mtd: nand: print out the right information for JEDEC compliant NAND
[linux-2.6/btrfs-unstable.git] / fs / buffer.c
blob27265a8b43c1661f85d02b6fb931e8311ea7fe02
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 inline void touch_buffer(struct buffer_head *bh)
59 trace_block_touch_buffer(bh);
60 mark_page_accessed(bh->b_page);
62 EXPORT_SYMBOL(touch_buffer);
64 static int sleep_on_buffer(void *word)
66 io_schedule();
67 return 0;
70 void __lock_buffer(struct buffer_head *bh)
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
73 TASK_UNINTERRUPTIBLE);
75 EXPORT_SYMBOL(__lock_buffer);
77 void unlock_buffer(struct buffer_head *bh)
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
83 EXPORT_SYMBOL(unlock_buffer);
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
90 void buffer_check_dirty_writeback(struct page *page,
91 bool *dirty, bool *writeback)
93 struct buffer_head *head, *bh;
94 *dirty = false;
95 *writeback = false;
97 BUG_ON(!PageLocked(page));
99 if (!page_has_buffers(page))
100 return;
102 if (PageWriteback(page))
103 *writeback = true;
105 head = page_buffers(page);
106 bh = head;
107 do {
108 if (buffer_locked(bh))
109 *writeback = true;
111 if (buffer_dirty(bh))
112 *dirty = true;
114 bh = bh->b_this_page;
115 } while (bh != head);
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
120 * Block until a buffer comes unlocked. This doesn't stop it
121 * from becoming locked again - you have to lock it yourself
122 * if you want to preserve its state.
124 void __wait_on_buffer(struct buffer_head * bh)
126 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
128 EXPORT_SYMBOL(__wait_on_buffer);
130 static void
131 __clear_page_buffers(struct page *page)
133 ClearPagePrivate(page);
134 set_page_private(page, 0);
135 page_cache_release(page);
139 static int quiet_error(struct buffer_head *bh)
141 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
142 return 0;
143 return 1;
147 static void buffer_io_error(struct buffer_head *bh)
149 char b[BDEVNAME_SIZE];
150 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
151 bdevname(bh->b_bdev, b),
152 (unsigned long long)bh->b_blocknr);
156 * End-of-IO handler helper function which does not touch the bh after
157 * unlocking it.
158 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159 * a race there is benign: unlock_buffer() only use the bh's address for
160 * hashing after unlocking the buffer, so it doesn't actually touch the bh
161 * itself.
163 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
165 if (uptodate) {
166 set_buffer_uptodate(bh);
167 } else {
168 /* This happens, due to failed READA attempts. */
169 clear_buffer_uptodate(bh);
171 unlock_buffer(bh);
175 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
176 * unlock the buffer. This is what ll_rw_block uses too.
178 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
180 __end_buffer_read_notouch(bh, uptodate);
181 put_bh(bh);
183 EXPORT_SYMBOL(end_buffer_read_sync);
185 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
187 char b[BDEVNAME_SIZE];
189 if (uptodate) {
190 set_buffer_uptodate(bh);
191 } else {
192 if (!quiet_error(bh)) {
193 buffer_io_error(bh);
194 printk(KERN_WARNING "lost page write due to "
195 "I/O error on %s\n",
196 bdevname(bh->b_bdev, b));
198 set_buffer_write_io_error(bh);
199 clear_buffer_uptodate(bh);
201 unlock_buffer(bh);
202 put_bh(bh);
204 EXPORT_SYMBOL(end_buffer_write_sync);
207 * Various filesystems appear to want __find_get_block to be non-blocking.
208 * But it's the page lock which protects the buffers. To get around this,
209 * we get exclusion from try_to_free_buffers with the blockdev mapping's
210 * private_lock.
212 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213 * may be quite high. This code could TryLock the page, and if that
214 * succeeds, there is no need to take private_lock. (But if
215 * private_lock is contended then so is mapping->tree_lock).
217 static struct buffer_head *
218 __find_get_block_slow(struct block_device *bdev, sector_t block)
220 struct inode *bd_inode = bdev->bd_inode;
221 struct address_space *bd_mapping = bd_inode->i_mapping;
222 struct buffer_head *ret = NULL;
223 pgoff_t index;
224 struct buffer_head *bh;
225 struct buffer_head *head;
226 struct page *page;
227 int all_mapped = 1;
229 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
230 page = find_get_page(bd_mapping, index);
231 if (!page)
232 goto out;
234 spin_lock(&bd_mapping->private_lock);
235 if (!page_has_buffers(page))
236 goto out_unlock;
237 head = page_buffers(page);
238 bh = head;
239 do {
240 if (!buffer_mapped(bh))
241 all_mapped = 0;
242 else if (bh->b_blocknr == block) {
243 ret = bh;
244 get_bh(bh);
245 goto out_unlock;
247 bh = bh->b_this_page;
248 } while (bh != head);
250 /* we might be here because some of the buffers on this page are
251 * not mapped. This is due to various races between
252 * file io on the block device and getblk. It gets dealt with
253 * elsewhere, don't buffer_error if we had some unmapped buffers
255 if (all_mapped) {
256 char b[BDEVNAME_SIZE];
258 printk("__find_get_block_slow() failed. "
259 "block=%llu, b_blocknr=%llu\n",
260 (unsigned long long)block,
261 (unsigned long long)bh->b_blocknr);
262 printk("b_state=0x%08lx, b_size=%zu\n",
263 bh->b_state, bh->b_size);
264 printk("device %s blocksize: %d\n", bdevname(bdev, b),
265 1 << bd_inode->i_blkbits);
267 out_unlock:
268 spin_unlock(&bd_mapping->private_lock);
269 page_cache_release(page);
270 out:
271 return ret;
275 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
277 static void free_more_memory(void)
279 struct zone *zone;
280 int nid;
282 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
283 yield();
285 for_each_online_node(nid) {
286 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
287 gfp_zone(GFP_NOFS), NULL,
288 &zone);
289 if (zone)
290 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
291 GFP_NOFS, NULL);
296 * I/O completion handler for block_read_full_page() - pages
297 * which come unlocked at the end of I/O.
299 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
301 unsigned long flags;
302 struct buffer_head *first;
303 struct buffer_head *tmp;
304 struct page *page;
305 int page_uptodate = 1;
307 BUG_ON(!buffer_async_read(bh));
309 page = bh->b_page;
310 if (uptodate) {
311 set_buffer_uptodate(bh);
312 } else {
313 clear_buffer_uptodate(bh);
314 if (!quiet_error(bh))
315 buffer_io_error(bh);
316 SetPageError(page);
320 * Be _very_ careful from here on. Bad things can happen if
321 * two buffer heads end IO at almost the same time and both
322 * decide that the page is now completely done.
324 first = page_buffers(page);
325 local_irq_save(flags);
326 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
327 clear_buffer_async_read(bh);
328 unlock_buffer(bh);
329 tmp = bh;
330 do {
331 if (!buffer_uptodate(tmp))
332 page_uptodate = 0;
333 if (buffer_async_read(tmp)) {
334 BUG_ON(!buffer_locked(tmp));
335 goto still_busy;
337 tmp = tmp->b_this_page;
338 } while (tmp != bh);
339 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
340 local_irq_restore(flags);
343 * If none of the buffers had errors and they are all
344 * uptodate then we can set the page uptodate.
346 if (page_uptodate && !PageError(page))
347 SetPageUptodate(page);
348 unlock_page(page);
349 return;
351 still_busy:
352 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353 local_irq_restore(flags);
354 return;
358 * Completion handler for block_write_full_page() - pages which are unlocked
359 * during I/O, and which have PageWriteback cleared upon I/O completion.
361 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
363 char b[BDEVNAME_SIZE];
364 unsigned long flags;
365 struct buffer_head *first;
366 struct buffer_head *tmp;
367 struct page *page;
369 BUG_ON(!buffer_async_write(bh));
371 page = bh->b_page;
372 if (uptodate) {
373 set_buffer_uptodate(bh);
374 } else {
375 if (!quiet_error(bh)) {
376 buffer_io_error(bh);
377 printk(KERN_WARNING "lost page write due to "
378 "I/O error on %s\n",
379 bdevname(bh->b_bdev, b));
381 set_bit(AS_EIO, &page->mapping->flags);
382 set_buffer_write_io_error(bh);
383 clear_buffer_uptodate(bh);
384 SetPageError(page);
387 first = page_buffers(page);
388 local_irq_save(flags);
389 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
391 clear_buffer_async_write(bh);
392 unlock_buffer(bh);
393 tmp = bh->b_this_page;
394 while (tmp != bh) {
395 if (buffer_async_write(tmp)) {
396 BUG_ON(!buffer_locked(tmp));
397 goto still_busy;
399 tmp = tmp->b_this_page;
401 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
402 local_irq_restore(flags);
403 end_page_writeback(page);
404 return;
406 still_busy:
407 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
408 local_irq_restore(flags);
409 return;
411 EXPORT_SYMBOL(end_buffer_async_write);
414 * If a page's buffers are under async readin (end_buffer_async_read
415 * completion) then there is a possibility that another thread of
416 * control could lock one of the buffers after it has completed
417 * but while some of the other buffers have not completed. This
418 * locked buffer would confuse end_buffer_async_read() into not unlocking
419 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
420 * that this buffer is not under async I/O.
422 * The page comes unlocked when it has no locked buffer_async buffers
423 * left.
425 * PageLocked prevents anyone starting new async I/O reads any of
426 * the buffers.
428 * PageWriteback is used to prevent simultaneous writeout of the same
429 * page.
431 * PageLocked prevents anyone from starting writeback of a page which is
432 * under read I/O (PageWriteback is only ever set against a locked page).
434 static void mark_buffer_async_read(struct buffer_head *bh)
436 bh->b_end_io = end_buffer_async_read;
437 set_buffer_async_read(bh);
440 static void mark_buffer_async_write_endio(struct buffer_head *bh,
441 bh_end_io_t *handler)
443 bh->b_end_io = handler;
444 set_buffer_async_write(bh);
447 void mark_buffer_async_write(struct buffer_head *bh)
449 mark_buffer_async_write_endio(bh, end_buffer_async_write);
451 EXPORT_SYMBOL(mark_buffer_async_write);
455 * fs/buffer.c contains helper functions for buffer-backed address space's
456 * fsync functions. A common requirement for buffer-based filesystems is
457 * that certain data from the backing blockdev needs to be written out for
458 * a successful fsync(). For example, ext2 indirect blocks need to be
459 * written back and waited upon before fsync() returns.
461 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463 * management of a list of dependent buffers at ->i_mapping->private_list.
465 * Locking is a little subtle: try_to_free_buffers() will remove buffers
466 * from their controlling inode's queue when they are being freed. But
467 * try_to_free_buffers() will be operating against the *blockdev* mapping
468 * at the time, not against the S_ISREG file which depends on those buffers.
469 * So the locking for private_list is via the private_lock in the address_space
470 * which backs the buffers. Which is different from the address_space
471 * against which the buffers are listed. So for a particular address_space,
472 * mapping->private_lock does *not* protect mapping->private_list! In fact,
473 * mapping->private_list will always be protected by the backing blockdev's
474 * ->private_lock.
476 * Which introduces a requirement: all buffers on an address_space's
477 * ->private_list must be from the same address_space: the blockdev's.
479 * address_spaces which do not place buffers at ->private_list via these
480 * utility functions are free to use private_lock and private_list for
481 * whatever they want. The only requirement is that list_empty(private_list)
482 * be true at clear_inode() time.
484 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
485 * filesystems should do that. invalidate_inode_buffers() should just go
486 * BUG_ON(!list_empty).
488 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
489 * take an address_space, not an inode. And it should be called
490 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
491 * queued up.
493 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494 * list if it is already on a list. Because if the buffer is on a list,
495 * it *must* already be on the right one. If not, the filesystem is being
496 * silly. This will save a ton of locking. But first we have to ensure
497 * that buffers are taken *off* the old inode's list when they are freed
498 * (presumably in truncate). That requires careful auditing of all
499 * filesystems (do it inside bforget()). It could also be done by bringing
500 * b_inode back.
504 * The buffer's backing address_space's private_lock must be held
506 static void __remove_assoc_queue(struct buffer_head *bh)
508 list_del_init(&bh->b_assoc_buffers);
509 WARN_ON(!bh->b_assoc_map);
510 if (buffer_write_io_error(bh))
511 set_bit(AS_EIO, &bh->b_assoc_map->flags);
512 bh->b_assoc_map = NULL;
515 int inode_has_buffers(struct inode *inode)
517 return !list_empty(&inode->i_data.private_list);
521 * osync is designed to support O_SYNC io. It waits synchronously for
522 * all already-submitted IO to complete, but does not queue any new
523 * writes to the disk.
525 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526 * you dirty the buffers, and then use osync_inode_buffers to wait for
527 * completion. Any other dirty buffers which are not yet queued for
528 * write will not be flushed to disk by the osync.
530 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
532 struct buffer_head *bh;
533 struct list_head *p;
534 int err = 0;
536 spin_lock(lock);
537 repeat:
538 list_for_each_prev(p, list) {
539 bh = BH_ENTRY(p);
540 if (buffer_locked(bh)) {
541 get_bh(bh);
542 spin_unlock(lock);
543 wait_on_buffer(bh);
544 if (!buffer_uptodate(bh))
545 err = -EIO;
546 brelse(bh);
547 spin_lock(lock);
548 goto repeat;
551 spin_unlock(lock);
552 return err;
555 static void do_thaw_one(struct super_block *sb, void *unused)
557 char b[BDEVNAME_SIZE];
558 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
559 printk(KERN_WARNING "Emergency Thaw on %s\n",
560 bdevname(sb->s_bdev, b));
563 static void do_thaw_all(struct work_struct *work)
565 iterate_supers(do_thaw_one, NULL);
566 kfree(work);
567 printk(KERN_WARNING "Emergency Thaw complete\n");
571 * emergency_thaw_all -- forcibly thaw every frozen filesystem
573 * Used for emergency unfreeze of all filesystems via SysRq
575 void emergency_thaw_all(void)
577 struct work_struct *work;
579 work = kmalloc(sizeof(*work), GFP_ATOMIC);
580 if (work) {
581 INIT_WORK(work, do_thaw_all);
582 schedule_work(work);
587 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588 * @mapping: the mapping which wants those buffers written
590 * Starts I/O against the buffers at mapping->private_list, and waits upon
591 * that I/O.
593 * Basically, this is a convenience function for fsync().
594 * @mapping is a file or directory which needs those buffers to be written for
595 * a successful fsync().
597 int sync_mapping_buffers(struct address_space *mapping)
599 struct address_space *buffer_mapping = mapping->private_data;
601 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
602 return 0;
604 return fsync_buffers_list(&buffer_mapping->private_lock,
605 &mapping->private_list);
607 EXPORT_SYMBOL(sync_mapping_buffers);
610 * Called when we've recently written block `bblock', and it is known that
611 * `bblock' was for a buffer_boundary() buffer. This means that the block at
612 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
613 * dirty, schedule it for IO. So that indirects merge nicely with their data.
615 void write_boundary_block(struct block_device *bdev,
616 sector_t bblock, unsigned blocksize)
618 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
619 if (bh) {
620 if (buffer_dirty(bh))
621 ll_rw_block(WRITE, 1, &bh);
622 put_bh(bh);
626 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
628 struct address_space *mapping = inode->i_mapping;
629 struct address_space *buffer_mapping = bh->b_page->mapping;
631 mark_buffer_dirty(bh);
632 if (!mapping->private_data) {
633 mapping->private_data = buffer_mapping;
634 } else {
635 BUG_ON(mapping->private_data != buffer_mapping);
637 if (!bh->b_assoc_map) {
638 spin_lock(&buffer_mapping->private_lock);
639 list_move_tail(&bh->b_assoc_buffers,
640 &mapping->private_list);
641 bh->b_assoc_map = mapping;
642 spin_unlock(&buffer_mapping->private_lock);
645 EXPORT_SYMBOL(mark_buffer_dirty_inode);
648 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
649 * dirty.
651 * If warn is true, then emit a warning if the page is not uptodate and has
652 * not been truncated.
654 static void __set_page_dirty(struct page *page,
655 struct address_space *mapping, int warn)
657 unsigned long flags;
659 spin_lock_irqsave(&mapping->tree_lock, flags);
660 if (page->mapping) { /* Race with truncate? */
661 WARN_ON_ONCE(warn && !PageUptodate(page));
662 account_page_dirtied(page, mapping);
663 radix_tree_tag_set(&mapping->page_tree,
664 page_index(page), PAGECACHE_TAG_DIRTY);
666 spin_unlock_irqrestore(&mapping->tree_lock, flags);
667 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
671 * Add a page to the dirty page list.
673 * It is a sad fact of life that this function is called from several places
674 * deeply under spinlocking. It may not sleep.
676 * If the page has buffers, the uptodate buffers are set dirty, to preserve
677 * dirty-state coherency between the page and the buffers. It the page does
678 * not have buffers then when they are later attached they will all be set
679 * dirty.
681 * The buffers are dirtied before the page is dirtied. There's a small race
682 * window in which a writepage caller may see the page cleanness but not the
683 * buffer dirtiness. That's fine. If this code were to set the page dirty
684 * before the buffers, a concurrent writepage caller could clear the page dirty
685 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
686 * page on the dirty page list.
688 * We use private_lock to lock against try_to_free_buffers while using the
689 * page's buffer list. Also use this to protect against clean buffers being
690 * added to the page after it was set dirty.
692 * FIXME: may need to call ->reservepage here as well. That's rather up to the
693 * address_space though.
695 int __set_page_dirty_buffers(struct page *page)
697 int newly_dirty;
698 struct address_space *mapping = page_mapping(page);
700 if (unlikely(!mapping))
701 return !TestSetPageDirty(page);
703 spin_lock(&mapping->private_lock);
704 if (page_has_buffers(page)) {
705 struct buffer_head *head = page_buffers(page);
706 struct buffer_head *bh = head;
708 do {
709 set_buffer_dirty(bh);
710 bh = bh->b_this_page;
711 } while (bh != head);
713 newly_dirty = !TestSetPageDirty(page);
714 spin_unlock(&mapping->private_lock);
716 if (newly_dirty)
717 __set_page_dirty(page, mapping, 1);
718 return newly_dirty;
720 EXPORT_SYMBOL(__set_page_dirty_buffers);
723 * Write out and wait upon a list of buffers.
725 * We have conflicting pressures: we want to make sure that all
726 * initially dirty buffers get waited on, but that any subsequently
727 * dirtied buffers don't. After all, we don't want fsync to last
728 * forever if somebody is actively writing to the file.
730 * Do this in two main stages: first we copy dirty buffers to a
731 * temporary inode list, queueing the writes as we go. Then we clean
732 * up, waiting for those writes to complete.
734 * During this second stage, any subsequent updates to the file may end
735 * up refiling the buffer on the original inode's dirty list again, so
736 * there is a chance we will end up with a buffer queued for write but
737 * not yet completed on that list. So, as a final cleanup we go through
738 * the osync code to catch these locked, dirty buffers without requeuing
739 * any newly dirty buffers for write.
741 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
743 struct buffer_head *bh;
744 struct list_head tmp;
745 struct address_space *mapping;
746 int err = 0, err2;
747 struct blk_plug plug;
749 INIT_LIST_HEAD(&tmp);
750 blk_start_plug(&plug);
752 spin_lock(lock);
753 while (!list_empty(list)) {
754 bh = BH_ENTRY(list->next);
755 mapping = bh->b_assoc_map;
756 __remove_assoc_queue(bh);
757 /* Avoid race with mark_buffer_dirty_inode() which does
758 * a lockless check and we rely on seeing the dirty bit */
759 smp_mb();
760 if (buffer_dirty(bh) || buffer_locked(bh)) {
761 list_add(&bh->b_assoc_buffers, &tmp);
762 bh->b_assoc_map = mapping;
763 if (buffer_dirty(bh)) {
764 get_bh(bh);
765 spin_unlock(lock);
767 * Ensure any pending I/O completes so that
768 * write_dirty_buffer() actually writes the
769 * current contents - it is a noop if I/O is
770 * still in flight on potentially older
771 * contents.
773 write_dirty_buffer(bh, WRITE_SYNC);
776 * Kick off IO for the previous mapping. Note
777 * that we will not run the very last mapping,
778 * wait_on_buffer() will do that for us
779 * through sync_buffer().
781 brelse(bh);
782 spin_lock(lock);
787 spin_unlock(lock);
788 blk_finish_plug(&plug);
789 spin_lock(lock);
791 while (!list_empty(&tmp)) {
792 bh = BH_ENTRY(tmp.prev);
793 get_bh(bh);
794 mapping = bh->b_assoc_map;
795 __remove_assoc_queue(bh);
796 /* Avoid race with mark_buffer_dirty_inode() which does
797 * a lockless check and we rely on seeing the dirty bit */
798 smp_mb();
799 if (buffer_dirty(bh)) {
800 list_add(&bh->b_assoc_buffers,
801 &mapping->private_list);
802 bh->b_assoc_map = mapping;
804 spin_unlock(lock);
805 wait_on_buffer(bh);
806 if (!buffer_uptodate(bh))
807 err = -EIO;
808 brelse(bh);
809 spin_lock(lock);
812 spin_unlock(lock);
813 err2 = osync_buffers_list(lock, list);
814 if (err)
815 return err;
816 else
817 return err2;
821 * Invalidate any and all dirty buffers on a given inode. We are
822 * probably unmounting the fs, but that doesn't mean we have already
823 * done a sync(). Just drop the buffers from the inode list.
825 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
826 * assumes that all the buffers are against the blockdev. Not true
827 * for reiserfs.
829 void invalidate_inode_buffers(struct inode *inode)
831 if (inode_has_buffers(inode)) {
832 struct address_space *mapping = &inode->i_data;
833 struct list_head *list = &mapping->private_list;
834 struct address_space *buffer_mapping = mapping->private_data;
836 spin_lock(&buffer_mapping->private_lock);
837 while (!list_empty(list))
838 __remove_assoc_queue(BH_ENTRY(list->next));
839 spin_unlock(&buffer_mapping->private_lock);
842 EXPORT_SYMBOL(invalidate_inode_buffers);
845 * Remove any clean buffers from the inode's buffer list. This is called
846 * when we're trying to free the inode itself. Those buffers can pin it.
848 * Returns true if all buffers were removed.
850 int remove_inode_buffers(struct inode *inode)
852 int ret = 1;
854 if (inode_has_buffers(inode)) {
855 struct address_space *mapping = &inode->i_data;
856 struct list_head *list = &mapping->private_list;
857 struct address_space *buffer_mapping = mapping->private_data;
859 spin_lock(&buffer_mapping->private_lock);
860 while (!list_empty(list)) {
861 struct buffer_head *bh = BH_ENTRY(list->next);
862 if (buffer_dirty(bh)) {
863 ret = 0;
864 break;
866 __remove_assoc_queue(bh);
868 spin_unlock(&buffer_mapping->private_lock);
870 return ret;
874 * Create the appropriate buffers when given a page for data area and
875 * the size of each buffer.. Use the bh->b_this_page linked list to
876 * follow the buffers created. Return NULL if unable to create more
877 * buffers.
879 * The retry flag is used to differentiate async IO (paging, swapping)
880 * which may not fail from ordinary buffer allocations.
882 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
883 int retry)
885 struct buffer_head *bh, *head;
886 long offset;
888 try_again:
889 head = NULL;
890 offset = PAGE_SIZE;
891 while ((offset -= size) >= 0) {
892 bh = alloc_buffer_head(GFP_NOFS);
893 if (!bh)
894 goto no_grow;
896 bh->b_this_page = head;
897 bh->b_blocknr = -1;
898 head = bh;
900 bh->b_size = size;
902 /* Link the buffer to its page */
903 set_bh_page(bh, page, offset);
905 return head;
907 * In case anything failed, we just free everything we got.
909 no_grow:
910 if (head) {
911 do {
912 bh = head;
913 head = head->b_this_page;
914 free_buffer_head(bh);
915 } while (head);
919 * Return failure for non-async IO requests. Async IO requests
920 * are not allowed to fail, so we have to wait until buffer heads
921 * become available. But we don't want tasks sleeping with
922 * partially complete buffers, so all were released above.
924 if (!retry)
925 return NULL;
927 /* We're _really_ low on memory. Now we just
928 * wait for old buffer heads to become free due to
929 * finishing IO. Since this is an async request and
930 * the reserve list is empty, we're sure there are
931 * async buffer heads in use.
933 free_more_memory();
934 goto try_again;
936 EXPORT_SYMBOL_GPL(alloc_page_buffers);
938 static inline void
939 link_dev_buffers(struct page *page, struct buffer_head *head)
941 struct buffer_head *bh, *tail;
943 bh = head;
944 do {
945 tail = bh;
946 bh = bh->b_this_page;
947 } while (bh);
948 tail->b_this_page = head;
949 attach_page_buffers(page, head);
952 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
954 sector_t retval = ~((sector_t)0);
955 loff_t sz = i_size_read(bdev->bd_inode);
957 if (sz) {
958 unsigned int sizebits = blksize_bits(size);
959 retval = (sz >> sizebits);
961 return retval;
965 * Initialise the state of a blockdev page's buffers.
967 static sector_t
968 init_page_buffers(struct page *page, struct block_device *bdev,
969 sector_t block, int size)
971 struct buffer_head *head = page_buffers(page);
972 struct buffer_head *bh = head;
973 int uptodate = PageUptodate(page);
974 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
976 do {
977 if (!buffer_mapped(bh)) {
978 init_buffer(bh, NULL, NULL);
979 bh->b_bdev = bdev;
980 bh->b_blocknr = block;
981 if (uptodate)
982 set_buffer_uptodate(bh);
983 if (block < end_block)
984 set_buffer_mapped(bh);
986 block++;
987 bh = bh->b_this_page;
988 } while (bh != head);
991 * Caller needs to validate requested block against end of device.
993 return end_block;
997 * Create the page-cache page that contains the requested block.
999 * This is used purely for blockdev mappings.
1001 static int
1002 grow_dev_page(struct block_device *bdev, sector_t block,
1003 pgoff_t index, int size, int sizebits)
1005 struct inode *inode = bdev->bd_inode;
1006 struct page *page;
1007 struct buffer_head *bh;
1008 sector_t end_block;
1009 int ret = 0; /* Will call free_more_memory() */
1010 gfp_t gfp_mask;
1012 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1013 gfp_mask |= __GFP_MOVABLE;
1015 * XXX: __getblk_slow() can not really deal with failure and
1016 * will endlessly loop on improvised global reclaim. Prefer
1017 * looping in the allocator rather than here, at least that
1018 * code knows what it's doing.
1020 gfp_mask |= __GFP_NOFAIL;
1022 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1023 if (!page)
1024 return ret;
1026 BUG_ON(!PageLocked(page));
1028 if (page_has_buffers(page)) {
1029 bh = page_buffers(page);
1030 if (bh->b_size == size) {
1031 end_block = init_page_buffers(page, bdev,
1032 index << sizebits, size);
1033 goto done;
1035 if (!try_to_free_buffers(page))
1036 goto failed;
1040 * Allocate some buffers for this page
1042 bh = alloc_page_buffers(page, size, 0);
1043 if (!bh)
1044 goto failed;
1047 * Link the page to the buffers and initialise them. Take the
1048 * lock to be atomic wrt __find_get_block(), which does not
1049 * run under the page lock.
1051 spin_lock(&inode->i_mapping->private_lock);
1052 link_dev_buffers(page, bh);
1053 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1054 spin_unlock(&inode->i_mapping->private_lock);
1055 done:
1056 ret = (block < end_block) ? 1 : -ENXIO;
1057 failed:
1058 unlock_page(page);
1059 page_cache_release(page);
1060 return ret;
1064 * Create buffers for the specified block device block's page. If
1065 * that page was dirty, the buffers are set dirty also.
1067 static int
1068 grow_buffers(struct block_device *bdev, sector_t block, int size)
1070 pgoff_t index;
1071 int sizebits;
1073 sizebits = -1;
1074 do {
1075 sizebits++;
1076 } while ((size << sizebits) < PAGE_SIZE);
1078 index = block >> sizebits;
1081 * Check for a block which wants to lie outside our maximum possible
1082 * pagecache index. (this comparison is done using sector_t types).
1084 if (unlikely(index != block >> sizebits)) {
1085 char b[BDEVNAME_SIZE];
1087 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1088 "device %s\n",
1089 __func__, (unsigned long long)block,
1090 bdevname(bdev, b));
1091 return -EIO;
1094 /* Create a page with the proper size buffers.. */
1095 return grow_dev_page(bdev, block, index, size, sizebits);
1098 static struct buffer_head *
1099 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1101 /* Size must be multiple of hard sectorsize */
1102 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1103 (size < 512 || size > PAGE_SIZE))) {
1104 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1105 size);
1106 printk(KERN_ERR "logical block size: %d\n",
1107 bdev_logical_block_size(bdev));
1109 dump_stack();
1110 return NULL;
1113 for (;;) {
1114 struct buffer_head *bh;
1115 int ret;
1117 bh = __find_get_block(bdev, block, size);
1118 if (bh)
1119 return bh;
1121 ret = grow_buffers(bdev, block, size);
1122 if (ret < 0)
1123 return NULL;
1124 if (ret == 0)
1125 free_more_memory();
1130 * The relationship between dirty buffers and dirty pages:
1132 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1133 * the page is tagged dirty in its radix tree.
1135 * At all times, the dirtiness of the buffers represents the dirtiness of
1136 * subsections of the page. If the page has buffers, the page dirty bit is
1137 * merely a hint about the true dirty state.
1139 * When a page is set dirty in its entirety, all its buffers are marked dirty
1140 * (if the page has buffers).
1142 * When a buffer is marked dirty, its page is dirtied, but the page's other
1143 * buffers are not.
1145 * Also. When blockdev buffers are explicitly read with bread(), they
1146 * individually become uptodate. But their backing page remains not
1147 * uptodate - even if all of its buffers are uptodate. A subsequent
1148 * block_read_full_page() against that page will discover all the uptodate
1149 * buffers, will set the page uptodate and will perform no I/O.
1153 * mark_buffer_dirty - mark a buffer_head as needing writeout
1154 * @bh: the buffer_head to mark dirty
1156 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1157 * backing page dirty, then tag the page as dirty in its address_space's radix
1158 * tree and then attach the address_space's inode to its superblock's dirty
1159 * inode list.
1161 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1162 * mapping->tree_lock and mapping->host->i_lock.
1164 void mark_buffer_dirty(struct buffer_head *bh)
1166 WARN_ON_ONCE(!buffer_uptodate(bh));
1168 trace_block_dirty_buffer(bh);
1171 * Very *carefully* optimize the it-is-already-dirty case.
1173 * Don't let the final "is it dirty" escape to before we
1174 * perhaps modified the buffer.
1176 if (buffer_dirty(bh)) {
1177 smp_mb();
1178 if (buffer_dirty(bh))
1179 return;
1182 if (!test_set_buffer_dirty(bh)) {
1183 struct page *page = bh->b_page;
1184 if (!TestSetPageDirty(page)) {
1185 struct address_space *mapping = page_mapping(page);
1186 if (mapping)
1187 __set_page_dirty(page, mapping, 0);
1191 EXPORT_SYMBOL(mark_buffer_dirty);
1194 * Decrement a buffer_head's reference count. If all buffers against a page
1195 * have zero reference count, are clean and unlocked, and if the page is clean
1196 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1197 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1198 * a page but it ends up not being freed, and buffers may later be reattached).
1200 void __brelse(struct buffer_head * buf)
1202 if (atomic_read(&buf->b_count)) {
1203 put_bh(buf);
1204 return;
1206 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1208 EXPORT_SYMBOL(__brelse);
1211 * bforget() is like brelse(), except it discards any
1212 * potentially dirty data.
1214 void __bforget(struct buffer_head *bh)
1216 clear_buffer_dirty(bh);
1217 if (bh->b_assoc_map) {
1218 struct address_space *buffer_mapping = bh->b_page->mapping;
1220 spin_lock(&buffer_mapping->private_lock);
1221 list_del_init(&bh->b_assoc_buffers);
1222 bh->b_assoc_map = NULL;
1223 spin_unlock(&buffer_mapping->private_lock);
1225 __brelse(bh);
1227 EXPORT_SYMBOL(__bforget);
1229 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1231 lock_buffer(bh);
1232 if (buffer_uptodate(bh)) {
1233 unlock_buffer(bh);
1234 return bh;
1235 } else {
1236 get_bh(bh);
1237 bh->b_end_io = end_buffer_read_sync;
1238 submit_bh(READ, bh);
1239 wait_on_buffer(bh);
1240 if (buffer_uptodate(bh))
1241 return bh;
1243 brelse(bh);
1244 return NULL;
1248 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1249 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1250 * refcount elevated by one when they're in an LRU. A buffer can only appear
1251 * once in a particular CPU's LRU. A single buffer can be present in multiple
1252 * CPU's LRUs at the same time.
1254 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1255 * sb_find_get_block().
1257 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1258 * a local interrupt disable for that.
1261 #define BH_LRU_SIZE 8
1263 struct bh_lru {
1264 struct buffer_head *bhs[BH_LRU_SIZE];
1267 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1269 #ifdef CONFIG_SMP
1270 #define bh_lru_lock() local_irq_disable()
1271 #define bh_lru_unlock() local_irq_enable()
1272 #else
1273 #define bh_lru_lock() preempt_disable()
1274 #define bh_lru_unlock() preempt_enable()
1275 #endif
1277 static inline void check_irqs_on(void)
1279 #ifdef irqs_disabled
1280 BUG_ON(irqs_disabled());
1281 #endif
1285 * The LRU management algorithm is dopey-but-simple. Sorry.
1287 static void bh_lru_install(struct buffer_head *bh)
1289 struct buffer_head *evictee = NULL;
1291 check_irqs_on();
1292 bh_lru_lock();
1293 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1294 struct buffer_head *bhs[BH_LRU_SIZE];
1295 int in;
1296 int out = 0;
1298 get_bh(bh);
1299 bhs[out++] = bh;
1300 for (in = 0; in < BH_LRU_SIZE; in++) {
1301 struct buffer_head *bh2 =
1302 __this_cpu_read(bh_lrus.bhs[in]);
1304 if (bh2 == bh) {
1305 __brelse(bh2);
1306 } else {
1307 if (out >= BH_LRU_SIZE) {
1308 BUG_ON(evictee != NULL);
1309 evictee = bh2;
1310 } else {
1311 bhs[out++] = bh2;
1315 while (out < BH_LRU_SIZE)
1316 bhs[out++] = NULL;
1317 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1319 bh_lru_unlock();
1321 if (evictee)
1322 __brelse(evictee);
1326 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1328 static struct buffer_head *
1329 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1331 struct buffer_head *ret = NULL;
1332 unsigned int i;
1334 check_irqs_on();
1335 bh_lru_lock();
1336 for (i = 0; i < BH_LRU_SIZE; i++) {
1337 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1339 if (bh && bh->b_bdev == bdev &&
1340 bh->b_blocknr == block && bh->b_size == size) {
1341 if (i) {
1342 while (i) {
1343 __this_cpu_write(bh_lrus.bhs[i],
1344 __this_cpu_read(bh_lrus.bhs[i - 1]));
1345 i--;
1347 __this_cpu_write(bh_lrus.bhs[0], bh);
1349 get_bh(bh);
1350 ret = bh;
1351 break;
1354 bh_lru_unlock();
1355 return ret;
1359 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1360 * it in the LRU and mark it as accessed. If it is not present then return
1361 * NULL
1363 struct buffer_head *
1364 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1366 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1368 if (bh == NULL) {
1369 bh = __find_get_block_slow(bdev, block);
1370 if (bh)
1371 bh_lru_install(bh);
1373 if (bh)
1374 touch_buffer(bh);
1375 return bh;
1377 EXPORT_SYMBOL(__find_get_block);
1380 * __getblk will locate (and, if necessary, create) the buffer_head
1381 * which corresponds to the passed block_device, block and size. The
1382 * returned buffer has its reference count incremented.
1384 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1385 * attempt is failing. FIXME, perhaps?
1387 struct buffer_head *
1388 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1390 struct buffer_head *bh = __find_get_block(bdev, block, size);
1392 might_sleep();
1393 if (bh == NULL)
1394 bh = __getblk_slow(bdev, block, size);
1395 return bh;
1397 EXPORT_SYMBOL(__getblk);
1400 * Do async read-ahead on a buffer..
1402 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1404 struct buffer_head *bh = __getblk(bdev, block, size);
1405 if (likely(bh)) {
1406 ll_rw_block(READA, 1, &bh);
1407 brelse(bh);
1410 EXPORT_SYMBOL(__breadahead);
1413 * __bread() - reads a specified block and returns the bh
1414 * @bdev: the block_device to read from
1415 * @block: number of block
1416 * @size: size (in bytes) to read
1418 * Reads a specified block, and returns buffer head that contains it.
1419 * It returns NULL if the block was unreadable.
1421 struct buffer_head *
1422 __bread(struct block_device *bdev, sector_t block, unsigned size)
1424 struct buffer_head *bh = __getblk(bdev, block, size);
1426 if (likely(bh) && !buffer_uptodate(bh))
1427 bh = __bread_slow(bh);
1428 return bh;
1430 EXPORT_SYMBOL(__bread);
1433 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1434 * This doesn't race because it runs in each cpu either in irq
1435 * or with preempt disabled.
1437 static void invalidate_bh_lru(void *arg)
1439 struct bh_lru *b = &get_cpu_var(bh_lrus);
1440 int i;
1442 for (i = 0; i < BH_LRU_SIZE; i++) {
1443 brelse(b->bhs[i]);
1444 b->bhs[i] = NULL;
1446 put_cpu_var(bh_lrus);
1449 static bool has_bh_in_lru(int cpu, void *dummy)
1451 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1452 int i;
1454 for (i = 0; i < BH_LRU_SIZE; i++) {
1455 if (b->bhs[i])
1456 return 1;
1459 return 0;
1462 void invalidate_bh_lrus(void)
1464 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1466 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1468 void set_bh_page(struct buffer_head *bh,
1469 struct page *page, unsigned long offset)
1471 bh->b_page = page;
1472 BUG_ON(offset >= PAGE_SIZE);
1473 if (PageHighMem(page))
1475 * This catches illegal uses and preserves the offset:
1477 bh->b_data = (char *)(0 + offset);
1478 else
1479 bh->b_data = page_address(page) + offset;
1481 EXPORT_SYMBOL(set_bh_page);
1484 * Called when truncating a buffer on a page completely.
1486 static void discard_buffer(struct buffer_head * bh)
1488 lock_buffer(bh);
1489 clear_buffer_dirty(bh);
1490 bh->b_bdev = NULL;
1491 clear_buffer_mapped(bh);
1492 clear_buffer_req(bh);
1493 clear_buffer_new(bh);
1494 clear_buffer_delay(bh);
1495 clear_buffer_unwritten(bh);
1496 unlock_buffer(bh);
1500 * block_invalidatepage - invalidate part or all of a buffer-backed page
1502 * @page: the page which is affected
1503 * @offset: start of the range to invalidate
1504 * @length: length of the range to invalidate
1506 * block_invalidatepage() is called when all or part of the page has become
1507 * invalidated by a truncate operation.
1509 * block_invalidatepage() does not have to release all buffers, but it must
1510 * ensure that no dirty buffer is left outside @offset and that no I/O
1511 * is underway against any of the blocks which are outside the truncation
1512 * point. Because the caller is about to free (and possibly reuse) those
1513 * blocks on-disk.
1515 void block_invalidatepage(struct page *page, unsigned int offset,
1516 unsigned int length)
1518 struct buffer_head *head, *bh, *next;
1519 unsigned int curr_off = 0;
1520 unsigned int stop = length + offset;
1522 BUG_ON(!PageLocked(page));
1523 if (!page_has_buffers(page))
1524 goto out;
1527 * Check for overflow
1529 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1531 head = page_buffers(page);
1532 bh = head;
1533 do {
1534 unsigned int next_off = curr_off + bh->b_size;
1535 next = bh->b_this_page;
1538 * Are we still fully in range ?
1540 if (next_off > stop)
1541 goto out;
1544 * is this block fully invalidated?
1546 if (offset <= curr_off)
1547 discard_buffer(bh);
1548 curr_off = next_off;
1549 bh = next;
1550 } while (bh != head);
1553 * We release buffers only if the entire page is being invalidated.
1554 * The get_block cached value has been unconditionally invalidated,
1555 * so real IO is not possible anymore.
1557 if (offset == 0)
1558 try_to_release_page(page, 0);
1559 out:
1560 return;
1562 EXPORT_SYMBOL(block_invalidatepage);
1566 * We attach and possibly dirty the buffers atomically wrt
1567 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1568 * is already excluded via the page lock.
1570 void create_empty_buffers(struct page *page,
1571 unsigned long blocksize, unsigned long b_state)
1573 struct buffer_head *bh, *head, *tail;
1575 head = alloc_page_buffers(page, blocksize, 1);
1576 bh = head;
1577 do {
1578 bh->b_state |= b_state;
1579 tail = bh;
1580 bh = bh->b_this_page;
1581 } while (bh);
1582 tail->b_this_page = head;
1584 spin_lock(&page->mapping->private_lock);
1585 if (PageUptodate(page) || PageDirty(page)) {
1586 bh = head;
1587 do {
1588 if (PageDirty(page))
1589 set_buffer_dirty(bh);
1590 if (PageUptodate(page))
1591 set_buffer_uptodate(bh);
1592 bh = bh->b_this_page;
1593 } while (bh != head);
1595 attach_page_buffers(page, head);
1596 spin_unlock(&page->mapping->private_lock);
1598 EXPORT_SYMBOL(create_empty_buffers);
1601 * We are taking a block for data and we don't want any output from any
1602 * buffer-cache aliases starting from return from that function and
1603 * until the moment when something will explicitly mark the buffer
1604 * dirty (hopefully that will not happen until we will free that block ;-)
1605 * We don't even need to mark it not-uptodate - nobody can expect
1606 * anything from a newly allocated buffer anyway. We used to used
1607 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1608 * don't want to mark the alias unmapped, for example - it would confuse
1609 * anyone who might pick it with bread() afterwards...
1611 * Also.. Note that bforget() doesn't lock the buffer. So there can
1612 * be writeout I/O going on against recently-freed buffers. We don't
1613 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1614 * only if we really need to. That happens here.
1616 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1618 struct buffer_head *old_bh;
1620 might_sleep();
1622 old_bh = __find_get_block_slow(bdev, block);
1623 if (old_bh) {
1624 clear_buffer_dirty(old_bh);
1625 wait_on_buffer(old_bh);
1626 clear_buffer_req(old_bh);
1627 __brelse(old_bh);
1630 EXPORT_SYMBOL(unmap_underlying_metadata);
1633 * Size is a power-of-two in the range 512..PAGE_SIZE,
1634 * and the case we care about most is PAGE_SIZE.
1636 * So this *could* possibly be written with those
1637 * constraints in mind (relevant mostly if some
1638 * architecture has a slow bit-scan instruction)
1640 static inline int block_size_bits(unsigned int blocksize)
1642 return ilog2(blocksize);
1645 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1647 BUG_ON(!PageLocked(page));
1649 if (!page_has_buffers(page))
1650 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1651 return page_buffers(page);
1655 * NOTE! All mapped/uptodate combinations are valid:
1657 * Mapped Uptodate Meaning
1659 * No No "unknown" - must do get_block()
1660 * No Yes "hole" - zero-filled
1661 * Yes No "allocated" - allocated on disk, not read in
1662 * Yes Yes "valid" - allocated and up-to-date in memory.
1664 * "Dirty" is valid only with the last case (mapped+uptodate).
1668 * While block_write_full_page is writing back the dirty buffers under
1669 * the page lock, whoever dirtied the buffers may decide to clean them
1670 * again at any time. We handle that by only looking at the buffer
1671 * state inside lock_buffer().
1673 * If block_write_full_page() is called for regular writeback
1674 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1675 * locked buffer. This only can happen if someone has written the buffer
1676 * directly, with submit_bh(). At the address_space level PageWriteback
1677 * prevents this contention from occurring.
1679 * If block_write_full_page() is called with wbc->sync_mode ==
1680 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1681 * causes the writes to be flagged as synchronous writes.
1683 static int __block_write_full_page(struct inode *inode, struct page *page,
1684 get_block_t *get_block, struct writeback_control *wbc,
1685 bh_end_io_t *handler)
1687 int err;
1688 sector_t block;
1689 sector_t last_block;
1690 struct buffer_head *bh, *head;
1691 unsigned int blocksize, bbits;
1692 int nr_underway = 0;
1693 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1694 WRITE_SYNC : WRITE);
1696 head = create_page_buffers(page, inode,
1697 (1 << BH_Dirty)|(1 << BH_Uptodate));
1700 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1701 * here, and the (potentially unmapped) buffers may become dirty at
1702 * any time. If a buffer becomes dirty here after we've inspected it
1703 * then we just miss that fact, and the page stays dirty.
1705 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1706 * handle that here by just cleaning them.
1709 bh = head;
1710 blocksize = bh->b_size;
1711 bbits = block_size_bits(blocksize);
1713 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1714 last_block = (i_size_read(inode) - 1) >> bbits;
1717 * Get all the dirty buffers mapped to disk addresses and
1718 * handle any aliases from the underlying blockdev's mapping.
1720 do {
1721 if (block > last_block) {
1723 * mapped buffers outside i_size will occur, because
1724 * this page can be outside i_size when there is a
1725 * truncate in progress.
1728 * The buffer was zeroed by block_write_full_page()
1730 clear_buffer_dirty(bh);
1731 set_buffer_uptodate(bh);
1732 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1733 buffer_dirty(bh)) {
1734 WARN_ON(bh->b_size != blocksize);
1735 err = get_block(inode, block, bh, 1);
1736 if (err)
1737 goto recover;
1738 clear_buffer_delay(bh);
1739 if (buffer_new(bh)) {
1740 /* blockdev mappings never come here */
1741 clear_buffer_new(bh);
1742 unmap_underlying_metadata(bh->b_bdev,
1743 bh->b_blocknr);
1746 bh = bh->b_this_page;
1747 block++;
1748 } while (bh != head);
1750 do {
1751 if (!buffer_mapped(bh))
1752 continue;
1754 * If it's a fully non-blocking write attempt and we cannot
1755 * lock the buffer then redirty the page. Note that this can
1756 * potentially cause a busy-wait loop from writeback threads
1757 * and kswapd activity, but those code paths have their own
1758 * higher-level throttling.
1760 if (wbc->sync_mode != WB_SYNC_NONE) {
1761 lock_buffer(bh);
1762 } else if (!trylock_buffer(bh)) {
1763 redirty_page_for_writepage(wbc, page);
1764 continue;
1766 if (test_clear_buffer_dirty(bh)) {
1767 mark_buffer_async_write_endio(bh, handler);
1768 } else {
1769 unlock_buffer(bh);
1771 } while ((bh = bh->b_this_page) != head);
1774 * The page and its buffers are protected by PageWriteback(), so we can
1775 * drop the bh refcounts early.
1777 BUG_ON(PageWriteback(page));
1778 set_page_writeback(page);
1780 do {
1781 struct buffer_head *next = bh->b_this_page;
1782 if (buffer_async_write(bh)) {
1783 submit_bh(write_op, bh);
1784 nr_underway++;
1786 bh = next;
1787 } while (bh != head);
1788 unlock_page(page);
1790 err = 0;
1791 done:
1792 if (nr_underway == 0) {
1794 * The page was marked dirty, but the buffers were
1795 * clean. Someone wrote them back by hand with
1796 * ll_rw_block/submit_bh. A rare case.
1798 end_page_writeback(page);
1801 * The page and buffer_heads can be released at any time from
1802 * here on.
1805 return err;
1807 recover:
1809 * ENOSPC, or some other error. We may already have added some
1810 * blocks to the file, so we need to write these out to avoid
1811 * exposing stale data.
1812 * The page is currently locked and not marked for writeback
1814 bh = head;
1815 /* Recovery: lock and submit the mapped buffers */
1816 do {
1817 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1818 !buffer_delay(bh)) {
1819 lock_buffer(bh);
1820 mark_buffer_async_write_endio(bh, handler);
1821 } else {
1823 * The buffer may have been set dirty during
1824 * attachment to a dirty page.
1826 clear_buffer_dirty(bh);
1828 } while ((bh = bh->b_this_page) != head);
1829 SetPageError(page);
1830 BUG_ON(PageWriteback(page));
1831 mapping_set_error(page->mapping, err);
1832 set_page_writeback(page);
1833 do {
1834 struct buffer_head *next = bh->b_this_page;
1835 if (buffer_async_write(bh)) {
1836 clear_buffer_dirty(bh);
1837 submit_bh(write_op, bh);
1838 nr_underway++;
1840 bh = next;
1841 } while (bh != head);
1842 unlock_page(page);
1843 goto done;
1847 * If a page has any new buffers, zero them out here, and mark them uptodate
1848 * and dirty so they'll be written out (in order to prevent uninitialised
1849 * block data from leaking). And clear the new bit.
1851 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1853 unsigned int block_start, block_end;
1854 struct buffer_head *head, *bh;
1856 BUG_ON(!PageLocked(page));
1857 if (!page_has_buffers(page))
1858 return;
1860 bh = head = page_buffers(page);
1861 block_start = 0;
1862 do {
1863 block_end = block_start + bh->b_size;
1865 if (buffer_new(bh)) {
1866 if (block_end > from && block_start < to) {
1867 if (!PageUptodate(page)) {
1868 unsigned start, size;
1870 start = max(from, block_start);
1871 size = min(to, block_end) - start;
1873 zero_user(page, start, size);
1874 set_buffer_uptodate(bh);
1877 clear_buffer_new(bh);
1878 mark_buffer_dirty(bh);
1882 block_start = block_end;
1883 bh = bh->b_this_page;
1884 } while (bh != head);
1886 EXPORT_SYMBOL(page_zero_new_buffers);
1888 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1889 get_block_t *get_block)
1891 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1892 unsigned to = from + len;
1893 struct inode *inode = page->mapping->host;
1894 unsigned block_start, block_end;
1895 sector_t block;
1896 int err = 0;
1897 unsigned blocksize, bbits;
1898 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1900 BUG_ON(!PageLocked(page));
1901 BUG_ON(from > PAGE_CACHE_SIZE);
1902 BUG_ON(to > PAGE_CACHE_SIZE);
1903 BUG_ON(from > to);
1905 head = create_page_buffers(page, inode, 0);
1906 blocksize = head->b_size;
1907 bbits = block_size_bits(blocksize);
1909 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1911 for(bh = head, block_start = 0; bh != head || !block_start;
1912 block++, block_start=block_end, bh = bh->b_this_page) {
1913 block_end = block_start + blocksize;
1914 if (block_end <= from || block_start >= to) {
1915 if (PageUptodate(page)) {
1916 if (!buffer_uptodate(bh))
1917 set_buffer_uptodate(bh);
1919 continue;
1921 if (buffer_new(bh))
1922 clear_buffer_new(bh);
1923 if (!buffer_mapped(bh)) {
1924 WARN_ON(bh->b_size != blocksize);
1925 err = get_block(inode, block, bh, 1);
1926 if (err)
1927 break;
1928 if (buffer_new(bh)) {
1929 unmap_underlying_metadata(bh->b_bdev,
1930 bh->b_blocknr);
1931 if (PageUptodate(page)) {
1932 clear_buffer_new(bh);
1933 set_buffer_uptodate(bh);
1934 mark_buffer_dirty(bh);
1935 continue;
1937 if (block_end > to || block_start < from)
1938 zero_user_segments(page,
1939 to, block_end,
1940 block_start, from);
1941 continue;
1944 if (PageUptodate(page)) {
1945 if (!buffer_uptodate(bh))
1946 set_buffer_uptodate(bh);
1947 continue;
1949 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1950 !buffer_unwritten(bh) &&
1951 (block_start < from || block_end > to)) {
1952 ll_rw_block(READ, 1, &bh);
1953 *wait_bh++=bh;
1957 * If we issued read requests - let them complete.
1959 while(wait_bh > wait) {
1960 wait_on_buffer(*--wait_bh);
1961 if (!buffer_uptodate(*wait_bh))
1962 err = -EIO;
1964 if (unlikely(err))
1965 page_zero_new_buffers(page, from, to);
1966 return err;
1968 EXPORT_SYMBOL(__block_write_begin);
1970 static int __block_commit_write(struct inode *inode, struct page *page,
1971 unsigned from, unsigned to)
1973 unsigned block_start, block_end;
1974 int partial = 0;
1975 unsigned blocksize;
1976 struct buffer_head *bh, *head;
1978 bh = head = page_buffers(page);
1979 blocksize = bh->b_size;
1981 block_start = 0;
1982 do {
1983 block_end = block_start + blocksize;
1984 if (block_end <= from || block_start >= to) {
1985 if (!buffer_uptodate(bh))
1986 partial = 1;
1987 } else {
1988 set_buffer_uptodate(bh);
1989 mark_buffer_dirty(bh);
1991 clear_buffer_new(bh);
1993 block_start = block_end;
1994 bh = bh->b_this_page;
1995 } while (bh != head);
1998 * If this is a partial write which happened to make all buffers
1999 * uptodate then we can optimize away a bogus readpage() for
2000 * the next read(). Here we 'discover' whether the page went
2001 * uptodate as a result of this (potentially partial) write.
2003 if (!partial)
2004 SetPageUptodate(page);
2005 return 0;
2009 * block_write_begin takes care of the basic task of block allocation and
2010 * bringing partial write blocks uptodate first.
2012 * The filesystem needs to handle block truncation upon failure.
2014 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2015 unsigned flags, struct page **pagep, get_block_t *get_block)
2017 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2018 struct page *page;
2019 int status;
2021 page = grab_cache_page_write_begin(mapping, index, flags);
2022 if (!page)
2023 return -ENOMEM;
2025 status = __block_write_begin(page, pos, len, get_block);
2026 if (unlikely(status)) {
2027 unlock_page(page);
2028 page_cache_release(page);
2029 page = NULL;
2032 *pagep = page;
2033 return status;
2035 EXPORT_SYMBOL(block_write_begin);
2037 int block_write_end(struct file *file, struct address_space *mapping,
2038 loff_t pos, unsigned len, unsigned copied,
2039 struct page *page, void *fsdata)
2041 struct inode *inode = mapping->host;
2042 unsigned start;
2044 start = pos & (PAGE_CACHE_SIZE - 1);
2046 if (unlikely(copied < len)) {
2048 * The buffers that were written will now be uptodate, so we
2049 * don't have to worry about a readpage reading them and
2050 * overwriting a partial write. However if we have encountered
2051 * a short write and only partially written into a buffer, it
2052 * will not be marked uptodate, so a readpage might come in and
2053 * destroy our partial write.
2055 * Do the simplest thing, and just treat any short write to a
2056 * non uptodate page as a zero-length write, and force the
2057 * caller to redo the whole thing.
2059 if (!PageUptodate(page))
2060 copied = 0;
2062 page_zero_new_buffers(page, start+copied, start+len);
2064 flush_dcache_page(page);
2066 /* This could be a short (even 0-length) commit */
2067 __block_commit_write(inode, page, start, start+copied);
2069 return copied;
2071 EXPORT_SYMBOL(block_write_end);
2073 int generic_write_end(struct file *file, struct address_space *mapping,
2074 loff_t pos, unsigned len, unsigned copied,
2075 struct page *page, void *fsdata)
2077 struct inode *inode = mapping->host;
2078 int i_size_changed = 0;
2080 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2083 * No need to use i_size_read() here, the i_size
2084 * cannot change under us because we hold i_mutex.
2086 * But it's important to update i_size while still holding page lock:
2087 * page writeout could otherwise come in and zero beyond i_size.
2089 if (pos+copied > inode->i_size) {
2090 i_size_write(inode, pos+copied);
2091 i_size_changed = 1;
2094 unlock_page(page);
2095 page_cache_release(page);
2098 * Don't mark the inode dirty under page lock. First, it unnecessarily
2099 * makes the holding time of page lock longer. Second, it forces lock
2100 * ordering of page lock and transaction start for journaling
2101 * filesystems.
2103 if (i_size_changed)
2104 mark_inode_dirty(inode);
2106 return copied;
2108 EXPORT_SYMBOL(generic_write_end);
2111 * block_is_partially_uptodate checks whether buffers within a page are
2112 * uptodate or not.
2114 * Returns true if all buffers which correspond to a file portion
2115 * we want to read are uptodate.
2117 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2118 unsigned long from)
2120 unsigned block_start, block_end, blocksize;
2121 unsigned to;
2122 struct buffer_head *bh, *head;
2123 int ret = 1;
2125 if (!page_has_buffers(page))
2126 return 0;
2128 head = page_buffers(page);
2129 blocksize = head->b_size;
2130 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2131 to = from + to;
2132 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2133 return 0;
2135 bh = head;
2136 block_start = 0;
2137 do {
2138 block_end = block_start + blocksize;
2139 if (block_end > from && block_start < to) {
2140 if (!buffer_uptodate(bh)) {
2141 ret = 0;
2142 break;
2144 if (block_end >= to)
2145 break;
2147 block_start = block_end;
2148 bh = bh->b_this_page;
2149 } while (bh != head);
2151 return ret;
2153 EXPORT_SYMBOL(block_is_partially_uptodate);
2156 * Generic "read page" function for block devices that have the normal
2157 * get_block functionality. This is most of the block device filesystems.
2158 * Reads the page asynchronously --- the unlock_buffer() and
2159 * set/clear_buffer_uptodate() functions propagate buffer state into the
2160 * page struct once IO has completed.
2162 int block_read_full_page(struct page *page, get_block_t *get_block)
2164 struct inode *inode = page->mapping->host;
2165 sector_t iblock, lblock;
2166 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2167 unsigned int blocksize, bbits;
2168 int nr, i;
2169 int fully_mapped = 1;
2171 head = create_page_buffers(page, inode, 0);
2172 blocksize = head->b_size;
2173 bbits = block_size_bits(blocksize);
2175 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2176 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2177 bh = head;
2178 nr = 0;
2179 i = 0;
2181 do {
2182 if (buffer_uptodate(bh))
2183 continue;
2185 if (!buffer_mapped(bh)) {
2186 int err = 0;
2188 fully_mapped = 0;
2189 if (iblock < lblock) {
2190 WARN_ON(bh->b_size != blocksize);
2191 err = get_block(inode, iblock, bh, 0);
2192 if (err)
2193 SetPageError(page);
2195 if (!buffer_mapped(bh)) {
2196 zero_user(page, i * blocksize, blocksize);
2197 if (!err)
2198 set_buffer_uptodate(bh);
2199 continue;
2202 * get_block() might have updated the buffer
2203 * synchronously
2205 if (buffer_uptodate(bh))
2206 continue;
2208 arr[nr++] = bh;
2209 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2211 if (fully_mapped)
2212 SetPageMappedToDisk(page);
2214 if (!nr) {
2216 * All buffers are uptodate - we can set the page uptodate
2217 * as well. But not if get_block() returned an error.
2219 if (!PageError(page))
2220 SetPageUptodate(page);
2221 unlock_page(page);
2222 return 0;
2225 /* Stage two: lock the buffers */
2226 for (i = 0; i < nr; i++) {
2227 bh = arr[i];
2228 lock_buffer(bh);
2229 mark_buffer_async_read(bh);
2233 * Stage 3: start the IO. Check for uptodateness
2234 * inside the buffer lock in case another process reading
2235 * the underlying blockdev brought it uptodate (the sct fix).
2237 for (i = 0; i < nr; i++) {
2238 bh = arr[i];
2239 if (buffer_uptodate(bh))
2240 end_buffer_async_read(bh, 1);
2241 else
2242 submit_bh(READ, bh);
2244 return 0;
2246 EXPORT_SYMBOL(block_read_full_page);
2248 /* utility function for filesystems that need to do work on expanding
2249 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2250 * deal with the hole.
2252 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2254 struct address_space *mapping = inode->i_mapping;
2255 struct page *page;
2256 void *fsdata;
2257 int err;
2259 err = inode_newsize_ok(inode, size);
2260 if (err)
2261 goto out;
2263 err = pagecache_write_begin(NULL, mapping, size, 0,
2264 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2265 &page, &fsdata);
2266 if (err)
2267 goto out;
2269 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2270 BUG_ON(err > 0);
2272 out:
2273 return err;
2275 EXPORT_SYMBOL(generic_cont_expand_simple);
2277 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2278 loff_t pos, loff_t *bytes)
2280 struct inode *inode = mapping->host;
2281 unsigned blocksize = 1 << inode->i_blkbits;
2282 struct page *page;
2283 void *fsdata;
2284 pgoff_t index, curidx;
2285 loff_t curpos;
2286 unsigned zerofrom, offset, len;
2287 int err = 0;
2289 index = pos >> PAGE_CACHE_SHIFT;
2290 offset = pos & ~PAGE_CACHE_MASK;
2292 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2293 zerofrom = curpos & ~PAGE_CACHE_MASK;
2294 if (zerofrom & (blocksize-1)) {
2295 *bytes |= (blocksize-1);
2296 (*bytes)++;
2298 len = PAGE_CACHE_SIZE - zerofrom;
2300 err = pagecache_write_begin(file, mapping, curpos, len,
2301 AOP_FLAG_UNINTERRUPTIBLE,
2302 &page, &fsdata);
2303 if (err)
2304 goto out;
2305 zero_user(page, zerofrom, len);
2306 err = pagecache_write_end(file, mapping, curpos, len, len,
2307 page, fsdata);
2308 if (err < 0)
2309 goto out;
2310 BUG_ON(err != len);
2311 err = 0;
2313 balance_dirty_pages_ratelimited(mapping);
2316 /* page covers the boundary, find the boundary offset */
2317 if (index == curidx) {
2318 zerofrom = curpos & ~PAGE_CACHE_MASK;
2319 /* if we will expand the thing last block will be filled */
2320 if (offset <= zerofrom) {
2321 goto out;
2323 if (zerofrom & (blocksize-1)) {
2324 *bytes |= (blocksize-1);
2325 (*bytes)++;
2327 len = offset - zerofrom;
2329 err = pagecache_write_begin(file, mapping, curpos, len,
2330 AOP_FLAG_UNINTERRUPTIBLE,
2331 &page, &fsdata);
2332 if (err)
2333 goto out;
2334 zero_user(page, zerofrom, len);
2335 err = pagecache_write_end(file, mapping, curpos, len, len,
2336 page, fsdata);
2337 if (err < 0)
2338 goto out;
2339 BUG_ON(err != len);
2340 err = 0;
2342 out:
2343 return err;
2347 * For moronic filesystems that do not allow holes in file.
2348 * We may have to extend the file.
2350 int cont_write_begin(struct file *file, struct address_space *mapping,
2351 loff_t pos, unsigned len, unsigned flags,
2352 struct page **pagep, void **fsdata,
2353 get_block_t *get_block, loff_t *bytes)
2355 struct inode *inode = mapping->host;
2356 unsigned blocksize = 1 << inode->i_blkbits;
2357 unsigned zerofrom;
2358 int err;
2360 err = cont_expand_zero(file, mapping, pos, bytes);
2361 if (err)
2362 return err;
2364 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2365 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2366 *bytes |= (blocksize-1);
2367 (*bytes)++;
2370 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2372 EXPORT_SYMBOL(cont_write_begin);
2374 int block_commit_write(struct page *page, unsigned from, unsigned to)
2376 struct inode *inode = page->mapping->host;
2377 __block_commit_write(inode,page,from,to);
2378 return 0;
2380 EXPORT_SYMBOL(block_commit_write);
2383 * block_page_mkwrite() is not allowed to change the file size as it gets
2384 * called from a page fault handler when a page is first dirtied. Hence we must
2385 * be careful to check for EOF conditions here. We set the page up correctly
2386 * for a written page which means we get ENOSPC checking when writing into
2387 * holes and correct delalloc and unwritten extent mapping on filesystems that
2388 * support these features.
2390 * We are not allowed to take the i_mutex here so we have to play games to
2391 * protect against truncate races as the page could now be beyond EOF. Because
2392 * truncate writes the inode size before removing pages, once we have the
2393 * page lock we can determine safely if the page is beyond EOF. If it is not
2394 * beyond EOF, then the page is guaranteed safe against truncation until we
2395 * unlock the page.
2397 * Direct callers of this function should protect against filesystem freezing
2398 * using sb_start_write() - sb_end_write() functions.
2400 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2401 get_block_t get_block)
2403 struct page *page = vmf->page;
2404 struct inode *inode = file_inode(vma->vm_file);
2405 unsigned long end;
2406 loff_t size;
2407 int ret;
2409 lock_page(page);
2410 size = i_size_read(inode);
2411 if ((page->mapping != inode->i_mapping) ||
2412 (page_offset(page) > size)) {
2413 /* We overload EFAULT to mean page got truncated */
2414 ret = -EFAULT;
2415 goto out_unlock;
2418 /* page is wholly or partially inside EOF */
2419 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2420 end = size & ~PAGE_CACHE_MASK;
2421 else
2422 end = PAGE_CACHE_SIZE;
2424 ret = __block_write_begin(page, 0, end, get_block);
2425 if (!ret)
2426 ret = block_commit_write(page, 0, end);
2428 if (unlikely(ret < 0))
2429 goto out_unlock;
2430 set_page_dirty(page);
2431 wait_for_stable_page(page);
2432 return 0;
2433 out_unlock:
2434 unlock_page(page);
2435 return ret;
2437 EXPORT_SYMBOL(__block_page_mkwrite);
2439 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2440 get_block_t get_block)
2442 int ret;
2443 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2445 sb_start_pagefault(sb);
2448 * Update file times before taking page lock. We may end up failing the
2449 * fault so this update may be superfluous but who really cares...
2451 file_update_time(vma->vm_file);
2453 ret = __block_page_mkwrite(vma, vmf, get_block);
2454 sb_end_pagefault(sb);
2455 return block_page_mkwrite_return(ret);
2457 EXPORT_SYMBOL(block_page_mkwrite);
2460 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2461 * immediately, while under the page lock. So it needs a special end_io
2462 * handler which does not touch the bh after unlocking it.
2464 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2466 __end_buffer_read_notouch(bh, uptodate);
2470 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2471 * the page (converting it to circular linked list and taking care of page
2472 * dirty races).
2474 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2476 struct buffer_head *bh;
2478 BUG_ON(!PageLocked(page));
2480 spin_lock(&page->mapping->private_lock);
2481 bh = head;
2482 do {
2483 if (PageDirty(page))
2484 set_buffer_dirty(bh);
2485 if (!bh->b_this_page)
2486 bh->b_this_page = head;
2487 bh = bh->b_this_page;
2488 } while (bh != head);
2489 attach_page_buffers(page, head);
2490 spin_unlock(&page->mapping->private_lock);
2494 * On entry, the page is fully not uptodate.
2495 * On exit the page is fully uptodate in the areas outside (from,to)
2496 * The filesystem needs to handle block truncation upon failure.
2498 int nobh_write_begin(struct address_space *mapping,
2499 loff_t pos, unsigned len, unsigned flags,
2500 struct page **pagep, void **fsdata,
2501 get_block_t *get_block)
2503 struct inode *inode = mapping->host;
2504 const unsigned blkbits = inode->i_blkbits;
2505 const unsigned blocksize = 1 << blkbits;
2506 struct buffer_head *head, *bh;
2507 struct page *page;
2508 pgoff_t index;
2509 unsigned from, to;
2510 unsigned block_in_page;
2511 unsigned block_start, block_end;
2512 sector_t block_in_file;
2513 int nr_reads = 0;
2514 int ret = 0;
2515 int is_mapped_to_disk = 1;
2517 index = pos >> PAGE_CACHE_SHIFT;
2518 from = pos & (PAGE_CACHE_SIZE - 1);
2519 to = from + len;
2521 page = grab_cache_page_write_begin(mapping, index, flags);
2522 if (!page)
2523 return -ENOMEM;
2524 *pagep = page;
2525 *fsdata = NULL;
2527 if (page_has_buffers(page)) {
2528 ret = __block_write_begin(page, pos, len, get_block);
2529 if (unlikely(ret))
2530 goto out_release;
2531 return ret;
2534 if (PageMappedToDisk(page))
2535 return 0;
2538 * Allocate buffers so that we can keep track of state, and potentially
2539 * attach them to the page if an error occurs. In the common case of
2540 * no error, they will just be freed again without ever being attached
2541 * to the page (which is all OK, because we're under the page lock).
2543 * Be careful: the buffer linked list is a NULL terminated one, rather
2544 * than the circular one we're used to.
2546 head = alloc_page_buffers(page, blocksize, 0);
2547 if (!head) {
2548 ret = -ENOMEM;
2549 goto out_release;
2552 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2555 * We loop across all blocks in the page, whether or not they are
2556 * part of the affected region. This is so we can discover if the
2557 * page is fully mapped-to-disk.
2559 for (block_start = 0, block_in_page = 0, bh = head;
2560 block_start < PAGE_CACHE_SIZE;
2561 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2562 int create;
2564 block_end = block_start + blocksize;
2565 bh->b_state = 0;
2566 create = 1;
2567 if (block_start >= to)
2568 create = 0;
2569 ret = get_block(inode, block_in_file + block_in_page,
2570 bh, create);
2571 if (ret)
2572 goto failed;
2573 if (!buffer_mapped(bh))
2574 is_mapped_to_disk = 0;
2575 if (buffer_new(bh))
2576 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2577 if (PageUptodate(page)) {
2578 set_buffer_uptodate(bh);
2579 continue;
2581 if (buffer_new(bh) || !buffer_mapped(bh)) {
2582 zero_user_segments(page, block_start, from,
2583 to, block_end);
2584 continue;
2586 if (buffer_uptodate(bh))
2587 continue; /* reiserfs does this */
2588 if (block_start < from || block_end > to) {
2589 lock_buffer(bh);
2590 bh->b_end_io = end_buffer_read_nobh;
2591 submit_bh(READ, bh);
2592 nr_reads++;
2596 if (nr_reads) {
2598 * The page is locked, so these buffers are protected from
2599 * any VM or truncate activity. Hence we don't need to care
2600 * for the buffer_head refcounts.
2602 for (bh = head; bh; bh = bh->b_this_page) {
2603 wait_on_buffer(bh);
2604 if (!buffer_uptodate(bh))
2605 ret = -EIO;
2607 if (ret)
2608 goto failed;
2611 if (is_mapped_to_disk)
2612 SetPageMappedToDisk(page);
2614 *fsdata = head; /* to be released by nobh_write_end */
2616 return 0;
2618 failed:
2619 BUG_ON(!ret);
2621 * Error recovery is a bit difficult. We need to zero out blocks that
2622 * were newly allocated, and dirty them to ensure they get written out.
2623 * Buffers need to be attached to the page at this point, otherwise
2624 * the handling of potential IO errors during writeout would be hard
2625 * (could try doing synchronous writeout, but what if that fails too?)
2627 attach_nobh_buffers(page, head);
2628 page_zero_new_buffers(page, from, to);
2630 out_release:
2631 unlock_page(page);
2632 page_cache_release(page);
2633 *pagep = NULL;
2635 return ret;
2637 EXPORT_SYMBOL(nobh_write_begin);
2639 int nobh_write_end(struct file *file, struct address_space *mapping,
2640 loff_t pos, unsigned len, unsigned copied,
2641 struct page *page, void *fsdata)
2643 struct inode *inode = page->mapping->host;
2644 struct buffer_head *head = fsdata;
2645 struct buffer_head *bh;
2646 BUG_ON(fsdata != NULL && page_has_buffers(page));
2648 if (unlikely(copied < len) && head)
2649 attach_nobh_buffers(page, head);
2650 if (page_has_buffers(page))
2651 return generic_write_end(file, mapping, pos, len,
2652 copied, page, fsdata);
2654 SetPageUptodate(page);
2655 set_page_dirty(page);
2656 if (pos+copied > inode->i_size) {
2657 i_size_write(inode, pos+copied);
2658 mark_inode_dirty(inode);
2661 unlock_page(page);
2662 page_cache_release(page);
2664 while (head) {
2665 bh = head;
2666 head = head->b_this_page;
2667 free_buffer_head(bh);
2670 return copied;
2672 EXPORT_SYMBOL(nobh_write_end);
2675 * nobh_writepage() - based on block_full_write_page() except
2676 * that it tries to operate without attaching bufferheads to
2677 * the page.
2679 int nobh_writepage(struct page *page, get_block_t *get_block,
2680 struct writeback_control *wbc)
2682 struct inode * const inode = page->mapping->host;
2683 loff_t i_size = i_size_read(inode);
2684 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2685 unsigned offset;
2686 int ret;
2688 /* Is the page fully inside i_size? */
2689 if (page->index < end_index)
2690 goto out;
2692 /* Is the page fully outside i_size? (truncate in progress) */
2693 offset = i_size & (PAGE_CACHE_SIZE-1);
2694 if (page->index >= end_index+1 || !offset) {
2696 * The page may have dirty, unmapped buffers. For example,
2697 * they may have been added in ext3_writepage(). Make them
2698 * freeable here, so the page does not leak.
2700 #if 0
2701 /* Not really sure about this - do we need this ? */
2702 if (page->mapping->a_ops->invalidatepage)
2703 page->mapping->a_ops->invalidatepage(page, offset);
2704 #endif
2705 unlock_page(page);
2706 return 0; /* don't care */
2710 * The page straddles i_size. It must be zeroed out on each and every
2711 * writepage invocation because it may be mmapped. "A file is mapped
2712 * in multiples of the page size. For a file that is not a multiple of
2713 * the page size, the remaining memory is zeroed when mapped, and
2714 * writes to that region are not written out to the file."
2716 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2717 out:
2718 ret = mpage_writepage(page, get_block, wbc);
2719 if (ret == -EAGAIN)
2720 ret = __block_write_full_page(inode, page, get_block, wbc,
2721 end_buffer_async_write);
2722 return ret;
2724 EXPORT_SYMBOL(nobh_writepage);
2726 int nobh_truncate_page(struct address_space *mapping,
2727 loff_t from, get_block_t *get_block)
2729 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2730 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2731 unsigned blocksize;
2732 sector_t iblock;
2733 unsigned length, pos;
2734 struct inode *inode = mapping->host;
2735 struct page *page;
2736 struct buffer_head map_bh;
2737 int err;
2739 blocksize = 1 << inode->i_blkbits;
2740 length = offset & (blocksize - 1);
2742 /* Block boundary? Nothing to do */
2743 if (!length)
2744 return 0;
2746 length = blocksize - length;
2747 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2749 page = grab_cache_page(mapping, index);
2750 err = -ENOMEM;
2751 if (!page)
2752 goto out;
2754 if (page_has_buffers(page)) {
2755 has_buffers:
2756 unlock_page(page);
2757 page_cache_release(page);
2758 return block_truncate_page(mapping, from, get_block);
2761 /* Find the buffer that contains "offset" */
2762 pos = blocksize;
2763 while (offset >= pos) {
2764 iblock++;
2765 pos += blocksize;
2768 map_bh.b_size = blocksize;
2769 map_bh.b_state = 0;
2770 err = get_block(inode, iblock, &map_bh, 0);
2771 if (err)
2772 goto unlock;
2773 /* unmapped? It's a hole - nothing to do */
2774 if (!buffer_mapped(&map_bh))
2775 goto unlock;
2777 /* Ok, it's mapped. Make sure it's up-to-date */
2778 if (!PageUptodate(page)) {
2779 err = mapping->a_ops->readpage(NULL, page);
2780 if (err) {
2781 page_cache_release(page);
2782 goto out;
2784 lock_page(page);
2785 if (!PageUptodate(page)) {
2786 err = -EIO;
2787 goto unlock;
2789 if (page_has_buffers(page))
2790 goto has_buffers;
2792 zero_user(page, offset, length);
2793 set_page_dirty(page);
2794 err = 0;
2796 unlock:
2797 unlock_page(page);
2798 page_cache_release(page);
2799 out:
2800 return err;
2802 EXPORT_SYMBOL(nobh_truncate_page);
2804 int block_truncate_page(struct address_space *mapping,
2805 loff_t from, get_block_t *get_block)
2807 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2808 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2809 unsigned blocksize;
2810 sector_t iblock;
2811 unsigned length, pos;
2812 struct inode *inode = mapping->host;
2813 struct page *page;
2814 struct buffer_head *bh;
2815 int err;
2817 blocksize = 1 << inode->i_blkbits;
2818 length = offset & (blocksize - 1);
2820 /* Block boundary? Nothing to do */
2821 if (!length)
2822 return 0;
2824 length = blocksize - length;
2825 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2827 page = grab_cache_page(mapping, index);
2828 err = -ENOMEM;
2829 if (!page)
2830 goto out;
2832 if (!page_has_buffers(page))
2833 create_empty_buffers(page, blocksize, 0);
2835 /* Find the buffer that contains "offset" */
2836 bh = page_buffers(page);
2837 pos = blocksize;
2838 while (offset >= pos) {
2839 bh = bh->b_this_page;
2840 iblock++;
2841 pos += blocksize;
2844 err = 0;
2845 if (!buffer_mapped(bh)) {
2846 WARN_ON(bh->b_size != blocksize);
2847 err = get_block(inode, iblock, bh, 0);
2848 if (err)
2849 goto unlock;
2850 /* unmapped? It's a hole - nothing to do */
2851 if (!buffer_mapped(bh))
2852 goto unlock;
2855 /* Ok, it's mapped. Make sure it's up-to-date */
2856 if (PageUptodate(page))
2857 set_buffer_uptodate(bh);
2859 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2860 err = -EIO;
2861 ll_rw_block(READ, 1, &bh);
2862 wait_on_buffer(bh);
2863 /* Uhhuh. Read error. Complain and punt. */
2864 if (!buffer_uptodate(bh))
2865 goto unlock;
2868 zero_user(page, offset, length);
2869 mark_buffer_dirty(bh);
2870 err = 0;
2872 unlock:
2873 unlock_page(page);
2874 page_cache_release(page);
2875 out:
2876 return err;
2878 EXPORT_SYMBOL(block_truncate_page);
2881 * The generic ->writepage function for buffer-backed address_spaces
2882 * this form passes in the end_io handler used to finish the IO.
2884 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2885 struct writeback_control *wbc, bh_end_io_t *handler)
2887 struct inode * const inode = page->mapping->host;
2888 loff_t i_size = i_size_read(inode);
2889 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2890 unsigned offset;
2892 /* Is the page fully inside i_size? */
2893 if (page->index < end_index)
2894 return __block_write_full_page(inode, page, get_block, wbc,
2895 handler);
2897 /* Is the page fully outside i_size? (truncate in progress) */
2898 offset = i_size & (PAGE_CACHE_SIZE-1);
2899 if (page->index >= end_index+1 || !offset) {
2901 * The page may have dirty, unmapped buffers. For example,
2902 * they may have been added in ext3_writepage(). Make them
2903 * freeable here, so the page does not leak.
2905 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2906 unlock_page(page);
2907 return 0; /* don't care */
2911 * The page straddles i_size. It must be zeroed out on each and every
2912 * writepage invocation because it may be mmapped. "A file is mapped
2913 * in multiples of the page size. For a file that is not a multiple of
2914 * the page size, the remaining memory is zeroed when mapped, and
2915 * writes to that region are not written out to the file."
2917 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2918 return __block_write_full_page(inode, page, get_block, wbc, handler);
2920 EXPORT_SYMBOL(block_write_full_page_endio);
2923 * The generic ->writepage function for buffer-backed address_spaces
2925 int block_write_full_page(struct page *page, get_block_t *get_block,
2926 struct writeback_control *wbc)
2928 return block_write_full_page_endio(page, get_block, wbc,
2929 end_buffer_async_write);
2931 EXPORT_SYMBOL(block_write_full_page);
2933 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2934 get_block_t *get_block)
2936 struct buffer_head tmp;
2937 struct inode *inode = mapping->host;
2938 tmp.b_state = 0;
2939 tmp.b_blocknr = 0;
2940 tmp.b_size = 1 << inode->i_blkbits;
2941 get_block(inode, block, &tmp, 0);
2942 return tmp.b_blocknr;
2944 EXPORT_SYMBOL(generic_block_bmap);
2946 static void end_bio_bh_io_sync(struct bio *bio, int err)
2948 struct buffer_head *bh = bio->bi_private;
2950 if (err == -EOPNOTSUPP) {
2951 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2954 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2955 set_bit(BH_Quiet, &bh->b_state);
2957 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2958 bio_put(bio);
2962 * This allows us to do IO even on the odd last sectors
2963 * of a device, even if the bh block size is some multiple
2964 * of the physical sector size.
2966 * We'll just truncate the bio to the size of the device,
2967 * and clear the end of the buffer head manually.
2969 * Truly out-of-range accesses will turn into actual IO
2970 * errors, this only handles the "we need to be able to
2971 * do IO at the final sector" case.
2973 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2975 sector_t maxsector;
2976 unsigned bytes;
2978 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2979 if (!maxsector)
2980 return;
2983 * If the *whole* IO is past the end of the device,
2984 * let it through, and the IO layer will turn it into
2985 * an EIO.
2987 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2988 return;
2990 maxsector -= bio->bi_iter.bi_sector;
2991 bytes = bio->bi_iter.bi_size;
2992 if (likely((bytes >> 9) <= maxsector))
2993 return;
2995 /* Uhhuh. We've got a bh that straddles the device size! */
2996 bytes = maxsector << 9;
2998 /* Truncate the bio.. */
2999 bio->bi_iter.bi_size = bytes;
3000 bio->bi_io_vec[0].bv_len = bytes;
3002 /* ..and clear the end of the buffer for reads */
3003 if ((rw & RW_MASK) == READ) {
3004 void *kaddr = kmap_atomic(bh->b_page);
3005 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3006 kunmap_atomic(kaddr);
3007 flush_dcache_page(bh->b_page);
3011 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3013 struct bio *bio;
3014 int ret = 0;
3016 BUG_ON(!buffer_locked(bh));
3017 BUG_ON(!buffer_mapped(bh));
3018 BUG_ON(!bh->b_end_io);
3019 BUG_ON(buffer_delay(bh));
3020 BUG_ON(buffer_unwritten(bh));
3023 * Only clear out a write error when rewriting
3025 if (test_set_buffer_req(bh) && (rw & WRITE))
3026 clear_buffer_write_io_error(bh);
3029 * from here on down, it's all bio -- do the initial mapping,
3030 * submit_bio -> generic_make_request may further map this bio around
3032 bio = bio_alloc(GFP_NOIO, 1);
3034 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3035 bio->bi_bdev = bh->b_bdev;
3036 bio->bi_io_vec[0].bv_page = bh->b_page;
3037 bio->bi_io_vec[0].bv_len = bh->b_size;
3038 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3040 bio->bi_vcnt = 1;
3041 bio->bi_iter.bi_size = bh->b_size;
3043 bio->bi_end_io = end_bio_bh_io_sync;
3044 bio->bi_private = bh;
3045 bio->bi_flags |= bio_flags;
3047 /* Take care of bh's that straddle the end of the device */
3048 guard_bh_eod(rw, bio, bh);
3050 if (buffer_meta(bh))
3051 rw |= REQ_META;
3052 if (buffer_prio(bh))
3053 rw |= REQ_PRIO;
3055 bio_get(bio);
3056 submit_bio(rw, bio);
3058 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3059 ret = -EOPNOTSUPP;
3061 bio_put(bio);
3062 return ret;
3064 EXPORT_SYMBOL_GPL(_submit_bh);
3066 int submit_bh(int rw, struct buffer_head *bh)
3068 return _submit_bh(rw, bh, 0);
3070 EXPORT_SYMBOL(submit_bh);
3073 * ll_rw_block: low-level access to block devices (DEPRECATED)
3074 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3075 * @nr: number of &struct buffer_heads in the array
3076 * @bhs: array of pointers to &struct buffer_head
3078 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3079 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3080 * %READA option is described in the documentation for generic_make_request()
3081 * which ll_rw_block() calls.
3083 * This function drops any buffer that it cannot get a lock on (with the
3084 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3085 * request, and any buffer that appears to be up-to-date when doing read
3086 * request. Further it marks as clean buffers that are processed for
3087 * writing (the buffer cache won't assume that they are actually clean
3088 * until the buffer gets unlocked).
3090 * ll_rw_block sets b_end_io to simple completion handler that marks
3091 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3092 * any waiters.
3094 * All of the buffers must be for the same device, and must also be a
3095 * multiple of the current approved size for the device.
3097 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3099 int i;
3101 for (i = 0; i < nr; i++) {
3102 struct buffer_head *bh = bhs[i];
3104 if (!trylock_buffer(bh))
3105 continue;
3106 if (rw == WRITE) {
3107 if (test_clear_buffer_dirty(bh)) {
3108 bh->b_end_io = end_buffer_write_sync;
3109 get_bh(bh);
3110 submit_bh(WRITE, bh);
3111 continue;
3113 } else {
3114 if (!buffer_uptodate(bh)) {
3115 bh->b_end_io = end_buffer_read_sync;
3116 get_bh(bh);
3117 submit_bh(rw, bh);
3118 continue;
3121 unlock_buffer(bh);
3124 EXPORT_SYMBOL(ll_rw_block);
3126 void write_dirty_buffer(struct buffer_head *bh, int rw)
3128 lock_buffer(bh);
3129 if (!test_clear_buffer_dirty(bh)) {
3130 unlock_buffer(bh);
3131 return;
3133 bh->b_end_io = end_buffer_write_sync;
3134 get_bh(bh);
3135 submit_bh(rw, bh);
3137 EXPORT_SYMBOL(write_dirty_buffer);
3140 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3141 * and then start new I/O and then wait upon it. The caller must have a ref on
3142 * the buffer_head.
3144 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3146 int ret = 0;
3148 WARN_ON(atomic_read(&bh->b_count) < 1);
3149 lock_buffer(bh);
3150 if (test_clear_buffer_dirty(bh)) {
3151 get_bh(bh);
3152 bh->b_end_io = end_buffer_write_sync;
3153 ret = submit_bh(rw, bh);
3154 wait_on_buffer(bh);
3155 if (!ret && !buffer_uptodate(bh))
3156 ret = -EIO;
3157 } else {
3158 unlock_buffer(bh);
3160 return ret;
3162 EXPORT_SYMBOL(__sync_dirty_buffer);
3164 int sync_dirty_buffer(struct buffer_head *bh)
3166 return __sync_dirty_buffer(bh, WRITE_SYNC);
3168 EXPORT_SYMBOL(sync_dirty_buffer);
3171 * try_to_free_buffers() checks if all the buffers on this particular page
3172 * are unused, and releases them if so.
3174 * Exclusion against try_to_free_buffers may be obtained by either
3175 * locking the page or by holding its mapping's private_lock.
3177 * If the page is dirty but all the buffers are clean then we need to
3178 * be sure to mark the page clean as well. This is because the page
3179 * may be against a block device, and a later reattachment of buffers
3180 * to a dirty page will set *all* buffers dirty. Which would corrupt
3181 * filesystem data on the same device.
3183 * The same applies to regular filesystem pages: if all the buffers are
3184 * clean then we set the page clean and proceed. To do that, we require
3185 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3186 * private_lock.
3188 * try_to_free_buffers() is non-blocking.
3190 static inline int buffer_busy(struct buffer_head *bh)
3192 return atomic_read(&bh->b_count) |
3193 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3196 static int
3197 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3199 struct buffer_head *head = page_buffers(page);
3200 struct buffer_head *bh;
3202 bh = head;
3203 do {
3204 if (buffer_write_io_error(bh) && page->mapping)
3205 set_bit(AS_EIO, &page->mapping->flags);
3206 if (buffer_busy(bh))
3207 goto failed;
3208 bh = bh->b_this_page;
3209 } while (bh != head);
3211 do {
3212 struct buffer_head *next = bh->b_this_page;
3214 if (bh->b_assoc_map)
3215 __remove_assoc_queue(bh);
3216 bh = next;
3217 } while (bh != head);
3218 *buffers_to_free = head;
3219 __clear_page_buffers(page);
3220 return 1;
3221 failed:
3222 return 0;
3225 int try_to_free_buffers(struct page *page)
3227 struct address_space * const mapping = page->mapping;
3228 struct buffer_head *buffers_to_free = NULL;
3229 int ret = 0;
3231 BUG_ON(!PageLocked(page));
3232 if (PageWriteback(page))
3233 return 0;
3235 if (mapping == NULL) { /* can this still happen? */
3236 ret = drop_buffers(page, &buffers_to_free);
3237 goto out;
3240 spin_lock(&mapping->private_lock);
3241 ret = drop_buffers(page, &buffers_to_free);
3244 * If the filesystem writes its buffers by hand (eg ext3)
3245 * then we can have clean buffers against a dirty page. We
3246 * clean the page here; otherwise the VM will never notice
3247 * that the filesystem did any IO at all.
3249 * Also, during truncate, discard_buffer will have marked all
3250 * the page's buffers clean. We discover that here and clean
3251 * the page also.
3253 * private_lock must be held over this entire operation in order
3254 * to synchronise against __set_page_dirty_buffers and prevent the
3255 * dirty bit from being lost.
3257 if (ret)
3258 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3259 spin_unlock(&mapping->private_lock);
3260 out:
3261 if (buffers_to_free) {
3262 struct buffer_head *bh = buffers_to_free;
3264 do {
3265 struct buffer_head *next = bh->b_this_page;
3266 free_buffer_head(bh);
3267 bh = next;
3268 } while (bh != buffers_to_free);
3270 return ret;
3272 EXPORT_SYMBOL(try_to_free_buffers);
3275 * There are no bdflush tunables left. But distributions are
3276 * still running obsolete flush daemons, so we terminate them here.
3278 * Use of bdflush() is deprecated and will be removed in a future kernel.
3279 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3281 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3283 static int msg_count;
3285 if (!capable(CAP_SYS_ADMIN))
3286 return -EPERM;
3288 if (msg_count < 5) {
3289 msg_count++;
3290 printk(KERN_INFO
3291 "warning: process `%s' used the obsolete bdflush"
3292 " system call\n", current->comm);
3293 printk(KERN_INFO "Fix your initscripts?\n");
3296 if (func == 1)
3297 do_exit(0);
3298 return 0;
3302 * Buffer-head allocation
3304 static struct kmem_cache *bh_cachep __read_mostly;
3307 * Once the number of bh's in the machine exceeds this level, we start
3308 * stripping them in writeback.
3310 static unsigned long max_buffer_heads;
3312 int buffer_heads_over_limit;
3314 struct bh_accounting {
3315 int nr; /* Number of live bh's */
3316 int ratelimit; /* Limit cacheline bouncing */
3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3321 static void recalc_bh_state(void)
3323 int i;
3324 int tot = 0;
3326 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327 return;
3328 __this_cpu_write(bh_accounting.ratelimit, 0);
3329 for_each_online_cpu(i)
3330 tot += per_cpu(bh_accounting, i).nr;
3331 buffer_heads_over_limit = (tot > max_buffer_heads);
3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3336 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337 if (ret) {
3338 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339 preempt_disable();
3340 __this_cpu_inc(bh_accounting.nr);
3341 recalc_bh_state();
3342 preempt_enable();
3344 return ret;
3346 EXPORT_SYMBOL(alloc_buffer_head);
3348 void free_buffer_head(struct buffer_head *bh)
3350 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3351 kmem_cache_free(bh_cachep, bh);
3352 preempt_disable();
3353 __this_cpu_dec(bh_accounting.nr);
3354 recalc_bh_state();
3355 preempt_enable();
3357 EXPORT_SYMBOL(free_buffer_head);
3359 static void buffer_exit_cpu(int cpu)
3361 int i;
3362 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364 for (i = 0; i < BH_LRU_SIZE; i++) {
3365 brelse(b->bhs[i]);
3366 b->bhs[i] = NULL;
3368 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3369 per_cpu(bh_accounting, cpu).nr = 0;
3372 static int buffer_cpu_notify(struct notifier_block *self,
3373 unsigned long action, void *hcpu)
3375 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3376 buffer_exit_cpu((unsigned long)hcpu);
3377 return NOTIFY_OK;
3381 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3382 * @bh: struct buffer_head
3384 * Return true if the buffer is up-to-date and false,
3385 * with the buffer locked, if not.
3387 int bh_uptodate_or_lock(struct buffer_head *bh)
3389 if (!buffer_uptodate(bh)) {
3390 lock_buffer(bh);
3391 if (!buffer_uptodate(bh))
3392 return 0;
3393 unlock_buffer(bh);
3395 return 1;
3397 EXPORT_SYMBOL(bh_uptodate_or_lock);
3400 * bh_submit_read - Submit a locked buffer for reading
3401 * @bh: struct buffer_head
3403 * Returns zero on success and -EIO on error.
3405 int bh_submit_read(struct buffer_head *bh)
3407 BUG_ON(!buffer_locked(bh));
3409 if (buffer_uptodate(bh)) {
3410 unlock_buffer(bh);
3411 return 0;
3414 get_bh(bh);
3415 bh->b_end_io = end_buffer_read_sync;
3416 submit_bh(READ, bh);
3417 wait_on_buffer(bh);
3418 if (buffer_uptodate(bh))
3419 return 0;
3420 return -EIO;
3422 EXPORT_SYMBOL(bh_submit_read);
3424 void __init buffer_init(void)
3426 unsigned long nrpages;
3428 bh_cachep = kmem_cache_create("buffer_head",
3429 sizeof(struct buffer_head), 0,
3430 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3431 SLAB_MEM_SPREAD),
3432 NULL);
3435 * Limit the bh occupancy to 10% of ZONE_NORMAL
3437 nrpages = (nr_free_buffer_pages() * 10) / 100;
3438 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3439 hotcpu_notifier(buffer_cpu_notify, 0);