IB/core: add a simple MR pool
[linux-2.6/btrfs-unstable.git] / drivers / infiniband / core / verbs.c
blob8549345c616918c8eb9d03dca6c341f73c292a0c
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
52 #include "core_priv.h"
54 static const char * const ib_events[] = {
55 [IB_EVENT_CQ_ERR] = "CQ error",
56 [IB_EVENT_QP_FATAL] = "QP fatal error",
57 [IB_EVENT_QP_REQ_ERR] = "QP request error",
58 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
59 [IB_EVENT_COMM_EST] = "communication established",
60 [IB_EVENT_SQ_DRAINED] = "send queue drained",
61 [IB_EVENT_PATH_MIG] = "path migration successful",
62 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
63 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
64 [IB_EVENT_PORT_ACTIVE] = "port active",
65 [IB_EVENT_PORT_ERR] = "port error",
66 [IB_EVENT_LID_CHANGE] = "LID change",
67 [IB_EVENT_PKEY_CHANGE] = "P_key change",
68 [IB_EVENT_SM_CHANGE] = "SM change",
69 [IB_EVENT_SRQ_ERR] = "SRQ error",
70 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
71 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
72 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
73 [IB_EVENT_GID_CHANGE] = "GID changed",
76 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 size_t index = event;
80 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
81 ib_events[index] : "unrecognized event";
83 EXPORT_SYMBOL(ib_event_msg);
85 static const char * const wc_statuses[] = {
86 [IB_WC_SUCCESS] = "success",
87 [IB_WC_LOC_LEN_ERR] = "local length error",
88 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
89 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
90 [IB_WC_LOC_PROT_ERR] = "local protection error",
91 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
92 [IB_WC_MW_BIND_ERR] = "memory management operation error",
93 [IB_WC_BAD_RESP_ERR] = "bad response error",
94 [IB_WC_LOC_ACCESS_ERR] = "local access error",
95 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
96 [IB_WC_REM_ACCESS_ERR] = "remote access error",
97 [IB_WC_REM_OP_ERR] = "remote operation error",
98 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
99 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
100 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
101 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
102 [IB_WC_REM_ABORT_ERR] = "operation aborted",
103 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
104 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
105 [IB_WC_FATAL_ERR] = "fatal error",
106 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
107 [IB_WC_GENERAL_ERR] = "general error",
110 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 size_t index = status;
114 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
115 wc_statuses[index] : "unrecognized status";
117 EXPORT_SYMBOL(ib_wc_status_msg);
119 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 switch (rate) {
122 case IB_RATE_2_5_GBPS: return 1;
123 case IB_RATE_5_GBPS: return 2;
124 case IB_RATE_10_GBPS: return 4;
125 case IB_RATE_20_GBPS: return 8;
126 case IB_RATE_30_GBPS: return 12;
127 case IB_RATE_40_GBPS: return 16;
128 case IB_RATE_60_GBPS: return 24;
129 case IB_RATE_80_GBPS: return 32;
130 case IB_RATE_120_GBPS: return 48;
131 default: return -1;
134 EXPORT_SYMBOL(ib_rate_to_mult);
136 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 switch (mult) {
139 case 1: return IB_RATE_2_5_GBPS;
140 case 2: return IB_RATE_5_GBPS;
141 case 4: return IB_RATE_10_GBPS;
142 case 8: return IB_RATE_20_GBPS;
143 case 12: return IB_RATE_30_GBPS;
144 case 16: return IB_RATE_40_GBPS;
145 case 24: return IB_RATE_60_GBPS;
146 case 32: return IB_RATE_80_GBPS;
147 case 48: return IB_RATE_120_GBPS;
148 default: return IB_RATE_PORT_CURRENT;
151 EXPORT_SYMBOL(mult_to_ib_rate);
153 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 switch (rate) {
156 case IB_RATE_2_5_GBPS: return 2500;
157 case IB_RATE_5_GBPS: return 5000;
158 case IB_RATE_10_GBPS: return 10000;
159 case IB_RATE_20_GBPS: return 20000;
160 case IB_RATE_30_GBPS: return 30000;
161 case IB_RATE_40_GBPS: return 40000;
162 case IB_RATE_60_GBPS: return 60000;
163 case IB_RATE_80_GBPS: return 80000;
164 case IB_RATE_120_GBPS: return 120000;
165 case IB_RATE_14_GBPS: return 14062;
166 case IB_RATE_56_GBPS: return 56250;
167 case IB_RATE_112_GBPS: return 112500;
168 case IB_RATE_168_GBPS: return 168750;
169 case IB_RATE_25_GBPS: return 25781;
170 case IB_RATE_100_GBPS: return 103125;
171 case IB_RATE_200_GBPS: return 206250;
172 case IB_RATE_300_GBPS: return 309375;
173 default: return -1;
176 EXPORT_SYMBOL(ib_rate_to_mbps);
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(enum rdma_node_type node_type)
181 switch (node_type) {
182 case RDMA_NODE_IB_CA:
183 case RDMA_NODE_IB_SWITCH:
184 case RDMA_NODE_IB_ROUTER:
185 return RDMA_TRANSPORT_IB;
186 case RDMA_NODE_RNIC:
187 return RDMA_TRANSPORT_IWARP;
188 case RDMA_NODE_USNIC:
189 return RDMA_TRANSPORT_USNIC;
190 case RDMA_NODE_USNIC_UDP:
191 return RDMA_TRANSPORT_USNIC_UDP;
192 default:
193 BUG();
194 return 0;
197 EXPORT_SYMBOL(rdma_node_get_transport);
199 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 if (device->get_link_layer)
202 return device->get_link_layer(device, port_num);
204 switch (rdma_node_get_transport(device->node_type)) {
205 case RDMA_TRANSPORT_IB:
206 return IB_LINK_LAYER_INFINIBAND;
207 case RDMA_TRANSPORT_IWARP:
208 case RDMA_TRANSPORT_USNIC:
209 case RDMA_TRANSPORT_USNIC_UDP:
210 return IB_LINK_LAYER_ETHERNET;
211 default:
212 return IB_LINK_LAYER_UNSPECIFIED;
215 EXPORT_SYMBOL(rdma_port_get_link_layer);
217 /* Protection domains */
220 * ib_alloc_pd - Allocates an unused protection domain.
221 * @device: The device on which to allocate the protection domain.
223 * A protection domain object provides an association between QPs, shared
224 * receive queues, address handles, memory regions, and memory windows.
226 * Every PD has a local_dma_lkey which can be used as the lkey value for local
227 * memory operations.
229 struct ib_pd *ib_alloc_pd(struct ib_device *device)
231 struct ib_pd *pd;
233 pd = device->alloc_pd(device, NULL, NULL);
234 if (IS_ERR(pd))
235 return pd;
237 pd->device = device;
238 pd->uobject = NULL;
239 pd->local_mr = NULL;
240 atomic_set(&pd->usecnt, 0);
242 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
243 pd->local_dma_lkey = device->local_dma_lkey;
244 else {
245 struct ib_mr *mr;
247 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
248 if (IS_ERR(mr)) {
249 ib_dealloc_pd(pd);
250 return (struct ib_pd *)mr;
253 pd->local_mr = mr;
254 pd->local_dma_lkey = pd->local_mr->lkey;
256 return pd;
258 EXPORT_SYMBOL(ib_alloc_pd);
261 * ib_dealloc_pd - Deallocates a protection domain.
262 * @pd: The protection domain to deallocate.
264 * It is an error to call this function while any resources in the pd still
265 * exist. The caller is responsible to synchronously destroy them and
266 * guarantee no new allocations will happen.
268 void ib_dealloc_pd(struct ib_pd *pd)
270 int ret;
272 if (pd->local_mr) {
273 ret = ib_dereg_mr(pd->local_mr);
274 WARN_ON(ret);
275 pd->local_mr = NULL;
278 /* uverbs manipulates usecnt with proper locking, while the kabi
279 requires the caller to guarantee we can't race here. */
280 WARN_ON(atomic_read(&pd->usecnt));
282 /* Making delalloc_pd a void return is a WIP, no driver should return
283 an error here. */
284 ret = pd->device->dealloc_pd(pd);
285 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
287 EXPORT_SYMBOL(ib_dealloc_pd);
289 /* Address handles */
291 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
293 struct ib_ah *ah;
295 ah = pd->device->create_ah(pd, ah_attr);
297 if (!IS_ERR(ah)) {
298 ah->device = pd->device;
299 ah->pd = pd;
300 ah->uobject = NULL;
301 atomic_inc(&pd->usecnt);
304 return ah;
306 EXPORT_SYMBOL(ib_create_ah);
308 static int ib_get_header_version(const union rdma_network_hdr *hdr)
310 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
311 struct iphdr ip4h_checked;
312 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
314 /* If it's IPv6, the version must be 6, otherwise, the first
315 * 20 bytes (before the IPv4 header) are garbled.
317 if (ip6h->version != 6)
318 return (ip4h->version == 4) ? 4 : 0;
319 /* version may be 6 or 4 because the first 20 bytes could be garbled */
321 /* RoCE v2 requires no options, thus header length
322 * must be 5 words
324 if (ip4h->ihl != 5)
325 return 6;
327 /* Verify checksum.
328 * We can't write on scattered buffers so we need to copy to
329 * temp buffer.
331 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
332 ip4h_checked.check = 0;
333 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
334 /* if IPv4 header checksum is OK, believe it */
335 if (ip4h->check == ip4h_checked.check)
336 return 4;
337 return 6;
340 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
341 u8 port_num,
342 const struct ib_grh *grh)
344 int grh_version;
346 if (rdma_protocol_ib(device, port_num))
347 return RDMA_NETWORK_IB;
349 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
351 if (grh_version == 4)
352 return RDMA_NETWORK_IPV4;
354 if (grh->next_hdr == IPPROTO_UDP)
355 return RDMA_NETWORK_IPV6;
357 return RDMA_NETWORK_ROCE_V1;
360 struct find_gid_index_context {
361 u16 vlan_id;
362 enum ib_gid_type gid_type;
365 static bool find_gid_index(const union ib_gid *gid,
366 const struct ib_gid_attr *gid_attr,
367 void *context)
369 struct find_gid_index_context *ctx =
370 (struct find_gid_index_context *)context;
372 if (ctx->gid_type != gid_attr->gid_type)
373 return false;
375 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
376 (is_vlan_dev(gid_attr->ndev) &&
377 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
378 return false;
380 return true;
383 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
384 u16 vlan_id, const union ib_gid *sgid,
385 enum ib_gid_type gid_type,
386 u16 *gid_index)
388 struct find_gid_index_context context = {.vlan_id = vlan_id,
389 .gid_type = gid_type};
391 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
392 &context, gid_index);
395 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
396 enum rdma_network_type net_type,
397 union ib_gid *sgid, union ib_gid *dgid)
399 struct sockaddr_in src_in;
400 struct sockaddr_in dst_in;
401 __be32 src_saddr, dst_saddr;
403 if (!sgid || !dgid)
404 return -EINVAL;
406 if (net_type == RDMA_NETWORK_IPV4) {
407 memcpy(&src_in.sin_addr.s_addr,
408 &hdr->roce4grh.saddr, 4);
409 memcpy(&dst_in.sin_addr.s_addr,
410 &hdr->roce4grh.daddr, 4);
411 src_saddr = src_in.sin_addr.s_addr;
412 dst_saddr = dst_in.sin_addr.s_addr;
413 ipv6_addr_set_v4mapped(src_saddr,
414 (struct in6_addr *)sgid);
415 ipv6_addr_set_v4mapped(dst_saddr,
416 (struct in6_addr *)dgid);
417 return 0;
418 } else if (net_type == RDMA_NETWORK_IPV6 ||
419 net_type == RDMA_NETWORK_IB) {
420 *dgid = hdr->ibgrh.dgid;
421 *sgid = hdr->ibgrh.sgid;
422 return 0;
423 } else {
424 return -EINVAL;
428 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
429 const struct ib_wc *wc, const struct ib_grh *grh,
430 struct ib_ah_attr *ah_attr)
432 u32 flow_class;
433 u16 gid_index;
434 int ret;
435 enum rdma_network_type net_type = RDMA_NETWORK_IB;
436 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
437 int hoplimit = 0xff;
438 union ib_gid dgid;
439 union ib_gid sgid;
441 memset(ah_attr, 0, sizeof *ah_attr);
442 if (rdma_cap_eth_ah(device, port_num)) {
443 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
444 net_type = wc->network_hdr_type;
445 else
446 net_type = ib_get_net_type_by_grh(device, port_num, grh);
447 gid_type = ib_network_to_gid_type(net_type);
449 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
450 &sgid, &dgid);
451 if (ret)
452 return ret;
454 if (rdma_protocol_roce(device, port_num)) {
455 int if_index = 0;
456 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
457 wc->vlan_id : 0xffff;
458 struct net_device *idev;
459 struct net_device *resolved_dev;
461 if (!(wc->wc_flags & IB_WC_GRH))
462 return -EPROTOTYPE;
464 if (!device->get_netdev)
465 return -EOPNOTSUPP;
467 idev = device->get_netdev(device, port_num);
468 if (!idev)
469 return -ENODEV;
471 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
472 ah_attr->dmac,
473 wc->wc_flags & IB_WC_WITH_VLAN ?
474 NULL : &vlan_id,
475 &if_index, &hoplimit);
476 if (ret) {
477 dev_put(idev);
478 return ret;
481 resolved_dev = dev_get_by_index(&init_net, if_index);
482 if (resolved_dev->flags & IFF_LOOPBACK) {
483 dev_put(resolved_dev);
484 resolved_dev = idev;
485 dev_hold(resolved_dev);
487 rcu_read_lock();
488 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
489 resolved_dev))
490 ret = -EHOSTUNREACH;
491 rcu_read_unlock();
492 dev_put(idev);
493 dev_put(resolved_dev);
494 if (ret)
495 return ret;
497 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
498 &dgid, gid_type, &gid_index);
499 if (ret)
500 return ret;
503 ah_attr->dlid = wc->slid;
504 ah_attr->sl = wc->sl;
505 ah_attr->src_path_bits = wc->dlid_path_bits;
506 ah_attr->port_num = port_num;
508 if (wc->wc_flags & IB_WC_GRH) {
509 ah_attr->ah_flags = IB_AH_GRH;
510 ah_attr->grh.dgid = sgid;
512 if (!rdma_cap_eth_ah(device, port_num)) {
513 ret = ib_find_cached_gid_by_port(device, &dgid,
514 IB_GID_TYPE_IB,
515 port_num, NULL,
516 &gid_index);
517 if (ret)
518 return ret;
521 ah_attr->grh.sgid_index = (u8) gid_index;
522 flow_class = be32_to_cpu(grh->version_tclass_flow);
523 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
524 ah_attr->grh.hop_limit = hoplimit;
525 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
527 return 0;
529 EXPORT_SYMBOL(ib_init_ah_from_wc);
531 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
532 const struct ib_grh *grh, u8 port_num)
534 struct ib_ah_attr ah_attr;
535 int ret;
537 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
538 if (ret)
539 return ERR_PTR(ret);
541 return ib_create_ah(pd, &ah_attr);
543 EXPORT_SYMBOL(ib_create_ah_from_wc);
545 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
547 return ah->device->modify_ah ?
548 ah->device->modify_ah(ah, ah_attr) :
549 -ENOSYS;
551 EXPORT_SYMBOL(ib_modify_ah);
553 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
555 return ah->device->query_ah ?
556 ah->device->query_ah(ah, ah_attr) :
557 -ENOSYS;
559 EXPORT_SYMBOL(ib_query_ah);
561 int ib_destroy_ah(struct ib_ah *ah)
563 struct ib_pd *pd;
564 int ret;
566 pd = ah->pd;
567 ret = ah->device->destroy_ah(ah);
568 if (!ret)
569 atomic_dec(&pd->usecnt);
571 return ret;
573 EXPORT_SYMBOL(ib_destroy_ah);
575 /* Shared receive queues */
577 struct ib_srq *ib_create_srq(struct ib_pd *pd,
578 struct ib_srq_init_attr *srq_init_attr)
580 struct ib_srq *srq;
582 if (!pd->device->create_srq)
583 return ERR_PTR(-ENOSYS);
585 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
587 if (!IS_ERR(srq)) {
588 srq->device = pd->device;
589 srq->pd = pd;
590 srq->uobject = NULL;
591 srq->event_handler = srq_init_attr->event_handler;
592 srq->srq_context = srq_init_attr->srq_context;
593 srq->srq_type = srq_init_attr->srq_type;
594 if (srq->srq_type == IB_SRQT_XRC) {
595 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
596 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
597 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
598 atomic_inc(&srq->ext.xrc.cq->usecnt);
600 atomic_inc(&pd->usecnt);
601 atomic_set(&srq->usecnt, 0);
604 return srq;
606 EXPORT_SYMBOL(ib_create_srq);
608 int ib_modify_srq(struct ib_srq *srq,
609 struct ib_srq_attr *srq_attr,
610 enum ib_srq_attr_mask srq_attr_mask)
612 return srq->device->modify_srq ?
613 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
614 -ENOSYS;
616 EXPORT_SYMBOL(ib_modify_srq);
618 int ib_query_srq(struct ib_srq *srq,
619 struct ib_srq_attr *srq_attr)
621 return srq->device->query_srq ?
622 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
624 EXPORT_SYMBOL(ib_query_srq);
626 int ib_destroy_srq(struct ib_srq *srq)
628 struct ib_pd *pd;
629 enum ib_srq_type srq_type;
630 struct ib_xrcd *uninitialized_var(xrcd);
631 struct ib_cq *uninitialized_var(cq);
632 int ret;
634 if (atomic_read(&srq->usecnt))
635 return -EBUSY;
637 pd = srq->pd;
638 srq_type = srq->srq_type;
639 if (srq_type == IB_SRQT_XRC) {
640 xrcd = srq->ext.xrc.xrcd;
641 cq = srq->ext.xrc.cq;
644 ret = srq->device->destroy_srq(srq);
645 if (!ret) {
646 atomic_dec(&pd->usecnt);
647 if (srq_type == IB_SRQT_XRC) {
648 atomic_dec(&xrcd->usecnt);
649 atomic_dec(&cq->usecnt);
653 return ret;
655 EXPORT_SYMBOL(ib_destroy_srq);
657 /* Queue pairs */
659 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
661 struct ib_qp *qp = context;
662 unsigned long flags;
664 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
665 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
666 if (event->element.qp->event_handler)
667 event->element.qp->event_handler(event, event->element.qp->qp_context);
668 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
671 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
673 mutex_lock(&xrcd->tgt_qp_mutex);
674 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
675 mutex_unlock(&xrcd->tgt_qp_mutex);
678 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
679 void (*event_handler)(struct ib_event *, void *),
680 void *qp_context)
682 struct ib_qp *qp;
683 unsigned long flags;
685 qp = kzalloc(sizeof *qp, GFP_KERNEL);
686 if (!qp)
687 return ERR_PTR(-ENOMEM);
689 qp->real_qp = real_qp;
690 atomic_inc(&real_qp->usecnt);
691 qp->device = real_qp->device;
692 qp->event_handler = event_handler;
693 qp->qp_context = qp_context;
694 qp->qp_num = real_qp->qp_num;
695 qp->qp_type = real_qp->qp_type;
697 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
698 list_add(&qp->open_list, &real_qp->open_list);
699 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
701 return qp;
704 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
705 struct ib_qp_open_attr *qp_open_attr)
707 struct ib_qp *qp, *real_qp;
709 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
710 return ERR_PTR(-EINVAL);
712 qp = ERR_PTR(-EINVAL);
713 mutex_lock(&xrcd->tgt_qp_mutex);
714 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
715 if (real_qp->qp_num == qp_open_attr->qp_num) {
716 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
717 qp_open_attr->qp_context);
718 break;
721 mutex_unlock(&xrcd->tgt_qp_mutex);
722 return qp;
724 EXPORT_SYMBOL(ib_open_qp);
726 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
727 struct ib_qp_init_attr *qp_init_attr)
729 struct ib_qp *real_qp = qp;
731 qp->event_handler = __ib_shared_qp_event_handler;
732 qp->qp_context = qp;
733 qp->pd = NULL;
734 qp->send_cq = qp->recv_cq = NULL;
735 qp->srq = NULL;
736 qp->xrcd = qp_init_attr->xrcd;
737 atomic_inc(&qp_init_attr->xrcd->usecnt);
738 INIT_LIST_HEAD(&qp->open_list);
740 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
741 qp_init_attr->qp_context);
742 if (!IS_ERR(qp))
743 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
744 else
745 real_qp->device->destroy_qp(real_qp);
746 return qp;
749 struct ib_qp *ib_create_qp(struct ib_pd *pd,
750 struct ib_qp_init_attr *qp_init_attr)
752 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
753 struct ib_qp *qp;
755 qp = device->create_qp(pd, qp_init_attr, NULL);
756 if (IS_ERR(qp))
757 return qp;
759 qp->device = device;
760 qp->real_qp = qp;
761 qp->uobject = NULL;
762 qp->qp_type = qp_init_attr->qp_type;
764 atomic_set(&qp->usecnt, 0);
765 qp->mrs_used = 0;
766 spin_lock_init(&qp->mr_lock);
768 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
769 return ib_create_xrc_qp(qp, qp_init_attr);
771 qp->event_handler = qp_init_attr->event_handler;
772 qp->qp_context = qp_init_attr->qp_context;
773 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
774 qp->recv_cq = NULL;
775 qp->srq = NULL;
776 } else {
777 qp->recv_cq = qp_init_attr->recv_cq;
778 atomic_inc(&qp_init_attr->recv_cq->usecnt);
779 qp->srq = qp_init_attr->srq;
780 if (qp->srq)
781 atomic_inc(&qp_init_attr->srq->usecnt);
784 qp->pd = pd;
785 qp->send_cq = qp_init_attr->send_cq;
786 qp->xrcd = NULL;
788 atomic_inc(&pd->usecnt);
789 atomic_inc(&qp_init_attr->send_cq->usecnt);
790 return qp;
792 EXPORT_SYMBOL(ib_create_qp);
794 static const struct {
795 int valid;
796 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
797 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
798 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
799 [IB_QPS_RESET] = {
800 [IB_QPS_RESET] = { .valid = 1 },
801 [IB_QPS_INIT] = {
802 .valid = 1,
803 .req_param = {
804 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
805 IB_QP_PORT |
806 IB_QP_QKEY),
807 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
808 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
809 IB_QP_PORT |
810 IB_QP_ACCESS_FLAGS),
811 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
812 IB_QP_PORT |
813 IB_QP_ACCESS_FLAGS),
814 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
815 IB_QP_PORT |
816 IB_QP_ACCESS_FLAGS),
817 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
818 IB_QP_PORT |
819 IB_QP_ACCESS_FLAGS),
820 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
821 IB_QP_QKEY),
822 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
823 IB_QP_QKEY),
827 [IB_QPS_INIT] = {
828 [IB_QPS_RESET] = { .valid = 1 },
829 [IB_QPS_ERR] = { .valid = 1 },
830 [IB_QPS_INIT] = {
831 .valid = 1,
832 .opt_param = {
833 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
834 IB_QP_PORT |
835 IB_QP_QKEY),
836 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
837 IB_QP_PORT |
838 IB_QP_ACCESS_FLAGS),
839 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
840 IB_QP_PORT |
841 IB_QP_ACCESS_FLAGS),
842 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
843 IB_QP_PORT |
844 IB_QP_ACCESS_FLAGS),
845 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
846 IB_QP_PORT |
847 IB_QP_ACCESS_FLAGS),
848 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
849 IB_QP_QKEY),
850 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
851 IB_QP_QKEY),
854 [IB_QPS_RTR] = {
855 .valid = 1,
856 .req_param = {
857 [IB_QPT_UC] = (IB_QP_AV |
858 IB_QP_PATH_MTU |
859 IB_QP_DEST_QPN |
860 IB_QP_RQ_PSN),
861 [IB_QPT_RC] = (IB_QP_AV |
862 IB_QP_PATH_MTU |
863 IB_QP_DEST_QPN |
864 IB_QP_RQ_PSN |
865 IB_QP_MAX_DEST_RD_ATOMIC |
866 IB_QP_MIN_RNR_TIMER),
867 [IB_QPT_XRC_INI] = (IB_QP_AV |
868 IB_QP_PATH_MTU |
869 IB_QP_DEST_QPN |
870 IB_QP_RQ_PSN),
871 [IB_QPT_XRC_TGT] = (IB_QP_AV |
872 IB_QP_PATH_MTU |
873 IB_QP_DEST_QPN |
874 IB_QP_RQ_PSN |
875 IB_QP_MAX_DEST_RD_ATOMIC |
876 IB_QP_MIN_RNR_TIMER),
878 .opt_param = {
879 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
880 IB_QP_QKEY),
881 [IB_QPT_UC] = (IB_QP_ALT_PATH |
882 IB_QP_ACCESS_FLAGS |
883 IB_QP_PKEY_INDEX),
884 [IB_QPT_RC] = (IB_QP_ALT_PATH |
885 IB_QP_ACCESS_FLAGS |
886 IB_QP_PKEY_INDEX),
887 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
888 IB_QP_ACCESS_FLAGS |
889 IB_QP_PKEY_INDEX),
890 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
891 IB_QP_ACCESS_FLAGS |
892 IB_QP_PKEY_INDEX),
893 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
894 IB_QP_QKEY),
895 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
896 IB_QP_QKEY),
900 [IB_QPS_RTR] = {
901 [IB_QPS_RESET] = { .valid = 1 },
902 [IB_QPS_ERR] = { .valid = 1 },
903 [IB_QPS_RTS] = {
904 .valid = 1,
905 .req_param = {
906 [IB_QPT_UD] = IB_QP_SQ_PSN,
907 [IB_QPT_UC] = IB_QP_SQ_PSN,
908 [IB_QPT_RC] = (IB_QP_TIMEOUT |
909 IB_QP_RETRY_CNT |
910 IB_QP_RNR_RETRY |
911 IB_QP_SQ_PSN |
912 IB_QP_MAX_QP_RD_ATOMIC),
913 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
914 IB_QP_RETRY_CNT |
915 IB_QP_RNR_RETRY |
916 IB_QP_SQ_PSN |
917 IB_QP_MAX_QP_RD_ATOMIC),
918 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
919 IB_QP_SQ_PSN),
920 [IB_QPT_SMI] = IB_QP_SQ_PSN,
921 [IB_QPT_GSI] = IB_QP_SQ_PSN,
923 .opt_param = {
924 [IB_QPT_UD] = (IB_QP_CUR_STATE |
925 IB_QP_QKEY),
926 [IB_QPT_UC] = (IB_QP_CUR_STATE |
927 IB_QP_ALT_PATH |
928 IB_QP_ACCESS_FLAGS |
929 IB_QP_PATH_MIG_STATE),
930 [IB_QPT_RC] = (IB_QP_CUR_STATE |
931 IB_QP_ALT_PATH |
932 IB_QP_ACCESS_FLAGS |
933 IB_QP_MIN_RNR_TIMER |
934 IB_QP_PATH_MIG_STATE),
935 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
936 IB_QP_ALT_PATH |
937 IB_QP_ACCESS_FLAGS |
938 IB_QP_PATH_MIG_STATE),
939 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
940 IB_QP_ALT_PATH |
941 IB_QP_ACCESS_FLAGS |
942 IB_QP_MIN_RNR_TIMER |
943 IB_QP_PATH_MIG_STATE),
944 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
945 IB_QP_QKEY),
946 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
947 IB_QP_QKEY),
951 [IB_QPS_RTS] = {
952 [IB_QPS_RESET] = { .valid = 1 },
953 [IB_QPS_ERR] = { .valid = 1 },
954 [IB_QPS_RTS] = {
955 .valid = 1,
956 .opt_param = {
957 [IB_QPT_UD] = (IB_QP_CUR_STATE |
958 IB_QP_QKEY),
959 [IB_QPT_UC] = (IB_QP_CUR_STATE |
960 IB_QP_ACCESS_FLAGS |
961 IB_QP_ALT_PATH |
962 IB_QP_PATH_MIG_STATE),
963 [IB_QPT_RC] = (IB_QP_CUR_STATE |
964 IB_QP_ACCESS_FLAGS |
965 IB_QP_ALT_PATH |
966 IB_QP_PATH_MIG_STATE |
967 IB_QP_MIN_RNR_TIMER),
968 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
969 IB_QP_ACCESS_FLAGS |
970 IB_QP_ALT_PATH |
971 IB_QP_PATH_MIG_STATE),
972 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
973 IB_QP_ACCESS_FLAGS |
974 IB_QP_ALT_PATH |
975 IB_QP_PATH_MIG_STATE |
976 IB_QP_MIN_RNR_TIMER),
977 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
978 IB_QP_QKEY),
979 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
980 IB_QP_QKEY),
983 [IB_QPS_SQD] = {
984 .valid = 1,
985 .opt_param = {
986 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
987 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
988 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
989 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
990 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
991 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
992 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
996 [IB_QPS_SQD] = {
997 [IB_QPS_RESET] = { .valid = 1 },
998 [IB_QPS_ERR] = { .valid = 1 },
999 [IB_QPS_RTS] = {
1000 .valid = 1,
1001 .opt_param = {
1002 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1003 IB_QP_QKEY),
1004 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1005 IB_QP_ALT_PATH |
1006 IB_QP_ACCESS_FLAGS |
1007 IB_QP_PATH_MIG_STATE),
1008 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1009 IB_QP_ALT_PATH |
1010 IB_QP_ACCESS_FLAGS |
1011 IB_QP_MIN_RNR_TIMER |
1012 IB_QP_PATH_MIG_STATE),
1013 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1014 IB_QP_ALT_PATH |
1015 IB_QP_ACCESS_FLAGS |
1016 IB_QP_PATH_MIG_STATE),
1017 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1018 IB_QP_ALT_PATH |
1019 IB_QP_ACCESS_FLAGS |
1020 IB_QP_MIN_RNR_TIMER |
1021 IB_QP_PATH_MIG_STATE),
1022 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1023 IB_QP_QKEY),
1024 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1025 IB_QP_QKEY),
1028 [IB_QPS_SQD] = {
1029 .valid = 1,
1030 .opt_param = {
1031 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1032 IB_QP_QKEY),
1033 [IB_QPT_UC] = (IB_QP_AV |
1034 IB_QP_ALT_PATH |
1035 IB_QP_ACCESS_FLAGS |
1036 IB_QP_PKEY_INDEX |
1037 IB_QP_PATH_MIG_STATE),
1038 [IB_QPT_RC] = (IB_QP_PORT |
1039 IB_QP_AV |
1040 IB_QP_TIMEOUT |
1041 IB_QP_RETRY_CNT |
1042 IB_QP_RNR_RETRY |
1043 IB_QP_MAX_QP_RD_ATOMIC |
1044 IB_QP_MAX_DEST_RD_ATOMIC |
1045 IB_QP_ALT_PATH |
1046 IB_QP_ACCESS_FLAGS |
1047 IB_QP_PKEY_INDEX |
1048 IB_QP_MIN_RNR_TIMER |
1049 IB_QP_PATH_MIG_STATE),
1050 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1051 IB_QP_AV |
1052 IB_QP_TIMEOUT |
1053 IB_QP_RETRY_CNT |
1054 IB_QP_RNR_RETRY |
1055 IB_QP_MAX_QP_RD_ATOMIC |
1056 IB_QP_ALT_PATH |
1057 IB_QP_ACCESS_FLAGS |
1058 IB_QP_PKEY_INDEX |
1059 IB_QP_PATH_MIG_STATE),
1060 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1061 IB_QP_AV |
1062 IB_QP_TIMEOUT |
1063 IB_QP_MAX_DEST_RD_ATOMIC |
1064 IB_QP_ALT_PATH |
1065 IB_QP_ACCESS_FLAGS |
1066 IB_QP_PKEY_INDEX |
1067 IB_QP_MIN_RNR_TIMER |
1068 IB_QP_PATH_MIG_STATE),
1069 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1070 IB_QP_QKEY),
1071 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1072 IB_QP_QKEY),
1076 [IB_QPS_SQE] = {
1077 [IB_QPS_RESET] = { .valid = 1 },
1078 [IB_QPS_ERR] = { .valid = 1 },
1079 [IB_QPS_RTS] = {
1080 .valid = 1,
1081 .opt_param = {
1082 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1083 IB_QP_QKEY),
1084 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1085 IB_QP_ACCESS_FLAGS),
1086 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1087 IB_QP_QKEY),
1088 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1089 IB_QP_QKEY),
1093 [IB_QPS_ERR] = {
1094 [IB_QPS_RESET] = { .valid = 1 },
1095 [IB_QPS_ERR] = { .valid = 1 }
1099 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1100 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1101 enum rdma_link_layer ll)
1103 enum ib_qp_attr_mask req_param, opt_param;
1105 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1106 next_state < 0 || next_state > IB_QPS_ERR)
1107 return 0;
1109 if (mask & IB_QP_CUR_STATE &&
1110 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1111 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1112 return 0;
1114 if (!qp_state_table[cur_state][next_state].valid)
1115 return 0;
1117 req_param = qp_state_table[cur_state][next_state].req_param[type];
1118 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1120 if ((mask & req_param) != req_param)
1121 return 0;
1123 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1124 return 0;
1126 return 1;
1128 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1130 int ib_resolve_eth_dmac(struct ib_qp *qp,
1131 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1133 int ret = 0;
1135 if (*qp_attr_mask & IB_QP_AV) {
1136 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1137 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1138 return -EINVAL;
1140 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1141 return 0;
1143 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1144 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1145 qp_attr->ah_attr.dmac);
1146 } else {
1147 union ib_gid sgid;
1148 struct ib_gid_attr sgid_attr;
1149 int ifindex;
1150 int hop_limit;
1152 ret = ib_query_gid(qp->device,
1153 qp_attr->ah_attr.port_num,
1154 qp_attr->ah_attr.grh.sgid_index,
1155 &sgid, &sgid_attr);
1157 if (ret || !sgid_attr.ndev) {
1158 if (!ret)
1159 ret = -ENXIO;
1160 goto out;
1163 ifindex = sgid_attr.ndev->ifindex;
1165 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1166 &qp_attr->ah_attr.grh.dgid,
1167 qp_attr->ah_attr.dmac,
1168 NULL, &ifindex, &hop_limit);
1170 dev_put(sgid_attr.ndev);
1172 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1175 out:
1176 return ret;
1178 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1181 int ib_modify_qp(struct ib_qp *qp,
1182 struct ib_qp_attr *qp_attr,
1183 int qp_attr_mask)
1185 int ret;
1187 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1188 if (ret)
1189 return ret;
1191 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1193 EXPORT_SYMBOL(ib_modify_qp);
1195 int ib_query_qp(struct ib_qp *qp,
1196 struct ib_qp_attr *qp_attr,
1197 int qp_attr_mask,
1198 struct ib_qp_init_attr *qp_init_attr)
1200 return qp->device->query_qp ?
1201 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1202 -ENOSYS;
1204 EXPORT_SYMBOL(ib_query_qp);
1206 int ib_close_qp(struct ib_qp *qp)
1208 struct ib_qp *real_qp;
1209 unsigned long flags;
1211 real_qp = qp->real_qp;
1212 if (real_qp == qp)
1213 return -EINVAL;
1215 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1216 list_del(&qp->open_list);
1217 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1219 atomic_dec(&real_qp->usecnt);
1220 kfree(qp);
1222 return 0;
1224 EXPORT_SYMBOL(ib_close_qp);
1226 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1228 struct ib_xrcd *xrcd;
1229 struct ib_qp *real_qp;
1230 int ret;
1232 real_qp = qp->real_qp;
1233 xrcd = real_qp->xrcd;
1235 mutex_lock(&xrcd->tgt_qp_mutex);
1236 ib_close_qp(qp);
1237 if (atomic_read(&real_qp->usecnt) == 0)
1238 list_del(&real_qp->xrcd_list);
1239 else
1240 real_qp = NULL;
1241 mutex_unlock(&xrcd->tgt_qp_mutex);
1243 if (real_qp) {
1244 ret = ib_destroy_qp(real_qp);
1245 if (!ret)
1246 atomic_dec(&xrcd->usecnt);
1247 else
1248 __ib_insert_xrcd_qp(xrcd, real_qp);
1251 return 0;
1254 int ib_destroy_qp(struct ib_qp *qp)
1256 struct ib_pd *pd;
1257 struct ib_cq *scq, *rcq;
1258 struct ib_srq *srq;
1259 int ret;
1261 WARN_ON_ONCE(qp->mrs_used > 0);
1263 if (atomic_read(&qp->usecnt))
1264 return -EBUSY;
1266 if (qp->real_qp != qp)
1267 return __ib_destroy_shared_qp(qp);
1269 pd = qp->pd;
1270 scq = qp->send_cq;
1271 rcq = qp->recv_cq;
1272 srq = qp->srq;
1274 ret = qp->device->destroy_qp(qp);
1275 if (!ret) {
1276 if (pd)
1277 atomic_dec(&pd->usecnt);
1278 if (scq)
1279 atomic_dec(&scq->usecnt);
1280 if (rcq)
1281 atomic_dec(&rcq->usecnt);
1282 if (srq)
1283 atomic_dec(&srq->usecnt);
1286 return ret;
1288 EXPORT_SYMBOL(ib_destroy_qp);
1290 /* Completion queues */
1292 struct ib_cq *ib_create_cq(struct ib_device *device,
1293 ib_comp_handler comp_handler,
1294 void (*event_handler)(struct ib_event *, void *),
1295 void *cq_context,
1296 const struct ib_cq_init_attr *cq_attr)
1298 struct ib_cq *cq;
1300 cq = device->create_cq(device, cq_attr, NULL, NULL);
1302 if (!IS_ERR(cq)) {
1303 cq->device = device;
1304 cq->uobject = NULL;
1305 cq->comp_handler = comp_handler;
1306 cq->event_handler = event_handler;
1307 cq->cq_context = cq_context;
1308 atomic_set(&cq->usecnt, 0);
1311 return cq;
1313 EXPORT_SYMBOL(ib_create_cq);
1315 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1317 return cq->device->modify_cq ?
1318 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1320 EXPORT_SYMBOL(ib_modify_cq);
1322 int ib_destroy_cq(struct ib_cq *cq)
1324 if (atomic_read(&cq->usecnt))
1325 return -EBUSY;
1327 return cq->device->destroy_cq(cq);
1329 EXPORT_SYMBOL(ib_destroy_cq);
1331 int ib_resize_cq(struct ib_cq *cq, int cqe)
1333 return cq->device->resize_cq ?
1334 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1336 EXPORT_SYMBOL(ib_resize_cq);
1338 /* Memory regions */
1340 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1342 struct ib_mr *mr;
1343 int err;
1345 err = ib_check_mr_access(mr_access_flags);
1346 if (err)
1347 return ERR_PTR(err);
1349 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1351 if (!IS_ERR(mr)) {
1352 mr->device = pd->device;
1353 mr->pd = pd;
1354 mr->uobject = NULL;
1355 atomic_inc(&pd->usecnt);
1358 return mr;
1360 EXPORT_SYMBOL(ib_get_dma_mr);
1362 int ib_dereg_mr(struct ib_mr *mr)
1364 struct ib_pd *pd = mr->pd;
1365 int ret;
1367 ret = mr->device->dereg_mr(mr);
1368 if (!ret)
1369 atomic_dec(&pd->usecnt);
1371 return ret;
1373 EXPORT_SYMBOL(ib_dereg_mr);
1376 * ib_alloc_mr() - Allocates a memory region
1377 * @pd: protection domain associated with the region
1378 * @mr_type: memory region type
1379 * @max_num_sg: maximum sg entries available for registration.
1381 * Notes:
1382 * Memory registeration page/sg lists must not exceed max_num_sg.
1383 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1384 * max_num_sg * used_page_size.
1387 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1388 enum ib_mr_type mr_type,
1389 u32 max_num_sg)
1391 struct ib_mr *mr;
1393 if (!pd->device->alloc_mr)
1394 return ERR_PTR(-ENOSYS);
1396 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1397 if (!IS_ERR(mr)) {
1398 mr->device = pd->device;
1399 mr->pd = pd;
1400 mr->uobject = NULL;
1401 atomic_inc(&pd->usecnt);
1404 return mr;
1406 EXPORT_SYMBOL(ib_alloc_mr);
1408 /* "Fast" memory regions */
1410 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1411 int mr_access_flags,
1412 struct ib_fmr_attr *fmr_attr)
1414 struct ib_fmr *fmr;
1416 if (!pd->device->alloc_fmr)
1417 return ERR_PTR(-ENOSYS);
1419 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1420 if (!IS_ERR(fmr)) {
1421 fmr->device = pd->device;
1422 fmr->pd = pd;
1423 atomic_inc(&pd->usecnt);
1426 return fmr;
1428 EXPORT_SYMBOL(ib_alloc_fmr);
1430 int ib_unmap_fmr(struct list_head *fmr_list)
1432 struct ib_fmr *fmr;
1434 if (list_empty(fmr_list))
1435 return 0;
1437 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1438 return fmr->device->unmap_fmr(fmr_list);
1440 EXPORT_SYMBOL(ib_unmap_fmr);
1442 int ib_dealloc_fmr(struct ib_fmr *fmr)
1444 struct ib_pd *pd;
1445 int ret;
1447 pd = fmr->pd;
1448 ret = fmr->device->dealloc_fmr(fmr);
1449 if (!ret)
1450 atomic_dec(&pd->usecnt);
1452 return ret;
1454 EXPORT_SYMBOL(ib_dealloc_fmr);
1456 /* Multicast groups */
1458 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1460 int ret;
1462 if (!qp->device->attach_mcast)
1463 return -ENOSYS;
1464 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1465 return -EINVAL;
1467 ret = qp->device->attach_mcast(qp, gid, lid);
1468 if (!ret)
1469 atomic_inc(&qp->usecnt);
1470 return ret;
1472 EXPORT_SYMBOL(ib_attach_mcast);
1474 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1476 int ret;
1478 if (!qp->device->detach_mcast)
1479 return -ENOSYS;
1480 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1481 return -EINVAL;
1483 ret = qp->device->detach_mcast(qp, gid, lid);
1484 if (!ret)
1485 atomic_dec(&qp->usecnt);
1486 return ret;
1488 EXPORT_SYMBOL(ib_detach_mcast);
1490 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1492 struct ib_xrcd *xrcd;
1494 if (!device->alloc_xrcd)
1495 return ERR_PTR(-ENOSYS);
1497 xrcd = device->alloc_xrcd(device, NULL, NULL);
1498 if (!IS_ERR(xrcd)) {
1499 xrcd->device = device;
1500 xrcd->inode = NULL;
1501 atomic_set(&xrcd->usecnt, 0);
1502 mutex_init(&xrcd->tgt_qp_mutex);
1503 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1506 return xrcd;
1508 EXPORT_SYMBOL(ib_alloc_xrcd);
1510 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1512 struct ib_qp *qp;
1513 int ret;
1515 if (atomic_read(&xrcd->usecnt))
1516 return -EBUSY;
1518 while (!list_empty(&xrcd->tgt_qp_list)) {
1519 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1520 ret = ib_destroy_qp(qp);
1521 if (ret)
1522 return ret;
1525 return xrcd->device->dealloc_xrcd(xrcd);
1527 EXPORT_SYMBOL(ib_dealloc_xrcd);
1529 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1530 struct ib_flow_attr *flow_attr,
1531 int domain)
1533 struct ib_flow *flow_id;
1534 if (!qp->device->create_flow)
1535 return ERR_PTR(-ENOSYS);
1537 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1538 if (!IS_ERR(flow_id))
1539 atomic_inc(&qp->usecnt);
1540 return flow_id;
1542 EXPORT_SYMBOL(ib_create_flow);
1544 int ib_destroy_flow(struct ib_flow *flow_id)
1546 int err;
1547 struct ib_qp *qp = flow_id->qp;
1549 err = qp->device->destroy_flow(flow_id);
1550 if (!err)
1551 atomic_dec(&qp->usecnt);
1552 return err;
1554 EXPORT_SYMBOL(ib_destroy_flow);
1556 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1557 struct ib_mr_status *mr_status)
1559 return mr->device->check_mr_status ?
1560 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1562 EXPORT_SYMBOL(ib_check_mr_status);
1564 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1565 int state)
1567 if (!device->set_vf_link_state)
1568 return -ENOSYS;
1570 return device->set_vf_link_state(device, vf, port, state);
1572 EXPORT_SYMBOL(ib_set_vf_link_state);
1574 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1575 struct ifla_vf_info *info)
1577 if (!device->get_vf_config)
1578 return -ENOSYS;
1580 return device->get_vf_config(device, vf, port, info);
1582 EXPORT_SYMBOL(ib_get_vf_config);
1584 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1585 struct ifla_vf_stats *stats)
1587 if (!device->get_vf_stats)
1588 return -ENOSYS;
1590 return device->get_vf_stats(device, vf, port, stats);
1592 EXPORT_SYMBOL(ib_get_vf_stats);
1594 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1595 int type)
1597 if (!device->set_vf_guid)
1598 return -ENOSYS;
1600 return device->set_vf_guid(device, vf, port, guid, type);
1602 EXPORT_SYMBOL(ib_set_vf_guid);
1605 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1606 * and set it the memory region.
1607 * @mr: memory region
1608 * @sg: dma mapped scatterlist
1609 * @sg_nents: number of entries in sg
1610 * @sg_offset: offset in bytes into sg
1611 * @page_size: page vector desired page size
1613 * Constraints:
1614 * - The first sg element is allowed to have an offset.
1615 * - Each sg element must be aligned to page_size (or physically
1616 * contiguous to the previous element). In case an sg element has a
1617 * non contiguous offset, the mapping prefix will not include it.
1618 * - The last sg element is allowed to have length less than page_size.
1619 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1620 * then only max_num_sg entries will be mapped.
1621 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1622 * constraints holds and the page_size argument is ignored.
1624 * Returns the number of sg elements that were mapped to the memory region.
1626 * After this completes successfully, the memory region
1627 * is ready for registration.
1629 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1630 unsigned int sg_offset, unsigned int page_size)
1632 if (unlikely(!mr->device->map_mr_sg))
1633 return -ENOSYS;
1635 mr->page_size = page_size;
1637 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1639 EXPORT_SYMBOL(ib_map_mr_sg);
1642 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1643 * to a page vector
1644 * @mr: memory region
1645 * @sgl: dma mapped scatterlist
1646 * @sg_nents: number of entries in sg
1647 * @sg_offset: offset in bytes into sg
1648 * @set_page: driver page assignment function pointer
1650 * Core service helper for drivers to convert the largest
1651 * prefix of given sg list to a page vector. The sg list
1652 * prefix converted is the prefix that meet the requirements
1653 * of ib_map_mr_sg.
1655 * Returns the number of sg elements that were assigned to
1656 * a page vector.
1658 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1659 unsigned int sg_offset, int (*set_page)(struct ib_mr *, u64))
1661 struct scatterlist *sg;
1662 u64 last_end_dma_addr = 0;
1663 unsigned int last_page_off = 0;
1664 u64 page_mask = ~((u64)mr->page_size - 1);
1665 int i, ret;
1667 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1668 mr->length = 0;
1670 for_each_sg(sgl, sg, sg_nents, i) {
1671 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1672 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1673 u64 end_dma_addr = dma_addr + dma_len;
1674 u64 page_addr = dma_addr & page_mask;
1677 * For the second and later elements, check whether either the
1678 * end of element i-1 or the start of element i is not aligned
1679 * on a page boundary.
1681 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1682 /* Stop mapping if there is a gap. */
1683 if (last_end_dma_addr != dma_addr)
1684 break;
1687 * Coalesce this element with the last. If it is small
1688 * enough just update mr->length. Otherwise start
1689 * mapping from the next page.
1691 goto next_page;
1694 do {
1695 ret = set_page(mr, page_addr);
1696 if (unlikely(ret < 0))
1697 return i ? : ret;
1698 next_page:
1699 page_addr += mr->page_size;
1700 } while (page_addr < end_dma_addr);
1702 mr->length += dma_len;
1703 last_end_dma_addr = end_dma_addr;
1704 last_page_off = end_dma_addr & ~page_mask;
1706 sg_offset = 0;
1709 return i;
1711 EXPORT_SYMBOL(ib_sg_to_pages);
1713 struct ib_drain_cqe {
1714 struct ib_cqe cqe;
1715 struct completion done;
1718 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1720 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1721 cqe);
1723 complete(&cqe->done);
1727 * Post a WR and block until its completion is reaped for the SQ.
1729 static void __ib_drain_sq(struct ib_qp *qp)
1731 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1732 struct ib_drain_cqe sdrain;
1733 struct ib_send_wr swr = {}, *bad_swr;
1734 int ret;
1736 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1737 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1738 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1739 return;
1742 swr.wr_cqe = &sdrain.cqe;
1743 sdrain.cqe.done = ib_drain_qp_done;
1744 init_completion(&sdrain.done);
1746 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1747 if (ret) {
1748 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1749 return;
1752 ret = ib_post_send(qp, &swr, &bad_swr);
1753 if (ret) {
1754 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1755 return;
1758 wait_for_completion(&sdrain.done);
1762 * Post a WR and block until its completion is reaped for the RQ.
1764 static void __ib_drain_rq(struct ib_qp *qp)
1766 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1767 struct ib_drain_cqe rdrain;
1768 struct ib_recv_wr rwr = {}, *bad_rwr;
1769 int ret;
1771 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1772 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1773 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1774 return;
1777 rwr.wr_cqe = &rdrain.cqe;
1778 rdrain.cqe.done = ib_drain_qp_done;
1779 init_completion(&rdrain.done);
1781 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1782 if (ret) {
1783 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1784 return;
1787 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1788 if (ret) {
1789 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1790 return;
1793 wait_for_completion(&rdrain.done);
1797 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1798 * application.
1799 * @qp: queue pair to drain
1801 * If the device has a provider-specific drain function, then
1802 * call that. Otherwise call the generic drain function
1803 * __ib_drain_sq().
1805 * The caller must:
1807 * ensure there is room in the CQ and SQ for the drain work request and
1808 * completion.
1810 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1811 * IB_POLL_DIRECT.
1813 * ensure that there are no other contexts that are posting WRs concurrently.
1814 * Otherwise the drain is not guaranteed.
1816 void ib_drain_sq(struct ib_qp *qp)
1818 if (qp->device->drain_sq)
1819 qp->device->drain_sq(qp);
1820 else
1821 __ib_drain_sq(qp);
1823 EXPORT_SYMBOL(ib_drain_sq);
1826 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1827 * application.
1828 * @qp: queue pair to drain
1830 * If the device has a provider-specific drain function, then
1831 * call that. Otherwise call the generic drain function
1832 * __ib_drain_rq().
1834 * The caller must:
1836 * ensure there is room in the CQ and RQ for the drain work request and
1837 * completion.
1839 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1840 * IB_POLL_DIRECT.
1842 * ensure that there are no other contexts that are posting WRs concurrently.
1843 * Otherwise the drain is not guaranteed.
1845 void ib_drain_rq(struct ib_qp *qp)
1847 if (qp->device->drain_rq)
1848 qp->device->drain_rq(qp);
1849 else
1850 __ib_drain_rq(qp);
1852 EXPORT_SYMBOL(ib_drain_rq);
1855 * ib_drain_qp() - Block until all CQEs have been consumed by the
1856 * application on both the RQ and SQ.
1857 * @qp: queue pair to drain
1859 * The caller must:
1861 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1862 * and completions.
1864 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1865 * IB_POLL_DIRECT.
1867 * ensure that there are no other contexts that are posting WRs concurrently.
1868 * Otherwise the drain is not guaranteed.
1870 void ib_drain_qp(struct ib_qp *qp)
1872 ib_drain_sq(qp);
1873 if (!qp->srq)
1874 ib_drain_rq(qp);
1876 EXPORT_SYMBOL(ib_drain_qp);