powerpc/ftrace: Use pr_devel() in ftrace.c
[linux-2.6/cjktty.git] / drivers / net / 8139cp.c
blob02330f3d5a55d35e1201e22aefc3b8e491f65f9f
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define DRV_NAME "8139cp"
50 #define DRV_VERSION "1.3"
51 #define DRV_RELDATE "Mar 22, 2004"
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/kernel.h>
57 #include <linux/compiler.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
68 #include <linux/in.h>
69 #include <linux/ip.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h>
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
82 #else
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
86 #endif
88 /* These identify the driver base version and may not be removed. */
89 static char version[] =
90 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_VERSION(DRV_VERSION);
95 MODULE_LICENSE("GPL");
97 static int debug = -1;
98 module_param(debug, int, 0);
99 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
101 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
102 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
103 static int multicast_filter_limit = 32;
104 module_param(multicast_filter_limit, int, 0);
105 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
107 #define PFX DRV_NAME ": "
109 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
110 NETIF_MSG_PROBE | \
111 NETIF_MSG_LINK)
112 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
113 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
114 #define CP_REGS_SIZE (0xff + 1)
115 #define CP_REGS_VER 1 /* version 1 */
116 #define CP_RX_RING_SIZE 64
117 #define CP_TX_RING_SIZE 64
118 #define CP_RING_BYTES \
119 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
120 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
121 CP_STATS_SIZE)
122 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
123 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
124 #define TX_BUFFS_AVAIL(CP) \
125 (((CP)->tx_tail <= (CP)->tx_head) ? \
126 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
127 (CP)->tx_tail - (CP)->tx_head - 1)
129 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
130 #define CP_INTERNAL_PHY 32
132 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
133 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
134 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
135 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
136 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
138 /* Time in jiffies before concluding the transmitter is hung. */
139 #define TX_TIMEOUT (6*HZ)
141 /* hardware minimum and maximum for a single frame's data payload */
142 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
143 #define CP_MAX_MTU 4096
145 enum {
146 /* NIC register offsets */
147 MAC0 = 0x00, /* Ethernet hardware address. */
148 MAR0 = 0x08, /* Multicast filter. */
149 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
150 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
151 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
152 Cmd = 0x37, /* Command register */
153 IntrMask = 0x3C, /* Interrupt mask */
154 IntrStatus = 0x3E, /* Interrupt status */
155 TxConfig = 0x40, /* Tx configuration */
156 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
157 RxConfig = 0x44, /* Rx configuration */
158 RxMissed = 0x4C, /* 24 bits valid, write clears */
159 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
160 Config1 = 0x52, /* Config1 */
161 Config3 = 0x59, /* Config3 */
162 Config4 = 0x5A, /* Config4 */
163 MultiIntr = 0x5C, /* Multiple interrupt select */
164 BasicModeCtrl = 0x62, /* MII BMCR */
165 BasicModeStatus = 0x64, /* MII BMSR */
166 NWayAdvert = 0x66, /* MII ADVERTISE */
167 NWayLPAR = 0x68, /* MII LPA */
168 NWayExpansion = 0x6A, /* MII Expansion */
169 Config5 = 0xD8, /* Config5 */
170 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
171 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
172 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
173 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
174 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
175 TxThresh = 0xEC, /* Early Tx threshold */
176 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
177 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
179 /* Tx and Rx status descriptors */
180 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
181 RingEnd = (1 << 30), /* End of descriptor ring */
182 FirstFrag = (1 << 29), /* First segment of a packet */
183 LastFrag = (1 << 28), /* Final segment of a packet */
184 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
185 MSSShift = 16, /* MSS value position */
186 MSSMask = 0xfff, /* MSS value: 11 bits */
187 TxError = (1 << 23), /* Tx error summary */
188 RxError = (1 << 20), /* Rx error summary */
189 IPCS = (1 << 18), /* Calculate IP checksum */
190 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
191 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
192 TxVlanTag = (1 << 17), /* Add VLAN tag */
193 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
194 IPFail = (1 << 15), /* IP checksum failed */
195 UDPFail = (1 << 14), /* UDP/IP checksum failed */
196 TCPFail = (1 << 13), /* TCP/IP checksum failed */
197 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
198 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
199 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
200 RxProtoTCP = 1,
201 RxProtoUDP = 2,
202 RxProtoIP = 3,
203 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
204 TxOWC = (1 << 22), /* Tx Out-of-window collision */
205 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
206 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
207 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
208 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
209 RxErrFrame = (1 << 27), /* Rx frame alignment error */
210 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
211 RxErrCRC = (1 << 18), /* Rx CRC error */
212 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
213 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
214 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
216 /* StatsAddr register */
217 DumpStats = (1 << 3), /* Begin stats dump */
219 /* RxConfig register */
220 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
221 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
222 AcceptErr = 0x20, /* Accept packets with CRC errors */
223 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
224 AcceptBroadcast = 0x08, /* Accept broadcast packets */
225 AcceptMulticast = 0x04, /* Accept multicast packets */
226 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
227 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
229 /* IntrMask / IntrStatus registers */
230 PciErr = (1 << 15), /* System error on the PCI bus */
231 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
232 LenChg = (1 << 13), /* Cable length change */
233 SWInt = (1 << 8), /* Software-requested interrupt */
234 TxEmpty = (1 << 7), /* No Tx descriptors available */
235 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
236 LinkChg = (1 << 5), /* Packet underrun, or link change */
237 RxEmpty = (1 << 4), /* No Rx descriptors available */
238 TxErr = (1 << 3), /* Tx error */
239 TxOK = (1 << 2), /* Tx packet sent */
240 RxErr = (1 << 1), /* Rx error */
241 RxOK = (1 << 0), /* Rx packet received */
242 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
243 but hardware likes to raise it */
245 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
246 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
247 RxErr | RxOK | IntrResvd,
249 /* C mode command register */
250 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
251 RxOn = (1 << 3), /* Rx mode enable */
252 TxOn = (1 << 2), /* Tx mode enable */
254 /* C+ mode command register */
255 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
256 RxChkSum = (1 << 5), /* Rx checksum offload enable */
257 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
258 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
259 CpRxOn = (1 << 1), /* Rx mode enable */
260 CpTxOn = (1 << 0), /* Tx mode enable */
262 /* Cfg9436 EEPROM control register */
263 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
264 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
266 /* TxConfig register */
267 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
268 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
270 /* Early Tx Threshold register */
271 TxThreshMask = 0x3f, /* Mask bits 5-0 */
272 TxThreshMax = 2048, /* Max early Tx threshold */
274 /* Config1 register */
275 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
276 LWACT = (1 << 4), /* LWAKE active mode */
277 PMEnable = (1 << 0), /* Enable various PM features of chip */
279 /* Config3 register */
280 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
281 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
282 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
284 /* Config4 register */
285 LWPTN = (1 << 1), /* LWAKE Pattern */
286 LWPME = (1 << 4), /* LANWAKE vs PMEB */
288 /* Config5 register */
289 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
290 MWF = (1 << 5), /* Accept Multicast wakeup frame */
291 UWF = (1 << 4), /* Accept Unicast wakeup frame */
292 LANWake = (1 << 1), /* Enable LANWake signal */
293 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
295 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
296 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
297 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
300 static const unsigned int cp_rx_config =
301 (RX_FIFO_THRESH << RxCfgFIFOShift) |
302 (RX_DMA_BURST << RxCfgDMAShift);
304 struct cp_desc {
305 __le32 opts1;
306 __le32 opts2;
307 __le64 addr;
310 struct cp_dma_stats {
311 __le64 tx_ok;
312 __le64 rx_ok;
313 __le64 tx_err;
314 __le32 rx_err;
315 __le16 rx_fifo;
316 __le16 frame_align;
317 __le32 tx_ok_1col;
318 __le32 tx_ok_mcol;
319 __le64 rx_ok_phys;
320 __le64 rx_ok_bcast;
321 __le32 rx_ok_mcast;
322 __le16 tx_abort;
323 __le16 tx_underrun;
324 } __attribute__((packed));
326 struct cp_extra_stats {
327 unsigned long rx_frags;
330 struct cp_private {
331 void __iomem *regs;
332 struct net_device *dev;
333 spinlock_t lock;
334 u32 msg_enable;
336 struct napi_struct napi;
338 struct pci_dev *pdev;
339 u32 rx_config;
340 u16 cpcmd;
342 struct cp_extra_stats cp_stats;
344 unsigned rx_head ____cacheline_aligned;
345 unsigned rx_tail;
346 struct cp_desc *rx_ring;
347 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
349 unsigned tx_head ____cacheline_aligned;
350 unsigned tx_tail;
351 struct cp_desc *tx_ring;
352 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
354 unsigned rx_buf_sz;
355 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
357 #if CP_VLAN_TAG_USED
358 struct vlan_group *vlgrp;
359 #endif
360 dma_addr_t ring_dma;
362 struct mii_if_info mii_if;
365 #define cpr8(reg) readb(cp->regs + (reg))
366 #define cpr16(reg) readw(cp->regs + (reg))
367 #define cpr32(reg) readl(cp->regs + (reg))
368 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
369 #define cpw16(reg,val) writew((val), cp->regs + (reg))
370 #define cpw32(reg,val) writel((val), cp->regs + (reg))
371 #define cpw8_f(reg,val) do { \
372 writeb((val), cp->regs + (reg)); \
373 readb(cp->regs + (reg)); \
374 } while (0)
375 #define cpw16_f(reg,val) do { \
376 writew((val), cp->regs + (reg)); \
377 readw(cp->regs + (reg)); \
378 } while (0)
379 #define cpw32_f(reg,val) do { \
380 writel((val), cp->regs + (reg)); \
381 readl(cp->regs + (reg)); \
382 } while (0)
385 static void __cp_set_rx_mode (struct net_device *dev);
386 static void cp_tx (struct cp_private *cp);
387 static void cp_clean_rings (struct cp_private *cp);
388 #ifdef CONFIG_NET_POLL_CONTROLLER
389 static void cp_poll_controller(struct net_device *dev);
390 #endif
391 static int cp_get_eeprom_len(struct net_device *dev);
392 static int cp_get_eeprom(struct net_device *dev,
393 struct ethtool_eeprom *eeprom, u8 *data);
394 static int cp_set_eeprom(struct net_device *dev,
395 struct ethtool_eeprom *eeprom, u8 *data);
397 static struct pci_device_id cp_pci_tbl[] = {
398 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
399 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
400 { },
402 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
404 static struct {
405 const char str[ETH_GSTRING_LEN];
406 } ethtool_stats_keys[] = {
407 { "tx_ok" },
408 { "rx_ok" },
409 { "tx_err" },
410 { "rx_err" },
411 { "rx_fifo" },
412 { "frame_align" },
413 { "tx_ok_1col" },
414 { "tx_ok_mcol" },
415 { "rx_ok_phys" },
416 { "rx_ok_bcast" },
417 { "rx_ok_mcast" },
418 { "tx_abort" },
419 { "tx_underrun" },
420 { "rx_frags" },
424 #if CP_VLAN_TAG_USED
425 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
427 struct cp_private *cp = netdev_priv(dev);
428 unsigned long flags;
430 spin_lock_irqsave(&cp->lock, flags);
431 cp->vlgrp = grp;
432 if (grp)
433 cp->cpcmd |= RxVlanOn;
434 else
435 cp->cpcmd &= ~RxVlanOn;
437 cpw16(CpCmd, cp->cpcmd);
438 spin_unlock_irqrestore(&cp->lock, flags);
440 #endif /* CP_VLAN_TAG_USED */
442 static inline void cp_set_rxbufsize (struct cp_private *cp)
444 unsigned int mtu = cp->dev->mtu;
446 if (mtu > ETH_DATA_LEN)
447 /* MTU + ethernet header + FCS + optional VLAN tag */
448 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
449 else
450 cp->rx_buf_sz = PKT_BUF_SZ;
453 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
454 struct cp_desc *desc)
456 skb->protocol = eth_type_trans (skb, cp->dev);
458 cp->dev->stats.rx_packets++;
459 cp->dev->stats.rx_bytes += skb->len;
461 #if CP_VLAN_TAG_USED
462 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
463 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
464 swab16(le32_to_cpu(desc->opts2) & 0xffff));
465 } else
466 #endif
467 netif_receive_skb(skb);
470 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
471 u32 status, u32 len)
473 if (netif_msg_rx_err (cp))
474 printk (KERN_DEBUG
475 "%s: rx err, slot %d status 0x%x len %d\n",
476 cp->dev->name, rx_tail, status, len);
477 cp->dev->stats.rx_errors++;
478 if (status & RxErrFrame)
479 cp->dev->stats.rx_frame_errors++;
480 if (status & RxErrCRC)
481 cp->dev->stats.rx_crc_errors++;
482 if ((status & RxErrRunt) || (status & RxErrLong))
483 cp->dev->stats.rx_length_errors++;
484 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
485 cp->dev->stats.rx_length_errors++;
486 if (status & RxErrFIFO)
487 cp->dev->stats.rx_fifo_errors++;
490 static inline unsigned int cp_rx_csum_ok (u32 status)
492 unsigned int protocol = (status >> 16) & 0x3;
494 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
495 return 1;
496 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
497 return 1;
498 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
499 return 1;
500 return 0;
503 static int cp_rx_poll(struct napi_struct *napi, int budget)
505 struct cp_private *cp = container_of(napi, struct cp_private, napi);
506 struct net_device *dev = cp->dev;
507 unsigned int rx_tail = cp->rx_tail;
508 int rx;
510 rx_status_loop:
511 rx = 0;
512 cpw16(IntrStatus, cp_rx_intr_mask);
514 while (1) {
515 u32 status, len;
516 dma_addr_t mapping;
517 struct sk_buff *skb, *new_skb;
518 struct cp_desc *desc;
519 unsigned buflen;
521 skb = cp->rx_skb[rx_tail];
522 BUG_ON(!skb);
524 desc = &cp->rx_ring[rx_tail];
525 status = le32_to_cpu(desc->opts1);
526 if (status & DescOwn)
527 break;
529 len = (status & 0x1fff) - 4;
530 mapping = le64_to_cpu(desc->addr);
532 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
533 /* we don't support incoming fragmented frames.
534 * instead, we attempt to ensure that the
535 * pre-allocated RX skbs are properly sized such
536 * that RX fragments are never encountered
538 cp_rx_err_acct(cp, rx_tail, status, len);
539 dev->stats.rx_dropped++;
540 cp->cp_stats.rx_frags++;
541 goto rx_next;
544 if (status & (RxError | RxErrFIFO)) {
545 cp_rx_err_acct(cp, rx_tail, status, len);
546 goto rx_next;
549 if (netif_msg_rx_status(cp))
550 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
551 dev->name, rx_tail, status, len);
553 buflen = cp->rx_buf_sz + NET_IP_ALIGN;
554 new_skb = netdev_alloc_skb(dev, buflen);
555 if (!new_skb) {
556 dev->stats.rx_dropped++;
557 goto rx_next;
560 skb_reserve(new_skb, NET_IP_ALIGN);
562 dma_unmap_single(&cp->pdev->dev, mapping,
563 buflen, PCI_DMA_FROMDEVICE);
565 /* Handle checksum offloading for incoming packets. */
566 if (cp_rx_csum_ok(status))
567 skb->ip_summed = CHECKSUM_UNNECESSARY;
568 else
569 skb->ip_summed = CHECKSUM_NONE;
571 skb_put(skb, len);
573 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
574 PCI_DMA_FROMDEVICE);
575 cp->rx_skb[rx_tail] = new_skb;
577 cp_rx_skb(cp, skb, desc);
578 rx++;
580 rx_next:
581 cp->rx_ring[rx_tail].opts2 = 0;
582 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
583 if (rx_tail == (CP_RX_RING_SIZE - 1))
584 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
585 cp->rx_buf_sz);
586 else
587 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
588 rx_tail = NEXT_RX(rx_tail);
590 if (rx >= budget)
591 break;
594 cp->rx_tail = rx_tail;
596 /* if we did not reach work limit, then we're done with
597 * this round of polling
599 if (rx < budget) {
600 unsigned long flags;
602 if (cpr16(IntrStatus) & cp_rx_intr_mask)
603 goto rx_status_loop;
605 spin_lock_irqsave(&cp->lock, flags);
606 cpw16_f(IntrMask, cp_intr_mask);
607 __napi_complete(napi);
608 spin_unlock_irqrestore(&cp->lock, flags);
611 return rx;
614 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
616 struct net_device *dev = dev_instance;
617 struct cp_private *cp;
618 u16 status;
620 if (unlikely(dev == NULL))
621 return IRQ_NONE;
622 cp = netdev_priv(dev);
624 status = cpr16(IntrStatus);
625 if (!status || (status == 0xFFFF))
626 return IRQ_NONE;
628 if (netif_msg_intr(cp))
629 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
630 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
632 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
634 spin_lock(&cp->lock);
636 /* close possible race's with dev_close */
637 if (unlikely(!netif_running(dev))) {
638 cpw16(IntrMask, 0);
639 spin_unlock(&cp->lock);
640 return IRQ_HANDLED;
643 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
644 if (napi_schedule_prep(&cp->napi)) {
645 cpw16_f(IntrMask, cp_norx_intr_mask);
646 __napi_schedule(&cp->napi);
649 if (status & (TxOK | TxErr | TxEmpty | SWInt))
650 cp_tx(cp);
651 if (status & LinkChg)
652 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
654 spin_unlock(&cp->lock);
656 if (status & PciErr) {
657 u16 pci_status;
659 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
660 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
661 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
662 dev->name, status, pci_status);
664 /* TODO: reset hardware */
667 return IRQ_HANDLED;
670 #ifdef CONFIG_NET_POLL_CONTROLLER
672 * Polling receive - used by netconsole and other diagnostic tools
673 * to allow network i/o with interrupts disabled.
675 static void cp_poll_controller(struct net_device *dev)
677 disable_irq(dev->irq);
678 cp_interrupt(dev->irq, dev);
679 enable_irq(dev->irq);
681 #endif
683 static void cp_tx (struct cp_private *cp)
685 unsigned tx_head = cp->tx_head;
686 unsigned tx_tail = cp->tx_tail;
688 while (tx_tail != tx_head) {
689 struct cp_desc *txd = cp->tx_ring + tx_tail;
690 struct sk_buff *skb;
691 u32 status;
693 rmb();
694 status = le32_to_cpu(txd->opts1);
695 if (status & DescOwn)
696 break;
698 skb = cp->tx_skb[tx_tail];
699 BUG_ON(!skb);
701 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
702 le32_to_cpu(txd->opts1) & 0xffff,
703 PCI_DMA_TODEVICE);
705 if (status & LastFrag) {
706 if (status & (TxError | TxFIFOUnder)) {
707 if (netif_msg_tx_err(cp))
708 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
709 cp->dev->name, status);
710 cp->dev->stats.tx_errors++;
711 if (status & TxOWC)
712 cp->dev->stats.tx_window_errors++;
713 if (status & TxMaxCol)
714 cp->dev->stats.tx_aborted_errors++;
715 if (status & TxLinkFail)
716 cp->dev->stats.tx_carrier_errors++;
717 if (status & TxFIFOUnder)
718 cp->dev->stats.tx_fifo_errors++;
719 } else {
720 cp->dev->stats.collisions +=
721 ((status >> TxColCntShift) & TxColCntMask);
722 cp->dev->stats.tx_packets++;
723 cp->dev->stats.tx_bytes += skb->len;
724 if (netif_msg_tx_done(cp))
725 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
727 dev_kfree_skb_irq(skb);
730 cp->tx_skb[tx_tail] = NULL;
732 tx_tail = NEXT_TX(tx_tail);
735 cp->tx_tail = tx_tail;
737 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
738 netif_wake_queue(cp->dev);
741 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
743 struct cp_private *cp = netdev_priv(dev);
744 unsigned entry;
745 u32 eor, flags;
746 unsigned long intr_flags;
747 #if CP_VLAN_TAG_USED
748 u32 vlan_tag = 0;
749 #endif
750 int mss = 0;
752 spin_lock_irqsave(&cp->lock, intr_flags);
754 /* This is a hard error, log it. */
755 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
756 netif_stop_queue(dev);
757 spin_unlock_irqrestore(&cp->lock, intr_flags);
758 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
759 dev->name);
760 return 1;
763 #if CP_VLAN_TAG_USED
764 if (cp->vlgrp && vlan_tx_tag_present(skb))
765 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
766 #endif
768 entry = cp->tx_head;
769 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
770 if (dev->features & NETIF_F_TSO)
771 mss = skb_shinfo(skb)->gso_size;
773 if (skb_shinfo(skb)->nr_frags == 0) {
774 struct cp_desc *txd = &cp->tx_ring[entry];
775 u32 len;
776 dma_addr_t mapping;
778 len = skb->len;
779 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
780 CP_VLAN_TX_TAG(txd, vlan_tag);
781 txd->addr = cpu_to_le64(mapping);
782 wmb();
784 flags = eor | len | DescOwn | FirstFrag | LastFrag;
786 if (mss)
787 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
788 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
789 const struct iphdr *ip = ip_hdr(skb);
790 if (ip->protocol == IPPROTO_TCP)
791 flags |= IPCS | TCPCS;
792 else if (ip->protocol == IPPROTO_UDP)
793 flags |= IPCS | UDPCS;
794 else
795 WARN_ON(1); /* we need a WARN() */
798 txd->opts1 = cpu_to_le32(flags);
799 wmb();
801 cp->tx_skb[entry] = skb;
802 entry = NEXT_TX(entry);
803 } else {
804 struct cp_desc *txd;
805 u32 first_len, first_eor;
806 dma_addr_t first_mapping;
807 int frag, first_entry = entry;
808 const struct iphdr *ip = ip_hdr(skb);
810 /* We must give this initial chunk to the device last.
811 * Otherwise we could race with the device.
813 first_eor = eor;
814 first_len = skb_headlen(skb);
815 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
816 first_len, PCI_DMA_TODEVICE);
817 cp->tx_skb[entry] = skb;
818 entry = NEXT_TX(entry);
820 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
821 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
822 u32 len;
823 u32 ctrl;
824 dma_addr_t mapping;
826 len = this_frag->size;
827 mapping = dma_map_single(&cp->pdev->dev,
828 ((void *) page_address(this_frag->page) +
829 this_frag->page_offset),
830 len, PCI_DMA_TODEVICE);
831 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
833 ctrl = eor | len | DescOwn;
835 if (mss)
836 ctrl |= LargeSend |
837 ((mss & MSSMask) << MSSShift);
838 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
839 if (ip->protocol == IPPROTO_TCP)
840 ctrl |= IPCS | TCPCS;
841 else if (ip->protocol == IPPROTO_UDP)
842 ctrl |= IPCS | UDPCS;
843 else
844 BUG();
847 if (frag == skb_shinfo(skb)->nr_frags - 1)
848 ctrl |= LastFrag;
850 txd = &cp->tx_ring[entry];
851 CP_VLAN_TX_TAG(txd, vlan_tag);
852 txd->addr = cpu_to_le64(mapping);
853 wmb();
855 txd->opts1 = cpu_to_le32(ctrl);
856 wmb();
858 cp->tx_skb[entry] = skb;
859 entry = NEXT_TX(entry);
862 txd = &cp->tx_ring[first_entry];
863 CP_VLAN_TX_TAG(txd, vlan_tag);
864 txd->addr = cpu_to_le64(first_mapping);
865 wmb();
867 if (skb->ip_summed == CHECKSUM_PARTIAL) {
868 if (ip->protocol == IPPROTO_TCP)
869 txd->opts1 = cpu_to_le32(first_eor | first_len |
870 FirstFrag | DescOwn |
871 IPCS | TCPCS);
872 else if (ip->protocol == IPPROTO_UDP)
873 txd->opts1 = cpu_to_le32(first_eor | first_len |
874 FirstFrag | DescOwn |
875 IPCS | UDPCS);
876 else
877 BUG();
878 } else
879 txd->opts1 = cpu_to_le32(first_eor | first_len |
880 FirstFrag | DescOwn);
881 wmb();
883 cp->tx_head = entry;
884 if (netif_msg_tx_queued(cp))
885 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
886 dev->name, entry, skb->len);
887 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
888 netif_stop_queue(dev);
890 spin_unlock_irqrestore(&cp->lock, intr_flags);
892 cpw8(TxPoll, NormalTxPoll);
893 dev->trans_start = jiffies;
895 return 0;
898 /* Set or clear the multicast filter for this adaptor.
899 This routine is not state sensitive and need not be SMP locked. */
901 static void __cp_set_rx_mode (struct net_device *dev)
903 struct cp_private *cp = netdev_priv(dev);
904 u32 mc_filter[2]; /* Multicast hash filter */
905 int i, rx_mode;
906 u32 tmp;
908 /* Note: do not reorder, GCC is clever about common statements. */
909 if (dev->flags & IFF_PROMISC) {
910 /* Unconditionally log net taps. */
911 rx_mode =
912 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
913 AcceptAllPhys;
914 mc_filter[1] = mc_filter[0] = 0xffffffff;
915 } else if ((dev->mc_count > multicast_filter_limit)
916 || (dev->flags & IFF_ALLMULTI)) {
917 /* Too many to filter perfectly -- accept all multicasts. */
918 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
919 mc_filter[1] = mc_filter[0] = 0xffffffff;
920 } else {
921 struct dev_mc_list *mclist;
922 rx_mode = AcceptBroadcast | AcceptMyPhys;
923 mc_filter[1] = mc_filter[0] = 0;
924 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
925 i++, mclist = mclist->next) {
926 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
928 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
929 rx_mode |= AcceptMulticast;
933 /* We can safely update without stopping the chip. */
934 tmp = cp_rx_config | rx_mode;
935 if (cp->rx_config != tmp) {
936 cpw32_f (RxConfig, tmp);
937 cp->rx_config = tmp;
939 cpw32_f (MAR0 + 0, mc_filter[0]);
940 cpw32_f (MAR0 + 4, mc_filter[1]);
943 static void cp_set_rx_mode (struct net_device *dev)
945 unsigned long flags;
946 struct cp_private *cp = netdev_priv(dev);
948 spin_lock_irqsave (&cp->lock, flags);
949 __cp_set_rx_mode(dev);
950 spin_unlock_irqrestore (&cp->lock, flags);
953 static void __cp_get_stats(struct cp_private *cp)
955 /* only lower 24 bits valid; write any value to clear */
956 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
957 cpw32 (RxMissed, 0);
960 static struct net_device_stats *cp_get_stats(struct net_device *dev)
962 struct cp_private *cp = netdev_priv(dev);
963 unsigned long flags;
965 /* The chip only need report frame silently dropped. */
966 spin_lock_irqsave(&cp->lock, flags);
967 if (netif_running(dev) && netif_device_present(dev))
968 __cp_get_stats(cp);
969 spin_unlock_irqrestore(&cp->lock, flags);
971 return &dev->stats;
974 static void cp_stop_hw (struct cp_private *cp)
976 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
977 cpw16_f(IntrMask, 0);
978 cpw8(Cmd, 0);
979 cpw16_f(CpCmd, 0);
980 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
982 cp->rx_tail = 0;
983 cp->tx_head = cp->tx_tail = 0;
986 static void cp_reset_hw (struct cp_private *cp)
988 unsigned work = 1000;
990 cpw8(Cmd, CmdReset);
992 while (work--) {
993 if (!(cpr8(Cmd) & CmdReset))
994 return;
996 schedule_timeout_uninterruptible(10);
999 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1002 static inline void cp_start_hw (struct cp_private *cp)
1004 cpw16(CpCmd, cp->cpcmd);
1005 cpw8(Cmd, RxOn | TxOn);
1008 static void cp_init_hw (struct cp_private *cp)
1010 struct net_device *dev = cp->dev;
1011 dma_addr_t ring_dma;
1013 cp_reset_hw(cp);
1015 cpw8_f (Cfg9346, Cfg9346_Unlock);
1017 /* Restore our idea of the MAC address. */
1018 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1019 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1021 cp_start_hw(cp);
1022 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1024 __cp_set_rx_mode(dev);
1025 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1027 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1028 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1029 cpw8(Config3, PARMEnable);
1030 cp->wol_enabled = 0;
1032 cpw8(Config5, cpr8(Config5) & PMEStatus);
1034 cpw32_f(HiTxRingAddr, 0);
1035 cpw32_f(HiTxRingAddr + 4, 0);
1037 ring_dma = cp->ring_dma;
1038 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1039 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1041 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1042 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1043 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1045 cpw16(MultiIntr, 0);
1047 cpw16_f(IntrMask, cp_intr_mask);
1049 cpw8_f(Cfg9346, Cfg9346_Lock);
1052 static int cp_refill_rx(struct cp_private *cp)
1054 struct net_device *dev = cp->dev;
1055 unsigned i;
1057 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1058 struct sk_buff *skb;
1059 dma_addr_t mapping;
1061 skb = netdev_alloc_skb(dev, cp->rx_buf_sz + NET_IP_ALIGN);
1062 if (!skb)
1063 goto err_out;
1065 skb_reserve(skb, NET_IP_ALIGN);
1067 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1068 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1069 cp->rx_skb[i] = skb;
1071 cp->rx_ring[i].opts2 = 0;
1072 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1073 if (i == (CP_RX_RING_SIZE - 1))
1074 cp->rx_ring[i].opts1 =
1075 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1076 else
1077 cp->rx_ring[i].opts1 =
1078 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1081 return 0;
1083 err_out:
1084 cp_clean_rings(cp);
1085 return -ENOMEM;
1088 static void cp_init_rings_index (struct cp_private *cp)
1090 cp->rx_tail = 0;
1091 cp->tx_head = cp->tx_tail = 0;
1094 static int cp_init_rings (struct cp_private *cp)
1096 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1097 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1099 cp_init_rings_index(cp);
1101 return cp_refill_rx (cp);
1104 static int cp_alloc_rings (struct cp_private *cp)
1106 void *mem;
1108 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1109 &cp->ring_dma, GFP_KERNEL);
1110 if (!mem)
1111 return -ENOMEM;
1113 cp->rx_ring = mem;
1114 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1116 return cp_init_rings(cp);
1119 static void cp_clean_rings (struct cp_private *cp)
1121 struct cp_desc *desc;
1122 unsigned i;
1124 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1125 if (cp->rx_skb[i]) {
1126 desc = cp->rx_ring + i;
1127 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1128 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1129 dev_kfree_skb(cp->rx_skb[i]);
1133 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1134 if (cp->tx_skb[i]) {
1135 struct sk_buff *skb = cp->tx_skb[i];
1137 desc = cp->tx_ring + i;
1138 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1139 le32_to_cpu(desc->opts1) & 0xffff,
1140 PCI_DMA_TODEVICE);
1141 if (le32_to_cpu(desc->opts1) & LastFrag)
1142 dev_kfree_skb(skb);
1143 cp->dev->stats.tx_dropped++;
1147 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1148 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1150 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1151 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1154 static void cp_free_rings (struct cp_private *cp)
1156 cp_clean_rings(cp);
1157 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1158 cp->ring_dma);
1159 cp->rx_ring = NULL;
1160 cp->tx_ring = NULL;
1163 static int cp_open (struct net_device *dev)
1165 struct cp_private *cp = netdev_priv(dev);
1166 int rc;
1168 if (netif_msg_ifup(cp))
1169 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1171 rc = cp_alloc_rings(cp);
1172 if (rc)
1173 return rc;
1175 napi_enable(&cp->napi);
1177 cp_init_hw(cp);
1179 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1180 if (rc)
1181 goto err_out_hw;
1183 netif_carrier_off(dev);
1184 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1185 netif_start_queue(dev);
1187 return 0;
1189 err_out_hw:
1190 napi_disable(&cp->napi);
1191 cp_stop_hw(cp);
1192 cp_free_rings(cp);
1193 return rc;
1196 static int cp_close (struct net_device *dev)
1198 struct cp_private *cp = netdev_priv(dev);
1199 unsigned long flags;
1201 napi_disable(&cp->napi);
1203 if (netif_msg_ifdown(cp))
1204 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1206 spin_lock_irqsave(&cp->lock, flags);
1208 netif_stop_queue(dev);
1209 netif_carrier_off(dev);
1211 cp_stop_hw(cp);
1213 spin_unlock_irqrestore(&cp->lock, flags);
1215 free_irq(dev->irq, dev);
1217 cp_free_rings(cp);
1218 return 0;
1221 static void cp_tx_timeout(struct net_device *dev)
1223 struct cp_private *cp = netdev_priv(dev);
1224 unsigned long flags;
1225 int rc;
1227 printk(KERN_WARNING "%s: Transmit timeout, status %2x %4x %4x %4x\n",
1228 dev->name, cpr8(Cmd), cpr16(CpCmd),
1229 cpr16(IntrStatus), cpr16(IntrMask));
1231 spin_lock_irqsave(&cp->lock, flags);
1233 cp_stop_hw(cp);
1234 cp_clean_rings(cp);
1235 rc = cp_init_rings(cp);
1236 cp_start_hw(cp);
1238 netif_wake_queue(dev);
1240 spin_unlock_irqrestore(&cp->lock, flags);
1242 return;
1245 #ifdef BROKEN
1246 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1248 struct cp_private *cp = netdev_priv(dev);
1249 int rc;
1250 unsigned long flags;
1252 /* check for invalid MTU, according to hardware limits */
1253 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1254 return -EINVAL;
1256 /* if network interface not up, no need for complexity */
1257 if (!netif_running(dev)) {
1258 dev->mtu = new_mtu;
1259 cp_set_rxbufsize(cp); /* set new rx buf size */
1260 return 0;
1263 spin_lock_irqsave(&cp->lock, flags);
1265 cp_stop_hw(cp); /* stop h/w and free rings */
1266 cp_clean_rings(cp);
1268 dev->mtu = new_mtu;
1269 cp_set_rxbufsize(cp); /* set new rx buf size */
1271 rc = cp_init_rings(cp); /* realloc and restart h/w */
1272 cp_start_hw(cp);
1274 spin_unlock_irqrestore(&cp->lock, flags);
1276 return rc;
1278 #endif /* BROKEN */
1280 static const char mii_2_8139_map[8] = {
1281 BasicModeCtrl,
1282 BasicModeStatus,
1285 NWayAdvert,
1286 NWayLPAR,
1287 NWayExpansion,
1291 static int mdio_read(struct net_device *dev, int phy_id, int location)
1293 struct cp_private *cp = netdev_priv(dev);
1295 return location < 8 && mii_2_8139_map[location] ?
1296 readw(cp->regs + mii_2_8139_map[location]) : 0;
1300 static void mdio_write(struct net_device *dev, int phy_id, int location,
1301 int value)
1303 struct cp_private *cp = netdev_priv(dev);
1305 if (location == 0) {
1306 cpw8(Cfg9346, Cfg9346_Unlock);
1307 cpw16(BasicModeCtrl, value);
1308 cpw8(Cfg9346, Cfg9346_Lock);
1309 } else if (location < 8 && mii_2_8139_map[location])
1310 cpw16(mii_2_8139_map[location], value);
1313 /* Set the ethtool Wake-on-LAN settings */
1314 static int netdev_set_wol (struct cp_private *cp,
1315 const struct ethtool_wolinfo *wol)
1317 u8 options;
1319 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1320 /* If WOL is being disabled, no need for complexity */
1321 if (wol->wolopts) {
1322 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1323 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1326 cpw8 (Cfg9346, Cfg9346_Unlock);
1327 cpw8 (Config3, options);
1328 cpw8 (Cfg9346, Cfg9346_Lock);
1330 options = 0; /* Paranoia setting */
1331 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1332 /* If WOL is being disabled, no need for complexity */
1333 if (wol->wolopts) {
1334 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1335 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1336 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1339 cpw8 (Config5, options);
1341 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1343 return 0;
1346 /* Get the ethtool Wake-on-LAN settings */
1347 static void netdev_get_wol (struct cp_private *cp,
1348 struct ethtool_wolinfo *wol)
1350 u8 options;
1352 wol->wolopts = 0; /* Start from scratch */
1353 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1354 WAKE_MCAST | WAKE_UCAST;
1355 /* We don't need to go on if WOL is disabled */
1356 if (!cp->wol_enabled) return;
1358 options = cpr8 (Config3);
1359 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1360 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1362 options = 0; /* Paranoia setting */
1363 options = cpr8 (Config5);
1364 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1365 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1366 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1369 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1371 struct cp_private *cp = netdev_priv(dev);
1373 strcpy (info->driver, DRV_NAME);
1374 strcpy (info->version, DRV_VERSION);
1375 strcpy (info->bus_info, pci_name(cp->pdev));
1378 static int cp_get_regs_len(struct net_device *dev)
1380 return CP_REGS_SIZE;
1383 static int cp_get_sset_count (struct net_device *dev, int sset)
1385 switch (sset) {
1386 case ETH_SS_STATS:
1387 return CP_NUM_STATS;
1388 default:
1389 return -EOPNOTSUPP;
1393 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1395 struct cp_private *cp = netdev_priv(dev);
1396 int rc;
1397 unsigned long flags;
1399 spin_lock_irqsave(&cp->lock, flags);
1400 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1401 spin_unlock_irqrestore(&cp->lock, flags);
1403 return rc;
1406 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1408 struct cp_private *cp = netdev_priv(dev);
1409 int rc;
1410 unsigned long flags;
1412 spin_lock_irqsave(&cp->lock, flags);
1413 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1414 spin_unlock_irqrestore(&cp->lock, flags);
1416 return rc;
1419 static int cp_nway_reset(struct net_device *dev)
1421 struct cp_private *cp = netdev_priv(dev);
1422 return mii_nway_restart(&cp->mii_if);
1425 static u32 cp_get_msglevel(struct net_device *dev)
1427 struct cp_private *cp = netdev_priv(dev);
1428 return cp->msg_enable;
1431 static void cp_set_msglevel(struct net_device *dev, u32 value)
1433 struct cp_private *cp = netdev_priv(dev);
1434 cp->msg_enable = value;
1437 static u32 cp_get_rx_csum(struct net_device *dev)
1439 struct cp_private *cp = netdev_priv(dev);
1440 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1443 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1445 struct cp_private *cp = netdev_priv(dev);
1446 u16 cmd = cp->cpcmd, newcmd;
1448 newcmd = cmd;
1450 if (data)
1451 newcmd |= RxChkSum;
1452 else
1453 newcmd &= ~RxChkSum;
1455 if (newcmd != cmd) {
1456 unsigned long flags;
1458 spin_lock_irqsave(&cp->lock, flags);
1459 cp->cpcmd = newcmd;
1460 cpw16_f(CpCmd, newcmd);
1461 spin_unlock_irqrestore(&cp->lock, flags);
1464 return 0;
1467 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1468 void *p)
1470 struct cp_private *cp = netdev_priv(dev);
1471 unsigned long flags;
1473 if (regs->len < CP_REGS_SIZE)
1474 return /* -EINVAL */;
1476 regs->version = CP_REGS_VER;
1478 spin_lock_irqsave(&cp->lock, flags);
1479 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1480 spin_unlock_irqrestore(&cp->lock, flags);
1483 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1485 struct cp_private *cp = netdev_priv(dev);
1486 unsigned long flags;
1488 spin_lock_irqsave (&cp->lock, flags);
1489 netdev_get_wol (cp, wol);
1490 spin_unlock_irqrestore (&cp->lock, flags);
1493 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1495 struct cp_private *cp = netdev_priv(dev);
1496 unsigned long flags;
1497 int rc;
1499 spin_lock_irqsave (&cp->lock, flags);
1500 rc = netdev_set_wol (cp, wol);
1501 spin_unlock_irqrestore (&cp->lock, flags);
1503 return rc;
1506 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1508 switch (stringset) {
1509 case ETH_SS_STATS:
1510 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1511 break;
1512 default:
1513 BUG();
1514 break;
1518 static void cp_get_ethtool_stats (struct net_device *dev,
1519 struct ethtool_stats *estats, u64 *tmp_stats)
1521 struct cp_private *cp = netdev_priv(dev);
1522 struct cp_dma_stats *nic_stats;
1523 dma_addr_t dma;
1524 int i;
1526 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1527 &dma, GFP_KERNEL);
1528 if (!nic_stats)
1529 return;
1531 /* begin NIC statistics dump */
1532 cpw32(StatsAddr + 4, (u64)dma >> 32);
1533 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1534 cpr32(StatsAddr);
1536 for (i = 0; i < 1000; i++) {
1537 if ((cpr32(StatsAddr) & DumpStats) == 0)
1538 break;
1539 udelay(10);
1541 cpw32(StatsAddr, 0);
1542 cpw32(StatsAddr + 4, 0);
1543 cpr32(StatsAddr);
1545 i = 0;
1546 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1547 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1548 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1549 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1550 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1551 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1552 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1553 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1554 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1555 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1556 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1557 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1558 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1559 tmp_stats[i++] = cp->cp_stats.rx_frags;
1560 BUG_ON(i != CP_NUM_STATS);
1562 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1565 static const struct ethtool_ops cp_ethtool_ops = {
1566 .get_drvinfo = cp_get_drvinfo,
1567 .get_regs_len = cp_get_regs_len,
1568 .get_sset_count = cp_get_sset_count,
1569 .get_settings = cp_get_settings,
1570 .set_settings = cp_set_settings,
1571 .nway_reset = cp_nway_reset,
1572 .get_link = ethtool_op_get_link,
1573 .get_msglevel = cp_get_msglevel,
1574 .set_msglevel = cp_set_msglevel,
1575 .get_rx_csum = cp_get_rx_csum,
1576 .set_rx_csum = cp_set_rx_csum,
1577 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1578 .set_sg = ethtool_op_set_sg,
1579 .set_tso = ethtool_op_set_tso,
1580 .get_regs = cp_get_regs,
1581 .get_wol = cp_get_wol,
1582 .set_wol = cp_set_wol,
1583 .get_strings = cp_get_strings,
1584 .get_ethtool_stats = cp_get_ethtool_stats,
1585 .get_eeprom_len = cp_get_eeprom_len,
1586 .get_eeprom = cp_get_eeprom,
1587 .set_eeprom = cp_set_eeprom,
1590 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1592 struct cp_private *cp = netdev_priv(dev);
1593 int rc;
1594 unsigned long flags;
1596 if (!netif_running(dev))
1597 return -EINVAL;
1599 spin_lock_irqsave(&cp->lock, flags);
1600 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1601 spin_unlock_irqrestore(&cp->lock, flags);
1602 return rc;
1605 static int cp_set_mac_address(struct net_device *dev, void *p)
1607 struct cp_private *cp = netdev_priv(dev);
1608 struct sockaddr *addr = p;
1610 if (!is_valid_ether_addr(addr->sa_data))
1611 return -EADDRNOTAVAIL;
1613 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1615 spin_lock_irq(&cp->lock);
1617 cpw8_f(Cfg9346, Cfg9346_Unlock);
1618 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1619 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1620 cpw8_f(Cfg9346, Cfg9346_Lock);
1622 spin_unlock_irq(&cp->lock);
1624 return 0;
1627 /* Serial EEPROM section. */
1629 /* EEPROM_Ctrl bits. */
1630 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1631 #define EE_CS 0x08 /* EEPROM chip select. */
1632 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1633 #define EE_WRITE_0 0x00
1634 #define EE_WRITE_1 0x02
1635 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1636 #define EE_ENB (0x80 | EE_CS)
1638 /* Delay between EEPROM clock transitions.
1639 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1642 #define eeprom_delay() readl(ee_addr)
1644 /* The EEPROM commands include the alway-set leading bit. */
1645 #define EE_EXTEND_CMD (4)
1646 #define EE_WRITE_CMD (5)
1647 #define EE_READ_CMD (6)
1648 #define EE_ERASE_CMD (7)
1650 #define EE_EWDS_ADDR (0)
1651 #define EE_WRAL_ADDR (1)
1652 #define EE_ERAL_ADDR (2)
1653 #define EE_EWEN_ADDR (3)
1655 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1657 static void eeprom_cmd_start(void __iomem *ee_addr)
1659 writeb (EE_ENB & ~EE_CS, ee_addr);
1660 writeb (EE_ENB, ee_addr);
1661 eeprom_delay ();
1664 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1666 int i;
1668 /* Shift the command bits out. */
1669 for (i = cmd_len - 1; i >= 0; i--) {
1670 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1671 writeb (EE_ENB | dataval, ee_addr);
1672 eeprom_delay ();
1673 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1674 eeprom_delay ();
1676 writeb (EE_ENB, ee_addr);
1677 eeprom_delay ();
1680 static void eeprom_cmd_end(void __iomem *ee_addr)
1682 writeb (~EE_CS, ee_addr);
1683 eeprom_delay ();
1686 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1687 int addr_len)
1689 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1691 eeprom_cmd_start(ee_addr);
1692 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1693 eeprom_cmd_end(ee_addr);
1696 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1698 int i;
1699 u16 retval = 0;
1700 void __iomem *ee_addr = ioaddr + Cfg9346;
1701 int read_cmd = location | (EE_READ_CMD << addr_len);
1703 eeprom_cmd_start(ee_addr);
1704 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1706 for (i = 16; i > 0; i--) {
1707 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1708 eeprom_delay ();
1709 retval =
1710 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1712 writeb (EE_ENB, ee_addr);
1713 eeprom_delay ();
1716 eeprom_cmd_end(ee_addr);
1718 return retval;
1721 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1722 int addr_len)
1724 int i;
1725 void __iomem *ee_addr = ioaddr + Cfg9346;
1726 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1728 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1730 eeprom_cmd_start(ee_addr);
1731 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1732 eeprom_cmd(ee_addr, val, 16);
1733 eeprom_cmd_end(ee_addr);
1735 eeprom_cmd_start(ee_addr);
1736 for (i = 0; i < 20000; i++)
1737 if (readb(ee_addr) & EE_DATA_READ)
1738 break;
1739 eeprom_cmd_end(ee_addr);
1741 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1744 static int cp_get_eeprom_len(struct net_device *dev)
1746 struct cp_private *cp = netdev_priv(dev);
1747 int size;
1749 spin_lock_irq(&cp->lock);
1750 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1751 spin_unlock_irq(&cp->lock);
1753 return size;
1756 static int cp_get_eeprom(struct net_device *dev,
1757 struct ethtool_eeprom *eeprom, u8 *data)
1759 struct cp_private *cp = netdev_priv(dev);
1760 unsigned int addr_len;
1761 u16 val;
1762 u32 offset = eeprom->offset >> 1;
1763 u32 len = eeprom->len;
1764 u32 i = 0;
1766 eeprom->magic = CP_EEPROM_MAGIC;
1768 spin_lock_irq(&cp->lock);
1770 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1772 if (eeprom->offset & 1) {
1773 val = read_eeprom(cp->regs, offset, addr_len);
1774 data[i++] = (u8)(val >> 8);
1775 offset++;
1778 while (i < len - 1) {
1779 val = read_eeprom(cp->regs, offset, addr_len);
1780 data[i++] = (u8)val;
1781 data[i++] = (u8)(val >> 8);
1782 offset++;
1785 if (i < len) {
1786 val = read_eeprom(cp->regs, offset, addr_len);
1787 data[i] = (u8)val;
1790 spin_unlock_irq(&cp->lock);
1791 return 0;
1794 static int cp_set_eeprom(struct net_device *dev,
1795 struct ethtool_eeprom *eeprom, u8 *data)
1797 struct cp_private *cp = netdev_priv(dev);
1798 unsigned int addr_len;
1799 u16 val;
1800 u32 offset = eeprom->offset >> 1;
1801 u32 len = eeprom->len;
1802 u32 i = 0;
1804 if (eeprom->magic != CP_EEPROM_MAGIC)
1805 return -EINVAL;
1807 spin_lock_irq(&cp->lock);
1809 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1811 if (eeprom->offset & 1) {
1812 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1813 val |= (u16)data[i++] << 8;
1814 write_eeprom(cp->regs, offset, val, addr_len);
1815 offset++;
1818 while (i < len - 1) {
1819 val = (u16)data[i++];
1820 val |= (u16)data[i++] << 8;
1821 write_eeprom(cp->regs, offset, val, addr_len);
1822 offset++;
1825 if (i < len) {
1826 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1827 val |= (u16)data[i];
1828 write_eeprom(cp->regs, offset, val, addr_len);
1831 spin_unlock_irq(&cp->lock);
1832 return 0;
1835 /* Put the board into D3cold state and wait for WakeUp signal */
1836 static void cp_set_d3_state (struct cp_private *cp)
1838 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1839 pci_set_power_state (cp->pdev, PCI_D3hot);
1842 static const struct net_device_ops cp_netdev_ops = {
1843 .ndo_open = cp_open,
1844 .ndo_stop = cp_close,
1845 .ndo_validate_addr = eth_validate_addr,
1846 .ndo_set_mac_address = cp_set_mac_address,
1847 .ndo_set_multicast_list = cp_set_rx_mode,
1848 .ndo_get_stats = cp_get_stats,
1849 .ndo_do_ioctl = cp_ioctl,
1850 .ndo_start_xmit = cp_start_xmit,
1851 .ndo_tx_timeout = cp_tx_timeout,
1852 #if CP_VLAN_TAG_USED
1853 .ndo_vlan_rx_register = cp_vlan_rx_register,
1854 #endif
1855 #ifdef BROKEN
1856 .ndo_change_mtu = cp_change_mtu,
1857 #endif
1859 #ifdef CONFIG_NET_POLL_CONTROLLER
1860 .ndo_poll_controller = cp_poll_controller,
1861 #endif
1864 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1866 struct net_device *dev;
1867 struct cp_private *cp;
1868 int rc;
1869 void __iomem *regs;
1870 resource_size_t pciaddr;
1871 unsigned int addr_len, i, pci_using_dac;
1873 #ifndef MODULE
1874 static int version_printed;
1875 if (version_printed++ == 0)
1876 printk("%s", version);
1877 #endif
1879 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1880 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1881 dev_info(&pdev->dev,
1882 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1883 pdev->vendor, pdev->device, pdev->revision);
1884 return -ENODEV;
1887 dev = alloc_etherdev(sizeof(struct cp_private));
1888 if (!dev)
1889 return -ENOMEM;
1890 SET_NETDEV_DEV(dev, &pdev->dev);
1892 cp = netdev_priv(dev);
1893 cp->pdev = pdev;
1894 cp->dev = dev;
1895 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1896 spin_lock_init (&cp->lock);
1897 cp->mii_if.dev = dev;
1898 cp->mii_if.mdio_read = mdio_read;
1899 cp->mii_if.mdio_write = mdio_write;
1900 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1901 cp->mii_if.phy_id_mask = 0x1f;
1902 cp->mii_if.reg_num_mask = 0x1f;
1903 cp_set_rxbufsize(cp);
1905 rc = pci_enable_device(pdev);
1906 if (rc)
1907 goto err_out_free;
1909 rc = pci_set_mwi(pdev);
1910 if (rc)
1911 goto err_out_disable;
1913 rc = pci_request_regions(pdev, DRV_NAME);
1914 if (rc)
1915 goto err_out_mwi;
1917 pciaddr = pci_resource_start(pdev, 1);
1918 if (!pciaddr) {
1919 rc = -EIO;
1920 dev_err(&pdev->dev, "no MMIO resource\n");
1921 goto err_out_res;
1923 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1924 rc = -EIO;
1925 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1926 (unsigned long long)pci_resource_len(pdev, 1));
1927 goto err_out_res;
1930 /* Configure DMA attributes. */
1931 if ((sizeof(dma_addr_t) > 4) &&
1932 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1933 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1934 pci_using_dac = 1;
1935 } else {
1936 pci_using_dac = 0;
1938 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1939 if (rc) {
1940 dev_err(&pdev->dev,
1941 "No usable DMA configuration, aborting.\n");
1942 goto err_out_res;
1944 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1945 if (rc) {
1946 dev_err(&pdev->dev,
1947 "No usable consistent DMA configuration, "
1948 "aborting.\n");
1949 goto err_out_res;
1953 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1954 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1956 regs = ioremap(pciaddr, CP_REGS_SIZE);
1957 if (!regs) {
1958 rc = -EIO;
1959 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1960 (unsigned long long)pci_resource_len(pdev, 1),
1961 (unsigned long long)pciaddr);
1962 goto err_out_res;
1964 dev->base_addr = (unsigned long) regs;
1965 cp->regs = regs;
1967 cp_stop_hw(cp);
1969 /* read MAC address from EEPROM */
1970 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1971 for (i = 0; i < 3; i++)
1972 ((__le16 *) (dev->dev_addr))[i] =
1973 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1974 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1976 dev->netdev_ops = &cp_netdev_ops;
1977 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1978 dev->ethtool_ops = &cp_ethtool_ops;
1979 dev->watchdog_timeo = TX_TIMEOUT;
1981 #if CP_VLAN_TAG_USED
1982 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1983 #endif
1985 if (pci_using_dac)
1986 dev->features |= NETIF_F_HIGHDMA;
1988 #if 0 /* disabled by default until verified */
1989 dev->features |= NETIF_F_TSO;
1990 #endif
1992 dev->irq = pdev->irq;
1994 rc = register_netdev(dev);
1995 if (rc)
1996 goto err_out_iomap;
1998 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1999 "%pM, IRQ %d\n",
2000 dev->name,
2001 dev->base_addr,
2002 dev->dev_addr,
2003 dev->irq);
2005 pci_set_drvdata(pdev, dev);
2007 /* enable busmastering and memory-write-invalidate */
2008 pci_set_master(pdev);
2010 if (cp->wol_enabled)
2011 cp_set_d3_state (cp);
2013 return 0;
2015 err_out_iomap:
2016 iounmap(regs);
2017 err_out_res:
2018 pci_release_regions(pdev);
2019 err_out_mwi:
2020 pci_clear_mwi(pdev);
2021 err_out_disable:
2022 pci_disable_device(pdev);
2023 err_out_free:
2024 free_netdev(dev);
2025 return rc;
2028 static void cp_remove_one (struct pci_dev *pdev)
2030 struct net_device *dev = pci_get_drvdata(pdev);
2031 struct cp_private *cp = netdev_priv(dev);
2033 unregister_netdev(dev);
2034 iounmap(cp->regs);
2035 if (cp->wol_enabled)
2036 pci_set_power_state (pdev, PCI_D0);
2037 pci_release_regions(pdev);
2038 pci_clear_mwi(pdev);
2039 pci_disable_device(pdev);
2040 pci_set_drvdata(pdev, NULL);
2041 free_netdev(dev);
2044 #ifdef CONFIG_PM
2045 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2047 struct net_device *dev = pci_get_drvdata(pdev);
2048 struct cp_private *cp = netdev_priv(dev);
2049 unsigned long flags;
2051 if (!netif_running(dev))
2052 return 0;
2054 netif_device_detach (dev);
2055 netif_stop_queue (dev);
2057 spin_lock_irqsave (&cp->lock, flags);
2059 /* Disable Rx and Tx */
2060 cpw16 (IntrMask, 0);
2061 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2063 spin_unlock_irqrestore (&cp->lock, flags);
2065 pci_save_state(pdev);
2066 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2067 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2069 return 0;
2072 static int cp_resume (struct pci_dev *pdev)
2074 struct net_device *dev = pci_get_drvdata (pdev);
2075 struct cp_private *cp = netdev_priv(dev);
2076 unsigned long flags;
2078 if (!netif_running(dev))
2079 return 0;
2081 netif_device_attach (dev);
2083 pci_set_power_state(pdev, PCI_D0);
2084 pci_restore_state(pdev);
2085 pci_enable_wake(pdev, PCI_D0, 0);
2087 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2088 cp_init_rings_index (cp);
2089 cp_init_hw (cp);
2090 netif_start_queue (dev);
2092 spin_lock_irqsave (&cp->lock, flags);
2094 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2096 spin_unlock_irqrestore (&cp->lock, flags);
2098 return 0;
2100 #endif /* CONFIG_PM */
2102 static struct pci_driver cp_driver = {
2103 .name = DRV_NAME,
2104 .id_table = cp_pci_tbl,
2105 .probe = cp_init_one,
2106 .remove = cp_remove_one,
2107 #ifdef CONFIG_PM
2108 .resume = cp_resume,
2109 .suspend = cp_suspend,
2110 #endif
2113 static int __init cp_init (void)
2115 #ifdef MODULE
2116 printk("%s", version);
2117 #endif
2118 return pci_register_driver(&cp_driver);
2121 static void __exit cp_exit (void)
2123 pci_unregister_driver (&cp_driver);
2126 module_init(cp_init);
2127 module_exit(cp_exit);