Merge branch 'upstream-fixes' into upstream
[linux-2.6/cjktty.git] / net / sctp / socket.c
blob174d4d35e951590d7bef5d10df113afe36f88ae6
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel reference Implementation
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/capability.h>
67 #include <linux/fcntl.h>
68 #include <linux/poll.h>
69 #include <linux/init.h>
70 #include <linux/crypto.h>
72 #include <net/ip.h>
73 #include <net/icmp.h>
74 #include <net/route.h>
75 #include <net/ipv6.h>
76 #include <net/inet_common.h>
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
83 /* WARNING: Please do not remove the SCTP_STATIC attribute to
84 * any of the functions below as they are used to export functions
85 * used by a project regression testsuite.
88 /* Forward declarations for internal helper functions. */
89 static int sctp_writeable(struct sock *sk);
90 static void sctp_wfree(struct sk_buff *skb);
91 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
92 size_t msg_len);
93 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
94 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
95 static int sctp_wait_for_accept(struct sock *sk, long timeo);
96 static void sctp_wait_for_close(struct sock *sk, long timeo);
97 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
98 union sctp_addr *addr, int len);
99 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
100 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf(struct sctp_association *asoc,
104 struct sctp_chunk *chunk);
105 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
106 static int sctp_autobind(struct sock *sk);
107 static void sctp_sock_migrate(struct sock *, struct sock *,
108 struct sctp_association *, sctp_socket_type_t);
109 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
111 extern kmem_cache_t *sctp_bucket_cachep;
113 /* Get the sndbuf space available at the time on the association. */
114 static inline int sctp_wspace(struct sctp_association *asoc)
116 struct sock *sk = asoc->base.sk;
117 int amt = 0;
119 if (asoc->ep->sndbuf_policy) {
120 /* make sure that no association uses more than sk_sndbuf */
121 amt = sk->sk_sndbuf - asoc->sndbuf_used;
122 } else {
123 /* do socket level accounting */
124 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
127 if (amt < 0)
128 amt = 0;
130 return amt;
133 /* Increment the used sndbuf space count of the corresponding association by
134 * the size of the outgoing data chunk.
135 * Also, set the skb destructor for sndbuf accounting later.
137 * Since it is always 1-1 between chunk and skb, and also a new skb is always
138 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
139 * destructor in the data chunk skb for the purpose of the sndbuf space
140 * tracking.
142 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
144 struct sctp_association *asoc = chunk->asoc;
145 struct sock *sk = asoc->base.sk;
147 /* The sndbuf space is tracked per association. */
148 sctp_association_hold(asoc);
150 skb_set_owner_w(chunk->skb, sk);
152 chunk->skb->destructor = sctp_wfree;
153 /* Save the chunk pointer in skb for sctp_wfree to use later. */
154 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
156 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
157 sizeof(struct sk_buff) +
158 sizeof(struct sctp_chunk);
160 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
163 /* Verify that this is a valid address. */
164 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
165 int len)
167 struct sctp_af *af;
169 /* Verify basic sockaddr. */
170 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
171 if (!af)
172 return -EINVAL;
174 /* Is this a valid SCTP address? */
175 if (!af->addr_valid(addr, sctp_sk(sk)))
176 return -EINVAL;
178 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
179 return -EINVAL;
181 return 0;
184 /* Look up the association by its id. If this is not a UDP-style
185 * socket, the ID field is always ignored.
187 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
189 struct sctp_association *asoc = NULL;
191 /* If this is not a UDP-style socket, assoc id should be ignored. */
192 if (!sctp_style(sk, UDP)) {
193 /* Return NULL if the socket state is not ESTABLISHED. It
194 * could be a TCP-style listening socket or a socket which
195 * hasn't yet called connect() to establish an association.
197 if (!sctp_sstate(sk, ESTABLISHED))
198 return NULL;
200 /* Get the first and the only association from the list. */
201 if (!list_empty(&sctp_sk(sk)->ep->asocs))
202 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
203 struct sctp_association, asocs);
204 return asoc;
207 /* Otherwise this is a UDP-style socket. */
208 if (!id || (id == (sctp_assoc_t)-1))
209 return NULL;
211 spin_lock_bh(&sctp_assocs_id_lock);
212 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
213 spin_unlock_bh(&sctp_assocs_id_lock);
215 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
216 return NULL;
218 return asoc;
221 /* Look up the transport from an address and an assoc id. If both address and
222 * id are specified, the associations matching the address and the id should be
223 * the same.
225 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
226 struct sockaddr_storage *addr,
227 sctp_assoc_t id)
229 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
230 struct sctp_transport *transport;
231 union sctp_addr *laddr = (union sctp_addr *)addr;
233 laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
234 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
235 (union sctp_addr *)addr,
236 &transport);
237 laddr->v4.sin_port = htons(laddr->v4.sin_port);
239 if (!addr_asoc)
240 return NULL;
242 id_asoc = sctp_id2assoc(sk, id);
243 if (id_asoc && (id_asoc != addr_asoc))
244 return NULL;
246 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
247 (union sctp_addr *)addr);
249 return transport;
252 /* API 3.1.2 bind() - UDP Style Syntax
253 * The syntax of bind() is,
255 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
257 * sd - the socket descriptor returned by socket().
258 * addr - the address structure (struct sockaddr_in or struct
259 * sockaddr_in6 [RFC 2553]),
260 * addr_len - the size of the address structure.
262 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
264 int retval = 0;
266 sctp_lock_sock(sk);
268 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
269 sk, addr, addr_len);
271 /* Disallow binding twice. */
272 if (!sctp_sk(sk)->ep->base.bind_addr.port)
273 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
274 addr_len);
275 else
276 retval = -EINVAL;
278 sctp_release_sock(sk);
280 return retval;
283 static long sctp_get_port_local(struct sock *, union sctp_addr *);
285 /* Verify this is a valid sockaddr. */
286 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
287 union sctp_addr *addr, int len)
289 struct sctp_af *af;
291 /* Check minimum size. */
292 if (len < sizeof (struct sockaddr))
293 return NULL;
295 /* Does this PF support this AF? */
296 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
297 return NULL;
299 /* If we get this far, af is valid. */
300 af = sctp_get_af_specific(addr->sa.sa_family);
302 if (len < af->sockaddr_len)
303 return NULL;
305 return af;
308 /* Bind a local address either to an endpoint or to an association. */
309 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
311 struct sctp_sock *sp = sctp_sk(sk);
312 struct sctp_endpoint *ep = sp->ep;
313 struct sctp_bind_addr *bp = &ep->base.bind_addr;
314 struct sctp_af *af;
315 unsigned short snum;
316 int ret = 0;
318 /* Common sockaddr verification. */
319 af = sctp_sockaddr_af(sp, addr, len);
320 if (!af) {
321 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
322 sk, addr, len);
323 return -EINVAL;
326 snum = ntohs(addr->v4.sin_port);
328 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
329 ", port: %d, new port: %d, len: %d)\n",
331 addr,
332 bp->port, snum,
333 len);
335 /* PF specific bind() address verification. */
336 if (!sp->pf->bind_verify(sp, addr))
337 return -EADDRNOTAVAIL;
339 /* We must either be unbound, or bind to the same port. */
340 if (bp->port && (snum != bp->port)) {
341 SCTP_DEBUG_PRINTK("sctp_do_bind:"
342 " New port %d does not match existing port "
343 "%d.\n", snum, bp->port);
344 return -EINVAL;
347 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
348 return -EACCES;
350 /* Make sure we are allowed to bind here.
351 * The function sctp_get_port_local() does duplicate address
352 * detection.
354 if ((ret = sctp_get_port_local(sk, addr))) {
355 if (ret == (long) sk) {
356 /* This endpoint has a conflicting address. */
357 return -EINVAL;
358 } else {
359 return -EADDRINUSE;
363 /* Refresh ephemeral port. */
364 if (!bp->port)
365 bp->port = inet_sk(sk)->num;
367 /* Add the address to the bind address list. */
368 sctp_local_bh_disable();
369 sctp_write_lock(&ep->base.addr_lock);
371 /* Use GFP_ATOMIC since BHs are disabled. */
372 addr->v4.sin_port = ntohs(addr->v4.sin_port);
373 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
374 addr->v4.sin_port = htons(addr->v4.sin_port);
375 sctp_write_unlock(&ep->base.addr_lock);
376 sctp_local_bh_enable();
378 /* Copy back into socket for getsockname() use. */
379 if (!ret) {
380 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
381 af->to_sk_saddr(addr, sk);
384 return ret;
387 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
389 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
390 * at any one time. If a sender, after sending an ASCONF chunk, decides
391 * it needs to transfer another ASCONF Chunk, it MUST wait until the
392 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
393 * subsequent ASCONF. Note this restriction binds each side, so at any
394 * time two ASCONF may be in-transit on any given association (one sent
395 * from each endpoint).
397 static int sctp_send_asconf(struct sctp_association *asoc,
398 struct sctp_chunk *chunk)
400 int retval = 0;
402 /* If there is an outstanding ASCONF chunk, queue it for later
403 * transmission.
405 if (asoc->addip_last_asconf) {
406 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
407 goto out;
410 /* Hold the chunk until an ASCONF_ACK is received. */
411 sctp_chunk_hold(chunk);
412 retval = sctp_primitive_ASCONF(asoc, chunk);
413 if (retval)
414 sctp_chunk_free(chunk);
415 else
416 asoc->addip_last_asconf = chunk;
418 out:
419 return retval;
422 /* Add a list of addresses as bind addresses to local endpoint or
423 * association.
425 * Basically run through each address specified in the addrs/addrcnt
426 * array/length pair, determine if it is IPv6 or IPv4 and call
427 * sctp_do_bind() on it.
429 * If any of them fails, then the operation will be reversed and the
430 * ones that were added will be removed.
432 * Only sctp_setsockopt_bindx() is supposed to call this function.
434 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
436 int cnt;
437 int retval = 0;
438 void *addr_buf;
439 struct sockaddr *sa_addr;
440 struct sctp_af *af;
442 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
443 sk, addrs, addrcnt);
445 addr_buf = addrs;
446 for (cnt = 0; cnt < addrcnt; cnt++) {
447 /* The list may contain either IPv4 or IPv6 address;
448 * determine the address length for walking thru the list.
450 sa_addr = (struct sockaddr *)addr_buf;
451 af = sctp_get_af_specific(sa_addr->sa_family);
452 if (!af) {
453 retval = -EINVAL;
454 goto err_bindx_add;
457 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
458 af->sockaddr_len);
460 addr_buf += af->sockaddr_len;
462 err_bindx_add:
463 if (retval < 0) {
464 /* Failed. Cleanup the ones that have been added */
465 if (cnt > 0)
466 sctp_bindx_rem(sk, addrs, cnt);
467 return retval;
471 return retval;
474 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
475 * associations that are part of the endpoint indicating that a list of local
476 * addresses are added to the endpoint.
478 * If any of the addresses is already in the bind address list of the
479 * association, we do not send the chunk for that association. But it will not
480 * affect other associations.
482 * Only sctp_setsockopt_bindx() is supposed to call this function.
484 static int sctp_send_asconf_add_ip(struct sock *sk,
485 struct sockaddr *addrs,
486 int addrcnt)
488 struct sctp_sock *sp;
489 struct sctp_endpoint *ep;
490 struct sctp_association *asoc;
491 struct sctp_bind_addr *bp;
492 struct sctp_chunk *chunk;
493 struct sctp_sockaddr_entry *laddr;
494 union sctp_addr *addr;
495 void *addr_buf;
496 struct sctp_af *af;
497 struct list_head *pos;
498 struct list_head *p;
499 int i;
500 int retval = 0;
502 if (!sctp_addip_enable)
503 return retval;
505 sp = sctp_sk(sk);
506 ep = sp->ep;
508 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
509 __FUNCTION__, sk, addrs, addrcnt);
511 list_for_each(pos, &ep->asocs) {
512 asoc = list_entry(pos, struct sctp_association, asocs);
514 if (!asoc->peer.asconf_capable)
515 continue;
517 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
518 continue;
520 if (!sctp_state(asoc, ESTABLISHED))
521 continue;
523 /* Check if any address in the packed array of addresses is
524 * in the bind address list of the association. If so,
525 * do not send the asconf chunk to its peer, but continue with
526 * other associations.
528 addr_buf = addrs;
529 for (i = 0; i < addrcnt; i++) {
530 addr = (union sctp_addr *)addr_buf;
531 af = sctp_get_af_specific(addr->v4.sin_family);
532 if (!af) {
533 retval = -EINVAL;
534 goto out;
537 if (sctp_assoc_lookup_laddr(asoc, addr))
538 break;
540 addr_buf += af->sockaddr_len;
542 if (i < addrcnt)
543 continue;
545 /* Use the first address in bind addr list of association as
546 * Address Parameter of ASCONF CHUNK.
548 sctp_read_lock(&asoc->base.addr_lock);
549 bp = &asoc->base.bind_addr;
550 p = bp->address_list.next;
551 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
552 sctp_read_unlock(&asoc->base.addr_lock);
554 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
555 addrcnt, SCTP_PARAM_ADD_IP);
556 if (!chunk) {
557 retval = -ENOMEM;
558 goto out;
561 retval = sctp_send_asconf(asoc, chunk);
563 /* FIXME: After sending the add address ASCONF chunk, we
564 * cannot append the address to the association's binding
565 * address list, because the new address may be used as the
566 * source of a message sent to the peer before the ASCONF
567 * chunk is received by the peer. So we should wait until
568 * ASCONF_ACK is received.
572 out:
573 return retval;
576 /* Remove a list of addresses from bind addresses list. Do not remove the
577 * last address.
579 * Basically run through each address specified in the addrs/addrcnt
580 * array/length pair, determine if it is IPv6 or IPv4 and call
581 * sctp_del_bind() on it.
583 * If any of them fails, then the operation will be reversed and the
584 * ones that were removed will be added back.
586 * At least one address has to be left; if only one address is
587 * available, the operation will return -EBUSY.
589 * Only sctp_setsockopt_bindx() is supposed to call this function.
591 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
593 struct sctp_sock *sp = sctp_sk(sk);
594 struct sctp_endpoint *ep = sp->ep;
595 int cnt;
596 struct sctp_bind_addr *bp = &ep->base.bind_addr;
597 int retval = 0;
598 union sctp_addr saveaddr;
599 void *addr_buf;
600 struct sockaddr *sa_addr;
601 struct sctp_af *af;
603 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
604 sk, addrs, addrcnt);
606 addr_buf = addrs;
607 for (cnt = 0; cnt < addrcnt; cnt++) {
608 /* If the bind address list is empty or if there is only one
609 * bind address, there is nothing more to be removed (we need
610 * at least one address here).
612 if (list_empty(&bp->address_list) ||
613 (sctp_list_single_entry(&bp->address_list))) {
614 retval = -EBUSY;
615 goto err_bindx_rem;
618 /* The list may contain either IPv4 or IPv6 address;
619 * determine the address length to copy the address to
620 * saveaddr.
622 sa_addr = (struct sockaddr *)addr_buf;
623 af = sctp_get_af_specific(sa_addr->sa_family);
624 if (!af) {
625 retval = -EINVAL;
626 goto err_bindx_rem;
628 memcpy(&saveaddr, sa_addr, af->sockaddr_len);
629 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
630 if (saveaddr.v4.sin_port != bp->port) {
631 retval = -EINVAL;
632 goto err_bindx_rem;
635 /* FIXME - There is probably a need to check if sk->sk_saddr and
636 * sk->sk_rcv_addr are currently set to one of the addresses to
637 * be removed. This is something which needs to be looked into
638 * when we are fixing the outstanding issues with multi-homing
639 * socket routing and failover schemes. Refer to comments in
640 * sctp_do_bind(). -daisy
642 sctp_local_bh_disable();
643 sctp_write_lock(&ep->base.addr_lock);
645 retval = sctp_del_bind_addr(bp, &saveaddr);
647 sctp_write_unlock(&ep->base.addr_lock);
648 sctp_local_bh_enable();
650 addr_buf += af->sockaddr_len;
651 err_bindx_rem:
652 if (retval < 0) {
653 /* Failed. Add the ones that has been removed back */
654 if (cnt > 0)
655 sctp_bindx_add(sk, addrs, cnt);
656 return retval;
660 return retval;
663 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
664 * the associations that are part of the endpoint indicating that a list of
665 * local addresses are removed from the endpoint.
667 * If any of the addresses is already in the bind address list of the
668 * association, we do not send the chunk for that association. But it will not
669 * affect other associations.
671 * Only sctp_setsockopt_bindx() is supposed to call this function.
673 static int sctp_send_asconf_del_ip(struct sock *sk,
674 struct sockaddr *addrs,
675 int addrcnt)
677 struct sctp_sock *sp;
678 struct sctp_endpoint *ep;
679 struct sctp_association *asoc;
680 struct sctp_bind_addr *bp;
681 struct sctp_chunk *chunk;
682 union sctp_addr *laddr;
683 void *addr_buf;
684 struct sctp_af *af;
685 struct list_head *pos;
686 int i;
687 int retval = 0;
689 if (!sctp_addip_enable)
690 return retval;
692 sp = sctp_sk(sk);
693 ep = sp->ep;
695 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
696 __FUNCTION__, sk, addrs, addrcnt);
698 list_for_each(pos, &ep->asocs) {
699 asoc = list_entry(pos, struct sctp_association, asocs);
701 if (!asoc->peer.asconf_capable)
702 continue;
704 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
705 continue;
707 if (!sctp_state(asoc, ESTABLISHED))
708 continue;
710 /* Check if any address in the packed array of addresses is
711 * not present in the bind address list of the association.
712 * If so, do not send the asconf chunk to its peer, but
713 * continue with other associations.
715 addr_buf = addrs;
716 for (i = 0; i < addrcnt; i++) {
717 laddr = (union sctp_addr *)addr_buf;
718 af = sctp_get_af_specific(laddr->v4.sin_family);
719 if (!af) {
720 retval = -EINVAL;
721 goto out;
724 if (!sctp_assoc_lookup_laddr(asoc, laddr))
725 break;
727 addr_buf += af->sockaddr_len;
729 if (i < addrcnt)
730 continue;
732 /* Find one address in the association's bind address list
733 * that is not in the packed array of addresses. This is to
734 * make sure that we do not delete all the addresses in the
735 * association.
737 sctp_read_lock(&asoc->base.addr_lock);
738 bp = &asoc->base.bind_addr;
739 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
740 addrcnt, sp);
741 sctp_read_unlock(&asoc->base.addr_lock);
742 if (!laddr)
743 continue;
745 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
746 SCTP_PARAM_DEL_IP);
747 if (!chunk) {
748 retval = -ENOMEM;
749 goto out;
752 retval = sctp_send_asconf(asoc, chunk);
754 /* FIXME: After sending the delete address ASCONF chunk, we
755 * cannot remove the addresses from the association's bind
756 * address list, because there maybe some packet send to
757 * the delete addresses, so we should wait until ASCONF_ACK
758 * packet is received.
761 out:
762 return retval;
765 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
767 * API 8.1
768 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
769 * int flags);
771 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
772 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
773 * or IPv6 addresses.
775 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
776 * Section 3.1.2 for this usage.
778 * addrs is a pointer to an array of one or more socket addresses. Each
779 * address is contained in its appropriate structure (i.e. struct
780 * sockaddr_in or struct sockaddr_in6) the family of the address type
781 * must be used to distengish the address length (note that this
782 * representation is termed a "packed array" of addresses). The caller
783 * specifies the number of addresses in the array with addrcnt.
785 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
786 * -1, and sets errno to the appropriate error code.
788 * For SCTP, the port given in each socket address must be the same, or
789 * sctp_bindx() will fail, setting errno to EINVAL.
791 * The flags parameter is formed from the bitwise OR of zero or more of
792 * the following currently defined flags:
794 * SCTP_BINDX_ADD_ADDR
796 * SCTP_BINDX_REM_ADDR
798 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
799 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
800 * addresses from the association. The two flags are mutually exclusive;
801 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
802 * not remove all addresses from an association; sctp_bindx() will
803 * reject such an attempt with EINVAL.
805 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
806 * additional addresses with an endpoint after calling bind(). Or use
807 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
808 * socket is associated with so that no new association accepted will be
809 * associated with those addresses. If the endpoint supports dynamic
810 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
811 * endpoint to send the appropriate message to the peer to change the
812 * peers address lists.
814 * Adding and removing addresses from a connected association is
815 * optional functionality. Implementations that do not support this
816 * functionality should return EOPNOTSUPP.
818 * Basically do nothing but copying the addresses from user to kernel
819 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
820 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
821 * from userspace.
823 * We don't use copy_from_user() for optimization: we first do the
824 * sanity checks (buffer size -fast- and access check-healthy
825 * pointer); if all of those succeed, then we can alloc the memory
826 * (expensive operation) needed to copy the data to kernel. Then we do
827 * the copying without checking the user space area
828 * (__copy_from_user()).
830 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
831 * it.
833 * sk The sk of the socket
834 * addrs The pointer to the addresses in user land
835 * addrssize Size of the addrs buffer
836 * op Operation to perform (add or remove, see the flags of
837 * sctp_bindx)
839 * Returns 0 if ok, <0 errno code on error.
841 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
842 struct sockaddr __user *addrs,
843 int addrs_size, int op)
845 struct sockaddr *kaddrs;
846 int err;
847 int addrcnt = 0;
848 int walk_size = 0;
849 struct sockaddr *sa_addr;
850 void *addr_buf;
851 struct sctp_af *af;
853 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
854 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
856 if (unlikely(addrs_size <= 0))
857 return -EINVAL;
859 /* Check the user passed a healthy pointer. */
860 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
861 return -EFAULT;
863 /* Alloc space for the address array in kernel memory. */
864 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
865 if (unlikely(!kaddrs))
866 return -ENOMEM;
868 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
869 kfree(kaddrs);
870 return -EFAULT;
873 /* Walk through the addrs buffer and count the number of addresses. */
874 addr_buf = kaddrs;
875 while (walk_size < addrs_size) {
876 sa_addr = (struct sockaddr *)addr_buf;
877 af = sctp_get_af_specific(sa_addr->sa_family);
879 /* If the address family is not supported or if this address
880 * causes the address buffer to overflow return EINVAL.
882 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
883 kfree(kaddrs);
884 return -EINVAL;
886 addrcnt++;
887 addr_buf += af->sockaddr_len;
888 walk_size += af->sockaddr_len;
891 /* Do the work. */
892 switch (op) {
893 case SCTP_BINDX_ADD_ADDR:
894 err = sctp_bindx_add(sk, kaddrs, addrcnt);
895 if (err)
896 goto out;
897 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
898 break;
900 case SCTP_BINDX_REM_ADDR:
901 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
902 if (err)
903 goto out;
904 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
905 break;
907 default:
908 err = -EINVAL;
909 break;
912 out:
913 kfree(kaddrs);
915 return err;
918 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
920 * Common routine for handling connect() and sctp_connectx().
921 * Connect will come in with just a single address.
923 static int __sctp_connect(struct sock* sk,
924 struct sockaddr *kaddrs,
925 int addrs_size)
927 struct sctp_sock *sp;
928 struct sctp_endpoint *ep;
929 struct sctp_association *asoc = NULL;
930 struct sctp_association *asoc2;
931 struct sctp_transport *transport;
932 union sctp_addr to;
933 struct sctp_af *af;
934 sctp_scope_t scope;
935 long timeo;
936 int err = 0;
937 int addrcnt = 0;
938 int walk_size = 0;
939 struct sockaddr *sa_addr;
940 void *addr_buf;
942 sp = sctp_sk(sk);
943 ep = sp->ep;
945 /* connect() cannot be done on a socket that is already in ESTABLISHED
946 * state - UDP-style peeled off socket or a TCP-style socket that
947 * is already connected.
948 * It cannot be done even on a TCP-style listening socket.
950 if (sctp_sstate(sk, ESTABLISHED) ||
951 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
952 err = -EISCONN;
953 goto out_free;
956 /* Walk through the addrs buffer and count the number of addresses. */
957 addr_buf = kaddrs;
958 while (walk_size < addrs_size) {
959 sa_addr = (struct sockaddr *)addr_buf;
960 af = sctp_get_af_specific(sa_addr->sa_family);
962 /* If the address family is not supported or if this address
963 * causes the address buffer to overflow return EINVAL.
965 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
966 err = -EINVAL;
967 goto out_free;
970 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
971 af->sockaddr_len);
972 if (err)
973 goto out_free;
975 memcpy(&to, sa_addr, af->sockaddr_len);
976 to.v4.sin_port = ntohs(to.v4.sin_port);
978 /* Check if there already is a matching association on the
979 * endpoint (other than the one created here).
981 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
982 if (asoc2 && asoc2 != asoc) {
983 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
984 err = -EISCONN;
985 else
986 err = -EALREADY;
987 goto out_free;
990 /* If we could not find a matching association on the endpoint,
991 * make sure that there is no peeled-off association matching
992 * the peer address even on another socket.
994 if (sctp_endpoint_is_peeled_off(ep, &to)) {
995 err = -EADDRNOTAVAIL;
996 goto out_free;
999 if (!asoc) {
1000 /* If a bind() or sctp_bindx() is not called prior to
1001 * an sctp_connectx() call, the system picks an
1002 * ephemeral port and will choose an address set
1003 * equivalent to binding with a wildcard address.
1005 if (!ep->base.bind_addr.port) {
1006 if (sctp_autobind(sk)) {
1007 err = -EAGAIN;
1008 goto out_free;
1010 } else {
1012 * If an unprivileged user inherits a 1-many
1013 * style socket with open associations on a
1014 * privileged port, it MAY be permitted to
1015 * accept new associations, but it SHOULD NOT
1016 * be permitted to open new associations.
1018 if (ep->base.bind_addr.port < PROT_SOCK &&
1019 !capable(CAP_NET_BIND_SERVICE)) {
1020 err = -EACCES;
1021 goto out_free;
1025 scope = sctp_scope(&to);
1026 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1027 if (!asoc) {
1028 err = -ENOMEM;
1029 goto out_free;
1033 /* Prime the peer's transport structures. */
1034 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1035 SCTP_UNKNOWN);
1036 if (!transport) {
1037 err = -ENOMEM;
1038 goto out_free;
1041 addrcnt++;
1042 addr_buf += af->sockaddr_len;
1043 walk_size += af->sockaddr_len;
1046 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1047 if (err < 0) {
1048 goto out_free;
1051 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1052 if (err < 0) {
1053 goto out_free;
1056 /* Initialize sk's dport and daddr for getpeername() */
1057 inet_sk(sk)->dport = htons(asoc->peer.port);
1058 af = sctp_get_af_specific(to.sa.sa_family);
1059 af->to_sk_daddr(&to, sk);
1060 sk->sk_err = 0;
1062 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1063 err = sctp_wait_for_connect(asoc, &timeo);
1065 /* Don't free association on exit. */
1066 asoc = NULL;
1068 out_free:
1070 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1071 " kaddrs: %p err: %d\n",
1072 asoc, kaddrs, err);
1073 if (asoc)
1074 sctp_association_free(asoc);
1075 return err;
1078 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1080 * API 8.9
1081 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1083 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1084 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1085 * or IPv6 addresses.
1087 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1088 * Section 3.1.2 for this usage.
1090 * addrs is a pointer to an array of one or more socket addresses. Each
1091 * address is contained in its appropriate structure (i.e. struct
1092 * sockaddr_in or struct sockaddr_in6) the family of the address type
1093 * must be used to distengish the address length (note that this
1094 * representation is termed a "packed array" of addresses). The caller
1095 * specifies the number of addresses in the array with addrcnt.
1097 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1098 * -1, and sets errno to the appropriate error code.
1100 * For SCTP, the port given in each socket address must be the same, or
1101 * sctp_connectx() will fail, setting errno to EINVAL.
1103 * An application can use sctp_connectx to initiate an association with
1104 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1105 * allows a caller to specify multiple addresses at which a peer can be
1106 * reached. The way the SCTP stack uses the list of addresses to set up
1107 * the association is implementation dependant. This function only
1108 * specifies that the stack will try to make use of all the addresses in
1109 * the list when needed.
1111 * Note that the list of addresses passed in is only used for setting up
1112 * the association. It does not necessarily equal the set of addresses
1113 * the peer uses for the resulting association. If the caller wants to
1114 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1115 * retrieve them after the association has been set up.
1117 * Basically do nothing but copying the addresses from user to kernel
1118 * land and invoking either sctp_connectx(). This is used for tunneling
1119 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1121 * We don't use copy_from_user() for optimization: we first do the
1122 * sanity checks (buffer size -fast- and access check-healthy
1123 * pointer); if all of those succeed, then we can alloc the memory
1124 * (expensive operation) needed to copy the data to kernel. Then we do
1125 * the copying without checking the user space area
1126 * (__copy_from_user()).
1128 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1129 * it.
1131 * sk The sk of the socket
1132 * addrs The pointer to the addresses in user land
1133 * addrssize Size of the addrs buffer
1135 * Returns 0 if ok, <0 errno code on error.
1137 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1138 struct sockaddr __user *addrs,
1139 int addrs_size)
1141 int err = 0;
1142 struct sockaddr *kaddrs;
1144 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1145 __FUNCTION__, sk, addrs, addrs_size);
1147 if (unlikely(addrs_size <= 0))
1148 return -EINVAL;
1150 /* Check the user passed a healthy pointer. */
1151 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1152 return -EFAULT;
1154 /* Alloc space for the address array in kernel memory. */
1155 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1156 if (unlikely(!kaddrs))
1157 return -ENOMEM;
1159 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1160 err = -EFAULT;
1161 } else {
1162 err = __sctp_connect(sk, kaddrs, addrs_size);
1165 kfree(kaddrs);
1166 return err;
1169 /* API 3.1.4 close() - UDP Style Syntax
1170 * Applications use close() to perform graceful shutdown (as described in
1171 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1172 * by a UDP-style socket.
1174 * The syntax is
1176 * ret = close(int sd);
1178 * sd - the socket descriptor of the associations to be closed.
1180 * To gracefully shutdown a specific association represented by the
1181 * UDP-style socket, an application should use the sendmsg() call,
1182 * passing no user data, but including the appropriate flag in the
1183 * ancillary data (see Section xxxx).
1185 * If sd in the close() call is a branched-off socket representing only
1186 * one association, the shutdown is performed on that association only.
1188 * 4.1.6 close() - TCP Style Syntax
1190 * Applications use close() to gracefully close down an association.
1192 * The syntax is:
1194 * int close(int sd);
1196 * sd - the socket descriptor of the association to be closed.
1198 * After an application calls close() on a socket descriptor, no further
1199 * socket operations will succeed on that descriptor.
1201 * API 7.1.4 SO_LINGER
1203 * An application using the TCP-style socket can use this option to
1204 * perform the SCTP ABORT primitive. The linger option structure is:
1206 * struct linger {
1207 * int l_onoff; // option on/off
1208 * int l_linger; // linger time
1209 * };
1211 * To enable the option, set l_onoff to 1. If the l_linger value is set
1212 * to 0, calling close() is the same as the ABORT primitive. If the
1213 * value is set to a negative value, the setsockopt() call will return
1214 * an error. If the value is set to a positive value linger_time, the
1215 * close() can be blocked for at most linger_time ms. If the graceful
1216 * shutdown phase does not finish during this period, close() will
1217 * return but the graceful shutdown phase continues in the system.
1219 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1221 struct sctp_endpoint *ep;
1222 struct sctp_association *asoc;
1223 struct list_head *pos, *temp;
1225 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1227 sctp_lock_sock(sk);
1228 sk->sk_shutdown = SHUTDOWN_MASK;
1230 ep = sctp_sk(sk)->ep;
1232 /* Walk all associations on an endpoint. */
1233 list_for_each_safe(pos, temp, &ep->asocs) {
1234 asoc = list_entry(pos, struct sctp_association, asocs);
1236 if (sctp_style(sk, TCP)) {
1237 /* A closed association can still be in the list if
1238 * it belongs to a TCP-style listening socket that is
1239 * not yet accepted. If so, free it. If not, send an
1240 * ABORT or SHUTDOWN based on the linger options.
1242 if (sctp_state(asoc, CLOSED)) {
1243 sctp_unhash_established(asoc);
1244 sctp_association_free(asoc);
1245 continue;
1249 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)
1250 sctp_primitive_ABORT(asoc, NULL);
1251 else
1252 sctp_primitive_SHUTDOWN(asoc, NULL);
1255 /* Clean up any skbs sitting on the receive queue. */
1256 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1257 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1259 /* On a TCP-style socket, block for at most linger_time if set. */
1260 if (sctp_style(sk, TCP) && timeout)
1261 sctp_wait_for_close(sk, timeout);
1263 /* This will run the backlog queue. */
1264 sctp_release_sock(sk);
1266 /* Supposedly, no process has access to the socket, but
1267 * the net layers still may.
1269 sctp_local_bh_disable();
1270 sctp_bh_lock_sock(sk);
1272 /* Hold the sock, since sk_common_release() will put sock_put()
1273 * and we have just a little more cleanup.
1275 sock_hold(sk);
1276 sk_common_release(sk);
1278 sctp_bh_unlock_sock(sk);
1279 sctp_local_bh_enable();
1281 sock_put(sk);
1283 SCTP_DBG_OBJCNT_DEC(sock);
1286 /* Handle EPIPE error. */
1287 static int sctp_error(struct sock *sk, int flags, int err)
1289 if (err == -EPIPE)
1290 err = sock_error(sk) ? : -EPIPE;
1291 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1292 send_sig(SIGPIPE, current, 0);
1293 return err;
1296 /* API 3.1.3 sendmsg() - UDP Style Syntax
1298 * An application uses sendmsg() and recvmsg() calls to transmit data to
1299 * and receive data from its peer.
1301 * ssize_t sendmsg(int socket, const struct msghdr *message,
1302 * int flags);
1304 * socket - the socket descriptor of the endpoint.
1305 * message - pointer to the msghdr structure which contains a single
1306 * user message and possibly some ancillary data.
1308 * See Section 5 for complete description of the data
1309 * structures.
1311 * flags - flags sent or received with the user message, see Section
1312 * 5 for complete description of the flags.
1314 * Note: This function could use a rewrite especially when explicit
1315 * connect support comes in.
1317 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1319 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1321 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1322 struct msghdr *msg, size_t msg_len)
1324 struct sctp_sock *sp;
1325 struct sctp_endpoint *ep;
1326 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1327 struct sctp_transport *transport, *chunk_tp;
1328 struct sctp_chunk *chunk;
1329 union sctp_addr to;
1330 struct sockaddr *msg_name = NULL;
1331 struct sctp_sndrcvinfo default_sinfo = { 0 };
1332 struct sctp_sndrcvinfo *sinfo;
1333 struct sctp_initmsg *sinit;
1334 sctp_assoc_t associd = 0;
1335 sctp_cmsgs_t cmsgs = { NULL };
1336 int err;
1337 sctp_scope_t scope;
1338 long timeo;
1339 __u16 sinfo_flags = 0;
1340 struct sctp_datamsg *datamsg;
1341 struct list_head *pos;
1342 int msg_flags = msg->msg_flags;
1344 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1345 sk, msg, msg_len);
1347 err = 0;
1348 sp = sctp_sk(sk);
1349 ep = sp->ep;
1351 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1353 /* We cannot send a message over a TCP-style listening socket. */
1354 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1355 err = -EPIPE;
1356 goto out_nounlock;
1359 /* Parse out the SCTP CMSGs. */
1360 err = sctp_msghdr_parse(msg, &cmsgs);
1362 if (err) {
1363 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1364 goto out_nounlock;
1367 /* Fetch the destination address for this packet. This
1368 * address only selects the association--it is not necessarily
1369 * the address we will send to.
1370 * For a peeled-off socket, msg_name is ignored.
1372 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1373 int msg_namelen = msg->msg_namelen;
1375 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1376 msg_namelen);
1377 if (err)
1378 return err;
1380 if (msg_namelen > sizeof(to))
1381 msg_namelen = sizeof(to);
1382 memcpy(&to, msg->msg_name, msg_namelen);
1383 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1384 "0x%x:%u.\n",
1385 to.v4.sin_addr.s_addr, to.v4.sin_port);
1387 to.v4.sin_port = ntohs(to.v4.sin_port);
1388 msg_name = msg->msg_name;
1391 sinfo = cmsgs.info;
1392 sinit = cmsgs.init;
1394 /* Did the user specify SNDRCVINFO? */
1395 if (sinfo) {
1396 sinfo_flags = sinfo->sinfo_flags;
1397 associd = sinfo->sinfo_assoc_id;
1400 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1401 msg_len, sinfo_flags);
1403 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1404 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1405 err = -EINVAL;
1406 goto out_nounlock;
1409 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1410 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1411 * If SCTP_ABORT is set, the message length could be non zero with
1412 * the msg_iov set to the user abort reason.
1414 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1415 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1416 err = -EINVAL;
1417 goto out_nounlock;
1420 /* If SCTP_ADDR_OVER is set, there must be an address
1421 * specified in msg_name.
1423 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1424 err = -EINVAL;
1425 goto out_nounlock;
1428 transport = NULL;
1430 SCTP_DEBUG_PRINTK("About to look up association.\n");
1432 sctp_lock_sock(sk);
1434 /* If a msg_name has been specified, assume this is to be used. */
1435 if (msg_name) {
1436 /* Look for a matching association on the endpoint. */
1437 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1438 if (!asoc) {
1439 /* If we could not find a matching association on the
1440 * endpoint, make sure that it is not a TCP-style
1441 * socket that already has an association or there is
1442 * no peeled-off association on another socket.
1444 if ((sctp_style(sk, TCP) &&
1445 sctp_sstate(sk, ESTABLISHED)) ||
1446 sctp_endpoint_is_peeled_off(ep, &to)) {
1447 err = -EADDRNOTAVAIL;
1448 goto out_unlock;
1451 } else {
1452 asoc = sctp_id2assoc(sk, associd);
1453 if (!asoc) {
1454 err = -EPIPE;
1455 goto out_unlock;
1459 if (asoc) {
1460 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1462 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1463 * socket that has an association in CLOSED state. This can
1464 * happen when an accepted socket has an association that is
1465 * already CLOSED.
1467 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1468 err = -EPIPE;
1469 goto out_unlock;
1472 if (sinfo_flags & SCTP_EOF) {
1473 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1474 asoc);
1475 sctp_primitive_SHUTDOWN(asoc, NULL);
1476 err = 0;
1477 goto out_unlock;
1479 if (sinfo_flags & SCTP_ABORT) {
1480 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1481 sctp_primitive_ABORT(asoc, msg);
1482 err = 0;
1483 goto out_unlock;
1487 /* Do we need to create the association? */
1488 if (!asoc) {
1489 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1491 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1492 err = -EINVAL;
1493 goto out_unlock;
1496 /* Check for invalid stream against the stream counts,
1497 * either the default or the user specified stream counts.
1499 if (sinfo) {
1500 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1501 /* Check against the defaults. */
1502 if (sinfo->sinfo_stream >=
1503 sp->initmsg.sinit_num_ostreams) {
1504 err = -EINVAL;
1505 goto out_unlock;
1507 } else {
1508 /* Check against the requested. */
1509 if (sinfo->sinfo_stream >=
1510 sinit->sinit_num_ostreams) {
1511 err = -EINVAL;
1512 goto out_unlock;
1518 * API 3.1.2 bind() - UDP Style Syntax
1519 * If a bind() or sctp_bindx() is not called prior to a
1520 * sendmsg() call that initiates a new association, the
1521 * system picks an ephemeral port and will choose an address
1522 * set equivalent to binding with a wildcard address.
1524 if (!ep->base.bind_addr.port) {
1525 if (sctp_autobind(sk)) {
1526 err = -EAGAIN;
1527 goto out_unlock;
1529 } else {
1531 * If an unprivileged user inherits a one-to-many
1532 * style socket with open associations on a privileged
1533 * port, it MAY be permitted to accept new associations,
1534 * but it SHOULD NOT be permitted to open new
1535 * associations.
1537 if (ep->base.bind_addr.port < PROT_SOCK &&
1538 !capable(CAP_NET_BIND_SERVICE)) {
1539 err = -EACCES;
1540 goto out_unlock;
1544 scope = sctp_scope(&to);
1545 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1546 if (!new_asoc) {
1547 err = -ENOMEM;
1548 goto out_unlock;
1550 asoc = new_asoc;
1552 /* If the SCTP_INIT ancillary data is specified, set all
1553 * the association init values accordingly.
1555 if (sinit) {
1556 if (sinit->sinit_num_ostreams) {
1557 asoc->c.sinit_num_ostreams =
1558 sinit->sinit_num_ostreams;
1560 if (sinit->sinit_max_instreams) {
1561 asoc->c.sinit_max_instreams =
1562 sinit->sinit_max_instreams;
1564 if (sinit->sinit_max_attempts) {
1565 asoc->max_init_attempts
1566 = sinit->sinit_max_attempts;
1568 if (sinit->sinit_max_init_timeo) {
1569 asoc->max_init_timeo =
1570 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1574 /* Prime the peer's transport structures. */
1575 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1576 if (!transport) {
1577 err = -ENOMEM;
1578 goto out_free;
1580 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1581 if (err < 0) {
1582 err = -ENOMEM;
1583 goto out_free;
1587 /* ASSERT: we have a valid association at this point. */
1588 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1590 if (!sinfo) {
1591 /* If the user didn't specify SNDRCVINFO, make up one with
1592 * some defaults.
1594 default_sinfo.sinfo_stream = asoc->default_stream;
1595 default_sinfo.sinfo_flags = asoc->default_flags;
1596 default_sinfo.sinfo_ppid = asoc->default_ppid;
1597 default_sinfo.sinfo_context = asoc->default_context;
1598 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1599 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1600 sinfo = &default_sinfo;
1603 /* API 7.1.7, the sndbuf size per association bounds the
1604 * maximum size of data that can be sent in a single send call.
1606 if (msg_len > sk->sk_sndbuf) {
1607 err = -EMSGSIZE;
1608 goto out_free;
1611 /* If fragmentation is disabled and the message length exceeds the
1612 * association fragmentation point, return EMSGSIZE. The I-D
1613 * does not specify what this error is, but this looks like
1614 * a great fit.
1616 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1617 err = -EMSGSIZE;
1618 goto out_free;
1621 if (sinfo) {
1622 /* Check for invalid stream. */
1623 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1624 err = -EINVAL;
1625 goto out_free;
1629 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1630 if (!sctp_wspace(asoc)) {
1631 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1632 if (err)
1633 goto out_free;
1636 /* If an address is passed with the sendto/sendmsg call, it is used
1637 * to override the primary destination address in the TCP model, or
1638 * when SCTP_ADDR_OVER flag is set in the UDP model.
1640 if ((sctp_style(sk, TCP) && msg_name) ||
1641 (sinfo_flags & SCTP_ADDR_OVER)) {
1642 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1643 if (!chunk_tp) {
1644 err = -EINVAL;
1645 goto out_free;
1647 } else
1648 chunk_tp = NULL;
1650 /* Auto-connect, if we aren't connected already. */
1651 if (sctp_state(asoc, CLOSED)) {
1652 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1653 if (err < 0)
1654 goto out_free;
1655 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1658 /* Break the message into multiple chunks of maximum size. */
1659 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1660 if (!datamsg) {
1661 err = -ENOMEM;
1662 goto out_free;
1665 /* Now send the (possibly) fragmented message. */
1666 list_for_each(pos, &datamsg->chunks) {
1667 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1668 sctp_datamsg_track(chunk);
1670 /* Do accounting for the write space. */
1671 sctp_set_owner_w(chunk);
1673 chunk->transport = chunk_tp;
1675 /* Send it to the lower layers. Note: all chunks
1676 * must either fail or succeed. The lower layer
1677 * works that way today. Keep it that way or this
1678 * breaks.
1680 err = sctp_primitive_SEND(asoc, chunk);
1681 /* Did the lower layer accept the chunk? */
1682 if (err)
1683 sctp_chunk_free(chunk);
1684 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1687 sctp_datamsg_free(datamsg);
1688 if (err)
1689 goto out_free;
1690 else
1691 err = msg_len;
1693 /* If we are already past ASSOCIATE, the lower
1694 * layers are responsible for association cleanup.
1696 goto out_unlock;
1698 out_free:
1699 if (new_asoc)
1700 sctp_association_free(asoc);
1701 out_unlock:
1702 sctp_release_sock(sk);
1704 out_nounlock:
1705 return sctp_error(sk, msg_flags, err);
1707 #if 0
1708 do_sock_err:
1709 if (msg_len)
1710 err = msg_len;
1711 else
1712 err = sock_error(sk);
1713 goto out;
1715 do_interrupted:
1716 if (msg_len)
1717 err = msg_len;
1718 goto out;
1719 #endif /* 0 */
1722 /* This is an extended version of skb_pull() that removes the data from the
1723 * start of a skb even when data is spread across the list of skb's in the
1724 * frag_list. len specifies the total amount of data that needs to be removed.
1725 * when 'len' bytes could be removed from the skb, it returns 0.
1726 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1727 * could not be removed.
1729 static int sctp_skb_pull(struct sk_buff *skb, int len)
1731 struct sk_buff *list;
1732 int skb_len = skb_headlen(skb);
1733 int rlen;
1735 if (len <= skb_len) {
1736 __skb_pull(skb, len);
1737 return 0;
1739 len -= skb_len;
1740 __skb_pull(skb, skb_len);
1742 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1743 rlen = sctp_skb_pull(list, len);
1744 skb->len -= (len-rlen);
1745 skb->data_len -= (len-rlen);
1747 if (!rlen)
1748 return 0;
1750 len = rlen;
1753 return len;
1756 /* API 3.1.3 recvmsg() - UDP Style Syntax
1758 * ssize_t recvmsg(int socket, struct msghdr *message,
1759 * int flags);
1761 * socket - the socket descriptor of the endpoint.
1762 * message - pointer to the msghdr structure which contains a single
1763 * user message and possibly some ancillary data.
1765 * See Section 5 for complete description of the data
1766 * structures.
1768 * flags - flags sent or received with the user message, see Section
1769 * 5 for complete description of the flags.
1771 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1773 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1774 struct msghdr *msg, size_t len, int noblock,
1775 int flags, int *addr_len)
1777 struct sctp_ulpevent *event = NULL;
1778 struct sctp_sock *sp = sctp_sk(sk);
1779 struct sk_buff *skb;
1780 int copied;
1781 int err = 0;
1782 int skb_len;
1784 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1785 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1786 "len", len, "knoblauch", noblock,
1787 "flags", flags, "addr_len", addr_len);
1789 sctp_lock_sock(sk);
1791 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1792 err = -ENOTCONN;
1793 goto out;
1796 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1797 if (!skb)
1798 goto out;
1800 /* Get the total length of the skb including any skb's in the
1801 * frag_list.
1803 skb_len = skb->len;
1805 copied = skb_len;
1806 if (copied > len)
1807 copied = len;
1809 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1811 event = sctp_skb2event(skb);
1813 if (err)
1814 goto out_free;
1816 sock_recv_timestamp(msg, sk, skb);
1817 if (sctp_ulpevent_is_notification(event)) {
1818 msg->msg_flags |= MSG_NOTIFICATION;
1819 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1820 } else {
1821 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1824 /* Check if we allow SCTP_SNDRCVINFO. */
1825 if (sp->subscribe.sctp_data_io_event)
1826 sctp_ulpevent_read_sndrcvinfo(event, msg);
1827 #if 0
1828 /* FIXME: we should be calling IP/IPv6 layers. */
1829 if (sk->sk_protinfo.af_inet.cmsg_flags)
1830 ip_cmsg_recv(msg, skb);
1831 #endif
1833 err = copied;
1835 /* If skb's length exceeds the user's buffer, update the skb and
1836 * push it back to the receive_queue so that the next call to
1837 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1839 if (skb_len > copied) {
1840 msg->msg_flags &= ~MSG_EOR;
1841 if (flags & MSG_PEEK)
1842 goto out_free;
1843 sctp_skb_pull(skb, copied);
1844 skb_queue_head(&sk->sk_receive_queue, skb);
1846 /* When only partial message is copied to the user, increase
1847 * rwnd by that amount. If all the data in the skb is read,
1848 * rwnd is updated when the event is freed.
1850 sctp_assoc_rwnd_increase(event->asoc, copied);
1851 goto out;
1852 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1853 (event->msg_flags & MSG_EOR))
1854 msg->msg_flags |= MSG_EOR;
1855 else
1856 msg->msg_flags &= ~MSG_EOR;
1858 out_free:
1859 if (flags & MSG_PEEK) {
1860 /* Release the skb reference acquired after peeking the skb in
1861 * sctp_skb_recv_datagram().
1863 kfree_skb(skb);
1864 } else {
1865 /* Free the event which includes releasing the reference to
1866 * the owner of the skb, freeing the skb and updating the
1867 * rwnd.
1869 sctp_ulpevent_free(event);
1871 out:
1872 sctp_release_sock(sk);
1873 return err;
1876 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1878 * This option is a on/off flag. If enabled no SCTP message
1879 * fragmentation will be performed. Instead if a message being sent
1880 * exceeds the current PMTU size, the message will NOT be sent and
1881 * instead a error will be indicated to the user.
1883 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1884 char __user *optval, int optlen)
1886 int val;
1888 if (optlen < sizeof(int))
1889 return -EINVAL;
1891 if (get_user(val, (int __user *)optval))
1892 return -EFAULT;
1894 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1896 return 0;
1899 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1900 int optlen)
1902 if (optlen != sizeof(struct sctp_event_subscribe))
1903 return -EINVAL;
1904 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1905 return -EFAULT;
1906 return 0;
1909 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1911 * This socket option is applicable to the UDP-style socket only. When
1912 * set it will cause associations that are idle for more than the
1913 * specified number of seconds to automatically close. An association
1914 * being idle is defined an association that has NOT sent or received
1915 * user data. The special value of '0' indicates that no automatic
1916 * close of any associations should be performed. The option expects an
1917 * integer defining the number of seconds of idle time before an
1918 * association is closed.
1920 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1921 int optlen)
1923 struct sctp_sock *sp = sctp_sk(sk);
1925 /* Applicable to UDP-style socket only */
1926 if (sctp_style(sk, TCP))
1927 return -EOPNOTSUPP;
1928 if (optlen != sizeof(int))
1929 return -EINVAL;
1930 if (copy_from_user(&sp->autoclose, optval, optlen))
1931 return -EFAULT;
1933 return 0;
1936 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1938 * Applications can enable or disable heartbeats for any peer address of
1939 * an association, modify an address's heartbeat interval, force a
1940 * heartbeat to be sent immediately, and adjust the address's maximum
1941 * number of retransmissions sent before an address is considered
1942 * unreachable. The following structure is used to access and modify an
1943 * address's parameters:
1945 * struct sctp_paddrparams {
1946 * sctp_assoc_t spp_assoc_id;
1947 * struct sockaddr_storage spp_address;
1948 * uint32_t spp_hbinterval;
1949 * uint16_t spp_pathmaxrxt;
1950 * uint32_t spp_pathmtu;
1951 * uint32_t spp_sackdelay;
1952 * uint32_t spp_flags;
1953 * };
1955 * spp_assoc_id - (one-to-many style socket) This is filled in the
1956 * application, and identifies the association for
1957 * this query.
1958 * spp_address - This specifies which address is of interest.
1959 * spp_hbinterval - This contains the value of the heartbeat interval,
1960 * in milliseconds. If a value of zero
1961 * is present in this field then no changes are to
1962 * be made to this parameter.
1963 * spp_pathmaxrxt - This contains the maximum number of
1964 * retransmissions before this address shall be
1965 * considered unreachable. If a value of zero
1966 * is present in this field then no changes are to
1967 * be made to this parameter.
1968 * spp_pathmtu - When Path MTU discovery is disabled the value
1969 * specified here will be the "fixed" path mtu.
1970 * Note that if the spp_address field is empty
1971 * then all associations on this address will
1972 * have this fixed path mtu set upon them.
1974 * spp_sackdelay - When delayed sack is enabled, this value specifies
1975 * the number of milliseconds that sacks will be delayed
1976 * for. This value will apply to all addresses of an
1977 * association if the spp_address field is empty. Note
1978 * also, that if delayed sack is enabled and this
1979 * value is set to 0, no change is made to the last
1980 * recorded delayed sack timer value.
1982 * spp_flags - These flags are used to control various features
1983 * on an association. The flag field may contain
1984 * zero or more of the following options.
1986 * SPP_HB_ENABLE - Enable heartbeats on the
1987 * specified address. Note that if the address
1988 * field is empty all addresses for the association
1989 * have heartbeats enabled upon them.
1991 * SPP_HB_DISABLE - Disable heartbeats on the
1992 * speicifed address. Note that if the address
1993 * field is empty all addresses for the association
1994 * will have their heartbeats disabled. Note also
1995 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
1996 * mutually exclusive, only one of these two should
1997 * be specified. Enabling both fields will have
1998 * undetermined results.
2000 * SPP_HB_DEMAND - Request a user initiated heartbeat
2001 * to be made immediately.
2003 * SPP_PMTUD_ENABLE - This field will enable PMTU
2004 * discovery upon the specified address. Note that
2005 * if the address feild is empty then all addresses
2006 * on the association are effected.
2008 * SPP_PMTUD_DISABLE - This field will disable PMTU
2009 * discovery upon the specified address. Note that
2010 * if the address feild is empty then all addresses
2011 * on the association are effected. Not also that
2012 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2013 * exclusive. Enabling both will have undetermined
2014 * results.
2016 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2017 * on delayed sack. The time specified in spp_sackdelay
2018 * is used to specify the sack delay for this address. Note
2019 * that if spp_address is empty then all addresses will
2020 * enable delayed sack and take on the sack delay
2021 * value specified in spp_sackdelay.
2022 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2023 * off delayed sack. If the spp_address field is blank then
2024 * delayed sack is disabled for the entire association. Note
2025 * also that this field is mutually exclusive to
2026 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2027 * results.
2029 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2030 struct sctp_transport *trans,
2031 struct sctp_association *asoc,
2032 struct sctp_sock *sp,
2033 int hb_change,
2034 int pmtud_change,
2035 int sackdelay_change)
2037 int error;
2039 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2040 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2041 if (error)
2042 return error;
2045 if (params->spp_hbinterval) {
2046 if (trans) {
2047 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2048 } else if (asoc) {
2049 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2050 } else {
2051 sp->hbinterval = params->spp_hbinterval;
2055 if (hb_change) {
2056 if (trans) {
2057 trans->param_flags =
2058 (trans->param_flags & ~SPP_HB) | hb_change;
2059 } else if (asoc) {
2060 asoc->param_flags =
2061 (asoc->param_flags & ~SPP_HB) | hb_change;
2062 } else {
2063 sp->param_flags =
2064 (sp->param_flags & ~SPP_HB) | hb_change;
2068 if (params->spp_pathmtu) {
2069 if (trans) {
2070 trans->pathmtu = params->spp_pathmtu;
2071 sctp_assoc_sync_pmtu(asoc);
2072 } else if (asoc) {
2073 asoc->pathmtu = params->spp_pathmtu;
2074 sctp_frag_point(sp, params->spp_pathmtu);
2075 } else {
2076 sp->pathmtu = params->spp_pathmtu;
2080 if (pmtud_change) {
2081 if (trans) {
2082 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2083 (params->spp_flags & SPP_PMTUD_ENABLE);
2084 trans->param_flags =
2085 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2086 if (update) {
2087 sctp_transport_pmtu(trans);
2088 sctp_assoc_sync_pmtu(asoc);
2090 } else if (asoc) {
2091 asoc->param_flags =
2092 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2093 } else {
2094 sp->param_flags =
2095 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2099 if (params->spp_sackdelay) {
2100 if (trans) {
2101 trans->sackdelay =
2102 msecs_to_jiffies(params->spp_sackdelay);
2103 } else if (asoc) {
2104 asoc->sackdelay =
2105 msecs_to_jiffies(params->spp_sackdelay);
2106 } else {
2107 sp->sackdelay = params->spp_sackdelay;
2111 if (sackdelay_change) {
2112 if (trans) {
2113 trans->param_flags =
2114 (trans->param_flags & ~SPP_SACKDELAY) |
2115 sackdelay_change;
2116 } else if (asoc) {
2117 asoc->param_flags =
2118 (asoc->param_flags & ~SPP_SACKDELAY) |
2119 sackdelay_change;
2120 } else {
2121 sp->param_flags =
2122 (sp->param_flags & ~SPP_SACKDELAY) |
2123 sackdelay_change;
2127 if (params->spp_pathmaxrxt) {
2128 if (trans) {
2129 trans->pathmaxrxt = params->spp_pathmaxrxt;
2130 } else if (asoc) {
2131 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2132 } else {
2133 sp->pathmaxrxt = params->spp_pathmaxrxt;
2137 return 0;
2140 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2141 char __user *optval, int optlen)
2143 struct sctp_paddrparams params;
2144 struct sctp_transport *trans = NULL;
2145 struct sctp_association *asoc = NULL;
2146 struct sctp_sock *sp = sctp_sk(sk);
2147 int error;
2148 int hb_change, pmtud_change, sackdelay_change;
2150 if (optlen != sizeof(struct sctp_paddrparams))
2151 return - EINVAL;
2153 if (copy_from_user(&params, optval, optlen))
2154 return -EFAULT;
2156 /* Validate flags and value parameters. */
2157 hb_change = params.spp_flags & SPP_HB;
2158 pmtud_change = params.spp_flags & SPP_PMTUD;
2159 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2161 if (hb_change == SPP_HB ||
2162 pmtud_change == SPP_PMTUD ||
2163 sackdelay_change == SPP_SACKDELAY ||
2164 params.spp_sackdelay > 500 ||
2165 (params.spp_pathmtu
2166 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2167 return -EINVAL;
2169 /* If an address other than INADDR_ANY is specified, and
2170 * no transport is found, then the request is invalid.
2172 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2173 trans = sctp_addr_id2transport(sk, &params.spp_address,
2174 params.spp_assoc_id);
2175 if (!trans)
2176 return -EINVAL;
2179 /* Get association, if assoc_id != 0 and the socket is a one
2180 * to many style socket, and an association was not found, then
2181 * the id was invalid.
2183 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2184 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2185 return -EINVAL;
2187 /* Heartbeat demand can only be sent on a transport or
2188 * association, but not a socket.
2190 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2191 return -EINVAL;
2193 /* Process parameters. */
2194 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2195 hb_change, pmtud_change,
2196 sackdelay_change);
2198 if (error)
2199 return error;
2201 /* If changes are for association, also apply parameters to each
2202 * transport.
2204 if (!trans && asoc) {
2205 struct list_head *pos;
2207 list_for_each(pos, &asoc->peer.transport_addr_list) {
2208 trans = list_entry(pos, struct sctp_transport,
2209 transports);
2210 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2211 hb_change, pmtud_change,
2212 sackdelay_change);
2216 return 0;
2219 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2221 * This options will get or set the delayed ack timer. The time is set
2222 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2223 * endpoints default delayed ack timer value. If the assoc_id field is
2224 * non-zero, then the set or get effects the specified association.
2226 * struct sctp_assoc_value {
2227 * sctp_assoc_t assoc_id;
2228 * uint32_t assoc_value;
2229 * };
2231 * assoc_id - This parameter, indicates which association the
2232 * user is preforming an action upon. Note that if
2233 * this field's value is zero then the endpoints
2234 * default value is changed (effecting future
2235 * associations only).
2237 * assoc_value - This parameter contains the number of milliseconds
2238 * that the user is requesting the delayed ACK timer
2239 * be set to. Note that this value is defined in
2240 * the standard to be between 200 and 500 milliseconds.
2242 * Note: a value of zero will leave the value alone,
2243 * but disable SACK delay. A non-zero value will also
2244 * enable SACK delay.
2247 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2248 char __user *optval, int optlen)
2250 struct sctp_assoc_value params;
2251 struct sctp_transport *trans = NULL;
2252 struct sctp_association *asoc = NULL;
2253 struct sctp_sock *sp = sctp_sk(sk);
2255 if (optlen != sizeof(struct sctp_assoc_value))
2256 return - EINVAL;
2258 if (copy_from_user(&params, optval, optlen))
2259 return -EFAULT;
2261 /* Validate value parameter. */
2262 if (params.assoc_value > 500)
2263 return -EINVAL;
2265 /* Get association, if assoc_id != 0 and the socket is a one
2266 * to many style socket, and an association was not found, then
2267 * the id was invalid.
2269 asoc = sctp_id2assoc(sk, params.assoc_id);
2270 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2271 return -EINVAL;
2273 if (params.assoc_value) {
2274 if (asoc) {
2275 asoc->sackdelay =
2276 msecs_to_jiffies(params.assoc_value);
2277 asoc->param_flags =
2278 (asoc->param_flags & ~SPP_SACKDELAY) |
2279 SPP_SACKDELAY_ENABLE;
2280 } else {
2281 sp->sackdelay = params.assoc_value;
2282 sp->param_flags =
2283 (sp->param_flags & ~SPP_SACKDELAY) |
2284 SPP_SACKDELAY_ENABLE;
2286 } else {
2287 if (asoc) {
2288 asoc->param_flags =
2289 (asoc->param_flags & ~SPP_SACKDELAY) |
2290 SPP_SACKDELAY_DISABLE;
2291 } else {
2292 sp->param_flags =
2293 (sp->param_flags & ~SPP_SACKDELAY) |
2294 SPP_SACKDELAY_DISABLE;
2298 /* If change is for association, also apply to each transport. */
2299 if (asoc) {
2300 struct list_head *pos;
2302 list_for_each(pos, &asoc->peer.transport_addr_list) {
2303 trans = list_entry(pos, struct sctp_transport,
2304 transports);
2305 if (params.assoc_value) {
2306 trans->sackdelay =
2307 msecs_to_jiffies(params.assoc_value);
2308 trans->param_flags =
2309 (trans->param_flags & ~SPP_SACKDELAY) |
2310 SPP_SACKDELAY_ENABLE;
2311 } else {
2312 trans->param_flags =
2313 (trans->param_flags & ~SPP_SACKDELAY) |
2314 SPP_SACKDELAY_DISABLE;
2319 return 0;
2322 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2324 * Applications can specify protocol parameters for the default association
2325 * initialization. The option name argument to setsockopt() and getsockopt()
2326 * is SCTP_INITMSG.
2328 * Setting initialization parameters is effective only on an unconnected
2329 * socket (for UDP-style sockets only future associations are effected
2330 * by the change). With TCP-style sockets, this option is inherited by
2331 * sockets derived from a listener socket.
2333 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2335 struct sctp_initmsg sinit;
2336 struct sctp_sock *sp = sctp_sk(sk);
2338 if (optlen != sizeof(struct sctp_initmsg))
2339 return -EINVAL;
2340 if (copy_from_user(&sinit, optval, optlen))
2341 return -EFAULT;
2343 if (sinit.sinit_num_ostreams)
2344 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2345 if (sinit.sinit_max_instreams)
2346 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2347 if (sinit.sinit_max_attempts)
2348 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2349 if (sinit.sinit_max_init_timeo)
2350 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2352 return 0;
2356 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2358 * Applications that wish to use the sendto() system call may wish to
2359 * specify a default set of parameters that would normally be supplied
2360 * through the inclusion of ancillary data. This socket option allows
2361 * such an application to set the default sctp_sndrcvinfo structure.
2362 * The application that wishes to use this socket option simply passes
2363 * in to this call the sctp_sndrcvinfo structure defined in Section
2364 * 5.2.2) The input parameters accepted by this call include
2365 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2366 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2367 * to this call if the caller is using the UDP model.
2369 static int sctp_setsockopt_default_send_param(struct sock *sk,
2370 char __user *optval, int optlen)
2372 struct sctp_sndrcvinfo info;
2373 struct sctp_association *asoc;
2374 struct sctp_sock *sp = sctp_sk(sk);
2376 if (optlen != sizeof(struct sctp_sndrcvinfo))
2377 return -EINVAL;
2378 if (copy_from_user(&info, optval, optlen))
2379 return -EFAULT;
2381 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2382 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2383 return -EINVAL;
2385 if (asoc) {
2386 asoc->default_stream = info.sinfo_stream;
2387 asoc->default_flags = info.sinfo_flags;
2388 asoc->default_ppid = info.sinfo_ppid;
2389 asoc->default_context = info.sinfo_context;
2390 asoc->default_timetolive = info.sinfo_timetolive;
2391 } else {
2392 sp->default_stream = info.sinfo_stream;
2393 sp->default_flags = info.sinfo_flags;
2394 sp->default_ppid = info.sinfo_ppid;
2395 sp->default_context = info.sinfo_context;
2396 sp->default_timetolive = info.sinfo_timetolive;
2399 return 0;
2402 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2404 * Requests that the local SCTP stack use the enclosed peer address as
2405 * the association primary. The enclosed address must be one of the
2406 * association peer's addresses.
2408 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2409 int optlen)
2411 struct sctp_prim prim;
2412 struct sctp_transport *trans;
2414 if (optlen != sizeof(struct sctp_prim))
2415 return -EINVAL;
2417 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2418 return -EFAULT;
2420 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2421 if (!trans)
2422 return -EINVAL;
2424 sctp_assoc_set_primary(trans->asoc, trans);
2426 return 0;
2430 * 7.1.5 SCTP_NODELAY
2432 * Turn on/off any Nagle-like algorithm. This means that packets are
2433 * generally sent as soon as possible and no unnecessary delays are
2434 * introduced, at the cost of more packets in the network. Expects an
2435 * integer boolean flag.
2437 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2438 int optlen)
2440 int val;
2442 if (optlen < sizeof(int))
2443 return -EINVAL;
2444 if (get_user(val, (int __user *)optval))
2445 return -EFAULT;
2447 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2448 return 0;
2453 * 7.1.1 SCTP_RTOINFO
2455 * The protocol parameters used to initialize and bound retransmission
2456 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2457 * and modify these parameters.
2458 * All parameters are time values, in milliseconds. A value of 0, when
2459 * modifying the parameters, indicates that the current value should not
2460 * be changed.
2463 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2464 struct sctp_rtoinfo rtoinfo;
2465 struct sctp_association *asoc;
2467 if (optlen != sizeof (struct sctp_rtoinfo))
2468 return -EINVAL;
2470 if (copy_from_user(&rtoinfo, optval, optlen))
2471 return -EFAULT;
2473 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2475 /* Set the values to the specific association */
2476 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2477 return -EINVAL;
2479 if (asoc) {
2480 if (rtoinfo.srto_initial != 0)
2481 asoc->rto_initial =
2482 msecs_to_jiffies(rtoinfo.srto_initial);
2483 if (rtoinfo.srto_max != 0)
2484 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2485 if (rtoinfo.srto_min != 0)
2486 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2487 } else {
2488 /* If there is no association or the association-id = 0
2489 * set the values to the endpoint.
2491 struct sctp_sock *sp = sctp_sk(sk);
2493 if (rtoinfo.srto_initial != 0)
2494 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2495 if (rtoinfo.srto_max != 0)
2496 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2497 if (rtoinfo.srto_min != 0)
2498 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2501 return 0;
2506 * 7.1.2 SCTP_ASSOCINFO
2508 * This option is used to tune the the maximum retransmission attempts
2509 * of the association.
2510 * Returns an error if the new association retransmission value is
2511 * greater than the sum of the retransmission value of the peer.
2512 * See [SCTP] for more information.
2515 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2518 struct sctp_assocparams assocparams;
2519 struct sctp_association *asoc;
2521 if (optlen != sizeof(struct sctp_assocparams))
2522 return -EINVAL;
2523 if (copy_from_user(&assocparams, optval, optlen))
2524 return -EFAULT;
2526 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2528 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2529 return -EINVAL;
2531 /* Set the values to the specific association */
2532 if (asoc) {
2533 if (assocparams.sasoc_asocmaxrxt != 0)
2534 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2535 if (assocparams.sasoc_cookie_life != 0) {
2536 asoc->cookie_life.tv_sec =
2537 assocparams.sasoc_cookie_life / 1000;
2538 asoc->cookie_life.tv_usec =
2539 (assocparams.sasoc_cookie_life % 1000)
2540 * 1000;
2542 } else {
2543 /* Set the values to the endpoint */
2544 struct sctp_sock *sp = sctp_sk(sk);
2546 if (assocparams.sasoc_asocmaxrxt != 0)
2547 sp->assocparams.sasoc_asocmaxrxt =
2548 assocparams.sasoc_asocmaxrxt;
2549 if (assocparams.sasoc_cookie_life != 0)
2550 sp->assocparams.sasoc_cookie_life =
2551 assocparams.sasoc_cookie_life;
2553 return 0;
2557 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2559 * This socket option is a boolean flag which turns on or off mapped V4
2560 * addresses. If this option is turned on and the socket is type
2561 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2562 * If this option is turned off, then no mapping will be done of V4
2563 * addresses and a user will receive both PF_INET6 and PF_INET type
2564 * addresses on the socket.
2566 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2568 int val;
2569 struct sctp_sock *sp = sctp_sk(sk);
2571 if (optlen < sizeof(int))
2572 return -EINVAL;
2573 if (get_user(val, (int __user *)optval))
2574 return -EFAULT;
2575 if (val)
2576 sp->v4mapped = 1;
2577 else
2578 sp->v4mapped = 0;
2580 return 0;
2584 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2586 * This socket option specifies the maximum size to put in any outgoing
2587 * SCTP chunk. If a message is larger than this size it will be
2588 * fragmented by SCTP into the specified size. Note that the underlying
2589 * SCTP implementation may fragment into smaller sized chunks when the
2590 * PMTU of the underlying association is smaller than the value set by
2591 * the user.
2593 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2595 struct sctp_association *asoc;
2596 struct list_head *pos;
2597 struct sctp_sock *sp = sctp_sk(sk);
2598 int val;
2600 if (optlen < sizeof(int))
2601 return -EINVAL;
2602 if (get_user(val, (int __user *)optval))
2603 return -EFAULT;
2604 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2605 return -EINVAL;
2606 sp->user_frag = val;
2608 /* Update the frag_point of the existing associations. */
2609 list_for_each(pos, &(sp->ep->asocs)) {
2610 asoc = list_entry(pos, struct sctp_association, asocs);
2611 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2614 return 0;
2619 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2621 * Requests that the peer mark the enclosed address as the association
2622 * primary. The enclosed address must be one of the association's
2623 * locally bound addresses. The following structure is used to make a
2624 * set primary request:
2626 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2627 int optlen)
2629 struct sctp_sock *sp;
2630 struct sctp_endpoint *ep;
2631 struct sctp_association *asoc = NULL;
2632 struct sctp_setpeerprim prim;
2633 struct sctp_chunk *chunk;
2634 int err;
2636 sp = sctp_sk(sk);
2637 ep = sp->ep;
2639 if (!sctp_addip_enable)
2640 return -EPERM;
2642 if (optlen != sizeof(struct sctp_setpeerprim))
2643 return -EINVAL;
2645 if (copy_from_user(&prim, optval, optlen))
2646 return -EFAULT;
2648 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2649 if (!asoc)
2650 return -EINVAL;
2652 if (!asoc->peer.asconf_capable)
2653 return -EPERM;
2655 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2656 return -EPERM;
2658 if (!sctp_state(asoc, ESTABLISHED))
2659 return -ENOTCONN;
2661 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2662 return -EADDRNOTAVAIL;
2664 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2665 chunk = sctp_make_asconf_set_prim(asoc,
2666 (union sctp_addr *)&prim.sspp_addr);
2667 if (!chunk)
2668 return -ENOMEM;
2670 err = sctp_send_asconf(asoc, chunk);
2672 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2674 return err;
2677 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2678 int optlen)
2680 struct sctp_setadaption adaption;
2682 if (optlen != sizeof(struct sctp_setadaption))
2683 return -EINVAL;
2684 if (copy_from_user(&adaption, optval, optlen))
2685 return -EFAULT;
2687 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2689 return 0;
2692 /* API 6.2 setsockopt(), getsockopt()
2694 * Applications use setsockopt() and getsockopt() to set or retrieve
2695 * socket options. Socket options are used to change the default
2696 * behavior of sockets calls. They are described in Section 7.
2698 * The syntax is:
2700 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2701 * int __user *optlen);
2702 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2703 * int optlen);
2705 * sd - the socket descript.
2706 * level - set to IPPROTO_SCTP for all SCTP options.
2707 * optname - the option name.
2708 * optval - the buffer to store the value of the option.
2709 * optlen - the size of the buffer.
2711 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2712 char __user *optval, int optlen)
2714 int retval = 0;
2716 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2717 sk, optname);
2719 /* I can hardly begin to describe how wrong this is. This is
2720 * so broken as to be worse than useless. The API draft
2721 * REALLY is NOT helpful here... I am not convinced that the
2722 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2723 * are at all well-founded.
2725 if (level != SOL_SCTP) {
2726 struct sctp_af *af = sctp_sk(sk)->pf->af;
2727 retval = af->setsockopt(sk, level, optname, optval, optlen);
2728 goto out_nounlock;
2731 sctp_lock_sock(sk);
2733 switch (optname) {
2734 case SCTP_SOCKOPT_BINDX_ADD:
2735 /* 'optlen' is the size of the addresses buffer. */
2736 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2737 optlen, SCTP_BINDX_ADD_ADDR);
2738 break;
2740 case SCTP_SOCKOPT_BINDX_REM:
2741 /* 'optlen' is the size of the addresses buffer. */
2742 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2743 optlen, SCTP_BINDX_REM_ADDR);
2744 break;
2746 case SCTP_SOCKOPT_CONNECTX:
2747 /* 'optlen' is the size of the addresses buffer. */
2748 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2749 optlen);
2750 break;
2752 case SCTP_DISABLE_FRAGMENTS:
2753 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2754 break;
2756 case SCTP_EVENTS:
2757 retval = sctp_setsockopt_events(sk, optval, optlen);
2758 break;
2760 case SCTP_AUTOCLOSE:
2761 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2762 break;
2764 case SCTP_PEER_ADDR_PARAMS:
2765 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2766 break;
2768 case SCTP_DELAYED_ACK_TIME:
2769 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2770 break;
2772 case SCTP_INITMSG:
2773 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2774 break;
2775 case SCTP_DEFAULT_SEND_PARAM:
2776 retval = sctp_setsockopt_default_send_param(sk, optval,
2777 optlen);
2778 break;
2779 case SCTP_PRIMARY_ADDR:
2780 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2781 break;
2782 case SCTP_SET_PEER_PRIMARY_ADDR:
2783 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2784 break;
2785 case SCTP_NODELAY:
2786 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2787 break;
2788 case SCTP_RTOINFO:
2789 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2790 break;
2791 case SCTP_ASSOCINFO:
2792 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2793 break;
2794 case SCTP_I_WANT_MAPPED_V4_ADDR:
2795 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2796 break;
2797 case SCTP_MAXSEG:
2798 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2799 break;
2800 case SCTP_ADAPTION_LAYER:
2801 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2802 break;
2804 default:
2805 retval = -ENOPROTOOPT;
2806 break;
2809 sctp_release_sock(sk);
2811 out_nounlock:
2812 return retval;
2815 /* API 3.1.6 connect() - UDP Style Syntax
2817 * An application may use the connect() call in the UDP model to initiate an
2818 * association without sending data.
2820 * The syntax is:
2822 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2824 * sd: the socket descriptor to have a new association added to.
2826 * nam: the address structure (either struct sockaddr_in or struct
2827 * sockaddr_in6 defined in RFC2553 [7]).
2829 * len: the size of the address.
2831 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2832 int addr_len)
2834 int err = 0;
2835 struct sctp_af *af;
2837 sctp_lock_sock(sk);
2839 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2840 __FUNCTION__, sk, addr, addr_len);
2842 /* Validate addr_len before calling common connect/connectx routine. */
2843 af = sctp_get_af_specific(addr->sa_family);
2844 if (!af || addr_len < af->sockaddr_len) {
2845 err = -EINVAL;
2846 } else {
2847 /* Pass correct addr len to common routine (so it knows there
2848 * is only one address being passed.
2850 err = __sctp_connect(sk, addr, af->sockaddr_len);
2853 sctp_release_sock(sk);
2854 return err;
2857 /* FIXME: Write comments. */
2858 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2860 return -EOPNOTSUPP; /* STUB */
2863 /* 4.1.4 accept() - TCP Style Syntax
2865 * Applications use accept() call to remove an established SCTP
2866 * association from the accept queue of the endpoint. A new socket
2867 * descriptor will be returned from accept() to represent the newly
2868 * formed association.
2870 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2872 struct sctp_sock *sp;
2873 struct sctp_endpoint *ep;
2874 struct sock *newsk = NULL;
2875 struct sctp_association *asoc;
2876 long timeo;
2877 int error = 0;
2879 sctp_lock_sock(sk);
2881 sp = sctp_sk(sk);
2882 ep = sp->ep;
2884 if (!sctp_style(sk, TCP)) {
2885 error = -EOPNOTSUPP;
2886 goto out;
2889 if (!sctp_sstate(sk, LISTENING)) {
2890 error = -EINVAL;
2891 goto out;
2894 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2896 error = sctp_wait_for_accept(sk, timeo);
2897 if (error)
2898 goto out;
2900 /* We treat the list of associations on the endpoint as the accept
2901 * queue and pick the first association on the list.
2903 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2905 newsk = sp->pf->create_accept_sk(sk, asoc);
2906 if (!newsk) {
2907 error = -ENOMEM;
2908 goto out;
2911 /* Populate the fields of the newsk from the oldsk and migrate the
2912 * asoc to the newsk.
2914 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2916 out:
2917 sctp_release_sock(sk);
2918 *err = error;
2919 return newsk;
2922 /* The SCTP ioctl handler. */
2923 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2925 return -ENOIOCTLCMD;
2928 /* This is the function which gets called during socket creation to
2929 * initialized the SCTP-specific portion of the sock.
2930 * The sock structure should already be zero-filled memory.
2932 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2934 struct sctp_endpoint *ep;
2935 struct sctp_sock *sp;
2937 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2939 sp = sctp_sk(sk);
2941 /* Initialize the SCTP per socket area. */
2942 switch (sk->sk_type) {
2943 case SOCK_SEQPACKET:
2944 sp->type = SCTP_SOCKET_UDP;
2945 break;
2946 case SOCK_STREAM:
2947 sp->type = SCTP_SOCKET_TCP;
2948 break;
2949 default:
2950 return -ESOCKTNOSUPPORT;
2953 /* Initialize default send parameters. These parameters can be
2954 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2956 sp->default_stream = 0;
2957 sp->default_ppid = 0;
2958 sp->default_flags = 0;
2959 sp->default_context = 0;
2960 sp->default_timetolive = 0;
2962 /* Initialize default setup parameters. These parameters
2963 * can be modified with the SCTP_INITMSG socket option or
2964 * overridden by the SCTP_INIT CMSG.
2966 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
2967 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
2968 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
2969 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2971 /* Initialize default RTO related parameters. These parameters can
2972 * be modified for with the SCTP_RTOINFO socket option.
2974 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2975 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max);
2976 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min);
2978 /* Initialize default association related parameters. These parameters
2979 * can be modified with the SCTP_ASSOCINFO socket option.
2981 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2982 sp->assocparams.sasoc_number_peer_destinations = 0;
2983 sp->assocparams.sasoc_peer_rwnd = 0;
2984 sp->assocparams.sasoc_local_rwnd = 0;
2985 sp->assocparams.sasoc_cookie_life =
2986 jiffies_to_msecs(sctp_valid_cookie_life);
2988 /* Initialize default event subscriptions. By default, all the
2989 * options are off.
2991 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2993 /* Default Peer Address Parameters. These defaults can
2994 * be modified via SCTP_PEER_ADDR_PARAMS
2996 sp->hbinterval = jiffies_to_msecs(sctp_hb_interval);
2997 sp->pathmaxrxt = sctp_max_retrans_path;
2998 sp->pathmtu = 0; // allow default discovery
2999 sp->sackdelay = jiffies_to_msecs(sctp_sack_timeout);
3000 sp->param_flags = SPP_HB_ENABLE |
3001 SPP_PMTUD_ENABLE |
3002 SPP_SACKDELAY_ENABLE;
3004 /* If enabled no SCTP message fragmentation will be performed.
3005 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3007 sp->disable_fragments = 0;
3009 /* Turn on/off any Nagle-like algorithm. */
3010 sp->nodelay = 1;
3012 /* Enable by default. */
3013 sp->v4mapped = 1;
3015 /* Auto-close idle associations after the configured
3016 * number of seconds. A value of 0 disables this
3017 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3018 * for UDP-style sockets only.
3020 sp->autoclose = 0;
3022 /* User specified fragmentation limit. */
3023 sp->user_frag = 0;
3025 sp->adaption_ind = 0;
3027 sp->pf = sctp_get_pf_specific(sk->sk_family);
3029 /* Control variables for partial data delivery. */
3030 sp->pd_mode = 0;
3031 skb_queue_head_init(&sp->pd_lobby);
3033 /* Create a per socket endpoint structure. Even if we
3034 * change the data structure relationships, this may still
3035 * be useful for storing pre-connect address information.
3037 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3038 if (!ep)
3039 return -ENOMEM;
3041 sp->ep = ep;
3042 sp->hmac = NULL;
3044 SCTP_DBG_OBJCNT_INC(sock);
3045 return 0;
3048 /* Cleanup any SCTP per socket resources. */
3049 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3051 struct sctp_endpoint *ep;
3053 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3055 /* Release our hold on the endpoint. */
3056 ep = sctp_sk(sk)->ep;
3057 sctp_endpoint_free(ep);
3059 return 0;
3062 /* API 4.1.7 shutdown() - TCP Style Syntax
3063 * int shutdown(int socket, int how);
3065 * sd - the socket descriptor of the association to be closed.
3066 * how - Specifies the type of shutdown. The values are
3067 * as follows:
3068 * SHUT_RD
3069 * Disables further receive operations. No SCTP
3070 * protocol action is taken.
3071 * SHUT_WR
3072 * Disables further send operations, and initiates
3073 * the SCTP shutdown sequence.
3074 * SHUT_RDWR
3075 * Disables further send and receive operations
3076 * and initiates the SCTP shutdown sequence.
3078 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3080 struct sctp_endpoint *ep;
3081 struct sctp_association *asoc;
3083 if (!sctp_style(sk, TCP))
3084 return;
3086 if (how & SEND_SHUTDOWN) {
3087 ep = sctp_sk(sk)->ep;
3088 if (!list_empty(&ep->asocs)) {
3089 asoc = list_entry(ep->asocs.next,
3090 struct sctp_association, asocs);
3091 sctp_primitive_SHUTDOWN(asoc, NULL);
3096 /* 7.2.1 Association Status (SCTP_STATUS)
3098 * Applications can retrieve current status information about an
3099 * association, including association state, peer receiver window size,
3100 * number of unacked data chunks, and number of data chunks pending
3101 * receipt. This information is read-only.
3103 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3104 char __user *optval,
3105 int __user *optlen)
3107 struct sctp_status status;
3108 struct sctp_association *asoc = NULL;
3109 struct sctp_transport *transport;
3110 sctp_assoc_t associd;
3111 int retval = 0;
3113 if (len != sizeof(status)) {
3114 retval = -EINVAL;
3115 goto out;
3118 if (copy_from_user(&status, optval, sizeof(status))) {
3119 retval = -EFAULT;
3120 goto out;
3123 associd = status.sstat_assoc_id;
3124 asoc = sctp_id2assoc(sk, associd);
3125 if (!asoc) {
3126 retval = -EINVAL;
3127 goto out;
3130 transport = asoc->peer.primary_path;
3132 status.sstat_assoc_id = sctp_assoc2id(asoc);
3133 status.sstat_state = asoc->state;
3134 status.sstat_rwnd = asoc->peer.rwnd;
3135 status.sstat_unackdata = asoc->unack_data;
3137 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3138 status.sstat_instrms = asoc->c.sinit_max_instreams;
3139 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3140 status.sstat_fragmentation_point = asoc->frag_point;
3141 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3142 memcpy(&status.sstat_primary.spinfo_address,
3143 &(transport->ipaddr), sizeof(union sctp_addr));
3144 /* Map ipv4 address into v4-mapped-on-v6 address. */
3145 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3146 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3147 status.sstat_primary.spinfo_state = transport->state;
3148 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3149 status.sstat_primary.spinfo_srtt = transport->srtt;
3150 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3151 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3153 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3154 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3156 if (put_user(len, optlen)) {
3157 retval = -EFAULT;
3158 goto out;
3161 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3162 len, status.sstat_state, status.sstat_rwnd,
3163 status.sstat_assoc_id);
3165 if (copy_to_user(optval, &status, len)) {
3166 retval = -EFAULT;
3167 goto out;
3170 out:
3171 return (retval);
3175 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3177 * Applications can retrieve information about a specific peer address
3178 * of an association, including its reachability state, congestion
3179 * window, and retransmission timer values. This information is
3180 * read-only.
3182 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3183 char __user *optval,
3184 int __user *optlen)
3186 struct sctp_paddrinfo pinfo;
3187 struct sctp_transport *transport;
3188 int retval = 0;
3190 if (len != sizeof(pinfo)) {
3191 retval = -EINVAL;
3192 goto out;
3195 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3196 retval = -EFAULT;
3197 goto out;
3200 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3201 pinfo.spinfo_assoc_id);
3202 if (!transport)
3203 return -EINVAL;
3205 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3206 pinfo.spinfo_state = transport->state;
3207 pinfo.spinfo_cwnd = transport->cwnd;
3208 pinfo.spinfo_srtt = transport->srtt;
3209 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3210 pinfo.spinfo_mtu = transport->pathmtu;
3212 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3213 pinfo.spinfo_state = SCTP_ACTIVE;
3215 if (put_user(len, optlen)) {
3216 retval = -EFAULT;
3217 goto out;
3220 if (copy_to_user(optval, &pinfo, len)) {
3221 retval = -EFAULT;
3222 goto out;
3225 out:
3226 return (retval);
3229 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3231 * This option is a on/off flag. If enabled no SCTP message
3232 * fragmentation will be performed. Instead if a message being sent
3233 * exceeds the current PMTU size, the message will NOT be sent and
3234 * instead a error will be indicated to the user.
3236 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3237 char __user *optval, int __user *optlen)
3239 int val;
3241 if (len < sizeof(int))
3242 return -EINVAL;
3244 len = sizeof(int);
3245 val = (sctp_sk(sk)->disable_fragments == 1);
3246 if (put_user(len, optlen))
3247 return -EFAULT;
3248 if (copy_to_user(optval, &val, len))
3249 return -EFAULT;
3250 return 0;
3253 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3255 * This socket option is used to specify various notifications and
3256 * ancillary data the user wishes to receive.
3258 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3259 int __user *optlen)
3261 if (len != sizeof(struct sctp_event_subscribe))
3262 return -EINVAL;
3263 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3264 return -EFAULT;
3265 return 0;
3268 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3270 * This socket option is applicable to the UDP-style socket only. When
3271 * set it will cause associations that are idle for more than the
3272 * specified number of seconds to automatically close. An association
3273 * being idle is defined an association that has NOT sent or received
3274 * user data. The special value of '0' indicates that no automatic
3275 * close of any associations should be performed. The option expects an
3276 * integer defining the number of seconds of idle time before an
3277 * association is closed.
3279 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3281 /* Applicable to UDP-style socket only */
3282 if (sctp_style(sk, TCP))
3283 return -EOPNOTSUPP;
3284 if (len != sizeof(int))
3285 return -EINVAL;
3286 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3287 return -EFAULT;
3288 return 0;
3291 /* Helper routine to branch off an association to a new socket. */
3292 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3293 struct socket **sockp)
3295 struct sock *sk = asoc->base.sk;
3296 struct socket *sock;
3297 int err = 0;
3299 /* An association cannot be branched off from an already peeled-off
3300 * socket, nor is this supported for tcp style sockets.
3302 if (!sctp_style(sk, UDP))
3303 return -EINVAL;
3305 /* Create a new socket. */
3306 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3307 if (err < 0)
3308 return err;
3310 /* Populate the fields of the newsk from the oldsk and migrate the
3311 * asoc to the newsk.
3313 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3314 *sockp = sock;
3316 return err;
3319 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3321 sctp_peeloff_arg_t peeloff;
3322 struct socket *newsock;
3323 int retval = 0;
3324 struct sctp_association *asoc;
3326 if (len != sizeof(sctp_peeloff_arg_t))
3327 return -EINVAL;
3328 if (copy_from_user(&peeloff, optval, len))
3329 return -EFAULT;
3331 asoc = sctp_id2assoc(sk, peeloff.associd);
3332 if (!asoc) {
3333 retval = -EINVAL;
3334 goto out;
3337 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3339 retval = sctp_do_peeloff(asoc, &newsock);
3340 if (retval < 0)
3341 goto out;
3343 /* Map the socket to an unused fd that can be returned to the user. */
3344 retval = sock_map_fd(newsock);
3345 if (retval < 0) {
3346 sock_release(newsock);
3347 goto out;
3350 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3351 __FUNCTION__, sk, asoc, newsock->sk, retval);
3353 /* Return the fd mapped to the new socket. */
3354 peeloff.sd = retval;
3355 if (copy_to_user(optval, &peeloff, len))
3356 retval = -EFAULT;
3358 out:
3359 return retval;
3362 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3364 * Applications can enable or disable heartbeats for any peer address of
3365 * an association, modify an address's heartbeat interval, force a
3366 * heartbeat to be sent immediately, and adjust the address's maximum
3367 * number of retransmissions sent before an address is considered
3368 * unreachable. The following structure is used to access and modify an
3369 * address's parameters:
3371 * struct sctp_paddrparams {
3372 * sctp_assoc_t spp_assoc_id;
3373 * struct sockaddr_storage spp_address;
3374 * uint32_t spp_hbinterval;
3375 * uint16_t spp_pathmaxrxt;
3376 * uint32_t spp_pathmtu;
3377 * uint32_t spp_sackdelay;
3378 * uint32_t spp_flags;
3379 * };
3381 * spp_assoc_id - (one-to-many style socket) This is filled in the
3382 * application, and identifies the association for
3383 * this query.
3384 * spp_address - This specifies which address is of interest.
3385 * spp_hbinterval - This contains the value of the heartbeat interval,
3386 * in milliseconds. If a value of zero
3387 * is present in this field then no changes are to
3388 * be made to this parameter.
3389 * spp_pathmaxrxt - This contains the maximum number of
3390 * retransmissions before this address shall be
3391 * considered unreachable. If a value of zero
3392 * is present in this field then no changes are to
3393 * be made to this parameter.
3394 * spp_pathmtu - When Path MTU discovery is disabled the value
3395 * specified here will be the "fixed" path mtu.
3396 * Note that if the spp_address field is empty
3397 * then all associations on this address will
3398 * have this fixed path mtu set upon them.
3400 * spp_sackdelay - When delayed sack is enabled, this value specifies
3401 * the number of milliseconds that sacks will be delayed
3402 * for. This value will apply to all addresses of an
3403 * association if the spp_address field is empty. Note
3404 * also, that if delayed sack is enabled and this
3405 * value is set to 0, no change is made to the last
3406 * recorded delayed sack timer value.
3408 * spp_flags - These flags are used to control various features
3409 * on an association. The flag field may contain
3410 * zero or more of the following options.
3412 * SPP_HB_ENABLE - Enable heartbeats on the
3413 * specified address. Note that if the address
3414 * field is empty all addresses for the association
3415 * have heartbeats enabled upon them.
3417 * SPP_HB_DISABLE - Disable heartbeats on the
3418 * speicifed address. Note that if the address
3419 * field is empty all addresses for the association
3420 * will have their heartbeats disabled. Note also
3421 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3422 * mutually exclusive, only one of these two should
3423 * be specified. Enabling both fields will have
3424 * undetermined results.
3426 * SPP_HB_DEMAND - Request a user initiated heartbeat
3427 * to be made immediately.
3429 * SPP_PMTUD_ENABLE - This field will enable PMTU
3430 * discovery upon the specified address. Note that
3431 * if the address feild is empty then all addresses
3432 * on the association are effected.
3434 * SPP_PMTUD_DISABLE - This field will disable PMTU
3435 * discovery upon the specified address. Note that
3436 * if the address feild is empty then all addresses
3437 * on the association are effected. Not also that
3438 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3439 * exclusive. Enabling both will have undetermined
3440 * results.
3442 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3443 * on delayed sack. The time specified in spp_sackdelay
3444 * is used to specify the sack delay for this address. Note
3445 * that if spp_address is empty then all addresses will
3446 * enable delayed sack and take on the sack delay
3447 * value specified in spp_sackdelay.
3448 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3449 * off delayed sack. If the spp_address field is blank then
3450 * delayed sack is disabled for the entire association. Note
3451 * also that this field is mutually exclusive to
3452 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3453 * results.
3455 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3456 char __user *optval, int __user *optlen)
3458 struct sctp_paddrparams params;
3459 struct sctp_transport *trans = NULL;
3460 struct sctp_association *asoc = NULL;
3461 struct sctp_sock *sp = sctp_sk(sk);
3463 if (len != sizeof(struct sctp_paddrparams))
3464 return -EINVAL;
3466 if (copy_from_user(&params, optval, len))
3467 return -EFAULT;
3469 /* If an address other than INADDR_ANY is specified, and
3470 * no transport is found, then the request is invalid.
3472 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3473 trans = sctp_addr_id2transport(sk, &params.spp_address,
3474 params.spp_assoc_id);
3475 if (!trans) {
3476 SCTP_DEBUG_PRINTK("Failed no transport\n");
3477 return -EINVAL;
3481 /* Get association, if assoc_id != 0 and the socket is a one
3482 * to many style socket, and an association was not found, then
3483 * the id was invalid.
3485 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3486 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3487 SCTP_DEBUG_PRINTK("Failed no association\n");
3488 return -EINVAL;
3491 if (trans) {
3492 /* Fetch transport values. */
3493 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3494 params.spp_pathmtu = trans->pathmtu;
3495 params.spp_pathmaxrxt = trans->pathmaxrxt;
3496 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3498 /*draft-11 doesn't say what to return in spp_flags*/
3499 params.spp_flags = trans->param_flags;
3500 } else if (asoc) {
3501 /* Fetch association values. */
3502 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3503 params.spp_pathmtu = asoc->pathmtu;
3504 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3505 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3507 /*draft-11 doesn't say what to return in spp_flags*/
3508 params.spp_flags = asoc->param_flags;
3509 } else {
3510 /* Fetch socket values. */
3511 params.spp_hbinterval = sp->hbinterval;
3512 params.spp_pathmtu = sp->pathmtu;
3513 params.spp_sackdelay = sp->sackdelay;
3514 params.spp_pathmaxrxt = sp->pathmaxrxt;
3516 /*draft-11 doesn't say what to return in spp_flags*/
3517 params.spp_flags = sp->param_flags;
3520 if (copy_to_user(optval, &params, len))
3521 return -EFAULT;
3523 if (put_user(len, optlen))
3524 return -EFAULT;
3526 return 0;
3529 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3531 * This options will get or set the delayed ack timer. The time is set
3532 * in milliseconds. If the assoc_id is 0, then this sets or gets the
3533 * endpoints default delayed ack timer value. If the assoc_id field is
3534 * non-zero, then the set or get effects the specified association.
3536 * struct sctp_assoc_value {
3537 * sctp_assoc_t assoc_id;
3538 * uint32_t assoc_value;
3539 * };
3541 * assoc_id - This parameter, indicates which association the
3542 * user is preforming an action upon. Note that if
3543 * this field's value is zero then the endpoints
3544 * default value is changed (effecting future
3545 * associations only).
3547 * assoc_value - This parameter contains the number of milliseconds
3548 * that the user is requesting the delayed ACK timer
3549 * be set to. Note that this value is defined in
3550 * the standard to be between 200 and 500 milliseconds.
3552 * Note: a value of zero will leave the value alone,
3553 * but disable SACK delay. A non-zero value will also
3554 * enable SACK delay.
3556 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3557 char __user *optval,
3558 int __user *optlen)
3560 struct sctp_assoc_value params;
3561 struct sctp_association *asoc = NULL;
3562 struct sctp_sock *sp = sctp_sk(sk);
3564 if (len != sizeof(struct sctp_assoc_value))
3565 return - EINVAL;
3567 if (copy_from_user(&params, optval, len))
3568 return -EFAULT;
3570 /* Get association, if assoc_id != 0 and the socket is a one
3571 * to many style socket, and an association was not found, then
3572 * the id was invalid.
3574 asoc = sctp_id2assoc(sk, params.assoc_id);
3575 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3576 return -EINVAL;
3578 if (asoc) {
3579 /* Fetch association values. */
3580 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3581 params.assoc_value = jiffies_to_msecs(
3582 asoc->sackdelay);
3583 else
3584 params.assoc_value = 0;
3585 } else {
3586 /* Fetch socket values. */
3587 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3588 params.assoc_value = sp->sackdelay;
3589 else
3590 params.assoc_value = 0;
3593 if (copy_to_user(optval, &params, len))
3594 return -EFAULT;
3596 if (put_user(len, optlen))
3597 return -EFAULT;
3599 return 0;
3602 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3604 * Applications can specify protocol parameters for the default association
3605 * initialization. The option name argument to setsockopt() and getsockopt()
3606 * is SCTP_INITMSG.
3608 * Setting initialization parameters is effective only on an unconnected
3609 * socket (for UDP-style sockets only future associations are effected
3610 * by the change). With TCP-style sockets, this option is inherited by
3611 * sockets derived from a listener socket.
3613 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3615 if (len != sizeof(struct sctp_initmsg))
3616 return -EINVAL;
3617 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3618 return -EFAULT;
3619 return 0;
3622 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3623 char __user *optval,
3624 int __user *optlen)
3626 sctp_assoc_t id;
3627 struct sctp_association *asoc;
3628 struct list_head *pos;
3629 int cnt = 0;
3631 if (len != sizeof(sctp_assoc_t))
3632 return -EINVAL;
3634 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3635 return -EFAULT;
3637 /* For UDP-style sockets, id specifies the association to query. */
3638 asoc = sctp_id2assoc(sk, id);
3639 if (!asoc)
3640 return -EINVAL;
3642 list_for_each(pos, &asoc->peer.transport_addr_list) {
3643 cnt ++;
3646 return cnt;
3650 * Old API for getting list of peer addresses. Does not work for 32-bit
3651 * programs running on a 64-bit kernel
3653 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3654 char __user *optval,
3655 int __user *optlen)
3657 struct sctp_association *asoc;
3658 struct list_head *pos;
3659 int cnt = 0;
3660 struct sctp_getaddrs_old getaddrs;
3661 struct sctp_transport *from;
3662 void __user *to;
3663 union sctp_addr temp;
3664 struct sctp_sock *sp = sctp_sk(sk);
3665 int addrlen;
3667 if (len != sizeof(struct sctp_getaddrs_old))
3668 return -EINVAL;
3670 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3671 return -EFAULT;
3673 if (getaddrs.addr_num <= 0) return -EINVAL;
3675 /* For UDP-style sockets, id specifies the association to query. */
3676 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3677 if (!asoc)
3678 return -EINVAL;
3680 to = (void __user *)getaddrs.addrs;
3681 list_for_each(pos, &asoc->peer.transport_addr_list) {
3682 from = list_entry(pos, struct sctp_transport, transports);
3683 memcpy(&temp, &from->ipaddr, sizeof(temp));
3684 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3685 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3686 temp.v4.sin_port = htons(temp.v4.sin_port);
3687 if (copy_to_user(to, &temp, addrlen))
3688 return -EFAULT;
3689 to += addrlen ;
3690 cnt ++;
3691 if (cnt >= getaddrs.addr_num) break;
3693 getaddrs.addr_num = cnt;
3694 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3695 return -EFAULT;
3697 return 0;
3700 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3701 char __user *optval, int __user *optlen)
3703 struct sctp_association *asoc;
3704 struct list_head *pos;
3705 int cnt = 0;
3706 struct sctp_getaddrs getaddrs;
3707 struct sctp_transport *from;
3708 void __user *to;
3709 union sctp_addr temp;
3710 struct sctp_sock *sp = sctp_sk(sk);
3711 int addrlen;
3712 size_t space_left;
3713 int bytes_copied;
3715 if (len < sizeof(struct sctp_getaddrs))
3716 return -EINVAL;
3718 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3719 return -EFAULT;
3721 /* For UDP-style sockets, id specifies the association to query. */
3722 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3723 if (!asoc)
3724 return -EINVAL;
3726 to = optval + offsetof(struct sctp_getaddrs,addrs);
3727 space_left = len - sizeof(struct sctp_getaddrs) -
3728 offsetof(struct sctp_getaddrs,addrs);
3730 list_for_each(pos, &asoc->peer.transport_addr_list) {
3731 from = list_entry(pos, struct sctp_transport, transports);
3732 memcpy(&temp, &from->ipaddr, sizeof(temp));
3733 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3734 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3735 if(space_left < addrlen)
3736 return -ENOMEM;
3737 temp.v4.sin_port = htons(temp.v4.sin_port);
3738 if (copy_to_user(to, &temp, addrlen))
3739 return -EFAULT;
3740 to += addrlen;
3741 cnt++;
3742 space_left -= addrlen;
3745 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3746 return -EFAULT;
3747 bytes_copied = ((char __user *)to) - optval;
3748 if (put_user(bytes_copied, optlen))
3749 return -EFAULT;
3751 return 0;
3754 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3755 char __user *optval,
3756 int __user *optlen)
3758 sctp_assoc_t id;
3759 struct sctp_bind_addr *bp;
3760 struct sctp_association *asoc;
3761 struct list_head *pos;
3762 struct sctp_sockaddr_entry *addr;
3763 rwlock_t *addr_lock;
3764 unsigned long flags;
3765 int cnt = 0;
3767 if (len != sizeof(sctp_assoc_t))
3768 return -EINVAL;
3770 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3771 return -EFAULT;
3774 * For UDP-style sockets, id specifies the association to query.
3775 * If the id field is set to the value '0' then the locally bound
3776 * addresses are returned without regard to any particular
3777 * association.
3779 if (0 == id) {
3780 bp = &sctp_sk(sk)->ep->base.bind_addr;
3781 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3782 } else {
3783 asoc = sctp_id2assoc(sk, id);
3784 if (!asoc)
3785 return -EINVAL;
3786 bp = &asoc->base.bind_addr;
3787 addr_lock = &asoc->base.addr_lock;
3790 sctp_read_lock(addr_lock);
3792 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3793 * addresses from the global local address list.
3795 if (sctp_list_single_entry(&bp->address_list)) {
3796 addr = list_entry(bp->address_list.next,
3797 struct sctp_sockaddr_entry, list);
3798 if (sctp_is_any(&addr->a)) {
3799 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3800 list_for_each(pos, &sctp_local_addr_list) {
3801 addr = list_entry(pos,
3802 struct sctp_sockaddr_entry,
3803 list);
3804 if ((PF_INET == sk->sk_family) &&
3805 (AF_INET6 == addr->a.sa.sa_family))
3806 continue;
3807 cnt++;
3809 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3810 flags);
3811 } else {
3812 cnt = 1;
3814 goto done;
3817 list_for_each(pos, &bp->address_list) {
3818 cnt ++;
3821 done:
3822 sctp_read_unlock(addr_lock);
3823 return cnt;
3826 /* Helper function that copies local addresses to user and returns the number
3827 * of addresses copied.
3829 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3830 void __user *to)
3832 struct list_head *pos;
3833 struct sctp_sockaddr_entry *addr;
3834 unsigned long flags;
3835 union sctp_addr temp;
3836 int cnt = 0;
3837 int addrlen;
3839 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3840 list_for_each(pos, &sctp_local_addr_list) {
3841 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3842 if ((PF_INET == sk->sk_family) &&
3843 (AF_INET6 == addr->a.sa.sa_family))
3844 continue;
3845 memcpy(&temp, &addr->a, sizeof(temp));
3846 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3847 &temp);
3848 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3849 temp.v4.sin_port = htons(port);
3850 if (copy_to_user(to, &temp, addrlen)) {
3851 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3852 flags);
3853 return -EFAULT;
3855 to += addrlen;
3856 cnt ++;
3857 if (cnt >= max_addrs) break;
3859 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3861 return cnt;
3864 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3865 void __user **to, size_t space_left)
3867 struct list_head *pos;
3868 struct sctp_sockaddr_entry *addr;
3869 unsigned long flags;
3870 union sctp_addr temp;
3871 int cnt = 0;
3872 int addrlen;
3874 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3875 list_for_each(pos, &sctp_local_addr_list) {
3876 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3877 if ((PF_INET == sk->sk_family) &&
3878 (AF_INET6 == addr->a.sa.sa_family))
3879 continue;
3880 memcpy(&temp, &addr->a, sizeof(temp));
3881 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3882 &temp);
3883 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3884 if(space_left<addrlen)
3885 return -ENOMEM;
3886 temp.v4.sin_port = htons(port);
3887 if (copy_to_user(*to, &temp, addrlen)) {
3888 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3889 flags);
3890 return -EFAULT;
3892 *to += addrlen;
3893 cnt ++;
3894 space_left -= addrlen;
3896 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3898 return cnt;
3901 /* Old API for getting list of local addresses. Does not work for 32-bit
3902 * programs running on a 64-bit kernel
3904 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3905 char __user *optval, int __user *optlen)
3907 struct sctp_bind_addr *bp;
3908 struct sctp_association *asoc;
3909 struct list_head *pos;
3910 int cnt = 0;
3911 struct sctp_getaddrs_old getaddrs;
3912 struct sctp_sockaddr_entry *addr;
3913 void __user *to;
3914 union sctp_addr temp;
3915 struct sctp_sock *sp = sctp_sk(sk);
3916 int addrlen;
3917 rwlock_t *addr_lock;
3918 int err = 0;
3920 if (len != sizeof(struct sctp_getaddrs_old))
3921 return -EINVAL;
3923 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3924 return -EFAULT;
3926 if (getaddrs.addr_num <= 0) return -EINVAL;
3928 * For UDP-style sockets, id specifies the association to query.
3929 * If the id field is set to the value '0' then the locally bound
3930 * addresses are returned without regard to any particular
3931 * association.
3933 if (0 == getaddrs.assoc_id) {
3934 bp = &sctp_sk(sk)->ep->base.bind_addr;
3935 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3936 } else {
3937 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3938 if (!asoc)
3939 return -EINVAL;
3940 bp = &asoc->base.bind_addr;
3941 addr_lock = &asoc->base.addr_lock;
3944 to = getaddrs.addrs;
3946 sctp_read_lock(addr_lock);
3948 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3949 * addresses from the global local address list.
3951 if (sctp_list_single_entry(&bp->address_list)) {
3952 addr = list_entry(bp->address_list.next,
3953 struct sctp_sockaddr_entry, list);
3954 if (sctp_is_any(&addr->a)) {
3955 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
3956 getaddrs.addr_num,
3957 to);
3958 if (cnt < 0) {
3959 err = cnt;
3960 goto unlock;
3962 goto copy_getaddrs;
3966 list_for_each(pos, &bp->address_list) {
3967 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3968 memcpy(&temp, &addr->a, sizeof(temp));
3969 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3970 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3971 temp.v4.sin_port = htons(temp.v4.sin_port);
3972 if (copy_to_user(to, &temp, addrlen)) {
3973 err = -EFAULT;
3974 goto unlock;
3976 to += addrlen;
3977 cnt ++;
3978 if (cnt >= getaddrs.addr_num) break;
3981 copy_getaddrs:
3982 getaddrs.addr_num = cnt;
3983 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3984 err = -EFAULT;
3986 unlock:
3987 sctp_read_unlock(addr_lock);
3988 return err;
3991 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3992 char __user *optval, int __user *optlen)
3994 struct sctp_bind_addr *bp;
3995 struct sctp_association *asoc;
3996 struct list_head *pos;
3997 int cnt = 0;
3998 struct sctp_getaddrs getaddrs;
3999 struct sctp_sockaddr_entry *addr;
4000 void __user *to;
4001 union sctp_addr temp;
4002 struct sctp_sock *sp = sctp_sk(sk);
4003 int addrlen;
4004 rwlock_t *addr_lock;
4005 int err = 0;
4006 size_t space_left;
4007 int bytes_copied;
4009 if (len <= sizeof(struct sctp_getaddrs))
4010 return -EINVAL;
4012 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4013 return -EFAULT;
4016 * For UDP-style sockets, id specifies the association to query.
4017 * If the id field is set to the value '0' then the locally bound
4018 * addresses are returned without regard to any particular
4019 * association.
4021 if (0 == getaddrs.assoc_id) {
4022 bp = &sctp_sk(sk)->ep->base.bind_addr;
4023 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4024 } else {
4025 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4026 if (!asoc)
4027 return -EINVAL;
4028 bp = &asoc->base.bind_addr;
4029 addr_lock = &asoc->base.addr_lock;
4032 to = optval + offsetof(struct sctp_getaddrs,addrs);
4033 space_left = len - sizeof(struct sctp_getaddrs) -
4034 offsetof(struct sctp_getaddrs,addrs);
4036 sctp_read_lock(addr_lock);
4038 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4039 * addresses from the global local address list.
4041 if (sctp_list_single_entry(&bp->address_list)) {
4042 addr = list_entry(bp->address_list.next,
4043 struct sctp_sockaddr_entry, list);
4044 if (sctp_is_any(&addr->a)) {
4045 cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4046 &to, space_left);
4047 if (cnt < 0) {
4048 err = cnt;
4049 goto unlock;
4051 goto copy_getaddrs;
4055 list_for_each(pos, &bp->address_list) {
4056 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4057 memcpy(&temp, &addr->a, sizeof(temp));
4058 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4059 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4060 if(space_left < addrlen)
4061 return -ENOMEM; /*fixme: right error?*/
4062 temp.v4.sin_port = htons(temp.v4.sin_port);
4063 if (copy_to_user(to, &temp, addrlen)) {
4064 err = -EFAULT;
4065 goto unlock;
4067 to += addrlen;
4068 cnt ++;
4069 space_left -= addrlen;
4072 copy_getaddrs:
4073 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4074 return -EFAULT;
4075 bytes_copied = ((char __user *)to) - optval;
4076 if (put_user(bytes_copied, optlen))
4077 return -EFAULT;
4079 unlock:
4080 sctp_read_unlock(addr_lock);
4081 return err;
4084 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4086 * Requests that the local SCTP stack use the enclosed peer address as
4087 * the association primary. The enclosed address must be one of the
4088 * association peer's addresses.
4090 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4091 char __user *optval, int __user *optlen)
4093 struct sctp_prim prim;
4094 struct sctp_association *asoc;
4095 struct sctp_sock *sp = sctp_sk(sk);
4097 if (len != sizeof(struct sctp_prim))
4098 return -EINVAL;
4100 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4101 return -EFAULT;
4103 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4104 if (!asoc)
4105 return -EINVAL;
4107 if (!asoc->peer.primary_path)
4108 return -ENOTCONN;
4110 asoc->peer.primary_path->ipaddr.v4.sin_port =
4111 htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4112 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4113 sizeof(union sctp_addr));
4114 asoc->peer.primary_path->ipaddr.v4.sin_port =
4115 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4117 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4118 (union sctp_addr *)&prim.ssp_addr);
4120 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4121 return -EFAULT;
4123 return 0;
4127 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4129 * Requests that the local endpoint set the specified Adaption Layer
4130 * Indication parameter for all future INIT and INIT-ACK exchanges.
4132 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4133 char __user *optval, int __user *optlen)
4135 struct sctp_setadaption adaption;
4137 if (len != sizeof(struct sctp_setadaption))
4138 return -EINVAL;
4140 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4141 if (copy_to_user(optval, &adaption, len))
4142 return -EFAULT;
4144 return 0;
4149 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4151 * Applications that wish to use the sendto() system call may wish to
4152 * specify a default set of parameters that would normally be supplied
4153 * through the inclusion of ancillary data. This socket option allows
4154 * such an application to set the default sctp_sndrcvinfo structure.
4157 * The application that wishes to use this socket option simply passes
4158 * in to this call the sctp_sndrcvinfo structure defined in Section
4159 * 5.2.2) The input parameters accepted by this call include
4160 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4161 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4162 * to this call if the caller is using the UDP model.
4164 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4166 static int sctp_getsockopt_default_send_param(struct sock *sk,
4167 int len, char __user *optval,
4168 int __user *optlen)
4170 struct sctp_sndrcvinfo info;
4171 struct sctp_association *asoc;
4172 struct sctp_sock *sp = sctp_sk(sk);
4174 if (len != sizeof(struct sctp_sndrcvinfo))
4175 return -EINVAL;
4176 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4177 return -EFAULT;
4179 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4180 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4181 return -EINVAL;
4183 if (asoc) {
4184 info.sinfo_stream = asoc->default_stream;
4185 info.sinfo_flags = asoc->default_flags;
4186 info.sinfo_ppid = asoc->default_ppid;
4187 info.sinfo_context = asoc->default_context;
4188 info.sinfo_timetolive = asoc->default_timetolive;
4189 } else {
4190 info.sinfo_stream = sp->default_stream;
4191 info.sinfo_flags = sp->default_flags;
4192 info.sinfo_ppid = sp->default_ppid;
4193 info.sinfo_context = sp->default_context;
4194 info.sinfo_timetolive = sp->default_timetolive;
4197 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4198 return -EFAULT;
4200 return 0;
4205 * 7.1.5 SCTP_NODELAY
4207 * Turn on/off any Nagle-like algorithm. This means that packets are
4208 * generally sent as soon as possible and no unnecessary delays are
4209 * introduced, at the cost of more packets in the network. Expects an
4210 * integer boolean flag.
4213 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4214 char __user *optval, int __user *optlen)
4216 int val;
4218 if (len < sizeof(int))
4219 return -EINVAL;
4221 len = sizeof(int);
4222 val = (sctp_sk(sk)->nodelay == 1);
4223 if (put_user(len, optlen))
4224 return -EFAULT;
4225 if (copy_to_user(optval, &val, len))
4226 return -EFAULT;
4227 return 0;
4232 * 7.1.1 SCTP_RTOINFO
4234 * The protocol parameters used to initialize and bound retransmission
4235 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4236 * and modify these parameters.
4237 * All parameters are time values, in milliseconds. A value of 0, when
4238 * modifying the parameters, indicates that the current value should not
4239 * be changed.
4242 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4243 char __user *optval,
4244 int __user *optlen) {
4245 struct sctp_rtoinfo rtoinfo;
4246 struct sctp_association *asoc;
4248 if (len != sizeof (struct sctp_rtoinfo))
4249 return -EINVAL;
4251 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4252 return -EFAULT;
4254 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4256 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4257 return -EINVAL;
4259 /* Values corresponding to the specific association. */
4260 if (asoc) {
4261 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4262 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4263 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4264 } else {
4265 /* Values corresponding to the endpoint. */
4266 struct sctp_sock *sp = sctp_sk(sk);
4268 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4269 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4270 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4273 if (put_user(len, optlen))
4274 return -EFAULT;
4276 if (copy_to_user(optval, &rtoinfo, len))
4277 return -EFAULT;
4279 return 0;
4284 * 7.1.2 SCTP_ASSOCINFO
4286 * This option is used to tune the the maximum retransmission attempts
4287 * of the association.
4288 * Returns an error if the new association retransmission value is
4289 * greater than the sum of the retransmission value of the peer.
4290 * See [SCTP] for more information.
4293 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4294 char __user *optval,
4295 int __user *optlen)
4298 struct sctp_assocparams assocparams;
4299 struct sctp_association *asoc;
4300 struct list_head *pos;
4301 int cnt = 0;
4303 if (len != sizeof (struct sctp_assocparams))
4304 return -EINVAL;
4306 if (copy_from_user(&assocparams, optval,
4307 sizeof (struct sctp_assocparams)))
4308 return -EFAULT;
4310 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4312 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4313 return -EINVAL;
4315 /* Values correspoinding to the specific association */
4316 if (asoc) {
4317 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4318 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4319 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4320 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4321 * 1000) +
4322 (asoc->cookie_life.tv_usec
4323 / 1000);
4325 list_for_each(pos, &asoc->peer.transport_addr_list) {
4326 cnt ++;
4329 assocparams.sasoc_number_peer_destinations = cnt;
4330 } else {
4331 /* Values corresponding to the endpoint */
4332 struct sctp_sock *sp = sctp_sk(sk);
4334 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4335 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4336 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4337 assocparams.sasoc_cookie_life =
4338 sp->assocparams.sasoc_cookie_life;
4339 assocparams.sasoc_number_peer_destinations =
4340 sp->assocparams.
4341 sasoc_number_peer_destinations;
4344 if (put_user(len, optlen))
4345 return -EFAULT;
4347 if (copy_to_user(optval, &assocparams, len))
4348 return -EFAULT;
4350 return 0;
4354 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4356 * This socket option is a boolean flag which turns on or off mapped V4
4357 * addresses. If this option is turned on and the socket is type
4358 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4359 * If this option is turned off, then no mapping will be done of V4
4360 * addresses and a user will receive both PF_INET6 and PF_INET type
4361 * addresses on the socket.
4363 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4364 char __user *optval, int __user *optlen)
4366 int val;
4367 struct sctp_sock *sp = sctp_sk(sk);
4369 if (len < sizeof(int))
4370 return -EINVAL;
4372 len = sizeof(int);
4373 val = sp->v4mapped;
4374 if (put_user(len, optlen))
4375 return -EFAULT;
4376 if (copy_to_user(optval, &val, len))
4377 return -EFAULT;
4379 return 0;
4383 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4385 * This socket option specifies the maximum size to put in any outgoing
4386 * SCTP chunk. If a message is larger than this size it will be
4387 * fragmented by SCTP into the specified size. Note that the underlying
4388 * SCTP implementation may fragment into smaller sized chunks when the
4389 * PMTU of the underlying association is smaller than the value set by
4390 * the user.
4392 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4393 char __user *optval, int __user *optlen)
4395 int val;
4397 if (len < sizeof(int))
4398 return -EINVAL;
4400 len = sizeof(int);
4402 val = sctp_sk(sk)->user_frag;
4403 if (put_user(len, optlen))
4404 return -EFAULT;
4405 if (copy_to_user(optval, &val, len))
4406 return -EFAULT;
4408 return 0;
4411 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4412 char __user *optval, int __user *optlen)
4414 int retval = 0;
4415 int len;
4417 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4418 sk, optname);
4420 /* I can hardly begin to describe how wrong this is. This is
4421 * so broken as to be worse than useless. The API draft
4422 * REALLY is NOT helpful here... I am not convinced that the
4423 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4424 * are at all well-founded.
4426 if (level != SOL_SCTP) {
4427 struct sctp_af *af = sctp_sk(sk)->pf->af;
4429 retval = af->getsockopt(sk, level, optname, optval, optlen);
4430 return retval;
4433 if (get_user(len, optlen))
4434 return -EFAULT;
4436 sctp_lock_sock(sk);
4438 switch (optname) {
4439 case SCTP_STATUS:
4440 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4441 break;
4442 case SCTP_DISABLE_FRAGMENTS:
4443 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4444 optlen);
4445 break;
4446 case SCTP_EVENTS:
4447 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4448 break;
4449 case SCTP_AUTOCLOSE:
4450 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4451 break;
4452 case SCTP_SOCKOPT_PEELOFF:
4453 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4454 break;
4455 case SCTP_PEER_ADDR_PARAMS:
4456 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4457 optlen);
4458 break;
4459 case SCTP_DELAYED_ACK_TIME:
4460 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4461 optlen);
4462 break;
4463 case SCTP_INITMSG:
4464 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4465 break;
4466 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4467 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4468 optlen);
4469 break;
4470 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4471 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4472 optlen);
4473 break;
4474 case SCTP_GET_PEER_ADDRS_OLD:
4475 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4476 optlen);
4477 break;
4478 case SCTP_GET_LOCAL_ADDRS_OLD:
4479 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4480 optlen);
4481 break;
4482 case SCTP_GET_PEER_ADDRS:
4483 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4484 optlen);
4485 break;
4486 case SCTP_GET_LOCAL_ADDRS:
4487 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4488 optlen);
4489 break;
4490 case SCTP_DEFAULT_SEND_PARAM:
4491 retval = sctp_getsockopt_default_send_param(sk, len,
4492 optval, optlen);
4493 break;
4494 case SCTP_PRIMARY_ADDR:
4495 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4496 break;
4497 case SCTP_NODELAY:
4498 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4499 break;
4500 case SCTP_RTOINFO:
4501 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4502 break;
4503 case SCTP_ASSOCINFO:
4504 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4505 break;
4506 case SCTP_I_WANT_MAPPED_V4_ADDR:
4507 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4508 break;
4509 case SCTP_MAXSEG:
4510 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4511 break;
4512 case SCTP_GET_PEER_ADDR_INFO:
4513 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4514 optlen);
4515 break;
4516 case SCTP_ADAPTION_LAYER:
4517 retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4518 optlen);
4519 break;
4520 default:
4521 retval = -ENOPROTOOPT;
4522 break;
4525 sctp_release_sock(sk);
4526 return retval;
4529 static void sctp_hash(struct sock *sk)
4531 /* STUB */
4534 static void sctp_unhash(struct sock *sk)
4536 /* STUB */
4539 /* Check if port is acceptable. Possibly find first available port.
4541 * The port hash table (contained in the 'global' SCTP protocol storage
4542 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4543 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4544 * list (the list number is the port number hashed out, so as you
4545 * would expect from a hash function, all the ports in a given list have
4546 * such a number that hashes out to the same list number; you were
4547 * expecting that, right?); so each list has a set of ports, with a
4548 * link to the socket (struct sock) that uses it, the port number and
4549 * a fastreuse flag (FIXME: NPI ipg).
4551 static struct sctp_bind_bucket *sctp_bucket_create(
4552 struct sctp_bind_hashbucket *head, unsigned short snum);
4554 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4556 struct sctp_bind_hashbucket *head; /* hash list */
4557 struct sctp_bind_bucket *pp; /* hash list port iterator */
4558 unsigned short snum;
4559 int ret;
4561 /* NOTE: Remember to put this back to net order. */
4562 addr->v4.sin_port = ntohs(addr->v4.sin_port);
4563 snum = addr->v4.sin_port;
4565 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4566 sctp_local_bh_disable();
4568 if (snum == 0) {
4569 /* Search for an available port.
4571 * 'sctp_port_rover' was the last port assigned, so
4572 * we start to search from 'sctp_port_rover +
4573 * 1'. What we do is first check if port 'rover' is
4574 * already in the hash table; if not, we use that; if
4575 * it is, we try next.
4577 int low = sysctl_local_port_range[0];
4578 int high = sysctl_local_port_range[1];
4579 int remaining = (high - low) + 1;
4580 int rover;
4581 int index;
4583 sctp_spin_lock(&sctp_port_alloc_lock);
4584 rover = sctp_port_rover;
4585 do {
4586 rover++;
4587 if ((rover < low) || (rover > high))
4588 rover = low;
4589 index = sctp_phashfn(rover);
4590 head = &sctp_port_hashtable[index];
4591 sctp_spin_lock(&head->lock);
4592 for (pp = head->chain; pp; pp = pp->next)
4593 if (pp->port == rover)
4594 goto next;
4595 break;
4596 next:
4597 sctp_spin_unlock(&head->lock);
4598 } while (--remaining > 0);
4599 sctp_port_rover = rover;
4600 sctp_spin_unlock(&sctp_port_alloc_lock);
4602 /* Exhausted local port range during search? */
4603 ret = 1;
4604 if (remaining <= 0)
4605 goto fail;
4607 /* OK, here is the one we will use. HEAD (the port
4608 * hash table list entry) is non-NULL and we hold it's
4609 * mutex.
4611 snum = rover;
4612 } else {
4613 /* We are given an specific port number; we verify
4614 * that it is not being used. If it is used, we will
4615 * exahust the search in the hash list corresponding
4616 * to the port number (snum) - we detect that with the
4617 * port iterator, pp being NULL.
4619 head = &sctp_port_hashtable[sctp_phashfn(snum)];
4620 sctp_spin_lock(&head->lock);
4621 for (pp = head->chain; pp; pp = pp->next) {
4622 if (pp->port == snum)
4623 goto pp_found;
4626 pp = NULL;
4627 goto pp_not_found;
4628 pp_found:
4629 if (!hlist_empty(&pp->owner)) {
4630 /* We had a port hash table hit - there is an
4631 * available port (pp != NULL) and it is being
4632 * used by other socket (pp->owner not empty); that other
4633 * socket is going to be sk2.
4635 int reuse = sk->sk_reuse;
4636 struct sock *sk2;
4637 struct hlist_node *node;
4639 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4640 if (pp->fastreuse && sk->sk_reuse)
4641 goto success;
4643 /* Run through the list of sockets bound to the port
4644 * (pp->port) [via the pointers bind_next and
4645 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4646 * we get the endpoint they describe and run through
4647 * the endpoint's list of IP (v4 or v6) addresses,
4648 * comparing each of the addresses with the address of
4649 * the socket sk. If we find a match, then that means
4650 * that this port/socket (sk) combination are already
4651 * in an endpoint.
4653 sk_for_each_bound(sk2, node, &pp->owner) {
4654 struct sctp_endpoint *ep2;
4655 ep2 = sctp_sk(sk2)->ep;
4657 if (reuse && sk2->sk_reuse)
4658 continue;
4660 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4661 sctp_sk(sk))) {
4662 ret = (long)sk2;
4663 goto fail_unlock;
4666 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4668 pp_not_found:
4669 /* If there was a hash table miss, create a new port. */
4670 ret = 1;
4671 if (!pp && !(pp = sctp_bucket_create(head, snum)))
4672 goto fail_unlock;
4674 /* In either case (hit or miss), make sure fastreuse is 1 only
4675 * if sk->sk_reuse is too (that is, if the caller requested
4676 * SO_REUSEADDR on this socket -sk-).
4678 if (hlist_empty(&pp->owner))
4679 pp->fastreuse = sk->sk_reuse ? 1 : 0;
4680 else if (pp->fastreuse && !sk->sk_reuse)
4681 pp->fastreuse = 0;
4683 /* We are set, so fill up all the data in the hash table
4684 * entry, tie the socket list information with the rest of the
4685 * sockets FIXME: Blurry, NPI (ipg).
4687 success:
4688 inet_sk(sk)->num = snum;
4689 if (!sctp_sk(sk)->bind_hash) {
4690 sk_add_bind_node(sk, &pp->owner);
4691 sctp_sk(sk)->bind_hash = pp;
4693 ret = 0;
4695 fail_unlock:
4696 sctp_spin_unlock(&head->lock);
4698 fail:
4699 sctp_local_bh_enable();
4700 addr->v4.sin_port = htons(addr->v4.sin_port);
4701 return ret;
4704 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
4705 * port is requested.
4707 static int sctp_get_port(struct sock *sk, unsigned short snum)
4709 long ret;
4710 union sctp_addr addr;
4711 struct sctp_af *af = sctp_sk(sk)->pf->af;
4713 /* Set up a dummy address struct from the sk. */
4714 af->from_sk(&addr, sk);
4715 addr.v4.sin_port = htons(snum);
4717 /* Note: sk->sk_num gets filled in if ephemeral port request. */
4718 ret = sctp_get_port_local(sk, &addr);
4720 return (ret ? 1 : 0);
4724 * 3.1.3 listen() - UDP Style Syntax
4726 * By default, new associations are not accepted for UDP style sockets.
4727 * An application uses listen() to mark a socket as being able to
4728 * accept new associations.
4730 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4732 struct sctp_sock *sp = sctp_sk(sk);
4733 struct sctp_endpoint *ep = sp->ep;
4735 /* Only UDP style sockets that are not peeled off are allowed to
4736 * listen().
4738 if (!sctp_style(sk, UDP))
4739 return -EINVAL;
4741 /* If backlog is zero, disable listening. */
4742 if (!backlog) {
4743 if (sctp_sstate(sk, CLOSED))
4744 return 0;
4746 sctp_unhash_endpoint(ep);
4747 sk->sk_state = SCTP_SS_CLOSED;
4750 /* Return if we are already listening. */
4751 if (sctp_sstate(sk, LISTENING))
4752 return 0;
4755 * If a bind() or sctp_bindx() is not called prior to a listen()
4756 * call that allows new associations to be accepted, the system
4757 * picks an ephemeral port and will choose an address set equivalent
4758 * to binding with a wildcard address.
4760 * This is not currently spelled out in the SCTP sockets
4761 * extensions draft, but follows the practice as seen in TCP
4762 * sockets.
4764 if (!ep->base.bind_addr.port) {
4765 if (sctp_autobind(sk))
4766 return -EAGAIN;
4768 sk->sk_state = SCTP_SS_LISTENING;
4769 sctp_hash_endpoint(ep);
4770 return 0;
4774 * 4.1.3 listen() - TCP Style Syntax
4776 * Applications uses listen() to ready the SCTP endpoint for accepting
4777 * inbound associations.
4779 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4781 struct sctp_sock *sp = sctp_sk(sk);
4782 struct sctp_endpoint *ep = sp->ep;
4784 /* If backlog is zero, disable listening. */
4785 if (!backlog) {
4786 if (sctp_sstate(sk, CLOSED))
4787 return 0;
4789 sctp_unhash_endpoint(ep);
4790 sk->sk_state = SCTP_SS_CLOSED;
4793 if (sctp_sstate(sk, LISTENING))
4794 return 0;
4797 * If a bind() or sctp_bindx() is not called prior to a listen()
4798 * call that allows new associations to be accepted, the system
4799 * picks an ephemeral port and will choose an address set equivalent
4800 * to binding with a wildcard address.
4802 * This is not currently spelled out in the SCTP sockets
4803 * extensions draft, but follows the practice as seen in TCP
4804 * sockets.
4806 if (!ep->base.bind_addr.port) {
4807 if (sctp_autobind(sk))
4808 return -EAGAIN;
4810 sk->sk_state = SCTP_SS_LISTENING;
4811 sk->sk_max_ack_backlog = backlog;
4812 sctp_hash_endpoint(ep);
4813 return 0;
4817 * Move a socket to LISTENING state.
4819 int sctp_inet_listen(struct socket *sock, int backlog)
4821 struct sock *sk = sock->sk;
4822 struct crypto_tfm *tfm=NULL;
4823 int err = -EINVAL;
4825 if (unlikely(backlog < 0))
4826 goto out;
4828 sctp_lock_sock(sk);
4830 if (sock->state != SS_UNCONNECTED)
4831 goto out;
4833 /* Allocate HMAC for generating cookie. */
4834 if (sctp_hmac_alg) {
4835 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4836 if (!tfm) {
4837 err = -ENOSYS;
4838 goto out;
4842 switch (sock->type) {
4843 case SOCK_SEQPACKET:
4844 err = sctp_seqpacket_listen(sk, backlog);
4845 break;
4846 case SOCK_STREAM:
4847 err = sctp_stream_listen(sk, backlog);
4848 break;
4849 default:
4850 break;
4852 if (err)
4853 goto cleanup;
4855 /* Store away the transform reference. */
4856 sctp_sk(sk)->hmac = tfm;
4857 out:
4858 sctp_release_sock(sk);
4859 return err;
4860 cleanup:
4861 sctp_crypto_free_tfm(tfm);
4862 goto out;
4866 * This function is done by modeling the current datagram_poll() and the
4867 * tcp_poll(). Note that, based on these implementations, we don't
4868 * lock the socket in this function, even though it seems that,
4869 * ideally, locking or some other mechanisms can be used to ensure
4870 * the integrity of the counters (sndbuf and wmem_alloc) used
4871 * in this place. We assume that we don't need locks either until proven
4872 * otherwise.
4874 * Another thing to note is that we include the Async I/O support
4875 * here, again, by modeling the current TCP/UDP code. We don't have
4876 * a good way to test with it yet.
4878 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4880 struct sock *sk = sock->sk;
4881 struct sctp_sock *sp = sctp_sk(sk);
4882 unsigned int mask;
4884 poll_wait(file, sk->sk_sleep, wait);
4886 /* A TCP-style listening socket becomes readable when the accept queue
4887 * is not empty.
4889 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4890 return (!list_empty(&sp->ep->asocs)) ?
4891 (POLLIN | POLLRDNORM) : 0;
4893 mask = 0;
4895 /* Is there any exceptional events? */
4896 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4897 mask |= POLLERR;
4898 if (sk->sk_shutdown & RCV_SHUTDOWN)
4899 mask |= POLLRDHUP;
4900 if (sk->sk_shutdown == SHUTDOWN_MASK)
4901 mask |= POLLHUP;
4903 /* Is it readable? Reconsider this code with TCP-style support. */
4904 if (!skb_queue_empty(&sk->sk_receive_queue) ||
4905 (sk->sk_shutdown & RCV_SHUTDOWN))
4906 mask |= POLLIN | POLLRDNORM;
4908 /* The association is either gone or not ready. */
4909 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4910 return mask;
4912 /* Is it writable? */
4913 if (sctp_writeable(sk)) {
4914 mask |= POLLOUT | POLLWRNORM;
4915 } else {
4916 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4918 * Since the socket is not locked, the buffer
4919 * might be made available after the writeable check and
4920 * before the bit is set. This could cause a lost I/O
4921 * signal. tcp_poll() has a race breaker for this race
4922 * condition. Based on their implementation, we put
4923 * in the following code to cover it as well.
4925 if (sctp_writeable(sk))
4926 mask |= POLLOUT | POLLWRNORM;
4928 return mask;
4931 /********************************************************************
4932 * 2nd Level Abstractions
4933 ********************************************************************/
4935 static struct sctp_bind_bucket *sctp_bucket_create(
4936 struct sctp_bind_hashbucket *head, unsigned short snum)
4938 struct sctp_bind_bucket *pp;
4940 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4941 SCTP_DBG_OBJCNT_INC(bind_bucket);
4942 if (pp) {
4943 pp->port = snum;
4944 pp->fastreuse = 0;
4945 INIT_HLIST_HEAD(&pp->owner);
4946 if ((pp->next = head->chain) != NULL)
4947 pp->next->pprev = &pp->next;
4948 head->chain = pp;
4949 pp->pprev = &head->chain;
4951 return pp;
4954 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4955 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4957 if (hlist_empty(&pp->owner)) {
4958 if (pp->next)
4959 pp->next->pprev = pp->pprev;
4960 *(pp->pprev) = pp->next;
4961 kmem_cache_free(sctp_bucket_cachep, pp);
4962 SCTP_DBG_OBJCNT_DEC(bind_bucket);
4966 /* Release this socket's reference to a local port. */
4967 static inline void __sctp_put_port(struct sock *sk)
4969 struct sctp_bind_hashbucket *head =
4970 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4971 struct sctp_bind_bucket *pp;
4973 sctp_spin_lock(&head->lock);
4974 pp = sctp_sk(sk)->bind_hash;
4975 __sk_del_bind_node(sk);
4976 sctp_sk(sk)->bind_hash = NULL;
4977 inet_sk(sk)->num = 0;
4978 sctp_bucket_destroy(pp);
4979 sctp_spin_unlock(&head->lock);
4982 void sctp_put_port(struct sock *sk)
4984 sctp_local_bh_disable();
4985 __sctp_put_port(sk);
4986 sctp_local_bh_enable();
4990 * The system picks an ephemeral port and choose an address set equivalent
4991 * to binding with a wildcard address.
4992 * One of those addresses will be the primary address for the association.
4993 * This automatically enables the multihoming capability of SCTP.
4995 static int sctp_autobind(struct sock *sk)
4997 union sctp_addr autoaddr;
4998 struct sctp_af *af;
4999 unsigned short port;
5001 /* Initialize a local sockaddr structure to INADDR_ANY. */
5002 af = sctp_sk(sk)->pf->af;
5004 port = htons(inet_sk(sk)->num);
5005 af->inaddr_any(&autoaddr, port);
5007 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5010 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5012 * From RFC 2292
5013 * 4.2 The cmsghdr Structure *
5015 * When ancillary data is sent or received, any number of ancillary data
5016 * objects can be specified by the msg_control and msg_controllen members of
5017 * the msghdr structure, because each object is preceded by
5018 * a cmsghdr structure defining the object's length (the cmsg_len member).
5019 * Historically Berkeley-derived implementations have passed only one object
5020 * at a time, but this API allows multiple objects to be
5021 * passed in a single call to sendmsg() or recvmsg(). The following example
5022 * shows two ancillary data objects in a control buffer.
5024 * |<--------------------------- msg_controllen -------------------------->|
5025 * | |
5027 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5029 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5030 * | | |
5032 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5034 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5035 * | | | | |
5037 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5038 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5040 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5042 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5046 * msg_control
5047 * points here
5049 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5050 sctp_cmsgs_t *cmsgs)
5052 struct cmsghdr *cmsg;
5054 for (cmsg = CMSG_FIRSTHDR(msg);
5055 cmsg != NULL;
5056 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5057 if (!CMSG_OK(msg, cmsg))
5058 return -EINVAL;
5060 /* Should we parse this header or ignore? */
5061 if (cmsg->cmsg_level != IPPROTO_SCTP)
5062 continue;
5064 /* Strictly check lengths following example in SCM code. */
5065 switch (cmsg->cmsg_type) {
5066 case SCTP_INIT:
5067 /* SCTP Socket API Extension
5068 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5070 * This cmsghdr structure provides information for
5071 * initializing new SCTP associations with sendmsg().
5072 * The SCTP_INITMSG socket option uses this same data
5073 * structure. This structure is not used for
5074 * recvmsg().
5076 * cmsg_level cmsg_type cmsg_data[]
5077 * ------------ ------------ ----------------------
5078 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5080 if (cmsg->cmsg_len !=
5081 CMSG_LEN(sizeof(struct sctp_initmsg)))
5082 return -EINVAL;
5083 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5084 break;
5086 case SCTP_SNDRCV:
5087 /* SCTP Socket API Extension
5088 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5090 * This cmsghdr structure specifies SCTP options for
5091 * sendmsg() and describes SCTP header information
5092 * about a received message through recvmsg().
5094 * cmsg_level cmsg_type cmsg_data[]
5095 * ------------ ------------ ----------------------
5096 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5098 if (cmsg->cmsg_len !=
5099 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5100 return -EINVAL;
5102 cmsgs->info =
5103 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5105 /* Minimally, validate the sinfo_flags. */
5106 if (cmsgs->info->sinfo_flags &
5107 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5108 SCTP_ABORT | SCTP_EOF))
5109 return -EINVAL;
5110 break;
5112 default:
5113 return -EINVAL;
5116 return 0;
5120 * Wait for a packet..
5121 * Note: This function is the same function as in core/datagram.c
5122 * with a few modifications to make lksctp work.
5124 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5126 int error;
5127 DEFINE_WAIT(wait);
5129 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5131 /* Socket errors? */
5132 error = sock_error(sk);
5133 if (error)
5134 goto out;
5136 if (!skb_queue_empty(&sk->sk_receive_queue))
5137 goto ready;
5139 /* Socket shut down? */
5140 if (sk->sk_shutdown & RCV_SHUTDOWN)
5141 goto out;
5143 /* Sequenced packets can come disconnected. If so we report the
5144 * problem.
5146 error = -ENOTCONN;
5148 /* Is there a good reason to think that we may receive some data? */
5149 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5150 goto out;
5152 /* Handle signals. */
5153 if (signal_pending(current))
5154 goto interrupted;
5156 /* Let another process have a go. Since we are going to sleep
5157 * anyway. Note: This may cause odd behaviors if the message
5158 * does not fit in the user's buffer, but this seems to be the
5159 * only way to honor MSG_DONTWAIT realistically.
5161 sctp_release_sock(sk);
5162 *timeo_p = schedule_timeout(*timeo_p);
5163 sctp_lock_sock(sk);
5165 ready:
5166 finish_wait(sk->sk_sleep, &wait);
5167 return 0;
5169 interrupted:
5170 error = sock_intr_errno(*timeo_p);
5172 out:
5173 finish_wait(sk->sk_sleep, &wait);
5174 *err = error;
5175 return error;
5178 /* Receive a datagram.
5179 * Note: This is pretty much the same routine as in core/datagram.c
5180 * with a few changes to make lksctp work.
5182 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5183 int noblock, int *err)
5185 int error;
5186 struct sk_buff *skb;
5187 long timeo;
5189 timeo = sock_rcvtimeo(sk, noblock);
5191 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5192 timeo, MAX_SCHEDULE_TIMEOUT);
5194 do {
5195 /* Again only user level code calls this function,
5196 * so nothing interrupt level
5197 * will suddenly eat the receive_queue.
5199 * Look at current nfs client by the way...
5200 * However, this function was corrent in any case. 8)
5202 if (flags & MSG_PEEK) {
5203 spin_lock_bh(&sk->sk_receive_queue.lock);
5204 skb = skb_peek(&sk->sk_receive_queue);
5205 if (skb)
5206 atomic_inc(&skb->users);
5207 spin_unlock_bh(&sk->sk_receive_queue.lock);
5208 } else {
5209 skb = skb_dequeue(&sk->sk_receive_queue);
5212 if (skb)
5213 return skb;
5215 /* Caller is allowed not to check sk->sk_err before calling. */
5216 error = sock_error(sk);
5217 if (error)
5218 goto no_packet;
5220 if (sk->sk_shutdown & RCV_SHUTDOWN)
5221 break;
5223 /* User doesn't want to wait. */
5224 error = -EAGAIN;
5225 if (!timeo)
5226 goto no_packet;
5227 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5229 return NULL;
5231 no_packet:
5232 *err = error;
5233 return NULL;
5236 /* If sndbuf has changed, wake up per association sndbuf waiters. */
5237 static void __sctp_write_space(struct sctp_association *asoc)
5239 struct sock *sk = asoc->base.sk;
5240 struct socket *sock = sk->sk_socket;
5242 if ((sctp_wspace(asoc) > 0) && sock) {
5243 if (waitqueue_active(&asoc->wait))
5244 wake_up_interruptible(&asoc->wait);
5246 if (sctp_writeable(sk)) {
5247 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5248 wake_up_interruptible(sk->sk_sleep);
5250 /* Note that we try to include the Async I/O support
5251 * here by modeling from the current TCP/UDP code.
5252 * We have not tested with it yet.
5254 if (sock->fasync_list &&
5255 !(sk->sk_shutdown & SEND_SHUTDOWN))
5256 sock_wake_async(sock, 2, POLL_OUT);
5261 /* Do accounting for the sndbuf space.
5262 * Decrement the used sndbuf space of the corresponding association by the
5263 * data size which was just transmitted(freed).
5265 static void sctp_wfree(struct sk_buff *skb)
5267 struct sctp_association *asoc;
5268 struct sctp_chunk *chunk;
5269 struct sock *sk;
5271 /* Get the saved chunk pointer. */
5272 chunk = *((struct sctp_chunk **)(skb->cb));
5273 asoc = chunk->asoc;
5274 sk = asoc->base.sk;
5275 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5276 sizeof(struct sk_buff) +
5277 sizeof(struct sctp_chunk);
5279 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5281 sock_wfree(skb);
5282 __sctp_write_space(asoc);
5284 sctp_association_put(asoc);
5287 /* Helper function to wait for space in the sndbuf. */
5288 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5289 size_t msg_len)
5291 struct sock *sk = asoc->base.sk;
5292 int err = 0;
5293 long current_timeo = *timeo_p;
5294 DEFINE_WAIT(wait);
5296 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5297 asoc, (long)(*timeo_p), msg_len);
5299 /* Increment the association's refcnt. */
5300 sctp_association_hold(asoc);
5302 /* Wait on the association specific sndbuf space. */
5303 for (;;) {
5304 prepare_to_wait_exclusive(&asoc->wait, &wait,
5305 TASK_INTERRUPTIBLE);
5306 if (!*timeo_p)
5307 goto do_nonblock;
5308 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5309 asoc->base.dead)
5310 goto do_error;
5311 if (signal_pending(current))
5312 goto do_interrupted;
5313 if (msg_len <= sctp_wspace(asoc))
5314 break;
5316 /* Let another process have a go. Since we are going
5317 * to sleep anyway.
5319 sctp_release_sock(sk);
5320 current_timeo = schedule_timeout(current_timeo);
5321 BUG_ON(sk != asoc->base.sk);
5322 sctp_lock_sock(sk);
5324 *timeo_p = current_timeo;
5327 out:
5328 finish_wait(&asoc->wait, &wait);
5330 /* Release the association's refcnt. */
5331 sctp_association_put(asoc);
5333 return err;
5335 do_error:
5336 err = -EPIPE;
5337 goto out;
5339 do_interrupted:
5340 err = sock_intr_errno(*timeo_p);
5341 goto out;
5343 do_nonblock:
5344 err = -EAGAIN;
5345 goto out;
5348 /* If socket sndbuf has changed, wake up all per association waiters. */
5349 void sctp_write_space(struct sock *sk)
5351 struct sctp_association *asoc;
5352 struct list_head *pos;
5354 /* Wake up the tasks in each wait queue. */
5355 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5356 asoc = list_entry(pos, struct sctp_association, asocs);
5357 __sctp_write_space(asoc);
5361 /* Is there any sndbuf space available on the socket?
5363 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5364 * associations on the same socket. For a UDP-style socket with
5365 * multiple associations, it is possible for it to be "unwriteable"
5366 * prematurely. I assume that this is acceptable because
5367 * a premature "unwriteable" is better than an accidental "writeable" which
5368 * would cause an unwanted block under certain circumstances. For the 1-1
5369 * UDP-style sockets or TCP-style sockets, this code should work.
5370 * - Daisy
5372 static int sctp_writeable(struct sock *sk)
5374 int amt = 0;
5376 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5377 if (amt < 0)
5378 amt = 0;
5379 return amt;
5382 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5383 * returns immediately with EINPROGRESS.
5385 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5387 struct sock *sk = asoc->base.sk;
5388 int err = 0;
5389 long current_timeo = *timeo_p;
5390 DEFINE_WAIT(wait);
5392 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5393 (long)(*timeo_p));
5395 /* Increment the association's refcnt. */
5396 sctp_association_hold(asoc);
5398 for (;;) {
5399 prepare_to_wait_exclusive(&asoc->wait, &wait,
5400 TASK_INTERRUPTIBLE);
5401 if (!*timeo_p)
5402 goto do_nonblock;
5403 if (sk->sk_shutdown & RCV_SHUTDOWN)
5404 break;
5405 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5406 asoc->base.dead)
5407 goto do_error;
5408 if (signal_pending(current))
5409 goto do_interrupted;
5411 if (sctp_state(asoc, ESTABLISHED))
5412 break;
5414 /* Let another process have a go. Since we are going
5415 * to sleep anyway.
5417 sctp_release_sock(sk);
5418 current_timeo = schedule_timeout(current_timeo);
5419 sctp_lock_sock(sk);
5421 *timeo_p = current_timeo;
5424 out:
5425 finish_wait(&asoc->wait, &wait);
5427 /* Release the association's refcnt. */
5428 sctp_association_put(asoc);
5430 return err;
5432 do_error:
5433 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5434 err = -ETIMEDOUT;
5435 else
5436 err = -ECONNREFUSED;
5437 goto out;
5439 do_interrupted:
5440 err = sock_intr_errno(*timeo_p);
5441 goto out;
5443 do_nonblock:
5444 err = -EINPROGRESS;
5445 goto out;
5448 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5450 struct sctp_endpoint *ep;
5451 int err = 0;
5452 DEFINE_WAIT(wait);
5454 ep = sctp_sk(sk)->ep;
5457 for (;;) {
5458 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5459 TASK_INTERRUPTIBLE);
5461 if (list_empty(&ep->asocs)) {
5462 sctp_release_sock(sk);
5463 timeo = schedule_timeout(timeo);
5464 sctp_lock_sock(sk);
5467 err = -EINVAL;
5468 if (!sctp_sstate(sk, LISTENING))
5469 break;
5471 err = 0;
5472 if (!list_empty(&ep->asocs))
5473 break;
5475 err = sock_intr_errno(timeo);
5476 if (signal_pending(current))
5477 break;
5479 err = -EAGAIN;
5480 if (!timeo)
5481 break;
5484 finish_wait(sk->sk_sleep, &wait);
5486 return err;
5489 void sctp_wait_for_close(struct sock *sk, long timeout)
5491 DEFINE_WAIT(wait);
5493 do {
5494 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5495 if (list_empty(&sctp_sk(sk)->ep->asocs))
5496 break;
5497 sctp_release_sock(sk);
5498 timeout = schedule_timeout(timeout);
5499 sctp_lock_sock(sk);
5500 } while (!signal_pending(current) && timeout);
5502 finish_wait(sk->sk_sleep, &wait);
5505 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5506 * and its messages to the newsk.
5508 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5509 struct sctp_association *assoc,
5510 sctp_socket_type_t type)
5512 struct sctp_sock *oldsp = sctp_sk(oldsk);
5513 struct sctp_sock *newsp = sctp_sk(newsk);
5514 struct sctp_bind_bucket *pp; /* hash list port iterator */
5515 struct sctp_endpoint *newep = newsp->ep;
5516 struct sk_buff *skb, *tmp;
5517 struct sctp_ulpevent *event;
5518 int flags = 0;
5520 /* Migrate socket buffer sizes and all the socket level options to the
5521 * new socket.
5523 newsk->sk_sndbuf = oldsk->sk_sndbuf;
5524 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5525 /* Brute force copy old sctp opt. */
5526 inet_sk_copy_descendant(newsk, oldsk);
5528 /* Restore the ep value that was overwritten with the above structure
5529 * copy.
5531 newsp->ep = newep;
5532 newsp->hmac = NULL;
5534 /* Hook this new socket in to the bind_hash list. */
5535 pp = sctp_sk(oldsk)->bind_hash;
5536 sk_add_bind_node(newsk, &pp->owner);
5537 sctp_sk(newsk)->bind_hash = pp;
5538 inet_sk(newsk)->num = inet_sk(oldsk)->num;
5540 /* Copy the bind_addr list from the original endpoint to the new
5541 * endpoint so that we can handle restarts properly
5543 if (assoc->peer.ipv4_address)
5544 flags |= SCTP_ADDR4_PEERSUPP;
5545 if (assoc->peer.ipv6_address)
5546 flags |= SCTP_ADDR6_PEERSUPP;
5547 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5548 &oldsp->ep->base.bind_addr,
5549 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5551 /* Move any messages in the old socket's receive queue that are for the
5552 * peeled off association to the new socket's receive queue.
5554 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5555 event = sctp_skb2event(skb);
5556 if (event->asoc == assoc) {
5557 sock_rfree(skb);
5558 __skb_unlink(skb, &oldsk->sk_receive_queue);
5559 __skb_queue_tail(&newsk->sk_receive_queue, skb);
5560 skb_set_owner_r(skb, newsk);
5564 /* Clean up any messages pending delivery due to partial
5565 * delivery. Three cases:
5566 * 1) No partial deliver; no work.
5567 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5568 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5570 skb_queue_head_init(&newsp->pd_lobby);
5571 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5573 if (sctp_sk(oldsk)->pd_mode) {
5574 struct sk_buff_head *queue;
5576 /* Decide which queue to move pd_lobby skbs to. */
5577 if (assoc->ulpq.pd_mode) {
5578 queue = &newsp->pd_lobby;
5579 } else
5580 queue = &newsk->sk_receive_queue;
5582 /* Walk through the pd_lobby, looking for skbs that
5583 * need moved to the new socket.
5585 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5586 event = sctp_skb2event(skb);
5587 if (event->asoc == assoc) {
5588 sock_rfree(skb);
5589 __skb_unlink(skb, &oldsp->pd_lobby);
5590 __skb_queue_tail(queue, skb);
5591 skb_set_owner_r(skb, newsk);
5595 /* Clear up any skbs waiting for the partial
5596 * delivery to finish.
5598 if (assoc->ulpq.pd_mode)
5599 sctp_clear_pd(oldsk);
5603 /* Set the type of socket to indicate that it is peeled off from the
5604 * original UDP-style socket or created with the accept() call on a
5605 * TCP-style socket..
5607 newsp->type = type;
5609 /* Mark the new socket "in-use" by the user so that any packets
5610 * that may arrive on the association after we've moved it are
5611 * queued to the backlog. This prevents a potential race between
5612 * backlog processing on the old socket and new-packet processing
5613 * on the new socket.
5615 sctp_lock_sock(newsk);
5616 sctp_assoc_migrate(assoc, newsk);
5618 /* If the association on the newsk is already closed before accept()
5619 * is called, set RCV_SHUTDOWN flag.
5621 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5622 newsk->sk_shutdown |= RCV_SHUTDOWN;
5624 newsk->sk_state = SCTP_SS_ESTABLISHED;
5625 sctp_release_sock(newsk);
5628 /* This proto struct describes the ULP interface for SCTP. */
5629 struct proto sctp_prot = {
5630 .name = "SCTP",
5631 .owner = THIS_MODULE,
5632 .close = sctp_close,
5633 .connect = sctp_connect,
5634 .disconnect = sctp_disconnect,
5635 .accept = sctp_accept,
5636 .ioctl = sctp_ioctl,
5637 .init = sctp_init_sock,
5638 .destroy = sctp_destroy_sock,
5639 .shutdown = sctp_shutdown,
5640 .setsockopt = sctp_setsockopt,
5641 .getsockopt = sctp_getsockopt,
5642 .sendmsg = sctp_sendmsg,
5643 .recvmsg = sctp_recvmsg,
5644 .bind = sctp_bind,
5645 .backlog_rcv = sctp_backlog_rcv,
5646 .hash = sctp_hash,
5647 .unhash = sctp_unhash,
5648 .get_port = sctp_get_port,
5649 .obj_size = sizeof(struct sctp_sock),
5652 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5653 struct proto sctpv6_prot = {
5654 .name = "SCTPv6",
5655 .owner = THIS_MODULE,
5656 .close = sctp_close,
5657 .connect = sctp_connect,
5658 .disconnect = sctp_disconnect,
5659 .accept = sctp_accept,
5660 .ioctl = sctp_ioctl,
5661 .init = sctp_init_sock,
5662 .destroy = sctp_destroy_sock,
5663 .shutdown = sctp_shutdown,
5664 .setsockopt = sctp_setsockopt,
5665 .getsockopt = sctp_getsockopt,
5666 .sendmsg = sctp_sendmsg,
5667 .recvmsg = sctp_recvmsg,
5668 .bind = sctp_bind,
5669 .backlog_rcv = sctp_backlog_rcv,
5670 .hash = sctp_hash,
5671 .unhash = sctp_unhash,
5672 .get_port = sctp_get_port,
5673 .obj_size = sizeof(struct sctp6_sock),
5675 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */