2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 Andrew Morton
10 #include <linux/kernel.h>
12 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
22 * Initialise a struct file's readahead state. Assumes that the caller has
26 file_ra_state_init(struct file_ra_state
*ra
, struct address_space
*mapping
)
28 ra
->ra_pages
= mapping
->backing_dev_info
->ra_pages
;
31 EXPORT_SYMBOL_GPL(file_ra_state_init
);
33 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
36 * see if a page needs releasing upon read_cache_pages() failure
37 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
38 * before calling, such as the NFS fs marking pages that are cached locally
39 * on disk, thus we need to give the fs a chance to clean up in the event of
42 static void read_cache_pages_invalidate_page(struct address_space
*mapping
,
45 if (page_has_private(page
)) {
46 if (!trylock_page(page
))
48 page
->mapping
= mapping
;
49 do_invalidatepage(page
, 0);
53 page_cache_release(page
);
57 * release a list of pages, invalidating them first if need be
59 static void read_cache_pages_invalidate_pages(struct address_space
*mapping
,
60 struct list_head
*pages
)
64 while (!list_empty(pages
)) {
65 victim
= list_to_page(pages
);
66 list_del(&victim
->lru
);
67 read_cache_pages_invalidate_page(mapping
, victim
);
72 * read_cache_pages - populate an address space with some pages & start reads against them
73 * @mapping: the address_space
74 * @pages: The address of a list_head which contains the target pages. These
75 * pages have their ->index populated and are otherwise uninitialised.
76 * @filler: callback routine for filling a single page.
77 * @data: private data for the callback routine.
79 * Hides the details of the LRU cache etc from the filesystems.
81 int read_cache_pages(struct address_space
*mapping
, struct list_head
*pages
,
82 int (*filler
)(void *, struct page
*), void *data
)
87 while (!list_empty(pages
)) {
88 page
= list_to_page(pages
);
90 if (add_to_page_cache_lru(page
, mapping
,
91 page
->index
, GFP_KERNEL
)) {
92 read_cache_pages_invalidate_page(mapping
, page
);
95 page_cache_release(page
);
97 ret
= filler(data
, page
);
99 read_cache_pages_invalidate_pages(mapping
, pages
);
102 task_io_account_read(PAGE_CACHE_SIZE
);
107 EXPORT_SYMBOL(read_cache_pages
);
109 static int read_pages(struct address_space
*mapping
, struct file
*filp
,
110 struct list_head
*pages
, unsigned nr_pages
)
112 struct blk_plug plug
;
116 blk_start_plug(&plug
);
118 if (mapping
->a_ops
->readpages
) {
119 ret
= mapping
->a_ops
->readpages(filp
, mapping
, pages
, nr_pages
);
120 /* Clean up the remaining pages */
121 put_pages_list(pages
);
125 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
126 struct page
*page
= list_to_page(pages
);
127 list_del(&page
->lru
);
128 if (!add_to_page_cache_lru(page
, mapping
,
129 page
->index
, GFP_KERNEL
)) {
130 mapping
->a_ops
->readpage(filp
, page
);
132 page_cache_release(page
);
137 blk_finish_plug(&plug
);
143 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 __do_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
152 pgoff_t offset
, unsigned long nr_to_read
,
153 unsigned long lookahead_size
)
155 struct inode
*inode
= mapping
->host
;
157 unsigned long end_index
; /* The last page we want to read */
158 LIST_HEAD(page_pool
);
161 loff_t isize
= i_size_read(inode
);
166 end_index
= ((isize
- 1) >> PAGE_CACHE_SHIFT
);
169 * Preallocate as many pages as we will need.
171 for (page_idx
= 0; page_idx
< nr_to_read
; page_idx
++) {
172 pgoff_t page_offset
= offset
+ page_idx
;
174 if (page_offset
> end_index
)
178 page
= radix_tree_lookup(&mapping
->page_tree
, page_offset
);
183 page
= page_cache_alloc_readahead(mapping
);
186 page
->index
= page_offset
;
187 list_add(&page
->lru
, &page_pool
);
188 if (page_idx
== nr_to_read
- lookahead_size
)
189 SetPageReadahead(page
);
194 * Now start the IO. We ignore I/O errors - if the page is not
195 * uptodate then the caller will launch readpage again, and
196 * will then handle the error.
199 read_pages(mapping
, filp
, &page_pool
, ret
);
200 BUG_ON(!list_empty(&page_pool
));
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
209 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
210 pgoff_t offset
, unsigned long nr_to_read
)
214 if (unlikely(!mapping
->a_ops
->readpage
&& !mapping
->a_ops
->readpages
))
217 nr_to_read
= max_sane_readahead(nr_to_read
);
221 unsigned long this_chunk
= (2 * 1024 * 1024) / PAGE_CACHE_SIZE
;
223 if (this_chunk
> nr_to_read
)
224 this_chunk
= nr_to_read
;
225 err
= __do_page_cache_readahead(mapping
, filp
,
226 offset
, this_chunk
, 0);
232 offset
+= this_chunk
;
233 nr_to_read
-= this_chunk
;
239 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
240 * sensible upper limit.
242 unsigned long max_sane_readahead(unsigned long nr
)
244 return min(nr
, (node_page_state(numa_node_id(), NR_INACTIVE_FILE
)
245 + node_page_state(numa_node_id(), NR_FREE_PAGES
)) / 2);
249 * Submit IO for the read-ahead request in file_ra_state.
251 unsigned long ra_submit(struct file_ra_state
*ra
,
252 struct address_space
*mapping
, struct file
*filp
)
256 actual
= __do_page_cache_readahead(mapping
, filp
,
257 ra
->start
, ra
->size
, ra
->async_size
);
263 * Set the initial window size, round to next power of 2 and square
264 * for small size, x 4 for medium, and x 2 for large
265 * for 128k (32 page) max ra
266 * 1-8 page = 32k initial, > 8 page = 128k initial
268 static unsigned long get_init_ra_size(unsigned long size
, unsigned long max
)
270 unsigned long newsize
= roundup_pow_of_two(size
);
272 if (newsize
<= max
/ 32)
273 newsize
= newsize
* 4;
274 else if (newsize
<= max
/ 4)
275 newsize
= newsize
* 2;
283 * Get the previous window size, ramp it up, and
284 * return it as the new window size.
286 static unsigned long get_next_ra_size(struct file_ra_state
*ra
,
289 unsigned long cur
= ra
->size
;
290 unsigned long newsize
;
297 return min(newsize
, max
);
301 * On-demand readahead design.
303 * The fields in struct file_ra_state represent the most-recently-executed
306 * |<----- async_size ---------|
307 * |------------------- size -------------------->|
308 * |==================#===========================|
309 * ^start ^page marked with PG_readahead
311 * To overlap application thinking time and disk I/O time, we do
312 * `readahead pipelining': Do not wait until the application consumed all
313 * readahead pages and stalled on the missing page at readahead_index;
314 * Instead, submit an asynchronous readahead I/O as soon as there are
315 * only async_size pages left in the readahead window. Normally async_size
316 * will be equal to size, for maximum pipelining.
318 * In interleaved sequential reads, concurrent streams on the same fd can
319 * be invalidating each other's readahead state. So we flag the new readahead
320 * page at (start+size-async_size) with PG_readahead, and use it as readahead
321 * indicator. The flag won't be set on already cached pages, to avoid the
322 * readahead-for-nothing fuss, saving pointless page cache lookups.
324 * prev_pos tracks the last visited byte in the _previous_ read request.
325 * It should be maintained by the caller, and will be used for detecting
326 * small random reads. Note that the readahead algorithm checks loosely
327 * for sequential patterns. Hence interleaved reads might be served as
330 * There is a special-case: if the first page which the application tries to
331 * read happens to be the first page of the file, it is assumed that a linear
332 * read is about to happen and the window is immediately set to the initial size
333 * based on I/O request size and the max_readahead.
335 * The code ramps up the readahead size aggressively at first, but slow down as
336 * it approaches max_readhead.
340 * Count contiguously cached pages from @offset-1 to @offset-@max,
341 * this count is a conservative estimation of
342 * - length of the sequential read sequence, or
343 * - thrashing threshold in memory tight systems
345 static pgoff_t
count_history_pages(struct address_space
*mapping
,
346 struct file_ra_state
*ra
,
347 pgoff_t offset
, unsigned long max
)
352 head
= radix_tree_prev_hole(&mapping
->page_tree
, offset
- 1, max
);
355 return offset
- 1 - head
;
359 * page cache context based read-ahead
361 static int try_context_readahead(struct address_space
*mapping
,
362 struct file_ra_state
*ra
,
364 unsigned long req_size
,
369 size
= count_history_pages(mapping
, ra
, offset
, max
);
373 * it could be a random read
379 * starts from beginning of file:
380 * it is a strong indication of long-run stream (or whole-file-read)
386 ra
->size
= get_init_ra_size(size
+ req_size
, max
);
387 ra
->async_size
= ra
->size
;
393 * A minimal readahead algorithm for trivial sequential/random reads.
396 ondemand_readahead(struct address_space
*mapping
,
397 struct file_ra_state
*ra
, struct file
*filp
,
398 bool hit_readahead_marker
, pgoff_t offset
,
399 unsigned long req_size
)
401 unsigned long max
= max_sane_readahead(ra
->ra_pages
);
407 goto initial_readahead
;
410 * It's the expected callback offset, assume sequential access.
411 * Ramp up sizes, and push forward the readahead window.
413 if ((offset
== (ra
->start
+ ra
->size
- ra
->async_size
) ||
414 offset
== (ra
->start
+ ra
->size
))) {
415 ra
->start
+= ra
->size
;
416 ra
->size
= get_next_ra_size(ra
, max
);
417 ra
->async_size
= ra
->size
;
422 * Hit a marked page without valid readahead state.
423 * E.g. interleaved reads.
424 * Query the pagecache for async_size, which normally equals to
425 * readahead size. Ramp it up and use it as the new readahead size.
427 if (hit_readahead_marker
) {
431 start
= radix_tree_next_hole(&mapping
->page_tree
, offset
+1,max
);
434 if (!start
|| start
- offset
> max
)
438 ra
->size
= start
- offset
; /* old async_size */
439 ra
->size
+= req_size
;
440 ra
->size
= get_next_ra_size(ra
, max
);
441 ra
->async_size
= ra
->size
;
449 goto initial_readahead
;
452 * sequential cache miss
454 if (offset
- (ra
->prev_pos
>> PAGE_CACHE_SHIFT
) <= 1UL)
455 goto initial_readahead
;
458 * Query the page cache and look for the traces(cached history pages)
459 * that a sequential stream would leave behind.
461 if (try_context_readahead(mapping
, ra
, offset
, req_size
, max
))
465 * standalone, small random read
466 * Read as is, and do not pollute the readahead state.
468 return __do_page_cache_readahead(mapping
, filp
, offset
, req_size
, 0);
472 ra
->size
= get_init_ra_size(req_size
, max
);
473 ra
->async_size
= ra
->size
> req_size
? ra
->size
- req_size
: ra
->size
;
477 * Will this read hit the readahead marker made by itself?
478 * If so, trigger the readahead marker hit now, and merge
479 * the resulted next readahead window into the current one.
481 if (offset
== ra
->start
&& ra
->size
== ra
->async_size
) {
482 ra
->async_size
= get_next_ra_size(ra
, max
);
483 ra
->size
+= ra
->async_size
;
486 return ra_submit(ra
, mapping
, filp
);
490 * page_cache_sync_readahead - generic file readahead
491 * @mapping: address_space which holds the pagecache and I/O vectors
492 * @ra: file_ra_state which holds the readahead state
493 * @filp: passed on to ->readpage() and ->readpages()
494 * @offset: start offset into @mapping, in pagecache page-sized units
495 * @req_size: hint: total size of the read which the caller is performing in
498 * page_cache_sync_readahead() should be called when a cache miss happened:
499 * it will submit the read. The readahead logic may decide to piggyback more
500 * pages onto the read request if access patterns suggest it will improve
503 void page_cache_sync_readahead(struct address_space
*mapping
,
504 struct file_ra_state
*ra
, struct file
*filp
,
505 pgoff_t offset
, unsigned long req_size
)
512 if (filp
&& (filp
->f_mode
& FMODE_RANDOM
)) {
513 force_page_cache_readahead(mapping
, filp
, offset
, req_size
);
518 ondemand_readahead(mapping
, ra
, filp
, false, offset
, req_size
);
520 EXPORT_SYMBOL_GPL(page_cache_sync_readahead
);
523 * page_cache_async_readahead - file readahead for marked pages
524 * @mapping: address_space which holds the pagecache and I/O vectors
525 * @ra: file_ra_state which holds the readahead state
526 * @filp: passed on to ->readpage() and ->readpages()
527 * @page: the page at @offset which has the PG_readahead flag set
528 * @offset: start offset into @mapping, in pagecache page-sized units
529 * @req_size: hint: total size of the read which the caller is performing in
532 * page_cache_async_readahead() should be called when a page is used which
533 * has the PG_readahead flag; this is a marker to suggest that the application
534 * has used up enough of the readahead window that we should start pulling in
538 page_cache_async_readahead(struct address_space
*mapping
,
539 struct file_ra_state
*ra
, struct file
*filp
,
540 struct page
*page
, pgoff_t offset
,
541 unsigned long req_size
)
548 * Same bit is used for PG_readahead and PG_reclaim.
550 if (PageWriteback(page
))
553 ClearPageReadahead(page
);
556 * Defer asynchronous read-ahead on IO congestion.
558 if (bdi_read_congested(mapping
->backing_dev_info
))
562 ondemand_readahead(mapping
, ra
, filp
, true, offset
, req_size
);
564 EXPORT_SYMBOL_GPL(page_cache_async_readahead
);