450 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
451 sizeof(unsigned long long) -
453 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
454 sizeof(unsigned long long));
457 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
459 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
460 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
465 #define obj_offset(x) 0
466 #define obj_size(cachep) (cachep->buffer_size)
467 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
469 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
473 #ifdef CONFIG_TRACING
474 size_t slab_buffer_size(struct kmem_cache
*cachep
)
476 return cachep
->buffer_size
;
478 EXPORT_SYMBOL(slab_buffer_size
);
482 * Do not go above this order unless 0 objects fit into the slab.
484 #define BREAK_GFP_ORDER_HI 1
485 #define BREAK_GFP_ORDER_LO 0
486 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
489 * Functions for storing/retrieving the cachep and or slab from the page
490 * allocator. These are used to find the slab an obj belongs to. With kfree(),
491 * these are used to find the cache which an obj belongs to.
493 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
495 page
->lru
.next
= (struct list_head
*)cache
;
498 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
500 page
= compound_head(page
);
501 BUG_ON(!PageSlab(page
));
502 return (struct kmem_cache
*)page
->lru
.next
;
505 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
507 page
->lru
.prev
= (struct list_head
*)slab
;
510 static inline struct slab
*page_get_slab(struct page
*page
)
512 BUG_ON(!PageSlab(page
));
513 return (struct slab
*)page
->lru
.prev
;
516 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
518 struct page
*page
= virt_to_head_page(obj
);
519 return page_get_cache(page
);
522 static inline struct slab
*virt_to_slab(const void *obj
)
524 struct page
*page
= virt_to_head_page(obj
);
525 return page_get_slab(page
);
528 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
531 return slab
->s_mem
+ cache
->buffer_size
* idx
;
535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
536 * Using the fact that buffer_size is a constant for a particular cache,
537 * we can replace (offset / cache->buffer_size) by
538 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
540 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
541 const struct slab
*slab
, void *obj
)
543 u32 offset
= (obj
- slab
->s_mem
);
544 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
548 * These are the default caches for kmalloc. Custom caches can have other sizes.
550 struct cache_sizes malloc_sizes
[] = {
551 #define CACHE(x) { .cs_size = (x) },
552 #include <linux/kmalloc_sizes.h>
556 EXPORT_SYMBOL(malloc_sizes
);
558 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
564 static struct cache_names __initdata cache_names
[] = {
565 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566 #include <linux/kmalloc_sizes.h>
571 static struct arraycache_init initarray_cache __initdata
=
572 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
573 static struct arraycache_init initarray_generic
=
574 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
576 /* internal cache of cache description objs */
577 static struct kmem_list3
*cache_cache_nodelists
[MAX_NUMNODES
];
578 static struct kmem_cache cache_cache
= {
579 .nodelists
= cache_cache_nodelists
,
581 .limit
= BOOT_CPUCACHE_ENTRIES
,
583 .buffer_size
= sizeof(struct kmem_cache
),
584 .name
= "kmem_cache",
587 #define BAD_ALIEN_MAGIC 0x01020304ul
590 * chicken and egg problem: delay the per-cpu array allocation
591 * until the general caches are up.
602 * used by boot code to determine if it can use slab based allocator
604 int slab_is_available(void)
606 return g_cpucache_up
>= EARLY
;
609 #ifdef CONFIG_LOCKDEP
612 * Slab sometimes uses the kmalloc slabs to store the slab headers
613 * for other slabs "off slab".
614 * The locking for this is tricky in that it nests within the locks
615 * of all other slabs in a few places; to deal with this special
616 * locking we put on-slab caches into a separate lock-class.
618 * We set lock class for alien array caches which are up during init.
619 * The lock annotation will be lost if all cpus of a node goes down and
620 * then comes back up during hotplug
622 static struct lock_class_key on_slab_l3_key
;
623 static struct lock_class_key on_slab_alc_key
;
625 static struct lock_class_key debugobj_l3_key
;
626 static struct lock_class_key debugobj_alc_key
;
628 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
629 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
632 struct array_cache
**alc
;
633 struct kmem_list3
*l3
;
636 l3
= cachep
->nodelists
[q
];
640 lockdep_set_class(&l3
->list_lock
, l3_key
);
643 * FIXME: This check for BAD_ALIEN_MAGIC
644 * should go away when common slab code is taught to
645 * work even without alien caches.
646 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
647 * for alloc_alien_cache,
649 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
653 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
657 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
659 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
662 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
666 for_each_online_node(node
)
667 slab_set_debugobj_lock_classes_node(cachep
, node
);
670 static void init_node_lock_keys(int q
)
672 struct cache_sizes
*s
= malloc_sizes
;
674 if (g_cpucache_up
!= FULL
)
677 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
678 struct kmem_list3
*l3
;
680 l3
= s
->cs_cachep
->nodelists
[q
];
681 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
684 slab_set_lock_classes(s
->cs_cachep
, &on_slab_l3_key
,
685 &on_slab_alc_key
, q
);
689 static inline void init_lock_keys(void)
694 init_node_lock_keys(node
);
697 static void init_node_lock_keys(int q
)
701 static inline void init_lock_keys(void)
705 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
709 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
715 * Guard access to the cache-chain.
717 static DEFINE_MUTEX(cache_chain_mutex
);
718 static struct list_head cache_chain
;
720 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
722 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
724 return cachep
->array
[smp_processor_id()];
727 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
730 struct cache_sizes
*csizep
= malloc_sizes
;
733 /* This happens if someone tries to call
734 * kmem_cache_create(), or __kmalloc(), before
735 * the generic caches are initialized.
737 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
740 return ZERO_SIZE_PTR
;
742 while (size
> csizep
->cs_size
)
746 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
747 * has cs_{dma,}cachep==NULL. Thus no special case
748 * for large kmalloc calls required.
750 #ifdef CONFIG_ZONE_DMA
751 if (unlikely(gfpflags
& GFP_DMA
))
752 return csizep
->cs_dmacachep
;
754 return csizep
->cs_cachep
;
757 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
759 return __find_general_cachep(size
, gfpflags
);
762 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
764 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
768 * Calculate the number of objects and left-over bytes for a given buffer size.
770 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
771 size_t align
, int flags
, size_t *left_over
,
776 size_t slab_size
= PAGE_SIZE
<< gfporder
;
779 * The slab management structure can be either off the slab or
780 * on it. For the latter case, the memory allocated for a
784 * - One kmem_bufctl_t for each object
785 * - Padding to respect alignment of @align
786 * - @buffer_size bytes for each object
788 * If the slab management structure is off the slab, then the
789 * alignment will already be calculated into the size. Because
790 * the slabs are all pages aligned, the objects will be at the
791 * correct alignment when allocated.
793 if (flags
& CFLGS_OFF_SLAB
) {
795 nr_objs
= slab_size
/ buffer_size
;
797 if (nr_objs
> SLAB_LIMIT
)
798 nr_objs
= SLAB_LIMIT
;
801 * Ignore padding for the initial guess. The padding
802 * is at most @align-1 bytes, and @buffer_size is at
803 * least @align. In the worst case, this result will
804 * be one greater than the number of objects that fit
805 * into the memory allocation when taking the padding
808 nr_objs
= (slab_size
- sizeof(struct slab
)) /
809 (buffer_size
+ sizeof(kmem_bufctl_t
));
812 * This calculated number will be either the right
813 * amount, or one greater than what we want.
815 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
819 if (nr_objs
> SLAB_LIMIT
)
820 nr_objs
= SLAB_LIMIT
;
822 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
825 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
828 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
830 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
833 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
834 function
, cachep
->name
, msg
);
839 * By default on NUMA we use alien caches to stage the freeing of
840 * objects allocated from other nodes. This causes massive memory
841 * inefficiencies when using fake NUMA setup to split memory into a
842 * large number of small nodes, so it can be disabled on the command
846 static int use_alien_caches __read_mostly
= 1;
847 static int __init
noaliencache_setup(char *s
)
849 use_alien_caches
= 0;
852 __setup("noaliencache", noaliencache_setup
);
856 * Special reaping functions for NUMA systems called from cache_reap().
857 * These take care of doing round robin flushing of alien caches (containing
858 * objects freed on different nodes from which they were allocated) and the
859 * flushing of remote pcps by calling drain_node_pages.
861 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
863 static void init_reap_node(int cpu
)
867 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
868 if (node
== MAX_NUMNODES
)
869 node
= first_node(node_online_map
);
871 per_cpu(slab_reap_node
, cpu
) = node
;
874 static void next_reap_node(void)
876 int node
= __this_cpu_read(slab_reap_node
);
878 node
= next_node(node
, node_online_map
);
879 if (unlikely(node
>= MAX_NUMNODES
))
880 node
= first_node(node_online_map
);
881 __this_cpu_write(slab_reap_node
, node
);
885 #define init_reap_node(cpu) do { } while (0)
886 #define next_reap_node(void) do { } while (0)
890 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
891 * via the workqueue/eventd.
892 * Add the CPU number into the expiration time to minimize the possibility of
893 * the CPUs getting into lockstep and contending for the global cache chain
896 static void __cpuinit
start_cpu_timer(int cpu
)
898 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
901 * When this gets called from do_initcalls via cpucache_init(),
902 * init_workqueues() has already run, so keventd will be setup
905 if (keventd_up() && reap_work
->work
.func
== NULL
) {
907 INIT_DELAYED_WORK_DEFERRABLE(reap_work
, cache_reap
);
908 schedule_delayed_work_on(cpu
, reap_work
,
909 __round_jiffies_relative(HZ
, cpu
));
913 static struct array_cache
*alloc_arraycache(int node
, int entries
,
914 int batchcount
, gfp_t gfp
)
916 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
917 struct array_cache
*nc
= NULL
;
919 nc
= kmalloc_node(memsize
, gfp
, node
);
921 * The array_cache structures contain pointers to free object.
922 * However, when such objects are allocated or transferred to another
923 * cache the pointers are not cleared and they could be counted as
924 * valid references during a kmemleak scan. Therefore, kmemleak must
925 * not scan such objects.
927 kmemleak_no_scan(nc
);
931 nc
->batchcount
= batchcount
;
933 spin_lock_init(&nc
->lock
);
939 * Transfer objects in one arraycache to another.
940 * Locking must be handled by the caller.
942 * Return the number of entries transferred.
944 static int transfer_objects(struct array_cache
*to
,
945 struct array_cache
*from
, unsigned int max
)
947 /* Figure out how many entries to transfer */
948 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
953 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
963 #define drain_alien_cache(cachep, alien) do { } while (0)
964 #define reap_alien(cachep, l3) do { } while (0)
966 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
968 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
971 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
975 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
980 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
986 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
987 gfp_t flags
, int nodeid
)
992 #else /* CONFIG_NUMA */
994 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
995 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
997 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
999 struct array_cache
**ac_ptr
;
1000 int memsize
= sizeof(void *) * nr_node_ids
;
1005 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1008 if (i
== node
|| !node_online(i
))
1010 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1012 for (i
--; i
>= 0; i
--)
1022 static void free_alien_cache(struct array_cache
**ac_ptr
)
1033 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1034 struct array_cache
*ac
, int node
)
1036 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1039 spin_lock(&rl3
->list_lock
);
1041 * Stuff objects into the remote nodes shared array first.
1042 * That way we could avoid the overhead of putting the objects
1043 * into the free lists and getting them back later.
1046 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1048 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1050 spin_unlock(&rl3
->list_lock
);
1055 * Called from cache_reap() to regularly drain alien caches round robin.
1057 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1059 int node
= __this_cpu_read(slab_reap_node
);
1062 struct array_cache
*ac
= l3
->alien
[node
];
1064 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1065 __drain_alien_cache(cachep
, ac
, node
);
1066 spin_unlock_irq(&ac
->lock
);
1071 static void drain_alien_cache(struct kmem_cache
*cachep
,
1072 struct array_cache
**alien
)
1075 struct array_cache
*ac
;
1076 unsigned long flags
;
1078 for_each_online_node(i
) {
1081 spin_lock_irqsave(&ac
->lock
, flags
);
1082 __drain_alien_cache(cachep
, ac
, i
);
1083 spin_unlock_irqrestore(&ac
->lock
, flags
);
1088 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1090 struct slab
*slabp
= virt_to_slab(objp
);
1091 int nodeid
= slabp
->nodeid
;
1092 struct kmem_list3
*l3
;
1093 struct array_cache
*alien
= NULL
;
1096 node
= numa_mem_id();
1099 * Make sure we are not freeing a object from another node to the array
1100 * cache on this cpu.
1102 if (likely(slabp
->nodeid
== node
))
1105 l3
= cachep
->nodelists
[node
];
1106 STATS_INC_NODEFREES(cachep
);
1107 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1108 alien
= l3
->alien
[nodeid
];
1109 spin_lock(&alien
->lock
);
1110 if (unlikely(alien
->avail
== alien
->limit
)) {
1111 STATS_INC_ACOVERFLOW(cachep
);
1112 __drain_alien_cache(cachep
, alien
, nodeid
);
1114 alien
->entry
[alien
->avail
++] = objp
;
1115 spin_unlock(&alien
->lock
);
1117 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1118 free_block(cachep
, &objp
, 1, nodeid
);
1119 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1126 * Allocates and initializes nodelists for a node on each slab cache, used for
1127 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1128 * will be allocated off-node since memory is not yet online for the new node.
1129 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1132 * Must hold cache_chain_mutex.
1134 static int init_cache_nodelists_node(int node
)
1136 struct kmem_cache
*cachep
;
1137 struct kmem_list3
*l3
;
1138 const int memsize
= sizeof(struct kmem_list3
);
1140 list_for_each_entry(cachep
, &cache_chain
, next
) {
1142 * Set up the size64 kmemlist for cpu before we can
1143 * begin anything. Make sure some other cpu on this
1144 * node has not already allocated this
1146 if (!cachep
->nodelists
[node
]) {
1147 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1150 kmem_list3_init(l3
);
1151 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1152 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1155 * The l3s don't come and go as CPUs come and
1156 * go. cache_chain_mutex is sufficient
1159 cachep
->nodelists
[node
] = l3
;
1162 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1163 cachep
->nodelists
[node
]->free_limit
=
1164 (1 + nr_cpus_node(node
)) *
1165 cachep
->batchcount
+ cachep
->num
;
1166 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1171 static void __cpuinit
cpuup_canceled(long cpu
)
1173 struct kmem_cache
*cachep
;
1174 struct kmem_list3
*l3
= NULL
;
1175 int node
= cpu_to_mem(cpu
);
1176 const struct cpumask
*mask
= cpumask_of_node(node
);
1178 list_for_each_entry(cachep
, &cache_chain
, next
) {
1179 struct array_cache
*nc
;
1180 struct array_cache
*shared
;
1181 struct array_cache
**alien
;
1183 /* cpu is dead; no one can alloc from it. */
1184 nc
= cachep
->array
[cpu
];
1185 cachep
->array
[cpu
] = NULL
;
1186 l3
= cachep
->nodelists
[node
];
1189 goto free_array_cache
;
1191 spin_lock_irq(&l3
->list_lock
);
1193 /* Free limit for this kmem_list3 */
1194 l3
->free_limit
-= cachep
->batchcount
;
1196 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1198 if (!cpumask_empty(mask
)) {
1199 spin_unlock_irq(&l3
->list_lock
);
1200 goto free_array_cache
;
1203 shared
= l3
->shared
;
1205 free_block(cachep
, shared
->entry
,
1206 shared
->avail
, node
);
1213 spin_unlock_irq(&l3
->list_lock
);
1217 drain_alien_cache(cachep
, alien
);
1218 free_alien_cache(alien
);
1224 * In the previous loop, all the objects were freed to
1225 * the respective cache's slabs, now we can go ahead and
1226 * shrink each nodelist to its limit.
1228 list_for_each_entry(cachep
, &cache_chain
, next
) {
1229 l3
= cachep
->nodelists
[node
];
1232 drain_freelist(cachep
, l3
, l3
->free_objects
);
1236 static int __cpuinit
cpuup_prepare(long cpu
)
1238 struct kmem_cache
*cachep
;
1239 struct kmem_list3
*l3
= NULL
;
1240 int node
= cpu_to_mem(cpu
);
1244 * We need to do this right in the beginning since
1245 * alloc_arraycache's are going to use this list.
1246 * kmalloc_node allows us to add the slab to the right
1247 * kmem_list3 and not this cpu's kmem_list3
1249 err
= init_cache_nodelists_node(node
);
1254 * Now we can go ahead with allocating the shared arrays and
1257 list_for_each_entry(cachep
, &cache_chain
, next
) {
1258 struct array_cache
*nc
;
1259 struct array_cache
*shared
= NULL
;
1260 struct array_cache
**alien
= NULL
;
1262 nc
= alloc_arraycache(node
, cachep
->limit
,
1263 cachep
->batchcount
, GFP_KERNEL
);
1266 if (cachep
->shared
) {
1267 shared
= alloc_arraycache(node
,
1268 cachep
->shared
* cachep
->batchcount
,
1269 0xbaadf00d, GFP_KERNEL
);
1275 if (use_alien_caches
) {
1276 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1283 cachep
->array
[cpu
] = nc
;
1284 l3
= cachep
->nodelists
[node
];
1287 spin_lock_irq(&l3
->list_lock
);
1290 * We are serialised from CPU_DEAD or
1291 * CPU_UP_CANCELLED by the cpucontrol lock
1293 l3
->shared
= shared
;
1302 spin_unlock_irq(&l3
->list_lock
);
1304 free_alien_cache(alien
);
1305 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1306 slab_set_debugobj_lock_classes_node(cachep
, node
);
1308 init_node_lock_keys(node
);
1312 cpuup_canceled(cpu
);
1316 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1317 unsigned long action
, void *hcpu
)
1319 long cpu
= (long)hcpu
;
1323 case CPU_UP_PREPARE
:
1324 case CPU_UP_PREPARE_FROZEN
:
1325 mutex_lock(&cache_chain_mutex
);
1326 err
= cpuup_prepare(cpu
);
1327 mutex_unlock(&cache_chain_mutex
);
1330 case CPU_ONLINE_FROZEN
:
1331 start_cpu_timer(cpu
);
1333 #ifdef CONFIG_HOTPLUG_CPU
1334 case CPU_DOWN_PREPARE
:
1335 case CPU_DOWN_PREPARE_FROZEN
:
1337 * Shutdown cache reaper. Note that the cache_chain_mutex is
1338 * held so that if cache_reap() is invoked it cannot do
1339 * anything expensive but will only modify reap_work
1340 * and reschedule the timer.
1342 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1343 /* Now the cache_reaper is guaranteed to be not running. */
1344 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1346 case CPU_DOWN_FAILED
:
1347 case CPU_DOWN_FAILED_FROZEN
:
1348 start_cpu_timer(cpu
);
1351 case CPU_DEAD_FROZEN
:
1353 * Even if all the cpus of a node are down, we don't free the
1354 * kmem_list3 of any cache. This to avoid a race between
1355 * cpu_down, and a kmalloc allocation from another cpu for
1356 * memory from the node of the cpu going down. The list3
1357 * structure is usually allocated from kmem_cache_create() and
1358 * gets destroyed at kmem_cache_destroy().
1362 case CPU_UP_CANCELED
:
1363 case CPU_UP_CANCELED_FROZEN
:
1364 mutex_lock(&cache_chain_mutex
);
1365 cpuup_canceled(cpu
);
1366 mutex_unlock(&cache_chain_mutex
);
1369 return notifier_from_errno(err
);
1372 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1373 &cpuup_callback
, NULL
, 0
1376 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1378 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1379 * Returns -EBUSY if all objects cannot be drained so that the node is not
1382 * Must hold cache_chain_mutex.
1384 static int __meminit
drain_cache_nodelists_node(int node
)
1386 struct kmem_cache
*cachep
;
1389 list_for_each_entry(cachep
, &cache_chain
, next
) {
1390 struct kmem_list3
*l3
;
1392 l3
= cachep
->nodelists
[node
];
1396 drain_freelist(cachep
, l3
, l3
->free_objects
);
1398 if (!list_empty(&l3
->slabs_full
) ||
1399 !list_empty(&l3
->slabs_partial
)) {
1407 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1408 unsigned long action
, void *arg
)
1410 struct memory_notify
*mnb
= arg
;
1414 nid
= mnb
->status_change_nid
;
1419 case MEM_GOING_ONLINE
:
1420 mutex_lock(&cache_chain_mutex
);
1421 ret
= init_cache_nodelists_node(nid
);
1422 mutex_unlock(&cache_chain_mutex
);
1424 case MEM_GOING_OFFLINE
:
1425 mutex_lock(&cache_chain_mutex
);
1426 ret
= drain_cache_nodelists_node(nid
);
1427 mutex_unlock(&cache_chain_mutex
);
1431 case MEM_CANCEL_ONLINE
:
1432 case MEM_CANCEL_OFFLINE
:
1436 return notifier_from_errno(ret
);
1438 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1441 * swap the static kmem_list3 with kmalloced memory
1443 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1446 struct kmem_list3
*ptr
;
1448 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1451 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1453 * Do not assume that spinlocks can be initialized via memcpy:
1455 spin_lock_init(&ptr
->list_lock
);
1457 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1458 cachep
->nodelists
[nodeid
] = ptr
;
1462 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1463 * size of kmem_list3.
1465 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1469 for_each_online_node(node
) {
1470 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1471 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1473 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1478 * Initialisation. Called after the page allocator have been initialised and
1479 * before smp_init().
1481 void __init
kmem_cache_init(void)
1484 struct cache_sizes
*sizes
;
1485 struct cache_names
*names
;
1490 if (num_possible_nodes() == 1)
1491 use_alien_caches
= 0;
1493 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1494 kmem_list3_init(&initkmem_list3
[i
]);
1495 if (i
< MAX_NUMNODES
)
1496 cache_cache
.nodelists
[i
] = NULL
;
1498 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1501 * Fragmentation resistance on low memory - only use bigger
1502 * page orders on machines with more than 32MB of memory.
1504 if (totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1505 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1507 /* Bootstrap is tricky, because several objects are allocated
1508 * from caches that do not exist yet:
1509 * 1) initialize the cache_cache cache: it contains the struct
1510 * kmem_cache structures of all caches, except cache_cache itself:
1511 * cache_cache is statically allocated.
1512 * Initially an __init data area is used for the head array and the
1513 * kmem_list3 structures, it's replaced with a kmalloc allocated
1514 * array at the end of the bootstrap.
1515 * 2) Create the first kmalloc cache.
1516 * The struct kmem_cache for the new cache is allocated normally.
1517 * An __init data area is used for the head array.
1518 * 3) Create the remaining kmalloc caches, with minimally sized
1520 * 4) Replace the __init data head arrays for cache_cache and the first
1521 * kmalloc cache with kmalloc allocated arrays.
1522 * 5) Replace the __init data for kmem_list3 for cache_cache and
1523 * the other cache's with kmalloc allocated memory.
1524 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1527 node
= numa_mem_id();
1529 /* 1) create the cache_cache */
1530 INIT_LIST_HEAD(&cache_chain
);
1531 list_add(&cache_cache
.next
, &cache_chain
);
1532 cache_cache
.colour_off
= cache_line_size();
1533 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1534 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1537 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1539 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1540 nr_node_ids
* sizeof(struct kmem_list3
*);
1542 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1544 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1546 cache_cache
.reciprocal_buffer_size
=
1547 reciprocal_value(cache_cache
.buffer_size
);
1549 for (order
= 0; order
< MAX_ORDER
; order
++) {
1550 cache_estimate(order
, cache_cache
.buffer_size
,
1551 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1552 if (cache_cache
.num
)
1555 BUG_ON(!cache_cache
.num
);
1556 cache_cache
.gfporder
= order
;
1557 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1558 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1559 sizeof(struct slab
), cache_line_size());
1561 /* 2+3) create the kmalloc caches */
1562 sizes
= malloc_sizes
;
1563 names
= cache_names
;
1566 * Initialize the caches that provide memory for the array cache and the
1567 * kmem_list3 structures first. Without this, further allocations will
1571 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1572 sizes
[INDEX_AC
].cs_size
,
1573 ARCH_KMALLOC_MINALIGN
,
1574 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1577 if (INDEX_AC
!= INDEX_L3
) {
1578 sizes
[INDEX_L3
].cs_cachep
=
1579 kmem_cache_create(names
[INDEX_L3
].name
,
1580 sizes
[INDEX_L3
].cs_size
,
1581 ARCH_KMALLOC_MINALIGN
,
1582 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1586 slab_early_init
= 0;
1588 while (sizes
->cs_size
!= ULONG_MAX
) {
1590 * For performance, all the general caches are L1 aligned.
1591 * This should be particularly beneficial on SMP boxes, as it
1592 * eliminates "false sharing".
1593 * Note for systems short on memory removing the alignment will
1594 * allow tighter packing of the smaller caches.
1596 if (!sizes
->cs_cachep
) {
1597 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1599 ARCH_KMALLOC_MINALIGN
,
1600 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1603 #ifdef CONFIG_ZONE_DMA
1604 sizes
->cs_dmacachep
= kmem_cache_create(
1607 ARCH_KMALLOC_MINALIGN
,
1608 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1615 /* 4) Replace the bootstrap head arrays */
1617 struct array_cache
*ptr
;
1619 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1621 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1622 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1623 sizeof(struct arraycache_init
));
1625 * Do not assume that spinlocks can be initialized via memcpy:
1627 spin_lock_init(&ptr
->lock
);
1629 cache_cache
.array
[smp_processor_id()] = ptr
;
1631 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1633 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1634 != &initarray_generic
.cache
);
1635 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1636 sizeof(struct arraycache_init
));
1638 * Do not assume that spinlocks can be initialized via memcpy:
1640 spin_lock_init(&ptr
->lock
);
1642 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1645 /* 5) Replace the bootstrap kmem_list3's */
1649 for_each_online_node(nid
) {
1650 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1652 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1653 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1655 if (INDEX_AC
!= INDEX_L3
) {
1656 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1657 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1662 g_cpucache_up
= EARLY
;
1665 void __init
kmem_cache_init_late(void)
1667 struct kmem_cache
*cachep
;
1669 /* Annotate slab for lockdep -- annotate the malloc caches */
1672 /* 6) resize the head arrays to their final sizes */
1673 mutex_lock(&cache_chain_mutex
);
1674 list_for_each_entry(cachep
, &cache_chain
, next
)
1675 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1677 mutex_unlock(&cache_chain_mutex
);
1680 g_cpucache_up
= FULL
;
1683 * Register a cpu startup notifier callback that initializes
1684 * cpu_cache_get for all new cpus
1686 register_cpu_notifier(&cpucache_notifier
);
1690 * Register a memory hotplug callback that initializes and frees
1693 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1697 * The reap timers are started later, with a module init call: That part
1698 * of the kernel is not yet operational.
1702 static int __init
cpucache_init(void)
1707 * Register the timers that return unneeded pages to the page allocator
1709 for_each_online_cpu(cpu
)
1710 start_cpu_timer(cpu
);
1713 __initcall(cpucache_init
);
1716 * Interface to system's page allocator. No need to hold the cache-lock.
1718 * If we requested dmaable memory, we will get it. Even if we
1719 * did not request dmaable memory, we might get it, but that
1720 * would be relatively rare and ignorable.
1722 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1730 * Nommu uses slab's for process anonymous memory allocations, and thus
1731 * requires __GFP_COMP to properly refcount higher order allocations
1733 flags
|= __GFP_COMP
;
1736 flags
|= cachep
->gfpflags
;
1737 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1738 flags
|= __GFP_RECLAIMABLE
;
1740 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1744 nr_pages
= (1 << cachep
->gfporder
);
1745 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1746 add_zone_page_state(page_zone(page
),
1747 NR_SLAB_RECLAIMABLE
, nr_pages
);
1749 add_zone_page_state(page_zone(page
),
1750 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1751 for (i
= 0; i
< nr_pages
; i
++)
1752 __SetPageSlab(page
+ i
);
1754 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1755 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1758 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1760 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1763 return page_address(page
);
1767 * Interface to system's page release.
1769 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1771 unsigned long i
= (1 << cachep
->gfporder
);
1772 struct page
*page
= virt_to_page(addr
);
1773 const unsigned long nr_freed
= i
;
1775 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1777 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1778 sub_zone_page_state(page_zone(page
),
1779 NR_SLAB_RECLAIMABLE
, nr_freed
);
1781 sub_zone_page_state(page_zone(page
),
1782 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1784 BUG_ON(!PageSlab(page
));
1785 __ClearPageSlab(page
);
1788 if (current
->reclaim_state
)
1789 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1790 free_pages((unsigned long)addr
, cachep
->gfporder
);
1793 static void kmem_rcu_free(struct rcu_head
*head
)
1795 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1796 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1798 kmem_freepages(cachep
, slab_rcu
->addr
);
1799 if (OFF_SLAB(cachep
))
1800 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1805 #ifdef CONFIG_DEBUG_PAGEALLOC
1806 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1807 unsigned long caller
)
1809 int size
= obj_size(cachep
);
1811 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1813 if (size
< 5 * sizeof(unsigned long))
1816 *addr
++ = 0x12345678;
1818 *addr
++ = smp_processor_id();
1819 size
-= 3 * sizeof(unsigned long);
1821 unsigned long *sptr
= &caller
;
1822 unsigned long svalue
;
1824 while (!kstack_end(sptr
)) {
1826 if (kernel_text_address(svalue
)) {
1828 size
-= sizeof(unsigned long);
1829 if (size
<= sizeof(unsigned long))
1835 *addr
++ = 0x87654321;
1839 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1841 int size
= obj_size(cachep
);
1842 addr
= &((char *)addr
)[obj_offset(cachep
)];
1844 memset(addr
, val
, size
);
1845 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1848 static void dump_line(char *data
, int offset
, int limit
)
1851 unsigned char error
= 0;
1854 printk(KERN_ERR
"%03x: ", offset
);
1855 for (i
= 0; i
< limit
; i
++) {
1856 if (data
[offset
+ i
] != POISON_FREE
) {
1857 error
= data
[offset
+ i
];
1861 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1862 &data
[offset
], limit
, 1);
1864 if (bad_count
== 1) {
1865 error
^= POISON_FREE
;
1866 if (!(error
& (error
- 1))) {
1867 printk(KERN_ERR
"Single bit error detected. Probably "
1870 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1873 printk(KERN_ERR
"Run a memory test tool.\n");
1882 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1887 if (cachep
->flags
& SLAB_RED_ZONE
) {
1888 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1889 *dbg_redzone1(cachep
, objp
),
1890 *dbg_redzone2(cachep
, objp
));
1893 if (cachep
->flags
& SLAB_STORE_USER
) {
1894 printk(KERN_ERR
"Last user: [<%p>]",
1895 *dbg_userword(cachep
, objp
));
1896 print_symbol("(%s)",
1897 (unsigned long)*dbg_userword(cachep
, objp
));
1900 realobj
= (char *)objp
+ obj_offset(cachep
);
1901 size
= obj_size(cachep
);
1902 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1905 if (i
+ limit
> size
)
1907 dump_line(realobj
, i
, limit
);
1911 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1917 realobj
= (char *)objp
+ obj_offset(cachep
);
1918 size
= obj_size(cachep
);
1920 for (i
= 0; i
< size
; i
++) {
1921 char exp
= POISON_FREE
;
1924 if (realobj
[i
] != exp
) {
1930 "Slab corruption: %s start=%p, len=%d\n",
1931 cachep
->name
, realobj
, size
);
1932 print_objinfo(cachep
, objp
, 0);
1934 /* Hexdump the affected line */
1937 if (i
+ limit
> size
)
1939 dump_line(realobj
, i
, limit
);
1942 /* Limit to 5 lines */
1948 /* Print some data about the neighboring objects, if they
1951 struct slab
*slabp
= virt_to_slab(objp
);
1954 objnr
= obj_to_index(cachep
, slabp
, objp
);
1956 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1957 realobj
= (char *)objp
+ obj_offset(cachep
);
1958 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1960 print_objinfo(cachep
, objp
, 2);
1962 if (objnr
+ 1 < cachep
->num
) {
1963 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1964 realobj
= (char *)objp
+ obj_offset(cachep
);
1965 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1967 print_objinfo(cachep
, objp
, 2);
1974 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1977 for (i
= 0; i
< cachep
->num
; i
++) {
1978 void *objp
= index_to_obj(cachep
, slabp
, i
);
1980 if (cachep
->flags
& SLAB_POISON
) {
1981 #ifdef CONFIG_DEBUG_PAGEALLOC
1982 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1984 kernel_map_pages(virt_to_page(objp
),
1985 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1987 check_poison_obj(cachep
, objp
);
1989 check_poison_obj(cachep
, objp
);
1992 if (cachep
->flags
& SLAB_RED_ZONE
) {
1993 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1994 slab_error(cachep
, "start of a freed object "
1996 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1997 slab_error(cachep
, "end of a freed object "
2003 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2009 * slab_destroy - destroy and release all objects in a slab
2010 * @cachep: cache pointer being destroyed
2011 * @slabp: slab pointer being destroyed
2013 * Destroy all the objs in a slab, and release the mem back to the system.
2014 * Before calling the slab must have been unlinked from the cache. The
2015 * cache-lock is not held/needed.
2017 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
2019 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
2021 slab_destroy_debugcheck(cachep
, slabp
);
2022 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2023 struct slab_rcu
*slab_rcu
;
2025 slab_rcu
= (struct slab_rcu
*)slabp
;
2026 slab_rcu
->cachep
= cachep
;
2027 slab_rcu
->addr
= addr
;
2028 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
2030 kmem_freepages(cachep
, addr
);
2031 if (OFF_SLAB(cachep
))
2032 kmem_cache_free(cachep
->slabp_cache
, slabp
);
2036 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
2039 struct kmem_list3
*l3
;
2041 for_each_online_cpu(i
)
2042 kfree(cachep
->array
[i
]);
2044 /* NUMA: free the list3 structures */
2045 for_each_online_node(i
) {
2046 l3
= cachep
->nodelists
[i
];
2049 free_alien_cache(l3
->alien
);
2053 kmem_cache_free(&cache_cache
, cachep
);
2058 * calculate_slab_order - calculate size (page order) of slabs
2059 * @cachep: pointer to the cache that is being created
2060 * @size: size of objects to be created in this cache.
2061 * @align: required alignment for the objects.
2062 * @flags: slab allocation flags
2064 * Also calculates the number of objects per slab.
2066 * This could be made much more intelligent. For now, try to avoid using
2067 * high order pages for slabs. When the gfp() functions are more friendly
2068 * towards high-order requests, this should be changed.
2070 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2071 size_t size
, size_t align
, unsigned long flags
)
2073 unsigned long offslab_limit
;
2074 size_t left_over
= 0;
2077 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2081 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2085 if (flags
& CFLGS_OFF_SLAB
) {
2087 * Max number of objs-per-slab for caches which
2088 * use off-slab slabs. Needed to avoid a possible
2089 * looping condition in cache_grow().
2091 offslab_limit
= size
- sizeof(struct slab
);
2092 offslab_limit
/= sizeof(kmem_bufctl_t
);
2094 if (num
> offslab_limit
)
2098 /* Found something acceptable - save it away */
2100 cachep
->gfporder
= gfporder
;
2101 left_over
= remainder
;
2104 * A VFS-reclaimable slab tends to have most allocations
2105 * as GFP_NOFS and we really don't want to have to be allocating
2106 * higher-order pages when we are unable to shrink dcache.
2108 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2112 * Large number of objects is good, but very large slabs are
2113 * currently bad for the gfp()s.
2115 if (gfporder
>= slab_break_gfp_order
)
2119 * Acceptable internal fragmentation?
2121 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2127 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2129 if (g_cpucache_up
== FULL
)
2130 return enable_cpucache(cachep
, gfp
);
2132 if (g_cpucache_up
== NONE
) {
2134 * Note: the first kmem_cache_create must create the cache
2135 * that's used by kmalloc(24), otherwise the creation of
2136 * further caches will BUG().
2138 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2141 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2142 * the first cache, then we need to set up all its list3s,
2143 * otherwise the creation of further caches will BUG().
2145 set_up_list3s(cachep
, SIZE_AC
);
2146 if (INDEX_AC
== INDEX_L3
)
2147 g_cpucache_up
= PARTIAL_L3
;
2149 g_cpucache_up
= PARTIAL_AC
;
2151 cachep
->array
[smp_processor_id()] =
2152 kmalloc(sizeof(struct arraycache_init
), gfp
);
2154 if (g_cpucache_up
== PARTIAL_AC
) {
2155 set_up_list3s(cachep
, SIZE_L3
);
2156 g_cpucache_up
= PARTIAL_L3
;
2159 for_each_online_node(node
) {
2160 cachep
->nodelists
[node
] =
2161 kmalloc_node(sizeof(struct kmem_list3
),
2163 BUG_ON(!cachep
->nodelists
[node
]);
2164 kmem_list3_init(cachep
->nodelists
[node
]);
2168 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2169 jiffies
+ REAPTIMEOUT_LIST3
+
2170 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2172 cpu_cache_get(cachep
)->avail
= 0;
2173 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2174 cpu_cache_get(cachep
)->batchcount
= 1;
2175 cpu_cache_get(cachep
)->touched
= 0;
2176 cachep
->batchcount
= 1;
2177 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2182 * kmem_cache_create - Create a cache.
2183 * @name: A string which is used in /proc/slabinfo to identify this cache.
2184 * @size: The size of objects to be created in this cache.
2185 * @align: The required alignment for the objects.
2186 * @flags: SLAB flags
2187 * @ctor: A constructor for the objects.
2189 * Returns a ptr to the cache on success, NULL on failure.
2190 * Cannot be called within a int, but can be interrupted.
2191 * The @ctor is run when new pages are allocated by the cache.
2193 * @name must be valid until the cache is destroyed. This implies that
2194 * the module calling this has to destroy the cache before getting unloaded.
2198 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2199 * to catch references to uninitialised memory.
2201 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2202 * for buffer overruns.
2204 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2205 * cacheline. This can be beneficial if you're counting cycles as closely
2209 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2210 unsigned long flags
, void (*ctor
)(void *))
2212 size_t left_over
, slab_size
, ralign
;
2213 struct kmem_cache
*cachep
= NULL
, *pc
;
2217 * Sanity checks... these are all serious usage bugs.
2219 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2220 size
> KMALLOC_MAX_SIZE
) {
2221 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2227 * We use cache_chain_mutex to ensure a consistent view of
2228 * cpu_online_mask as well. Please see cpuup_callback
2230 if (slab_is_available()) {
2232 mutex_lock(&cache_chain_mutex
);
2235 list_for_each_entry(pc
, &cache_chain
, next
) {
2240 * This happens when the module gets unloaded and doesn't
2241 * destroy its slab cache and no-one else reuses the vmalloc
2242 * area of the module. Print a warning.
2244 res
= probe_kernel_address(pc
->name
, tmp
);
2247 "SLAB: cache with size %d has lost its name\n",
2252 if (!strcmp(pc
->name
, name
)) {
2254 "kmem_cache_create: duplicate cache %s\n", name
);
2261 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2264 * Enable redzoning and last user accounting, except for caches with
2265 * large objects, if the increased size would increase the object size
2266 * above the next power of two: caches with object sizes just above a
2267 * power of two have a significant amount of internal fragmentation.
2269 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2270 2 * sizeof(unsigned long long)))
2271 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2272 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2273 flags
|= SLAB_POISON
;
2275 if (flags
& SLAB_DESTROY_BY_RCU
)
2276 BUG_ON(flags
& SLAB_POISON
);
2279 * Always checks flags, a caller might be expecting debug support which
2282 BUG_ON(flags
& ~CREATE_MASK
);
2285 * Check that size is in terms of words. This is needed to avoid
2286 * unaligned accesses for some archs when redzoning is used, and makes
2287 * sure any on-slab bufctl's are also correctly aligned.
2289 if (size
& (BYTES_PER_WORD
- 1)) {
2290 size
+= (BYTES_PER_WORD
- 1);
2291 size
&= ~(BYTES_PER_WORD
- 1);
2294 /* calculate the final buffer alignment: */
2296 /* 1) arch recommendation: can be overridden for debug */
2297 if (flags
& SLAB_HWCACHE_ALIGN
) {
2299 * Default alignment: as specified by the arch code. Except if
2300 * an object is really small, then squeeze multiple objects into
2303 ralign
= cache_line_size();
2304 while (size
<= ralign
/ 2)
2307 ralign
= BYTES_PER_WORD
;
2311 * Redzoning and user store require word alignment or possibly larger.
2312 * Note this will be overridden by architecture or caller mandated
2313 * alignment if either is greater than BYTES_PER_WORD.
2315 if (flags
& SLAB_STORE_USER
)
2316 ralign
= BYTES_PER_WORD
;
2318 if (flags
& SLAB_RED_ZONE
) {
2319 ralign
= REDZONE_ALIGN
;
2320 /* If redzoning, ensure that the second redzone is suitably
2321 * aligned, by adjusting the object size accordingly. */
2322 size
+= REDZONE_ALIGN
- 1;
2323 size
&= ~(REDZONE_ALIGN
- 1);
2326 /* 2) arch mandated alignment */
2327 if (ralign
< ARCH_SLAB_MINALIGN
) {
2328 ralign
= ARCH_SLAB_MINALIGN
;
2330 /* 3) caller mandated alignment */
2331 if (ralign
< align
) {
2334 /* disable debug if necessary */
2335 if (ralign
> __alignof__(unsigned long long))
2336 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2342 if (slab_is_available())
2347 /* Get cache's description obj. */
2348 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2352 cachep
->nodelists
= (struct kmem_list3
**)&cachep
->array
[nr_cpu_ids
];
2354 cachep
->obj_size
= size
;
2357 * Both debugging options require word-alignment which is calculated
2360 if (flags
& SLAB_RED_ZONE
) {
2361 /* add space for red zone words */
2362 cachep
->obj_offset
+= sizeof(unsigned long long);
2363 size
+= 2 * sizeof(unsigned long long);
2365 if (flags
& SLAB_STORE_USER
) {
2366 /* user store requires one word storage behind the end of
2367 * the real object. But if the second red zone needs to be
2368 * aligned to 64 bits, we must allow that much space.
2370 if (flags
& SLAB_RED_ZONE
)
2371 size
+= REDZONE_ALIGN
;
2373 size
+= BYTES_PER_WORD
;
2375 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2376 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2377 && cachep
->obj_size
> cache_line_size() && ALIGN(size
, align
) < PAGE_SIZE
) {
2378 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, align
);
2385 * Determine if the slab management is 'on' or 'off' slab.
2386 * (bootstrapping cannot cope with offslab caches so don't do
2387 * it too early on. Always use on-slab management when
2388 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2390 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2391 !(flags
& SLAB_NOLEAKTRACE
))
2393 * Size is large, assume best to place the slab management obj
2394 * off-slab (should allow better packing of objs).
2396 flags
|= CFLGS_OFF_SLAB
;
2398 size
= ALIGN(size
, align
);
2400 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2404 "kmem_cache_create: couldn't create cache %s.\n", name
);
2405 kmem_cache_free(&cache_cache
, cachep
);
2409 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2410 + sizeof(struct slab
), align
);
2413 * If the slab has been placed off-slab, and we have enough space then
2414 * move it on-slab. This is at the expense of any extra colouring.
2416 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2417 flags
&= ~CFLGS_OFF_SLAB
;
2418 left_over
-= slab_size
;
2421 if (flags
& CFLGS_OFF_SLAB
) {
2422 /* really off slab. No need for manual alignment */
2424 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2426 #ifdef CONFIG_PAGE_POISONING
2427 /* If we're going to use the generic kernel_map_pages()
2428 * poisoning, then it's going to smash the contents of
2429 * the redzone and userword anyhow, so switch them off.
2431 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2432 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2436 cachep
->colour_off
= cache_line_size();
2437 /* Offset must be a multiple of the alignment. */
2438 if (cachep
->colour_off
< align
)
2439 cachep
->colour_off
= align
;
2440 cachep
->colour
= left_over
/ cachep
->colour_off
;
2441 cachep
->slab_size
= slab_size
;
2442 cachep
->flags
= flags
;
2443 cachep
->gfpflags
= 0;
2444 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2445 cachep
->gfpflags
|= GFP_DMA
;
2446 cachep
->buffer_size
= size
;
2447 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2449 if (flags
& CFLGS_OFF_SLAB
) {
2450 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2452 * This is a possibility for one of the malloc_sizes caches.
2453 * But since we go off slab only for object size greater than
2454 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2455 * this should not happen at all.
2456 * But leave a BUG_ON for some lucky dude.
2458 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2460 cachep
->ctor
= ctor
;
2461 cachep
->name
= name
;
2463 if (setup_cpu_cache(cachep
, gfp
)) {
2464 __kmem_cache_destroy(cachep
);
2469 if (flags
& SLAB_DEBUG_OBJECTS
) {
2471 * Would deadlock through slab_destroy()->call_rcu()->
2472 * debug_object_activate()->kmem_cache_alloc().
2474 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2476 slab_set_debugobj_lock_classes(cachep
);
2479 /* cache setup completed, link it into the list */
2480 list_add(&cachep
->next
, &cache_chain
);
2482 if (!cachep
&& (flags
& SLAB_PANIC
))
2483 panic("kmem_cache_create(): failed to create slab `%s'\n",
2485 if (slab_is_available()) {
2486 mutex_unlock(&cache_chain_mutex
);
2491 EXPORT_SYMBOL(kmem_cache_create
);
2494 static void check_irq_off(void)
2496 BUG_ON(!irqs_disabled());
2499 static void check_irq_on(void)
2501 BUG_ON(irqs_disabled());
2504 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2508 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2512 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2516 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2521 #define check_irq_off() do { } while(0)
2522 #define check_irq_on() do { } while(0)
2523 #define check_spinlock_acquired(x) do { } while(0)
2524 #define check_spinlock_acquired_node(x, y) do { } while(0)
2527 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2528 struct array_cache
*ac
,
2529 int force
, int node
);
2531 static void do_drain(void *arg
)
2533 struct kmem_cache
*cachep
= arg
;
2534 struct array_cache
*ac
;
2535 int node
= numa_mem_id();
2538 ac
= cpu_cache_get(cachep
);
2539 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2540 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2541 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2545 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2547 struct kmem_list3
*l3
;
2550 on_each_cpu(do_drain
, cachep
, 1);
2552 for_each_online_node(node
) {
2553 l3
= cachep
->nodelists
[node
];
2554 if (l3
&& l3
->alien
)
2555 drain_alien_cache(cachep
, l3
->alien
);
2558 for_each_online_node(node
) {
2559 l3
= cachep
->nodelists
[node
];
2561 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2566 * Remove slabs from the list of free slabs.
2567 * Specify the number of slabs to drain in tofree.
2569 * Returns the actual number of slabs released.
2571 static int drain_freelist(struct kmem_cache
*cache
,
2572 struct kmem_list3
*l3
, int tofree
)
2574 struct list_head
*p
;
2579 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2581 spin_lock_irq(&l3
->list_lock
);
2582 p
= l3
->slabs_free
.prev
;
2583 if (p
== &l3
->slabs_free
) {
2584 spin_unlock_irq(&l3
->list_lock
);
2588 slabp
= list_entry(p
, struct slab
, list
);
2590 BUG_ON(slabp
->inuse
);
2592 list_del(&slabp
->list
);
2594 * Safe to drop the lock. The slab is no longer linked
2597 l3
->free_objects
-= cache
->num
;
2598 spin_unlock_irq(&l3
->list_lock
);
2599 slab_destroy(cache
, slabp
);
2606 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2607 static int __cache_shrink(struct kmem_cache
*cachep
)
2610 struct kmem_list3
*l3
;
2612 drain_cpu_caches(cachep
);
2615 for_each_online_node(i
) {
2616 l3
= cachep
->nodelists
[i
];
2620 drain_freelist(cachep
, l3
, l3
->free_objects
);
2622 ret
+= !list_empty(&l3
->slabs_full
) ||
2623 !list_empty(&l3
->slabs_partial
);
2625 return (ret
? 1 : 0);
2629 * kmem_cache_shrink - Shrink a cache.
2630 * @cachep: The cache to shrink.
2632 * Releases as many slabs as possible for a cache.
2633 * To help debugging, a zero exit status indicates all slabs were released.
2635 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2638 BUG_ON(!cachep
|| in_interrupt());
2641 mutex_lock(&cache_chain_mutex
);
2642 ret
= __cache_shrink(cachep
);
2643 mutex_unlock(&cache_chain_mutex
);
2647 EXPORT_SYMBOL(kmem_cache_shrink
);
2650 * kmem_cache_destroy - delete a cache
2651 * @cachep: the cache to destroy
2653 * Remove a &struct kmem_cache object from the slab cache.
2655 * It is expected this function will be called by a module when it is
2656 * unloaded. This will remove the cache completely, and avoid a duplicate
2657 * cache being allocated each time a module is loaded and unloaded, if the
2658 * module doesn't have persistent in-kernel storage across loads and unloads.
2660 * The cache must be empty before calling this function.
2662 * The caller must guarantee that no one will allocate memory from the cache
2663 * during the kmem_cache_destroy().
2665 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2667 BUG_ON(!cachep
|| in_interrupt());
2669 /* Find the cache in the chain of caches. */
2671 mutex_lock(&cache_chain_mutex
);
2673 * the chain is never empty, cache_cache is never destroyed
2675 list_del(&cachep
->next
);
2676 if (__cache_shrink(cachep
)) {
2677 slab_error(cachep
, "Can't free all objects");
2678 list_add(&cachep
->next
, &cache_chain
);
2679 mutex_unlock(&cache_chain_mutex
);
2684 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2687 __kmem_cache_destroy(cachep
);
2688 mutex_unlock(&cache_chain_mutex
);
2691 EXPORT_SYMBOL(kmem_cache_destroy
);
2694 * Get the memory for a slab management obj.
2695 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2696 * always come from malloc_sizes caches. The slab descriptor cannot
2697 * come from the same cache which is getting created because,
2698 * when we are searching for an appropriate cache for these
2699 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2700 * If we are creating a malloc_sizes cache here it would not be visible to
2701 * kmem_find_general_cachep till the initialization is complete.
2702 * Hence we cannot have slabp_cache same as the original cache.
2704 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2705 int colour_off
, gfp_t local_flags
,
2710 if (OFF_SLAB(cachep
)) {
2711 /* Slab management obj is off-slab. */
2712 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2713 local_flags
, nodeid
);
2715 * If the first object in the slab is leaked (it's allocated
2716 * but no one has a reference to it), we want to make sure
2717 * kmemleak does not treat the ->s_mem pointer as a reference
2718 * to the object. Otherwise we will not report the leak.
2720 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2725 slabp
= objp
+ colour_off
;
2726 colour_off
+= cachep
->slab_size
;
2729 slabp
->colouroff
= colour_off
;
2730 slabp
->s_mem
= objp
+ colour_off
;
2731 slabp
->nodeid
= nodeid
;
2736 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2738 return (kmem_bufctl_t
*) (slabp
+ 1);
2741 static void cache_init_objs(struct kmem_cache
*cachep
,
2746 for (i
= 0; i
< cachep
->num
; i
++) {
2747 void *objp
= index_to_obj(cachep
, slabp
, i
);
2749 /* need to poison the objs? */
2750 if (cachep
->flags
& SLAB_POISON
)
2751 poison_obj(cachep
, objp
, POISON_FREE
);
2752 if (cachep
->flags
& SLAB_STORE_USER
)
2753 *dbg_userword(cachep
, objp
) = NULL
;
2755 if (cachep
->flags
& SLAB_RED_ZONE
) {
2756 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2757 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2760 * Constructors are not allowed to allocate memory from the same
2761 * cache which they are a constructor for. Otherwise, deadlock.
2762 * They must also be threaded.
2764 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2765 cachep
->ctor(objp
+ obj_offset(cachep
));
2767 if (cachep
->flags
& SLAB_RED_ZONE
) {
2768 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2769 slab_error(cachep
, "constructor overwrote the"
2770 " end of an object");
2771 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2772 slab_error(cachep
, "constructor overwrote the"
2773 " start of an object");
2775 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2776 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2777 kernel_map_pages(virt_to_page(objp
),
2778 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2783 slab_bufctl(slabp
)[i
] = i
+ 1;
2785 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2788 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2790 if (CONFIG_ZONE_DMA_FLAG
) {
2791 if (flags
& GFP_DMA
)
2792 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2794 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2798 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2801 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2805 next
= slab_bufctl(slabp
)[slabp
->free
];
2807 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2808 WARN_ON(slabp
->nodeid
!= nodeid
);
2815 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2816 void *objp
, int nodeid
)
2818 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2821 /* Verify that the slab belongs to the intended node */
2822 WARN_ON(slabp
->nodeid
!= nodeid
);
2824 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2825 printk(KERN_ERR
"slab: double free detected in cache "
2826 "'%s', objp %p\n", cachep
->name
, objp
);
2830 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2831 slabp
->free
= objnr
;
2836 * Map pages beginning at addr to the given cache and slab. This is required
2837 * for the slab allocator to be able to lookup the cache and slab of a
2838 * virtual address for kfree, ksize, and slab debugging.
2840 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2846 page
= virt_to_page(addr
);
2849 if (likely(!PageCompound(page
)))
2850 nr_pages
<<= cache
->gfporder
;
2853 page_set_cache(page
, cache
);
2854 page_set_slab(page
, slab
);
2856 } while (--nr_pages
);
2860 * Grow (by 1) the number of slabs within a cache. This is called by
2861 * kmem_cache_alloc() when there are no active objs left in a cache.
2863 static int cache_grow(struct kmem_cache
*cachep
,
2864 gfp_t flags
, int nodeid
, void *objp
)
2869 struct kmem_list3
*l3
;
2872 * Be lazy and only check for valid flags here, keeping it out of the
2873 * critical path in kmem_cache_alloc().
2875 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2876 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2878 /* Take the l3 list lock to change the colour_next on this node */
2880 l3
= cachep
->nodelists
[nodeid
];
2881 spin_lock(&l3
->list_lock
);
2883 /* Get colour for the slab, and cal the next value. */
2884 offset
= l3
->colour_next
;
2886 if (l3
->colour_next
>= cachep
->colour
)
2887 l3
->colour_next
= 0;
2888 spin_unlock(&l3
->list_lock
);
2890 offset
*= cachep
->colour_off
;
2892 if (local_flags
& __GFP_WAIT
)
2896 * The test for missing atomic flag is performed here, rather than
2897 * the more obvious place, simply to reduce the critical path length
2898 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2899 * will eventually be caught here (where it matters).
2901 kmem_flagcheck(cachep
, flags
);
2904 * Get mem for the objs. Attempt to allocate a physical page from
2908 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2912 /* Get slab management. */
2913 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2914 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2918 slab_map_pages(cachep
, slabp
, objp
);
2920 cache_init_objs(cachep
, slabp
);
2922 if (local_flags
& __GFP_WAIT
)
2923 local_irq_disable();
2925 spin_lock(&l3
->list_lock
);
2927 /* Make slab active. */
2928 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2929 STATS_INC_GROWN(cachep
);
2930 l3
->free_objects
+= cachep
->num
;
2931 spin_unlock(&l3
->list_lock
);
2934 kmem_freepages(cachep
, objp
);
2936 if (local_flags
& __GFP_WAIT
)
2937 local_irq_disable();
2944 * Perform extra freeing checks:
2945 * - detect bad pointers.
2946 * - POISON/RED_ZONE checking
2948 static void kfree_debugcheck(const void *objp
)
2950 if (!virt_addr_valid(objp
)) {
2951 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2952 (unsigned long)objp
);
2957 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2959 unsigned long long redzone1
, redzone2
;
2961 redzone1
= *dbg_redzone1(cache
, obj
);
2962 redzone2
= *dbg_redzone2(cache
, obj
);
2967 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2970 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2971 slab_error(cache
, "double free detected");
2973 slab_error(cache
, "memory outside object was overwritten");
2975 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2976 obj
, redzone1
, redzone2
);
2979 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2986 BUG_ON(virt_to_cache(objp
) != cachep
);
2988 objp
-= obj_offset(cachep
);
2989 kfree_debugcheck(objp
);
2990 page
= virt_to_head_page(objp
);
2992 slabp
= page_get_slab(page
);
2994 if (cachep
->flags
& SLAB_RED_ZONE
) {
2995 verify_redzone_free(cachep
, objp
);
2996 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2997 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2999 if (cachep
->flags
& SLAB_STORE_USER
)
3000 *dbg_userword(cachep
, objp
) = caller
;
3002 objnr
= obj_to_index(cachep
, slabp
, objp
);
3004 BUG_ON(objnr
>= cachep
->num
);
3005 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
3007 #ifdef CONFIG_DEBUG_SLAB_LEAK
3008 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
3010 if (cachep
->flags
& SLAB_POISON
) {
3011 #ifdef CONFIG_DEBUG_PAGEALLOC
3012 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
3013 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
3014 kernel_map_pages(virt_to_page(objp
),
3015 cachep
->buffer_size
/ PAGE_SIZE
, 0);
3017 poison_obj(cachep
, objp
, POISON_FREE
);
3020 poison_obj(cachep
, objp
, POISON_FREE
);
3026 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
3031 /* Check slab's freelist to see if this obj is there. */
3032 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
3034 if (entries
> cachep
->num
|| i
>= cachep
->num
)
3037 if (entries
!= cachep
->num
- slabp
->inuse
) {
3039 printk(KERN_ERR
"slab: Internal list corruption detected in "
3040 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3041 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
3042 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, slabp
,
3043 sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
),
3049 #define kfree_debugcheck(x) do { } while(0)
3050 #define cache_free_debugcheck(x,objp,z) (objp)
3051 #define check_slabp(x,y) do { } while(0)
3054 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3057 struct kmem_list3
*l3
;
3058 struct array_cache
*ac
;
3063 node
= numa_mem_id();
3064 ac
= cpu_cache_get(cachep
);
3065 batchcount
= ac
->batchcount
;
3066 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3068 * If there was little recent activity on this cache, then
3069 * perform only a partial refill. Otherwise we could generate
3072 batchcount
= BATCHREFILL_LIMIT
;
3074 l3
= cachep
->nodelists
[node
];
3076 BUG_ON(ac
->avail
> 0 || !l3
);
3077 spin_lock(&l3
->list_lock
);
3079 /* See if we can refill from the shared array */
3080 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3081 l3
->shared
->touched
= 1;
3085 while (batchcount
> 0) {
3086 struct list_head
*entry
;
3088 /* Get slab alloc is to come from. */
3089 entry
= l3
->slabs_partial
.next
;
3090 if (entry
== &l3
->slabs_partial
) {
3091 l3
->free_touched
= 1;
3092 entry
= l3
->slabs_free
.next
;
3093 if (entry
== &l3
->slabs_free
)
3097 slabp
= list_entry(entry
, struct slab
, list
);
3098 check_slabp(cachep
, slabp
);
3099 check_spinlock_acquired(cachep
);
3102 * The slab was either on partial or free list so
3103 * there must be at least one object available for
3106 BUG_ON(slabp
->inuse
>= cachep
->num
);
3108 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3109 STATS_INC_ALLOCED(cachep
);
3110 STATS_INC_ACTIVE(cachep
);
3111 STATS_SET_HIGH(cachep
);
3113 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3116 check_slabp(cachep
, slabp
);
3118 /* move slabp to correct slabp list: */
3119 list_del(&slabp
->list
);
3120 if (slabp
->free
== BUFCTL_END
)
3121 list_add(&slabp
->list
, &l3
->slabs_full
);
3123 list_add(&slabp
->list
, &l3
->slabs_partial
);
3127 l3
->free_objects
-= ac
->avail
;
3129 spin_unlock(&l3
->list_lock
);
3131 if (unlikely(!ac
->avail
)) {
3133 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3135 /* cache_grow can reenable interrupts, then ac could change. */
3136 ac
= cpu_cache_get(cachep
);
3137 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3140 if (!ac
->avail
) /* objects refilled by interrupt? */
3144 return ac
->entry
[--ac
->avail
];
3147 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3150 might_sleep_if(flags
& __GFP_WAIT
);
3152 kmem_flagcheck(cachep
, flags
);
3157 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3158 gfp_t flags
, void *objp
, void *caller
)
3162 if (cachep
->flags
& SLAB_POISON
) {
3163 #ifdef CONFIG_DEBUG_PAGEALLOC
3164 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3165 kernel_map_pages(virt_to_page(objp
),
3166 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3168 check_poison_obj(cachep
, objp
);
3170 check_poison_obj(cachep
, objp
);
3172 poison_obj(cachep
, objp
, POISON_INUSE
);
3174 if (cachep
->flags
& SLAB_STORE_USER
)
3175 *dbg_userword(cachep
, objp
) = caller
;
3177 if (cachep
->flags
& SLAB_RED_ZONE
) {
3178 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3179 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3180 slab_error(cachep
, "double free, or memory outside"
3181 " object was overwritten");
3183 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3184 objp
, *dbg_redzone1(cachep
, objp
),
3185 *dbg_redzone2(cachep
, objp
));
3187 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3188 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3190 #ifdef CONFIG_DEBUG_SLAB_LEAK
3195 slabp
= page_get_slab(virt_to_head_page(objp
));
3196 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3197 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3200 objp
+= obj_offset(cachep
);
3201 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3203 if (ARCH_SLAB_MINALIGN
&&
3204 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3205 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3206 objp
, (int)ARCH_SLAB_MINALIGN
);
3211 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3214 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3216 if (cachep
== &cache_cache
)
3219 return should_failslab(obj_size(cachep
), flags
, cachep
->flags
);
3222 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3225 struct array_cache
*ac
;
3229 ac
= cpu_cache_get(cachep
);
3230 if (likely(ac
->avail
)) {
3231 STATS_INC_ALLOCHIT(cachep
);
3233 objp
= ac
->entry
[--ac
->avail
];
3235 STATS_INC_ALLOCMISS(cachep
);
3236 objp
= cache_alloc_refill(cachep
, flags
);
3238 * the 'ac' may be updated by cache_alloc_refill(),
3239 * and kmemleak_erase() requires its correct value.
3241 ac
= cpu_cache_get(cachep
);
3244 * To avoid a false negative, if an object that is in one of the
3245 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3246 * treat the array pointers as a reference to the object.
3249 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3255 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3257 * If we are in_interrupt, then process context, including cpusets and
3258 * mempolicy, may not apply and should not be used for allocation policy.
3260 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3262 int nid_alloc
, nid_here
;
3264 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3266 nid_alloc
= nid_here
= numa_mem_id();
3268 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3269 nid_alloc
= cpuset_slab_spread_node();
3270 else if (current
->mempolicy
)
3271 nid_alloc
= slab_node(current
->mempolicy
);
3273 if (nid_alloc
!= nid_here
)
3274 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3279 * Fallback function if there was no memory available and no objects on a
3280 * certain node and fall back is permitted. First we scan all the
3281 * available nodelists for available objects. If that fails then we
3282 * perform an allocation without specifying a node. This allows the page
3283 * allocator to do its reclaim / fallback magic. We then insert the
3284 * slab into the proper nodelist and then allocate from it.
3286 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3288 struct zonelist
*zonelist
;
3292 enum zone_type high_zoneidx
= gfp_zone(flags
);
3296 if (flags
& __GFP_THISNODE
)
3300 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3301 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3305 * Look through allowed nodes for objects available
3306 * from existing per node queues.
3308 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3309 nid
= zone_to_nid(zone
);
3311 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3312 cache
->nodelists
[nid
] &&
3313 cache
->nodelists
[nid
]->free_objects
) {
3314 obj
= ____cache_alloc_node(cache
,
3315 flags
| GFP_THISNODE
, nid
);
3323 * This allocation will be performed within the constraints
3324 * of the current cpuset / memory policy requirements.
3325 * We may trigger various forms of reclaim on the allowed
3326 * set and go into memory reserves if necessary.
3328 if (local_flags
& __GFP_WAIT
)
3330 kmem_flagcheck(cache
, flags
);
3331 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3332 if (local_flags
& __GFP_WAIT
)
3333 local_irq_disable();
3336 * Insert into the appropriate per node queues
3338 nid
= page_to_nid(virt_to_page(obj
));
3339 if (cache_grow(cache
, flags
, nid
, obj
)) {
3340 obj
= ____cache_alloc_node(cache
,
3341 flags
| GFP_THISNODE
, nid
);
3344 * Another processor may allocate the
3345 * objects in the slab since we are
3346 * not holding any locks.
3350 /* cache_grow already freed obj */
3360 * A interface to enable slab creation on nodeid
3362 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3365 struct list_head
*entry
;
3367 struct kmem_list3
*l3
;
3371 l3
= cachep
->nodelists
[nodeid
];
3376 spin_lock(&l3
->list_lock
);
3377 entry
= l3
->slabs_partial
.next
;
3378 if (entry
== &l3
->slabs_partial
) {
3379 l3
->free_touched
= 1;
3380 entry
= l3
->slabs_free
.next
;
3381 if (entry
== &l3
->slabs_free
)
3385 slabp
= list_entry(entry
, struct slab
, list
);
3386 check_spinlock_acquired_node(cachep
, nodeid
);
3387 check_slabp(cachep
, slabp
);
3389 STATS_INC_NODEALLOCS(cachep
);
3390 STATS_INC_ACTIVE(cachep
);
3391 STATS_SET_HIGH(cachep
);
3393 BUG_ON(slabp
->inuse
== cachep
->num
);
3395 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3396 check_slabp(cachep
, slabp
);
3398 /* move slabp to correct slabp list: */
3399 list_del(&slabp
->list
);
3401 if (slabp
->free
== BUFCTL_END
)
3402 list_add(&slabp
->list
, &l3
->slabs_full
);
3404 list_add(&slabp
->list
, &l3
->slabs_partial
);
3406 spin_unlock(&l3
->list_lock
);
3410 spin_unlock(&l3
->list_lock
);
3411 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3415 return fallback_alloc(cachep
, flags
);
3422 * kmem_cache_alloc_node - Allocate an object on the specified node
3423 * @cachep: The cache to allocate from.
3424 * @flags: See kmalloc().
3425 * @nodeid: node number of the target node.
3426 * @caller: return address of caller, used for debug information
3428 * Identical to kmem_cache_alloc but it will allocate memory on the given
3429 * node, which can improve the performance for cpu bound structures.
3431 * Fallback to other node is possible if __GFP_THISNODE is not set.
3433 static __always_inline
void *
3434 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3437 unsigned long save_flags
;
3439 int slab_node
= numa_mem_id();
3441 flags
&= gfp_allowed_mask
;
3443 lockdep_trace_alloc(flags
);
3445 if (slab_should_failslab(cachep
, flags
))
3448 cache_alloc_debugcheck_before(cachep
, flags
);
3449 local_irq_save(save_flags
);
3451 if (nodeid
== NUMA_NO_NODE
)
3454 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3455 /* Node not bootstrapped yet */
3456 ptr
= fallback_alloc(cachep
, flags
);
3460 if (nodeid
== slab_node
) {
3462 * Use the locally cached objects if possible.
3463 * However ____cache_alloc does not allow fallback
3464 * to other nodes. It may fail while we still have
3465 * objects on other nodes available.
3467 ptr
= ____cache_alloc(cachep
, flags
);
3471 /* ___cache_alloc_node can fall back to other nodes */
3472 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3474 local_irq_restore(save_flags
);
3475 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3476 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3480 kmemcheck_slab_alloc(cachep
, flags
, ptr
, obj_size(cachep
));
3482 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3483 memset(ptr
, 0, obj_size(cachep
));
3488 static __always_inline
void *
3489 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3493 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3494 objp
= alternate_node_alloc(cache
, flags
);
3498 objp
= ____cache_alloc(cache
, flags
);
3501 * We may just have run out of memory on the local node.
3502 * ____cache_alloc_node() knows how to locate memory on other nodes
3505 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3512 static __always_inline
void *
3513 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3515 return ____cache_alloc(cachep
, flags
);
3518 #endif /* CONFIG_NUMA */
3520 static __always_inline
void *
3521 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3523 unsigned long save_flags
;
3526 flags
&= gfp_allowed_mask
;
3528 lockdep_trace_alloc(flags
);
3530 if (slab_should_failslab(cachep
, flags
))
3533 cache_alloc_debugcheck_before(cachep
, flags
);
3534 local_irq_save(save_flags
);
3535 objp
= __do_cache_alloc(cachep
, flags
);
3536 local_irq_restore(save_flags
);
3537 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3538 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3543 kmemcheck_slab_alloc(cachep
, flags
, objp
, obj_size(cachep
));
3545 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3546 memset(objp
, 0, obj_size(cachep
));
3552 * Caller needs to acquire correct kmem_list's list_lock
3554 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3558 struct kmem_list3
*l3
;
3560 for (i
= 0; i
< nr_objects
; i
++) {
3561 void *objp
= objpp
[i
];
3564 slabp
= virt_to_slab(objp
);
3565 l3
= cachep
->nodelists
[node
];
3566 list_del(&slabp
->list
);
3567 check_spinlock_acquired_node(cachep
, node
);
3568 check_slabp(cachep
, slabp
);
3569 slab_put_obj(cachep
, slabp
, objp
, node
);
3570 STATS_DEC_ACTIVE(cachep
);
3572 check_slabp(cachep
, slabp
);
3574 /* fixup slab chains */
3575 if (slabp
->inuse
== 0) {
3576 if (l3
->free_objects
> l3
->free_limit
) {
3577 l3
->free_objects
-= cachep
->num
;
3578 /* No need to drop any previously held
3579 * lock here, even if we have a off-slab slab
3580 * descriptor it is guaranteed to come from
3581 * a different cache, refer to comments before
3584 slab_destroy(cachep
, slabp
);
3586 list_add(&slabp
->list
, &l3
->slabs_free
);
3589 /* Unconditionally move a slab to the end of the
3590 * partial list on free - maximum time for the
3591 * other objects to be freed, too.
3593 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3598 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3601 struct kmem_list3
*l3
;
3602 int node
= numa_mem_id();
3604 batchcount
= ac
->batchcount
;
3606 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3609 l3
= cachep
->nodelists
[node
];
3610 spin_lock(&l3
->list_lock
);
3612 struct array_cache
*shared_array
= l3
->shared
;
3613 int max
= shared_array
->limit
- shared_array
->avail
;
3615 if (batchcount
> max
)
3617 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3618 ac
->entry
, sizeof(void *) * batchcount
);
3619 shared_array
->avail
+= batchcount
;
3624 free_block(cachep
, ac
->entry
, batchcount
, node
);
3629 struct list_head
*p
;
3631 p
= l3
->slabs_free
.next
;
3632 while (p
!= &(l3
->slabs_free
)) {
3635 slabp
= list_entry(p
, struct slab
, list
);
3636 BUG_ON(slabp
->inuse
);
3641 STATS_SET_FREEABLE(cachep
, i
);
3644 spin_unlock(&l3
->list_lock
);
3645 ac
->avail
-= batchcount
;
3646 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3650 * Release an obj back to its cache. If the obj has a constructed state, it must
3651 * be in this state _before_ it is released. Called with disabled ints.
3653 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3656 struct array_cache
*ac
= cpu_cache_get(cachep
);
3659 kmemleak_free_recursive(objp
, cachep
->flags
);
3660 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3662 kmemcheck_slab_free(cachep
, objp
, obj_size(cachep
));
3665 * Skip calling cache_free_alien() when the platform is not numa.
3666 * This will avoid cache misses that happen while accessing slabp (which
3667 * is per page memory reference) to get nodeid. Instead use a global
3668 * variable to skip the call, which is mostly likely to be present in
3671 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3674 if (likely(ac
->avail
< ac
->limit
)) {
3675 STATS_INC_FREEHIT(cachep
);
3676 ac
->entry
[ac
->avail
++] = objp
;
3679 STATS_INC_FREEMISS(cachep
);
3680 cache_flusharray(cachep
, ac
);
3681 ac
->entry
[ac
->avail
++] = objp
;
3686 * kmem_cache_alloc - Allocate an object
3687 * @cachep: The cache to allocate from.
3688 * @flags: See kmalloc().
3690 * Allocate an object from this cache. The flags are only relevant
3691 * if the cache has no available objects.
3693 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3695 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3697 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3698 obj_size(cachep
), cachep
->buffer_size
, flags
);
3702 EXPORT_SYMBOL(kmem_cache_alloc
);
3704 #ifdef CONFIG_TRACING
3706 kmem_cache_alloc_trace(size_t size
, struct kmem_cache
*cachep
, gfp_t flags
)
3710 ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3712 trace_kmalloc(_RET_IP_
, ret
,
3713 size
, slab_buffer_size(cachep
), flags
);
3716 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3720 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3722 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3723 __builtin_return_address(0));
3725 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3726 obj_size(cachep
), cachep
->buffer_size
,
3731 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3733 #ifdef CONFIG_TRACING
3734 void *kmem_cache_alloc_node_trace(size_t size
,
3735 struct kmem_cache
*cachep
,
3741 ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3742 __builtin_return_address(0));
3743 trace_kmalloc_node(_RET_IP_
, ret
,
3744 size
, slab_buffer_size(cachep
),
3748 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3751 static __always_inline
void *
3752 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3754 struct kmem_cache
*cachep
;
3756 cachep
= kmem_find_general_cachep(size
, flags
);
3757 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3759 return kmem_cache_alloc_node_trace(size
, cachep
, flags
, node
);
3762 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3763 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3765 return __do_kmalloc_node(size
, flags
, node
,
3766 __builtin_return_address(0));
3768 EXPORT_SYMBOL(__kmalloc_node
);
3770 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3771 int node
, unsigned long caller
)
3773 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3775 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3777 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3779 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3781 EXPORT_SYMBOL(__kmalloc_node
);
3782 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3783 #endif /* CONFIG_NUMA */
3786 * __do_kmalloc - allocate memory
3787 * @size: how many bytes of memory are required.
3788 * @flags: the type of memory to allocate (see kmalloc).
3789 * @caller: function caller for debug tracking of the caller
3791 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3794 struct kmem_cache
*cachep
;
3797 /* If you want to save a few bytes .text space: replace
3799 * Then kmalloc uses the uninlined functions instead of the inline
3802 cachep
= __find_general_cachep(size
, flags
);
3803 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3805 ret
= __cache_alloc(cachep
, flags
, caller
);
3807 trace_kmalloc((unsigned long) caller
, ret
,
3808 size
, cachep
->buffer_size
, flags
);
3814 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3815 void *__kmalloc(size_t size
, gfp_t flags
)
3817 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3819 EXPORT_SYMBOL(__kmalloc
);
3821 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3823 return __do_kmalloc(size
, flags
, (void *)caller
);
3825 EXPORT_SYMBOL(__kmalloc_track_caller
);
3828 void *__kmalloc(size_t size
, gfp_t flags
)
3830 return __do_kmalloc(size
, flags
, NULL
);
3832 EXPORT_SYMBOL(__kmalloc
);
3836 * kmem_cache_free - Deallocate an object
3837 * @cachep: The cache the allocation was from.
3838 * @objp: The previously allocated object.
3840 * Free an object which was previously allocated from this
3843 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3845 unsigned long flags
;
3847 local_irq_save(flags
);
3848 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3849 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3850 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3851 __cache_free(cachep
, objp
, __builtin_return_address(0));
3852 local_irq_restore(flags
);
3854 trace_kmem_cache_free(_RET_IP_
, objp
);
3856 EXPORT_SYMBOL(kmem_cache_free
);
3859 * kfree - free previously allocated memory
3860 * @objp: pointer returned by kmalloc.
3862 * If @objp is NULL, no operation is performed.
3864 * Don't free memory not originally allocated by kmalloc()
3865 * or you will run into trouble.
3867 void kfree(const void *objp
)
3869 struct kmem_cache
*c
;
3870 unsigned long flags
;
3872 trace_kfree(_RET_IP_
, objp
);
3874 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3876 local_irq_save(flags
);
3877 kfree_debugcheck(objp
);
3878 c
= virt_to_cache(objp
);
3879 debug_check_no_locks_freed(objp
, obj_size(c
));
3880 debug_check_no_obj_freed(objp
, obj_size(c
));
3881 __cache_free(c
, (void *)objp
, __builtin_return_address(0));
3882 local_irq_restore(flags
);
3884 EXPORT_SYMBOL(kfree
);
3886 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3888 return obj_size(cachep
);
3890 EXPORT_SYMBOL(kmem_cache_size
);
3893 * This initializes kmem_list3 or resizes various caches for all nodes.
3895 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3898 struct kmem_list3
*l3
;
3899 struct array_cache
*new_shared
;
3900 struct array_cache
**new_alien
= NULL
;
3902 for_each_online_node(node
) {
3904 if (use_alien_caches
) {
3905 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3911 if (cachep
->shared
) {
3912 new_shared
= alloc_arraycache(node
,
3913 cachep
->shared
*cachep
->batchcount
,
3916 free_alien_cache(new_alien
);
3921 l3
= cachep
->nodelists
[node
];
3923 struct array_cache
*shared
= l3
->shared
;
3925 spin_lock_irq(&l3
->list_lock
);
3928 free_block(cachep
, shared
->entry
,
3929 shared
->avail
, node
);
3931 l3
->shared
= new_shared
;
3933 l3
->alien
= new_alien
;
3936 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3937 cachep
->batchcount
+ cachep
->num
;
3938 spin_unlock_irq(&l3
->list_lock
);
3940 free_alien_cache(new_alien
);
3943 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3945 free_alien_cache(new_alien
);
3950 kmem_list3_init(l3
);
3951 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3952 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3953 l3
->shared
= new_shared
;
3954 l3
->alien
= new_alien
;
3955 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3956 cachep
->batchcount
+ cachep
->num
;
3957 cachep
->nodelists
[node
] = l3
;
3962 if (!cachep
->next
.next
) {
3963 /* Cache is not active yet. Roll back what we did */
3966 if (cachep
->nodelists
[node
]) {
3967 l3
= cachep
->nodelists
[node
];
3970 free_alien_cache(l3
->alien
);
3972 cachep
->nodelists
[node
] = NULL
;
3980 struct ccupdate_struct
{
3981 struct kmem_cache
*cachep
;
3982 struct array_cache
*new[0];
3985 static void do_ccupdate_local(void *info
)
3987 struct ccupdate_struct
*new = info
;
3988 struct array_cache
*old
;
3991 old
= cpu_cache_get(new->cachep
);
3993 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3994 new->new[smp_processor_id()] = old
;
3997 /* Always called with the cache_chain_mutex held */
3998 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3999 int batchcount
, int shared
, gfp_t gfp
)
4001 struct ccupdate_struct
*new;
4004 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
4009 for_each_online_cpu(i
) {
4010 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
4013 for (i
--; i
>= 0; i
--)
4019 new->cachep
= cachep
;
4021 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4024 cachep
->batchcount
= batchcount
;
4025 cachep
->limit
= limit
;
4026 cachep
->shared
= shared
;
4028 for_each_online_cpu(i
) {
4029 struct array_cache
*ccold
= new->new[i
];
4032 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4033 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4034 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4038 return alloc_kmemlist(cachep
, gfp
);
4041 /* Called with cache_chain_mutex held always */
4042 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4048 * The head array serves three purposes:
4049 * - create a LIFO ordering, i.e. return objects that are cache-warm
4050 * - reduce the number of spinlock operations.
4051 * - reduce the number of linked list operations on the slab and
4052 * bufctl chains: array operations are cheaper.
4053 * The numbers are guessed, we should auto-tune as described by
4056 if (cachep
->buffer_size
> 131072)
4058 else if (cachep
->buffer_size
> PAGE_SIZE
)
4060 else if (cachep
->buffer_size
> 1024)
4062 else if (cachep
->buffer_size
> 256)
4068 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4069 * allocation behaviour: Most allocs on one cpu, most free operations
4070 * on another cpu. For these cases, an efficient object passing between
4071 * cpus is necessary. This is provided by a shared array. The array
4072 * replaces Bonwick's magazine layer.
4073 * On uniprocessor, it's functionally equivalent (but less efficient)
4074 * to a larger limit. Thus disabled by default.
4077 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4082 * With debugging enabled, large batchcount lead to excessively long
4083 * periods with disabled local interrupts. Limit the batchcount
4088 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4090 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4091 cachep
->name
, -err
);
4096 * Drain an array if it contains any elements taking the l3 lock only if
4097 * necessary. Note that the l3 listlock also protects the array_cache
4098 * if drain_array() is used on the shared array.
4100 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4101 struct array_cache
*ac
, int force
, int node
)
4105 if (!ac
|| !ac
->avail
)
4107 if (ac
->touched
&& !force
) {
4110 spin_lock_irq(&l3
->list_lock
);
4112 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4113 if (tofree
> ac
->avail
)
4114 tofree
= (ac
->avail
+ 1) / 2;
4115 free_block(cachep
, ac
->entry
, tofree
, node
);
4116 ac
->avail
-= tofree
;
4117 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4118 sizeof(void *) * ac
->avail
);
4120 spin_unlock_irq(&l3
->list_lock
);
4125 * cache_reap - Reclaim memory from caches.
4126 * @w: work descriptor
4128 * Called from workqueue/eventd every few seconds.
4130 * - clear the per-cpu caches for this CPU.
4131 * - return freeable pages to the main free memory pool.
4133 * If we cannot acquire the cache chain mutex then just give up - we'll try
4134 * again on the next iteration.
4136 static void cache_reap(struct work_struct
*w
)
4138 struct kmem_cache
*searchp
;
4139 struct kmem_list3
*l3
;
4140 int node
= numa_mem_id();
4141 struct delayed_work
*work
= to_delayed_work(w
);
4143 if (!mutex_trylock(&cache_chain_mutex
))
4144 /* Give up. Setup the next iteration. */
4147 list_for_each_entry(searchp
, &cache_chain
, next
) {
4151 * We only take the l3 lock if absolutely necessary and we
4152 * have established with reasonable certainty that
4153 * we can do some work if the lock was obtained.
4155 l3
= searchp
->nodelists
[node
];
4157 reap_alien(searchp
, l3
);
4159 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4162 * These are racy checks but it does not matter
4163 * if we skip one check or scan twice.
4165 if (time_after(l3
->next_reap
, jiffies
))
4168 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4170 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4172 if (l3
->free_touched
)
4173 l3
->free_touched
= 0;
4177 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4178 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4179 STATS_ADD_REAPED(searchp
, freed
);
4185 mutex_unlock(&cache_chain_mutex
);
4188 /* Set up the next iteration */
4189 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4192 #ifdef CONFIG_SLABINFO
4194 static void print_slabinfo_header(struct seq_file
*m
)
4197 * Output format version, so at least we can change it
4198 * without _too_ many complaints.
4201 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4203 seq_puts(m
, "slabinfo - version: 2.1\n");
4205 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4206 "<objperslab> <pagesperslab>");
4207 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4208 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4210 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4211 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4212 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4217 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4221 mutex_lock(&cache_chain_mutex
);
4223 print_slabinfo_header(m
);
4225 return seq_list_start(&cache_chain
, *pos
);
4228 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4230 return seq_list_next(p
, &cache_chain
, pos
);
4233 static void s_stop(struct seq_file
*m
, void *p
)
4235 mutex_unlock(&cache_chain_mutex
);
4238 static int s_show(struct seq_file
*m
, void *p
)
4240 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4242 unsigned long active_objs
;
4243 unsigned long num_objs
;
4244 unsigned long active_slabs
= 0;
4245 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4249 struct kmem_list3
*l3
;
4253 for_each_online_node(node
) {
4254 l3
= cachep
->nodelists
[node
];
4259 spin_lock_irq(&l3
->list_lock
);
4261 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4262 if (slabp
->inuse
!= cachep
->num
&& !error
)
4263 error
= "slabs_full accounting error";
4264 active_objs
+= cachep
->num
;
4267 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4268 if (slabp
->inuse
== cachep
->num
&& !error
)
4269 error
= "slabs_partial inuse accounting error";
4270 if (!slabp
->inuse
&& !error
)
4271 error
= "slabs_partial/inuse accounting error";
4272 active_objs
+= slabp
->inuse
;
4275 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4276 if (slabp
->inuse
&& !error
)
4277 error
= "slabs_free/inuse accounting error";
4280 free_objects
+= l3
->free_objects
;
4282 shared_avail
+= l3
->shared
->avail
;
4284 spin_unlock_irq(&l3
->list_lock
);
4286 num_slabs
+= active_slabs
;
4287 num_objs
= num_slabs
* cachep
->num
;
4288 if (num_objs
- active_objs
!= free_objects
&& !error
)
4289 error
= "free_objects accounting error";
4291 name
= cachep
->name
;
4293 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4295 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4296 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4297 cachep
->num
, (1 << cachep
->gfporder
));
4298 seq_printf(m
, " : tunables %4u %4u %4u",
4299 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4300 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4301 active_slabs
, num_slabs
, shared_avail
);
4304 unsigned long high
= cachep
->high_mark
;
4305 unsigned long allocs
= cachep
->num_allocations
;
4306 unsigned long grown
= cachep
->grown
;
4307 unsigned long reaped
= cachep
->reaped
;
4308 unsigned long errors
= cachep
->errors
;
4309 unsigned long max_freeable
= cachep
->max_freeable
;
4310 unsigned long node_allocs
= cachep
->node_allocs
;
4311 unsigned long node_frees
= cachep
->node_frees
;
4312 unsigned long overflows
= cachep
->node_overflow
;
4314 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4315 "%4lu %4lu %4lu %4lu %4lu",
4316 allocs
, high
, grown
,
4317 reaped
, errors
, max_freeable
, node_allocs
,
4318 node_frees
, overflows
);
4322 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4323 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4324 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4325 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4327 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4328 allochit
, allocmiss
, freehit
, freemiss
);
4336 * slabinfo_op - iterator that generates /proc/slabinfo
4345 * num-pages-per-slab
4346 * + further values on SMP and with statistics enabled
4349 static const struct seq_operations slabinfo_op
= {
4356 #define MAX_SLABINFO_WRITE 128
4358 * slabinfo_write - Tuning for the slab allocator
4360 * @buffer: user buffer
4361 * @count: data length
4364 static ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4365 size_t count
, loff_t
*ppos
)
4367 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4368 int limit
, batchcount
, shared
, res
;
4369 struct kmem_cache
*cachep
;
4371 if (count
> MAX_SLABINFO_WRITE
)
4373 if (copy_from_user(&kbuf
, buffer
, count
))
4375 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4377 tmp
= strchr(kbuf
, ' ');
4382 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4385 /* Find the cache in the chain of caches. */
4386 mutex_lock(&cache_chain_mutex
);
4388 list_for_each_entry(cachep
, &cache_chain
, next
) {
4389 if (!strcmp(cachep
->name
, kbuf
)) {
4390 if (limit
< 1 || batchcount
< 1 ||
4391 batchcount
> limit
|| shared
< 0) {
4394 res
= do_tune_cpucache(cachep
, limit
,
4401 mutex_unlock(&cache_chain_mutex
);
4407 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4409 return seq_open(file
, &slabinfo_op
);
4412 static const struct file_operations proc_slabinfo_operations
= {
4413 .open
= slabinfo_open
,
4415 .write
= slabinfo_write
,
4416 .llseek
= seq_lseek
,
4417 .release
= seq_release
,
4420 #ifdef CONFIG_DEBUG_SLAB_LEAK
4422 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4424 mutex_lock(&cache_chain_mutex
);
4425 return seq_list_start(&cache_chain
, *pos
);
4428 static inline int add_caller(unsigned long *n
, unsigned long v
)
4438 unsigned long *q
= p
+ 2 * i
;
4452 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4458 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4464 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4465 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4467 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4472 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4474 #ifdef CONFIG_KALLSYMS
4475 unsigned long offset
, size
;
4476 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4478 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4479 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4481 seq_printf(m
, " [%s]", modname
);
4485 seq_printf(m
, "%p", (void *)address
);
4488 static int leaks_show(struct seq_file
*m
, void *p
)
4490 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4492 struct kmem_list3
*l3
;
4494 unsigned long *n
= m
->private;
4498 if (!(cachep
->flags
& SLAB_STORE_USER
))
4500 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4503 /* OK, we can do it */
4507 for_each_online_node(node
) {
4508 l3
= cachep
->nodelists
[node
];
4513 spin_lock_irq(&l3
->list_lock
);
4515 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4516 handle_slab(n
, cachep
, slabp
);
4517 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4518 handle_slab(n
, cachep
, slabp
);
4519 spin_unlock_irq(&l3
->list_lock
);
4521 name
= cachep
->name
;
4523 /* Increase the buffer size */
4524 mutex_unlock(&cache_chain_mutex
);
4525 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4527 /* Too bad, we are really out */
4529 mutex_lock(&cache_chain_mutex
);
4532 *(unsigned long *)m
->private = n
[0] * 2;
4534 mutex_lock(&cache_chain_mutex
);
4535 /* Now make sure this entry will be retried */
4539 for (i
= 0; i
< n
[1]; i
++) {
4540 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4541 show_symbol(m
, n
[2*i
+2]);
4548 static const struct seq_operations slabstats_op
= {
4549 .start
= leaks_start
,
4555 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4557 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4560 ret
= seq_open(file
, &slabstats_op
);
4562 struct seq_file
*m
= file
->private_data
;
4563 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4572 static const struct file_operations proc_slabstats_operations
= {
4573 .open
= slabstats_open
,
4575 .llseek
= seq_lseek
,
4576 .release
= seq_release_private
,
4580 static int __init
slab_proc_init(void)
4582 proc_create("slabinfo",S_IWUSR
|S_IRUSR
,NULL
,&proc_slabinfo_operations
);
4583 #ifdef CONFIG_DEBUG_SLAB_LEAK
4584 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4588 module_init(slab_proc_init
);
4592 * ksize - get the actual amount of memory allocated for a given object
4593 * @objp: Pointer to the object
4595 * kmalloc may internally round up allocations and return more memory
4596 * than requested. ksize() can be used to determine the actual amount of
4597 * memory allocated. The caller may use this additional memory, even though
4598 * a smaller amount of memory was initially specified with the kmalloc call.
4599 * The caller must guarantee that objp points to a valid object previously
4600 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4601 * must not be freed during the duration of the call.
4603 size_t ksize(const void *objp
)
4606 if (unlikely(objp
== ZERO_SIZE_PTR
))
4609 return obj_size(virt_to_cache(objp
));
4611 EXPORT_SYMBOL(ksize
);