dm mpath: simplify failure path of dm_multipath_init()
[linux-2.6/btrfs-unstable.git] / kernel / sched / sched.h
blob9a2a45c970e7dcbc0c146c027acc1bab713ff4ee
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/tick.h>
10 #include <linux/slab.h>
12 #include "cpupri.h"
13 #include "cpudeadline.h"
14 #include "cpuacct.h"
16 struct rq;
17 struct cpuidle_state;
19 /* task_struct::on_rq states: */
20 #define TASK_ON_RQ_QUEUED 1
21 #define TASK_ON_RQ_MIGRATING 2
23 extern __read_mostly int scheduler_running;
25 extern unsigned long calc_load_update;
26 extern atomic_long_t calc_load_tasks;
28 extern long calc_load_fold_active(struct rq *this_rq);
29 extern void update_cpu_load_active(struct rq *this_rq);
32 * Helpers for converting nanosecond timing to jiffy resolution
34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
48 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49 # define SCHED_LOAD_RESOLUTION 10
50 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52 #else
53 # define SCHED_LOAD_RESOLUTION 0
54 # define scale_load(w) (w)
55 # define scale_load_down(w) (w)
56 #endif
58 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
61 #define NICE_0_LOAD SCHED_LOAD_SCALE
62 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
65 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
69 #define DL_SCALE (10)
72 * These are the 'tuning knobs' of the scheduler:
76 * single value that denotes runtime == period, ie unlimited time.
78 #define RUNTIME_INF ((u64)~0ULL)
80 static inline int fair_policy(int policy)
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
85 static inline int rt_policy(int policy)
87 return policy == SCHED_FIFO || policy == SCHED_RR;
90 static inline int dl_policy(int policy)
92 return policy == SCHED_DEADLINE;
95 static inline int task_has_rt_policy(struct task_struct *p)
97 return rt_policy(p->policy);
100 static inline int task_has_dl_policy(struct task_struct *p)
102 return dl_policy(p->policy);
105 static inline bool dl_time_before(u64 a, u64 b)
107 return (s64)(a - b) < 0;
111 * Tells if entity @a should preempt entity @b.
113 static inline bool
114 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
116 return dl_time_before(a->deadline, b->deadline);
120 * This is the priority-queue data structure of the RT scheduling class:
122 struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
127 struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
135 void __dl_clear_params(struct task_struct *p);
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
161 struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
167 static inline int dl_bandwidth_enabled(void)
169 return sysctl_sched_rt_runtime >= 0;
172 extern struct dl_bw *dl_bw_of(int i);
174 struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
179 static inline
180 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
182 dl_b->total_bw -= tsk_bw;
185 static inline
186 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
188 dl_b->total_bw += tsk_bw;
191 static inline
192 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
194 return dl_b->bw != -1 &&
195 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
198 extern struct mutex sched_domains_mutex;
200 #ifdef CONFIG_CGROUP_SCHED
202 #include <linux/cgroup.h>
204 struct cfs_rq;
205 struct rt_rq;
207 extern struct list_head task_groups;
209 struct cfs_bandwidth {
210 #ifdef CONFIG_CFS_BANDWIDTH
211 raw_spinlock_t lock;
212 ktime_t period;
213 u64 quota, runtime;
214 s64 hierarchical_quota;
215 u64 runtime_expires;
217 int idle, timer_active;
218 struct hrtimer period_timer, slack_timer;
219 struct list_head throttled_cfs_rq;
221 /* statistics */
222 int nr_periods, nr_throttled;
223 u64 throttled_time;
224 #endif
227 /* task group related information */
228 struct task_group {
229 struct cgroup_subsys_state css;
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 /* schedulable entities of this group on each cpu */
233 struct sched_entity **se;
234 /* runqueue "owned" by this group on each cpu */
235 struct cfs_rq **cfs_rq;
236 unsigned long shares;
238 #ifdef CONFIG_SMP
239 atomic_long_t load_avg;
240 atomic_t runnable_avg;
241 #endif
242 #endif
244 #ifdef CONFIG_RT_GROUP_SCHED
245 struct sched_rt_entity **rt_se;
246 struct rt_rq **rt_rq;
248 struct rt_bandwidth rt_bandwidth;
249 #endif
251 struct rcu_head rcu;
252 struct list_head list;
254 struct task_group *parent;
255 struct list_head siblings;
256 struct list_head children;
258 #ifdef CONFIG_SCHED_AUTOGROUP
259 struct autogroup *autogroup;
260 #endif
262 struct cfs_bandwidth cfs_bandwidth;
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
269 * A weight of 0 or 1 can cause arithmetics problems.
270 * A weight of a cfs_rq is the sum of weights of which entities
271 * are queued on this cfs_rq, so a weight of a entity should not be
272 * too large, so as the shares value of a task group.
273 * (The default weight is 1024 - so there's no practical
274 * limitation from this.)
276 #define MIN_SHARES (1UL << 1)
277 #define MAX_SHARES (1UL << 18)
278 #endif
280 typedef int (*tg_visitor)(struct task_group *, void *);
282 extern int walk_tg_tree_from(struct task_group *from,
283 tg_visitor down, tg_visitor up, void *data);
286 * Iterate the full tree, calling @down when first entering a node and @up when
287 * leaving it for the final time.
289 * Caller must hold rcu_lock or sufficient equivalent.
291 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
293 return walk_tg_tree_from(&root_task_group, down, up, data);
296 extern int tg_nop(struct task_group *tg, void *data);
298 extern void free_fair_sched_group(struct task_group *tg);
299 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
300 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
301 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
302 struct sched_entity *se, int cpu,
303 struct sched_entity *parent);
304 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
305 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
307 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
308 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
309 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
311 extern void free_rt_sched_group(struct task_group *tg);
312 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
313 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
314 struct sched_rt_entity *rt_se, int cpu,
315 struct sched_rt_entity *parent);
317 extern struct task_group *sched_create_group(struct task_group *parent);
318 extern void sched_online_group(struct task_group *tg,
319 struct task_group *parent);
320 extern void sched_destroy_group(struct task_group *tg);
321 extern void sched_offline_group(struct task_group *tg);
323 extern void sched_move_task(struct task_struct *tsk);
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
327 #endif
329 #else /* CONFIG_CGROUP_SCHED */
331 struct cfs_bandwidth { };
333 #endif /* CONFIG_CGROUP_SCHED */
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 struct load_weight load;
338 unsigned int nr_running, h_nr_running;
340 u64 exec_clock;
341 u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343 u64 min_vruntime_copy;
344 #endif
346 struct rb_root tasks_timeline;
347 struct rb_node *rb_leftmost;
350 * 'curr' points to currently running entity on this cfs_rq.
351 * It is set to NULL otherwise (i.e when none are currently running).
353 struct sched_entity *curr, *next, *last, *skip;
355 #ifdef CONFIG_SCHED_DEBUG
356 unsigned int nr_spread_over;
357 #endif
359 #ifdef CONFIG_SMP
361 * CFS Load tracking
362 * Under CFS, load is tracked on a per-entity basis and aggregated up.
363 * This allows for the description of both thread and group usage (in
364 * the FAIR_GROUP_SCHED case).
366 unsigned long runnable_load_avg, blocked_load_avg;
367 atomic64_t decay_counter;
368 u64 last_decay;
369 atomic_long_t removed_load;
371 #ifdef CONFIG_FAIR_GROUP_SCHED
372 /* Required to track per-cpu representation of a task_group */
373 u32 tg_runnable_contrib;
374 unsigned long tg_load_contrib;
377 * h_load = weight * f(tg)
379 * Where f(tg) is the recursive weight fraction assigned to
380 * this group.
382 unsigned long h_load;
383 u64 last_h_load_update;
384 struct sched_entity *h_load_next;
385 #endif /* CONFIG_FAIR_GROUP_SCHED */
386 #endif /* CONFIG_SMP */
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
399 int on_list;
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
403 #ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
408 u64 throttled_clock, throttled_clock_task;
409 u64 throttled_clock_task_time;
410 int throttled, throttle_count;
411 struct list_head throttled_list;
412 #endif /* CONFIG_CFS_BANDWIDTH */
413 #endif /* CONFIG_FAIR_GROUP_SCHED */
416 static inline int rt_bandwidth_enabled(void)
418 return sysctl_sched_rt_runtime >= 0;
421 /* Real-Time classes' related field in a runqueue: */
422 struct rt_rq {
423 struct rt_prio_array active;
424 unsigned int rt_nr_running;
425 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
426 struct {
427 int curr; /* highest queued rt task prio */
428 #ifdef CONFIG_SMP
429 int next; /* next highest */
430 #endif
431 } highest_prio;
432 #endif
433 #ifdef CONFIG_SMP
434 unsigned long rt_nr_migratory;
435 unsigned long rt_nr_total;
436 int overloaded;
437 struct plist_head pushable_tasks;
438 #endif
439 int rt_queued;
441 int rt_throttled;
442 u64 rt_time;
443 u64 rt_runtime;
444 /* Nests inside the rq lock: */
445 raw_spinlock_t rt_runtime_lock;
447 #ifdef CONFIG_RT_GROUP_SCHED
448 unsigned long rt_nr_boosted;
450 struct rq *rq;
451 struct task_group *tg;
452 #endif
455 /* Deadline class' related fields in a runqueue */
456 struct dl_rq {
457 /* runqueue is an rbtree, ordered by deadline */
458 struct rb_root rb_root;
459 struct rb_node *rb_leftmost;
461 unsigned long dl_nr_running;
463 #ifdef CONFIG_SMP
465 * Deadline values of the currently executing and the
466 * earliest ready task on this rq. Caching these facilitates
467 * the decision wether or not a ready but not running task
468 * should migrate somewhere else.
470 struct {
471 u64 curr;
472 u64 next;
473 } earliest_dl;
475 unsigned long dl_nr_migratory;
476 int overloaded;
479 * Tasks on this rq that can be pushed away. They are kept in
480 * an rb-tree, ordered by tasks' deadlines, with caching
481 * of the leftmost (earliest deadline) element.
483 struct rb_root pushable_dl_tasks_root;
484 struct rb_node *pushable_dl_tasks_leftmost;
485 #else
486 struct dl_bw dl_bw;
487 #endif
490 #ifdef CONFIG_SMP
493 * We add the notion of a root-domain which will be used to define per-domain
494 * variables. Each exclusive cpuset essentially defines an island domain by
495 * fully partitioning the member cpus from any other cpuset. Whenever a new
496 * exclusive cpuset is created, we also create and attach a new root-domain
497 * object.
500 struct root_domain {
501 atomic_t refcount;
502 atomic_t rto_count;
503 struct rcu_head rcu;
504 cpumask_var_t span;
505 cpumask_var_t online;
507 /* Indicate more than one runnable task for any CPU */
508 bool overload;
511 * The bit corresponding to a CPU gets set here if such CPU has more
512 * than one runnable -deadline task (as it is below for RT tasks).
514 cpumask_var_t dlo_mask;
515 atomic_t dlo_count;
516 struct dl_bw dl_bw;
517 struct cpudl cpudl;
520 * The "RT overload" flag: it gets set if a CPU has more than
521 * one runnable RT task.
523 cpumask_var_t rto_mask;
524 struct cpupri cpupri;
527 extern struct root_domain def_root_domain;
529 #endif /* CONFIG_SMP */
532 * This is the main, per-CPU runqueue data structure.
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
538 struct rq {
539 /* runqueue lock: */
540 raw_spinlock_t lock;
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
546 unsigned int nr_running;
547 #ifdef CONFIG_NUMA_BALANCING
548 unsigned int nr_numa_running;
549 unsigned int nr_preferred_running;
550 #endif
551 #define CPU_LOAD_IDX_MAX 5
552 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553 unsigned long last_load_update_tick;
554 #ifdef CONFIG_NO_HZ_COMMON
555 u64 nohz_stamp;
556 unsigned long nohz_flags;
557 #endif
558 #ifdef CONFIG_NO_HZ_FULL
559 unsigned long last_sched_tick;
560 #endif
561 int skip_clock_update;
563 /* capture load from *all* tasks on this cpu: */
564 struct load_weight load;
565 unsigned long nr_load_updates;
566 u64 nr_switches;
568 struct cfs_rq cfs;
569 struct rt_rq rt;
570 struct dl_rq dl;
572 #ifdef CONFIG_FAIR_GROUP_SCHED
573 /* list of leaf cfs_rq on this cpu: */
574 struct list_head leaf_cfs_rq_list;
576 struct sched_avg avg;
577 #endif /* CONFIG_FAIR_GROUP_SCHED */
580 * This is part of a global counter where only the total sum
581 * over all CPUs matters. A task can increase this counter on
582 * one CPU and if it got migrated afterwards it may decrease
583 * it on another CPU. Always updated under the runqueue lock:
585 unsigned long nr_uninterruptible;
587 struct task_struct *curr, *idle, *stop;
588 unsigned long next_balance;
589 struct mm_struct *prev_mm;
591 u64 clock;
592 u64 clock_task;
594 atomic_t nr_iowait;
596 #ifdef CONFIG_SMP
597 struct root_domain *rd;
598 struct sched_domain *sd;
600 unsigned long cpu_capacity;
602 unsigned char idle_balance;
603 /* For active balancing */
604 int post_schedule;
605 int active_balance;
606 int push_cpu;
607 struct cpu_stop_work active_balance_work;
608 /* cpu of this runqueue: */
609 int cpu;
610 int online;
612 struct list_head cfs_tasks;
614 u64 rt_avg;
615 u64 age_stamp;
616 u64 idle_stamp;
617 u64 avg_idle;
619 /* This is used to determine avg_idle's max value */
620 u64 max_idle_balance_cost;
621 #endif
623 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
624 u64 prev_irq_time;
625 #endif
626 #ifdef CONFIG_PARAVIRT
627 u64 prev_steal_time;
628 #endif
629 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
630 u64 prev_steal_time_rq;
631 #endif
633 /* calc_load related fields */
634 unsigned long calc_load_update;
635 long calc_load_active;
637 #ifdef CONFIG_SCHED_HRTICK
638 #ifdef CONFIG_SMP
639 int hrtick_csd_pending;
640 struct call_single_data hrtick_csd;
641 #endif
642 struct hrtimer hrtick_timer;
643 #endif
645 #ifdef CONFIG_SCHEDSTATS
646 /* latency stats */
647 struct sched_info rq_sched_info;
648 unsigned long long rq_cpu_time;
649 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
651 /* sys_sched_yield() stats */
652 unsigned int yld_count;
654 /* schedule() stats */
655 unsigned int sched_count;
656 unsigned int sched_goidle;
658 /* try_to_wake_up() stats */
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
661 #endif
663 #ifdef CONFIG_SMP
664 struct llist_head wake_list;
665 #endif
667 #ifdef CONFIG_CPU_IDLE
668 /* Must be inspected within a rcu lock section */
669 struct cpuidle_state *idle_state;
670 #endif
673 static inline int cpu_of(struct rq *rq)
675 #ifdef CONFIG_SMP
676 return rq->cpu;
677 #else
678 return 0;
679 #endif
682 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
684 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
685 #define this_rq() this_cpu_ptr(&runqueues)
686 #define task_rq(p) cpu_rq(task_cpu(p))
687 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
688 #define raw_rq() raw_cpu_ptr(&runqueues)
690 static inline u64 rq_clock(struct rq *rq)
692 return rq->clock;
695 static inline u64 rq_clock_task(struct rq *rq)
697 return rq->clock_task;
700 #ifdef CONFIG_NUMA
701 enum numa_topology_type {
702 NUMA_DIRECT,
703 NUMA_GLUELESS_MESH,
704 NUMA_BACKPLANE,
706 extern enum numa_topology_type sched_numa_topology_type;
707 extern int sched_max_numa_distance;
708 extern bool find_numa_distance(int distance);
709 #endif
711 #ifdef CONFIG_NUMA_BALANCING
712 /* The regions in numa_faults array from task_struct */
713 enum numa_faults_stats {
714 NUMA_MEM = 0,
715 NUMA_CPU,
716 NUMA_MEMBUF,
717 NUMA_CPUBUF
719 extern void sched_setnuma(struct task_struct *p, int node);
720 extern int migrate_task_to(struct task_struct *p, int cpu);
721 extern int migrate_swap(struct task_struct *, struct task_struct *);
722 #endif /* CONFIG_NUMA_BALANCING */
724 #ifdef CONFIG_SMP
726 extern void sched_ttwu_pending(void);
728 #define rcu_dereference_check_sched_domain(p) \
729 rcu_dereference_check((p), \
730 lockdep_is_held(&sched_domains_mutex))
733 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
734 * See detach_destroy_domains: synchronize_sched for details.
736 * The domain tree of any CPU may only be accessed from within
737 * preempt-disabled sections.
739 #define for_each_domain(cpu, __sd) \
740 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
741 __sd; __sd = __sd->parent)
743 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
746 * highest_flag_domain - Return highest sched_domain containing flag.
747 * @cpu: The cpu whose highest level of sched domain is to
748 * be returned.
749 * @flag: The flag to check for the highest sched_domain
750 * for the given cpu.
752 * Returns the highest sched_domain of a cpu which contains the given flag.
754 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
756 struct sched_domain *sd, *hsd = NULL;
758 for_each_domain(cpu, sd) {
759 if (!(sd->flags & flag))
760 break;
761 hsd = sd;
764 return hsd;
767 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
769 struct sched_domain *sd;
771 for_each_domain(cpu, sd) {
772 if (sd->flags & flag)
773 break;
776 return sd;
779 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
780 DECLARE_PER_CPU(int, sd_llc_size);
781 DECLARE_PER_CPU(int, sd_llc_id);
782 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
783 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
784 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
786 struct sched_group_capacity {
787 atomic_t ref;
789 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
790 * for a single CPU.
792 unsigned int capacity, capacity_orig;
793 unsigned long next_update;
794 int imbalance; /* XXX unrelated to capacity but shared group state */
796 * Number of busy cpus in this group.
798 atomic_t nr_busy_cpus;
800 unsigned long cpumask[0]; /* iteration mask */
803 struct sched_group {
804 struct sched_group *next; /* Must be a circular list */
805 atomic_t ref;
807 unsigned int group_weight;
808 struct sched_group_capacity *sgc;
811 * The CPUs this group covers.
813 * NOTE: this field is variable length. (Allocated dynamically
814 * by attaching extra space to the end of the structure,
815 * depending on how many CPUs the kernel has booted up with)
817 unsigned long cpumask[0];
820 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
822 return to_cpumask(sg->cpumask);
826 * cpumask masking which cpus in the group are allowed to iterate up the domain
827 * tree.
829 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
831 return to_cpumask(sg->sgc->cpumask);
835 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
836 * @group: The group whose first cpu is to be returned.
838 static inline unsigned int group_first_cpu(struct sched_group *group)
840 return cpumask_first(sched_group_cpus(group));
843 extern int group_balance_cpu(struct sched_group *sg);
845 #else
847 static inline void sched_ttwu_pending(void) { }
849 #endif /* CONFIG_SMP */
851 #include "stats.h"
852 #include "auto_group.h"
854 #ifdef CONFIG_CGROUP_SCHED
857 * Return the group to which this tasks belongs.
859 * We cannot use task_css() and friends because the cgroup subsystem
860 * changes that value before the cgroup_subsys::attach() method is called,
861 * therefore we cannot pin it and might observe the wrong value.
863 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
864 * core changes this before calling sched_move_task().
866 * Instead we use a 'copy' which is updated from sched_move_task() while
867 * holding both task_struct::pi_lock and rq::lock.
869 static inline struct task_group *task_group(struct task_struct *p)
871 return p->sched_task_group;
874 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
875 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
877 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
878 struct task_group *tg = task_group(p);
879 #endif
881 #ifdef CONFIG_FAIR_GROUP_SCHED
882 p->se.cfs_rq = tg->cfs_rq[cpu];
883 p->se.parent = tg->se[cpu];
884 #endif
886 #ifdef CONFIG_RT_GROUP_SCHED
887 p->rt.rt_rq = tg->rt_rq[cpu];
888 p->rt.parent = tg->rt_se[cpu];
889 #endif
892 #else /* CONFIG_CGROUP_SCHED */
894 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
895 static inline struct task_group *task_group(struct task_struct *p)
897 return NULL;
900 #endif /* CONFIG_CGROUP_SCHED */
902 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
904 set_task_rq(p, cpu);
905 #ifdef CONFIG_SMP
907 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
908 * successfuly executed on another CPU. We must ensure that updates of
909 * per-task data have been completed by this moment.
911 smp_wmb();
912 task_thread_info(p)->cpu = cpu;
913 p->wake_cpu = cpu;
914 #endif
918 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
920 #ifdef CONFIG_SCHED_DEBUG
921 # include <linux/static_key.h>
922 # define const_debug __read_mostly
923 #else
924 # define const_debug const
925 #endif
927 extern const_debug unsigned int sysctl_sched_features;
929 #define SCHED_FEAT(name, enabled) \
930 __SCHED_FEAT_##name ,
932 enum {
933 #include "features.h"
934 __SCHED_FEAT_NR,
937 #undef SCHED_FEAT
939 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
940 #define SCHED_FEAT(name, enabled) \
941 static __always_inline bool static_branch_##name(struct static_key *key) \
943 return static_key_##enabled(key); \
946 #include "features.h"
948 #undef SCHED_FEAT
950 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
951 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
952 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
953 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
954 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
956 #ifdef CONFIG_NUMA_BALANCING
957 #define sched_feat_numa(x) sched_feat(x)
958 #ifdef CONFIG_SCHED_DEBUG
959 #define numabalancing_enabled sched_feat_numa(NUMA)
960 #else
961 extern bool numabalancing_enabled;
962 #endif /* CONFIG_SCHED_DEBUG */
963 #else
964 #define sched_feat_numa(x) (0)
965 #define numabalancing_enabled (0)
966 #endif /* CONFIG_NUMA_BALANCING */
968 static inline u64 global_rt_period(void)
970 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
973 static inline u64 global_rt_runtime(void)
975 if (sysctl_sched_rt_runtime < 0)
976 return RUNTIME_INF;
978 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
981 static inline int task_current(struct rq *rq, struct task_struct *p)
983 return rq->curr == p;
986 static inline int task_running(struct rq *rq, struct task_struct *p)
988 #ifdef CONFIG_SMP
989 return p->on_cpu;
990 #else
991 return task_current(rq, p);
992 #endif
995 static inline int task_on_rq_queued(struct task_struct *p)
997 return p->on_rq == TASK_ON_RQ_QUEUED;
1000 static inline int task_on_rq_migrating(struct task_struct *p)
1002 return p->on_rq == TASK_ON_RQ_MIGRATING;
1005 #ifndef prepare_arch_switch
1006 # define prepare_arch_switch(next) do { } while (0)
1007 #endif
1008 #ifndef finish_arch_switch
1009 # define finish_arch_switch(prev) do { } while (0)
1010 #endif
1011 #ifndef finish_arch_post_lock_switch
1012 # define finish_arch_post_lock_switch() do { } while (0)
1013 #endif
1015 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1017 #ifdef CONFIG_SMP
1019 * We can optimise this out completely for !SMP, because the
1020 * SMP rebalancing from interrupt is the only thing that cares
1021 * here.
1023 next->on_cpu = 1;
1024 #endif
1027 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1029 #ifdef CONFIG_SMP
1031 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1032 * We must ensure this doesn't happen until the switch is completely
1033 * finished.
1035 smp_wmb();
1036 prev->on_cpu = 0;
1037 #endif
1038 #ifdef CONFIG_DEBUG_SPINLOCK
1039 /* this is a valid case when another task releases the spinlock */
1040 rq->lock.owner = current;
1041 #endif
1043 * If we are tracking spinlock dependencies then we have to
1044 * fix up the runqueue lock - which gets 'carried over' from
1045 * prev into current:
1047 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1049 raw_spin_unlock_irq(&rq->lock);
1053 * wake flags
1055 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1056 #define WF_FORK 0x02 /* child wakeup after fork */
1057 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1060 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1061 * of tasks with abnormal "nice" values across CPUs the contribution that
1062 * each task makes to its run queue's load is weighted according to its
1063 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1064 * scaled version of the new time slice allocation that they receive on time
1065 * slice expiry etc.
1068 #define WEIGHT_IDLEPRIO 3
1069 #define WMULT_IDLEPRIO 1431655765
1072 * Nice levels are multiplicative, with a gentle 10% change for every
1073 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1074 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1075 * that remained on nice 0.
1077 * The "10% effect" is relative and cumulative: from _any_ nice level,
1078 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1079 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1080 * If a task goes up by ~10% and another task goes down by ~10% then
1081 * the relative distance between them is ~25%.)
1083 static const int prio_to_weight[40] = {
1084 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1085 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1086 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1087 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1088 /* 0 */ 1024, 820, 655, 526, 423,
1089 /* 5 */ 335, 272, 215, 172, 137,
1090 /* 10 */ 110, 87, 70, 56, 45,
1091 /* 15 */ 36, 29, 23, 18, 15,
1095 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1097 * In cases where the weight does not change often, we can use the
1098 * precalculated inverse to speed up arithmetics by turning divisions
1099 * into multiplications:
1101 static const u32 prio_to_wmult[40] = {
1102 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1103 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1104 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1105 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1106 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1107 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1108 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1109 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1112 #define ENQUEUE_WAKEUP 1
1113 #define ENQUEUE_HEAD 2
1114 #ifdef CONFIG_SMP
1115 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1116 #else
1117 #define ENQUEUE_WAKING 0
1118 #endif
1119 #define ENQUEUE_REPLENISH 8
1121 #define DEQUEUE_SLEEP 1
1123 #define RETRY_TASK ((void *)-1UL)
1125 struct sched_class {
1126 const struct sched_class *next;
1128 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1129 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1130 void (*yield_task) (struct rq *rq);
1131 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1133 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1136 * It is the responsibility of the pick_next_task() method that will
1137 * return the next task to call put_prev_task() on the @prev task or
1138 * something equivalent.
1140 * May return RETRY_TASK when it finds a higher prio class has runnable
1141 * tasks.
1143 struct task_struct * (*pick_next_task) (struct rq *rq,
1144 struct task_struct *prev);
1145 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1147 #ifdef CONFIG_SMP
1148 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1149 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1151 void (*post_schedule) (struct rq *this_rq);
1152 void (*task_waking) (struct task_struct *task);
1153 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1155 void (*set_cpus_allowed)(struct task_struct *p,
1156 const struct cpumask *newmask);
1158 void (*rq_online)(struct rq *rq);
1159 void (*rq_offline)(struct rq *rq);
1160 #endif
1162 void (*set_curr_task) (struct rq *rq);
1163 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1164 void (*task_fork) (struct task_struct *p);
1165 void (*task_dead) (struct task_struct *p);
1168 * The switched_from() call is allowed to drop rq->lock, therefore we
1169 * cannot assume the switched_from/switched_to pair is serliazed by
1170 * rq->lock. They are however serialized by p->pi_lock.
1172 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1173 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1174 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1175 int oldprio);
1177 unsigned int (*get_rr_interval) (struct rq *rq,
1178 struct task_struct *task);
1180 void (*update_curr) (struct rq *rq);
1182 #ifdef CONFIG_FAIR_GROUP_SCHED
1183 void (*task_move_group) (struct task_struct *p, int on_rq);
1184 #endif
1187 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1189 prev->sched_class->put_prev_task(rq, prev);
1192 #define sched_class_highest (&stop_sched_class)
1193 #define for_each_class(class) \
1194 for (class = sched_class_highest; class; class = class->next)
1196 extern const struct sched_class stop_sched_class;
1197 extern const struct sched_class dl_sched_class;
1198 extern const struct sched_class rt_sched_class;
1199 extern const struct sched_class fair_sched_class;
1200 extern const struct sched_class idle_sched_class;
1203 #ifdef CONFIG_SMP
1205 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1207 extern void trigger_load_balance(struct rq *rq);
1209 extern void idle_enter_fair(struct rq *this_rq);
1210 extern void idle_exit_fair(struct rq *this_rq);
1212 #else
1214 static inline void idle_enter_fair(struct rq *rq) { }
1215 static inline void idle_exit_fair(struct rq *rq) { }
1217 #endif
1219 #ifdef CONFIG_CPU_IDLE
1220 static inline void idle_set_state(struct rq *rq,
1221 struct cpuidle_state *idle_state)
1223 rq->idle_state = idle_state;
1226 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1228 WARN_ON(!rcu_read_lock_held());
1229 return rq->idle_state;
1231 #else
1232 static inline void idle_set_state(struct rq *rq,
1233 struct cpuidle_state *idle_state)
1237 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1239 return NULL;
1241 #endif
1243 extern void sysrq_sched_debug_show(void);
1244 extern void sched_init_granularity(void);
1245 extern void update_max_interval(void);
1247 extern void init_sched_dl_class(void);
1248 extern void init_sched_rt_class(void);
1249 extern void init_sched_fair_class(void);
1250 extern void init_sched_dl_class(void);
1252 extern void resched_curr(struct rq *rq);
1253 extern void resched_cpu(int cpu);
1255 extern struct rt_bandwidth def_rt_bandwidth;
1256 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1258 extern struct dl_bandwidth def_dl_bandwidth;
1259 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1260 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1262 unsigned long to_ratio(u64 period, u64 runtime);
1264 extern void update_idle_cpu_load(struct rq *this_rq);
1266 extern void init_task_runnable_average(struct task_struct *p);
1268 static inline void add_nr_running(struct rq *rq, unsigned count)
1270 unsigned prev_nr = rq->nr_running;
1272 rq->nr_running = prev_nr + count;
1274 if (prev_nr < 2 && rq->nr_running >= 2) {
1275 #ifdef CONFIG_SMP
1276 if (!rq->rd->overload)
1277 rq->rd->overload = true;
1278 #endif
1280 #ifdef CONFIG_NO_HZ_FULL
1281 if (tick_nohz_full_cpu(rq->cpu)) {
1283 * Tick is needed if more than one task runs on a CPU.
1284 * Send the target an IPI to kick it out of nohz mode.
1286 * We assume that IPI implies full memory barrier and the
1287 * new value of rq->nr_running is visible on reception
1288 * from the target.
1290 tick_nohz_full_kick_cpu(rq->cpu);
1292 #endif
1296 static inline void sub_nr_running(struct rq *rq, unsigned count)
1298 rq->nr_running -= count;
1301 static inline void rq_last_tick_reset(struct rq *rq)
1303 #ifdef CONFIG_NO_HZ_FULL
1304 rq->last_sched_tick = jiffies;
1305 #endif
1308 extern void update_rq_clock(struct rq *rq);
1310 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1311 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1313 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1315 extern const_debug unsigned int sysctl_sched_time_avg;
1316 extern const_debug unsigned int sysctl_sched_nr_migrate;
1317 extern const_debug unsigned int sysctl_sched_migration_cost;
1319 static inline u64 sched_avg_period(void)
1321 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1324 #ifdef CONFIG_SCHED_HRTICK
1327 * Use hrtick when:
1328 * - enabled by features
1329 * - hrtimer is actually high res
1331 static inline int hrtick_enabled(struct rq *rq)
1333 if (!sched_feat(HRTICK))
1334 return 0;
1335 if (!cpu_active(cpu_of(rq)))
1336 return 0;
1337 return hrtimer_is_hres_active(&rq->hrtick_timer);
1340 void hrtick_start(struct rq *rq, u64 delay);
1342 #else
1344 static inline int hrtick_enabled(struct rq *rq)
1346 return 0;
1349 #endif /* CONFIG_SCHED_HRTICK */
1351 #ifdef CONFIG_SMP
1352 extern void sched_avg_update(struct rq *rq);
1353 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1355 rq->rt_avg += rt_delta;
1356 sched_avg_update(rq);
1358 #else
1359 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1360 static inline void sched_avg_update(struct rq *rq) { }
1361 #endif
1363 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1365 #ifdef CONFIG_SMP
1366 #ifdef CONFIG_PREEMPT
1368 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1371 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1372 * way at the expense of forcing extra atomic operations in all
1373 * invocations. This assures that the double_lock is acquired using the
1374 * same underlying policy as the spinlock_t on this architecture, which
1375 * reduces latency compared to the unfair variant below. However, it
1376 * also adds more overhead and therefore may reduce throughput.
1378 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1379 __releases(this_rq->lock)
1380 __acquires(busiest->lock)
1381 __acquires(this_rq->lock)
1383 raw_spin_unlock(&this_rq->lock);
1384 double_rq_lock(this_rq, busiest);
1386 return 1;
1389 #else
1391 * Unfair double_lock_balance: Optimizes throughput at the expense of
1392 * latency by eliminating extra atomic operations when the locks are
1393 * already in proper order on entry. This favors lower cpu-ids and will
1394 * grant the double lock to lower cpus over higher ids under contention,
1395 * regardless of entry order into the function.
1397 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1398 __releases(this_rq->lock)
1399 __acquires(busiest->lock)
1400 __acquires(this_rq->lock)
1402 int ret = 0;
1404 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1405 if (busiest < this_rq) {
1406 raw_spin_unlock(&this_rq->lock);
1407 raw_spin_lock(&busiest->lock);
1408 raw_spin_lock_nested(&this_rq->lock,
1409 SINGLE_DEPTH_NESTING);
1410 ret = 1;
1411 } else
1412 raw_spin_lock_nested(&busiest->lock,
1413 SINGLE_DEPTH_NESTING);
1415 return ret;
1418 #endif /* CONFIG_PREEMPT */
1421 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1423 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1425 if (unlikely(!irqs_disabled())) {
1426 /* printk() doesn't work good under rq->lock */
1427 raw_spin_unlock(&this_rq->lock);
1428 BUG_ON(1);
1431 return _double_lock_balance(this_rq, busiest);
1434 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1435 __releases(busiest->lock)
1437 raw_spin_unlock(&busiest->lock);
1438 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1441 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1443 if (l1 > l2)
1444 swap(l1, l2);
1446 spin_lock(l1);
1447 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1450 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1452 if (l1 > l2)
1453 swap(l1, l2);
1455 spin_lock_irq(l1);
1456 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1459 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1461 if (l1 > l2)
1462 swap(l1, l2);
1464 raw_spin_lock(l1);
1465 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1469 * double_rq_lock - safely lock two runqueues
1471 * Note this does not disable interrupts like task_rq_lock,
1472 * you need to do so manually before calling.
1474 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1475 __acquires(rq1->lock)
1476 __acquires(rq2->lock)
1478 BUG_ON(!irqs_disabled());
1479 if (rq1 == rq2) {
1480 raw_spin_lock(&rq1->lock);
1481 __acquire(rq2->lock); /* Fake it out ;) */
1482 } else {
1483 if (rq1 < rq2) {
1484 raw_spin_lock(&rq1->lock);
1485 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1486 } else {
1487 raw_spin_lock(&rq2->lock);
1488 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1494 * double_rq_unlock - safely unlock two runqueues
1496 * Note this does not restore interrupts like task_rq_unlock,
1497 * you need to do so manually after calling.
1499 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1500 __releases(rq1->lock)
1501 __releases(rq2->lock)
1503 raw_spin_unlock(&rq1->lock);
1504 if (rq1 != rq2)
1505 raw_spin_unlock(&rq2->lock);
1506 else
1507 __release(rq2->lock);
1510 #else /* CONFIG_SMP */
1513 * double_rq_lock - safely lock two runqueues
1515 * Note this does not disable interrupts like task_rq_lock,
1516 * you need to do so manually before calling.
1518 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1519 __acquires(rq1->lock)
1520 __acquires(rq2->lock)
1522 BUG_ON(!irqs_disabled());
1523 BUG_ON(rq1 != rq2);
1524 raw_spin_lock(&rq1->lock);
1525 __acquire(rq2->lock); /* Fake it out ;) */
1529 * double_rq_unlock - safely unlock two runqueues
1531 * Note this does not restore interrupts like task_rq_unlock,
1532 * you need to do so manually after calling.
1534 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1535 __releases(rq1->lock)
1536 __releases(rq2->lock)
1538 BUG_ON(rq1 != rq2);
1539 raw_spin_unlock(&rq1->lock);
1540 __release(rq2->lock);
1543 #endif
1545 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1546 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1547 extern void print_cfs_stats(struct seq_file *m, int cpu);
1548 extern void print_rt_stats(struct seq_file *m, int cpu);
1549 extern void print_dl_stats(struct seq_file *m, int cpu);
1551 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1552 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1553 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1555 extern void cfs_bandwidth_usage_inc(void);
1556 extern void cfs_bandwidth_usage_dec(void);
1558 #ifdef CONFIG_NO_HZ_COMMON
1559 enum rq_nohz_flag_bits {
1560 NOHZ_TICK_STOPPED,
1561 NOHZ_BALANCE_KICK,
1564 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1565 #endif
1567 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1569 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1570 DECLARE_PER_CPU(u64, cpu_softirq_time);
1572 #ifndef CONFIG_64BIT
1573 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1575 static inline void irq_time_write_begin(void)
1577 __this_cpu_inc(irq_time_seq.sequence);
1578 smp_wmb();
1581 static inline void irq_time_write_end(void)
1583 smp_wmb();
1584 __this_cpu_inc(irq_time_seq.sequence);
1587 static inline u64 irq_time_read(int cpu)
1589 u64 irq_time;
1590 unsigned seq;
1592 do {
1593 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1594 irq_time = per_cpu(cpu_softirq_time, cpu) +
1595 per_cpu(cpu_hardirq_time, cpu);
1596 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1598 return irq_time;
1600 #else /* CONFIG_64BIT */
1601 static inline void irq_time_write_begin(void)
1605 static inline void irq_time_write_end(void)
1609 static inline u64 irq_time_read(int cpu)
1611 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1613 #endif /* CONFIG_64BIT */
1614 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */