dm mpath: simplify failure path of dm_multipath_init()
[linux-2.6/btrfs-unstable.git] / block / blk-mq.c
blobeb8e694fda0655cd9fb858c268336fb5a58f0e68
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 unsigned int i;
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
48 return false;
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 static int blk_mq_queue_enter(struct request_queue *q)
82 while (true) {
83 int ret;
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
97 static void blk_mq_queue_exit(struct request_queue *q)
99 percpu_ref_put(&q->mq_usage_counter);
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
107 wake_up_all(&q->mq_freeze_wq);
110 void blk_mq_freeze_queue_start(struct request_queue *q)
112 bool freeze;
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
131 * Guarantee no request is in use, so we can change any data structure of
132 * the queue afterward.
134 void blk_mq_freeze_queue(struct request_queue *q)
136 blk_mq_freeze_queue_start(q);
137 blk_mq_freeze_queue_wait(q);
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141 void blk_mq_unfreeze_queue(struct request_queue *q)
143 bool wake;
145 spin_lock_irq(q->queue_lock);
146 wake = !--q->mq_freeze_depth;
147 WARN_ON_ONCE(q->mq_freeze_depth < 0);
148 spin_unlock_irq(q->queue_lock);
149 if (wake) {
150 percpu_ref_reinit(&q->mq_usage_counter);
151 wake_up_all(&q->mq_freeze_wq);
154 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156 void blk_mq_wake_waiters(struct request_queue *q)
158 struct blk_mq_hw_ctx *hctx;
159 unsigned int i;
161 queue_for_each_hw_ctx(q, hctx, i)
162 if (blk_mq_hw_queue_mapped(hctx))
163 blk_mq_tag_wakeup_all(hctx->tags, true);
166 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 return blk_mq_has_free_tags(hctx->tags);
170 EXPORT_SYMBOL(blk_mq_can_queue);
172 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
173 struct request *rq, unsigned int rw_flags)
175 if (blk_queue_io_stat(q))
176 rw_flags |= REQ_IO_STAT;
178 INIT_LIST_HEAD(&rq->queuelist);
179 /* csd/requeue_work/fifo_time is initialized before use */
180 rq->q = q;
181 rq->mq_ctx = ctx;
182 rq->cmd_flags |= rw_flags;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
203 rq->cmd = rq->__cmd;
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
210 INIT_LIST_HEAD(&rq->timeout_list);
211 rq->timeout = 0;
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
217 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
220 static struct request *
221 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
223 struct request *rq;
224 unsigned int tag;
226 tag = blk_mq_get_tag(data);
227 if (tag != BLK_MQ_TAG_FAIL) {
228 rq = data->hctx->tags->rqs[tag];
230 if (blk_mq_tag_busy(data->hctx)) {
231 rq->cmd_flags = REQ_MQ_INFLIGHT;
232 atomic_inc(&data->hctx->nr_active);
235 rq->tag = tag;
236 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
237 return rq;
240 return NULL;
243 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
244 bool reserved)
246 struct blk_mq_ctx *ctx;
247 struct blk_mq_hw_ctx *hctx;
248 struct request *rq;
249 struct blk_mq_alloc_data alloc_data;
250 int ret;
252 ret = blk_mq_queue_enter(q);
253 if (ret)
254 return ERR_PTR(ret);
256 ctx = blk_mq_get_ctx(q);
257 hctx = q->mq_ops->map_queue(q, ctx->cpu);
258 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
259 reserved, ctx, hctx);
261 rq = __blk_mq_alloc_request(&alloc_data, rw);
262 if (!rq && (gfp & __GFP_WAIT)) {
263 __blk_mq_run_hw_queue(hctx);
264 blk_mq_put_ctx(ctx);
266 ctx = blk_mq_get_ctx(q);
267 hctx = q->mq_ops->map_queue(q, ctx->cpu);
268 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
269 hctx);
270 rq = __blk_mq_alloc_request(&alloc_data, rw);
271 ctx = alloc_data.ctx;
273 blk_mq_put_ctx(ctx);
274 if (!rq) {
275 blk_mq_queue_exit(q);
276 return ERR_PTR(-EWOULDBLOCK);
278 return rq;
280 EXPORT_SYMBOL(blk_mq_alloc_request);
282 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
283 struct blk_mq_ctx *ctx, struct request *rq)
285 const int tag = rq->tag;
286 struct request_queue *q = rq->q;
288 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
289 atomic_dec(&hctx->nr_active);
290 rq->cmd_flags = 0;
292 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
293 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
294 blk_mq_queue_exit(q);
297 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
299 struct blk_mq_ctx *ctx = rq->mq_ctx;
301 ctx->rq_completed[rq_is_sync(rq)]++;
302 __blk_mq_free_request(hctx, ctx, rq);
305 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
307 void blk_mq_free_request(struct request *rq)
309 struct blk_mq_hw_ctx *hctx;
310 struct request_queue *q = rq->q;
312 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
313 blk_mq_free_hctx_request(hctx, rq);
315 EXPORT_SYMBOL_GPL(blk_mq_free_request);
317 inline void __blk_mq_end_request(struct request *rq, int error)
319 blk_account_io_done(rq);
321 if (rq->end_io) {
322 rq->end_io(rq, error);
323 } else {
324 if (unlikely(blk_bidi_rq(rq)))
325 blk_mq_free_request(rq->next_rq);
326 blk_mq_free_request(rq);
329 EXPORT_SYMBOL(__blk_mq_end_request);
331 void blk_mq_end_request(struct request *rq, int error)
333 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
334 BUG();
335 __blk_mq_end_request(rq, error);
337 EXPORT_SYMBOL(blk_mq_end_request);
339 static void __blk_mq_complete_request_remote(void *data)
341 struct request *rq = data;
343 rq->q->softirq_done_fn(rq);
346 static void blk_mq_ipi_complete_request(struct request *rq)
348 struct blk_mq_ctx *ctx = rq->mq_ctx;
349 bool shared = false;
350 int cpu;
352 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
353 rq->q->softirq_done_fn(rq);
354 return;
357 cpu = get_cpu();
358 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
359 shared = cpus_share_cache(cpu, ctx->cpu);
361 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
362 rq->csd.func = __blk_mq_complete_request_remote;
363 rq->csd.info = rq;
364 rq->csd.flags = 0;
365 smp_call_function_single_async(ctx->cpu, &rq->csd);
366 } else {
367 rq->q->softirq_done_fn(rq);
369 put_cpu();
372 void __blk_mq_complete_request(struct request *rq)
374 struct request_queue *q = rq->q;
376 if (!q->softirq_done_fn)
377 blk_mq_end_request(rq, rq->errors);
378 else
379 blk_mq_ipi_complete_request(rq);
383 * blk_mq_complete_request - end I/O on a request
384 * @rq: the request being processed
386 * Description:
387 * Ends all I/O on a request. It does not handle partial completions.
388 * The actual completion happens out-of-order, through a IPI handler.
390 void blk_mq_complete_request(struct request *rq)
392 struct request_queue *q = rq->q;
394 if (unlikely(blk_should_fake_timeout(q)))
395 return;
396 if (!blk_mark_rq_complete(rq))
397 __blk_mq_complete_request(rq);
399 EXPORT_SYMBOL(blk_mq_complete_request);
401 void blk_mq_start_request(struct request *rq)
403 struct request_queue *q = rq->q;
405 trace_block_rq_issue(q, rq);
407 rq->resid_len = blk_rq_bytes(rq);
408 if (unlikely(blk_bidi_rq(rq)))
409 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
411 blk_add_timer(rq);
414 * Ensure that ->deadline is visible before set the started
415 * flag and clear the completed flag.
417 smp_mb__before_atomic();
420 * Mark us as started and clear complete. Complete might have been
421 * set if requeue raced with timeout, which then marked it as
422 * complete. So be sure to clear complete again when we start
423 * the request, otherwise we'll ignore the completion event.
425 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
426 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
427 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
428 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
430 if (q->dma_drain_size && blk_rq_bytes(rq)) {
432 * Make sure space for the drain appears. We know we can do
433 * this because max_hw_segments has been adjusted to be one
434 * fewer than the device can handle.
436 rq->nr_phys_segments++;
439 EXPORT_SYMBOL(blk_mq_start_request);
441 static void __blk_mq_requeue_request(struct request *rq)
443 struct request_queue *q = rq->q;
445 trace_block_rq_requeue(q, rq);
447 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
448 if (q->dma_drain_size && blk_rq_bytes(rq))
449 rq->nr_phys_segments--;
453 void blk_mq_requeue_request(struct request *rq)
455 __blk_mq_requeue_request(rq);
457 BUG_ON(blk_queued_rq(rq));
458 blk_mq_add_to_requeue_list(rq, true);
460 EXPORT_SYMBOL(blk_mq_requeue_request);
462 static void blk_mq_requeue_work(struct work_struct *work)
464 struct request_queue *q =
465 container_of(work, struct request_queue, requeue_work);
466 LIST_HEAD(rq_list);
467 struct request *rq, *next;
468 unsigned long flags;
470 spin_lock_irqsave(&q->requeue_lock, flags);
471 list_splice_init(&q->requeue_list, &rq_list);
472 spin_unlock_irqrestore(&q->requeue_lock, flags);
474 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
475 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
476 continue;
478 rq->cmd_flags &= ~REQ_SOFTBARRIER;
479 list_del_init(&rq->queuelist);
480 blk_mq_insert_request(rq, true, false, false);
483 while (!list_empty(&rq_list)) {
484 rq = list_entry(rq_list.next, struct request, queuelist);
485 list_del_init(&rq->queuelist);
486 blk_mq_insert_request(rq, false, false, false);
490 * Use the start variant of queue running here, so that running
491 * the requeue work will kick stopped queues.
493 blk_mq_start_hw_queues(q);
496 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
498 struct request_queue *q = rq->q;
499 unsigned long flags;
502 * We abuse this flag that is otherwise used by the I/O scheduler to
503 * request head insertation from the workqueue.
505 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
507 spin_lock_irqsave(&q->requeue_lock, flags);
508 if (at_head) {
509 rq->cmd_flags |= REQ_SOFTBARRIER;
510 list_add(&rq->queuelist, &q->requeue_list);
511 } else {
512 list_add_tail(&rq->queuelist, &q->requeue_list);
514 spin_unlock_irqrestore(&q->requeue_lock, flags);
516 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
518 void blk_mq_kick_requeue_list(struct request_queue *q)
520 kblockd_schedule_work(&q->requeue_work);
522 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
524 static inline bool is_flush_request(struct request *rq,
525 struct blk_flush_queue *fq, unsigned int tag)
527 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
528 fq->flush_rq->tag == tag);
531 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
533 struct request *rq = tags->rqs[tag];
534 /* mq_ctx of flush rq is always cloned from the corresponding req */
535 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
537 if (!is_flush_request(rq, fq, tag))
538 return rq;
540 return fq->flush_rq;
542 EXPORT_SYMBOL(blk_mq_tag_to_rq);
544 struct blk_mq_timeout_data {
545 unsigned long next;
546 unsigned int next_set;
549 void blk_mq_rq_timed_out(struct request *req, bool reserved)
551 struct blk_mq_ops *ops = req->q->mq_ops;
552 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
555 * We know that complete is set at this point. If STARTED isn't set
556 * anymore, then the request isn't active and the "timeout" should
557 * just be ignored. This can happen due to the bitflag ordering.
558 * Timeout first checks if STARTED is set, and if it is, assumes
559 * the request is active. But if we race with completion, then
560 * we both flags will get cleared. So check here again, and ignore
561 * a timeout event with a request that isn't active.
563 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
564 return;
566 if (ops->timeout)
567 ret = ops->timeout(req, reserved);
569 switch (ret) {
570 case BLK_EH_HANDLED:
571 __blk_mq_complete_request(req);
572 break;
573 case BLK_EH_RESET_TIMER:
574 blk_add_timer(req);
575 blk_clear_rq_complete(req);
576 break;
577 case BLK_EH_NOT_HANDLED:
578 break;
579 default:
580 printk(KERN_ERR "block: bad eh return: %d\n", ret);
581 break;
585 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
586 struct request *rq, void *priv, bool reserved)
588 struct blk_mq_timeout_data *data = priv;
590 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
591 return;
593 if (time_after_eq(jiffies, rq->deadline)) {
594 if (!blk_mark_rq_complete(rq))
595 blk_mq_rq_timed_out(rq, reserved);
596 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
597 data->next = rq->deadline;
598 data->next_set = 1;
602 static void blk_mq_rq_timer(unsigned long priv)
604 struct request_queue *q = (struct request_queue *)priv;
605 struct blk_mq_timeout_data data = {
606 .next = 0,
607 .next_set = 0,
609 struct blk_mq_hw_ctx *hctx;
610 int i;
612 queue_for_each_hw_ctx(q, hctx, i) {
614 * If not software queues are currently mapped to this
615 * hardware queue, there's nothing to check
617 if (!blk_mq_hw_queue_mapped(hctx))
618 continue;
620 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
623 if (data.next_set) {
624 data.next = blk_rq_timeout(round_jiffies_up(data.next));
625 mod_timer(&q->timeout, data.next);
626 } else {
627 queue_for_each_hw_ctx(q, hctx, i)
628 blk_mq_tag_idle(hctx);
633 * Reverse check our software queue for entries that we could potentially
634 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
635 * too much time checking for merges.
637 static bool blk_mq_attempt_merge(struct request_queue *q,
638 struct blk_mq_ctx *ctx, struct bio *bio)
640 struct request *rq;
641 int checked = 8;
643 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
644 int el_ret;
646 if (!checked--)
647 break;
649 if (!blk_rq_merge_ok(rq, bio))
650 continue;
652 el_ret = blk_try_merge(rq, bio);
653 if (el_ret == ELEVATOR_BACK_MERGE) {
654 if (bio_attempt_back_merge(q, rq, bio)) {
655 ctx->rq_merged++;
656 return true;
658 break;
659 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
660 if (bio_attempt_front_merge(q, rq, bio)) {
661 ctx->rq_merged++;
662 return true;
664 break;
668 return false;
672 * Process software queues that have been marked busy, splicing them
673 * to the for-dispatch
675 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
677 struct blk_mq_ctx *ctx;
678 int i;
680 for (i = 0; i < hctx->ctx_map.map_size; i++) {
681 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
682 unsigned int off, bit;
684 if (!bm->word)
685 continue;
687 bit = 0;
688 off = i * hctx->ctx_map.bits_per_word;
689 do {
690 bit = find_next_bit(&bm->word, bm->depth, bit);
691 if (bit >= bm->depth)
692 break;
694 ctx = hctx->ctxs[bit + off];
695 clear_bit(bit, &bm->word);
696 spin_lock(&ctx->lock);
697 list_splice_tail_init(&ctx->rq_list, list);
698 spin_unlock(&ctx->lock);
700 bit++;
701 } while (1);
706 * Run this hardware queue, pulling any software queues mapped to it in.
707 * Note that this function currently has various problems around ordering
708 * of IO. In particular, we'd like FIFO behaviour on handling existing
709 * items on the hctx->dispatch list. Ignore that for now.
711 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
713 struct request_queue *q = hctx->queue;
714 struct request *rq;
715 LIST_HEAD(rq_list);
716 LIST_HEAD(driver_list);
717 struct list_head *dptr;
718 int queued;
720 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
722 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
723 return;
725 hctx->run++;
728 * Touch any software queue that has pending entries.
730 flush_busy_ctxs(hctx, &rq_list);
733 * If we have previous entries on our dispatch list, grab them
734 * and stuff them at the front for more fair dispatch.
736 if (!list_empty_careful(&hctx->dispatch)) {
737 spin_lock(&hctx->lock);
738 if (!list_empty(&hctx->dispatch))
739 list_splice_init(&hctx->dispatch, &rq_list);
740 spin_unlock(&hctx->lock);
744 * Start off with dptr being NULL, so we start the first request
745 * immediately, even if we have more pending.
747 dptr = NULL;
750 * Now process all the entries, sending them to the driver.
752 queued = 0;
753 while (!list_empty(&rq_list)) {
754 struct blk_mq_queue_data bd;
755 int ret;
757 rq = list_first_entry(&rq_list, struct request, queuelist);
758 list_del_init(&rq->queuelist);
760 bd.rq = rq;
761 bd.list = dptr;
762 bd.last = list_empty(&rq_list);
764 ret = q->mq_ops->queue_rq(hctx, &bd);
765 switch (ret) {
766 case BLK_MQ_RQ_QUEUE_OK:
767 queued++;
768 continue;
769 case BLK_MQ_RQ_QUEUE_BUSY:
770 list_add(&rq->queuelist, &rq_list);
771 __blk_mq_requeue_request(rq);
772 break;
773 default:
774 pr_err("blk-mq: bad return on queue: %d\n", ret);
775 case BLK_MQ_RQ_QUEUE_ERROR:
776 rq->errors = -EIO;
777 blk_mq_end_request(rq, rq->errors);
778 break;
781 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
782 break;
785 * We've done the first request. If we have more than 1
786 * left in the list, set dptr to defer issue.
788 if (!dptr && rq_list.next != rq_list.prev)
789 dptr = &driver_list;
792 if (!queued)
793 hctx->dispatched[0]++;
794 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
795 hctx->dispatched[ilog2(queued) + 1]++;
798 * Any items that need requeuing? Stuff them into hctx->dispatch,
799 * that is where we will continue on next queue run.
801 if (!list_empty(&rq_list)) {
802 spin_lock(&hctx->lock);
803 list_splice(&rq_list, &hctx->dispatch);
804 spin_unlock(&hctx->lock);
809 * It'd be great if the workqueue API had a way to pass
810 * in a mask and had some smarts for more clever placement.
811 * For now we just round-robin here, switching for every
812 * BLK_MQ_CPU_WORK_BATCH queued items.
814 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
816 if (hctx->queue->nr_hw_queues == 1)
817 return WORK_CPU_UNBOUND;
819 if (--hctx->next_cpu_batch <= 0) {
820 int cpu = hctx->next_cpu, next_cpu;
822 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
823 if (next_cpu >= nr_cpu_ids)
824 next_cpu = cpumask_first(hctx->cpumask);
826 hctx->next_cpu = next_cpu;
827 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
829 return cpu;
832 return hctx->next_cpu;
835 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
837 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
838 !blk_mq_hw_queue_mapped(hctx)))
839 return;
841 if (!async) {
842 int cpu = get_cpu();
843 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
844 __blk_mq_run_hw_queue(hctx);
845 put_cpu();
846 return;
849 put_cpu();
852 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
853 &hctx->run_work, 0);
856 void blk_mq_run_queues(struct request_queue *q, bool async)
858 struct blk_mq_hw_ctx *hctx;
859 int i;
861 queue_for_each_hw_ctx(q, hctx, i) {
862 if ((!blk_mq_hctx_has_pending(hctx) &&
863 list_empty_careful(&hctx->dispatch)) ||
864 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
865 continue;
867 blk_mq_run_hw_queue(hctx, async);
870 EXPORT_SYMBOL(blk_mq_run_queues);
872 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
874 cancel_delayed_work(&hctx->run_work);
875 cancel_delayed_work(&hctx->delay_work);
876 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
878 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
880 void blk_mq_stop_hw_queues(struct request_queue *q)
882 struct blk_mq_hw_ctx *hctx;
883 int i;
885 queue_for_each_hw_ctx(q, hctx, i)
886 blk_mq_stop_hw_queue(hctx);
888 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
890 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
892 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
894 blk_mq_run_hw_queue(hctx, false);
896 EXPORT_SYMBOL(blk_mq_start_hw_queue);
898 void blk_mq_start_hw_queues(struct request_queue *q)
900 struct blk_mq_hw_ctx *hctx;
901 int i;
903 queue_for_each_hw_ctx(q, hctx, i)
904 blk_mq_start_hw_queue(hctx);
906 EXPORT_SYMBOL(blk_mq_start_hw_queues);
909 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
911 struct blk_mq_hw_ctx *hctx;
912 int i;
914 queue_for_each_hw_ctx(q, hctx, i) {
915 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
916 continue;
918 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
919 blk_mq_run_hw_queue(hctx, async);
922 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
924 static void blk_mq_run_work_fn(struct work_struct *work)
926 struct blk_mq_hw_ctx *hctx;
928 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
930 __blk_mq_run_hw_queue(hctx);
933 static void blk_mq_delay_work_fn(struct work_struct *work)
935 struct blk_mq_hw_ctx *hctx;
937 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
939 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
940 __blk_mq_run_hw_queue(hctx);
943 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
945 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
946 return;
948 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
949 &hctx->delay_work, msecs_to_jiffies(msecs));
951 EXPORT_SYMBOL(blk_mq_delay_queue);
953 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
954 struct request *rq, bool at_head)
956 struct blk_mq_ctx *ctx = rq->mq_ctx;
958 trace_block_rq_insert(hctx->queue, rq);
960 if (at_head)
961 list_add(&rq->queuelist, &ctx->rq_list);
962 else
963 list_add_tail(&rq->queuelist, &ctx->rq_list);
965 blk_mq_hctx_mark_pending(hctx, ctx);
968 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
969 bool async)
971 struct request_queue *q = rq->q;
972 struct blk_mq_hw_ctx *hctx;
973 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
975 current_ctx = blk_mq_get_ctx(q);
976 if (!cpu_online(ctx->cpu))
977 rq->mq_ctx = ctx = current_ctx;
979 hctx = q->mq_ops->map_queue(q, ctx->cpu);
981 spin_lock(&ctx->lock);
982 __blk_mq_insert_request(hctx, rq, at_head);
983 spin_unlock(&ctx->lock);
985 if (run_queue)
986 blk_mq_run_hw_queue(hctx, async);
988 blk_mq_put_ctx(current_ctx);
991 static void blk_mq_insert_requests(struct request_queue *q,
992 struct blk_mq_ctx *ctx,
993 struct list_head *list,
994 int depth,
995 bool from_schedule)
998 struct blk_mq_hw_ctx *hctx;
999 struct blk_mq_ctx *current_ctx;
1001 trace_block_unplug(q, depth, !from_schedule);
1003 current_ctx = blk_mq_get_ctx(q);
1005 if (!cpu_online(ctx->cpu))
1006 ctx = current_ctx;
1007 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1010 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1011 * offline now
1013 spin_lock(&ctx->lock);
1014 while (!list_empty(list)) {
1015 struct request *rq;
1017 rq = list_first_entry(list, struct request, queuelist);
1018 list_del_init(&rq->queuelist);
1019 rq->mq_ctx = ctx;
1020 __blk_mq_insert_request(hctx, rq, false);
1022 spin_unlock(&ctx->lock);
1024 blk_mq_run_hw_queue(hctx, from_schedule);
1025 blk_mq_put_ctx(current_ctx);
1028 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1030 struct request *rqa = container_of(a, struct request, queuelist);
1031 struct request *rqb = container_of(b, struct request, queuelist);
1033 return !(rqa->mq_ctx < rqb->mq_ctx ||
1034 (rqa->mq_ctx == rqb->mq_ctx &&
1035 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1038 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1040 struct blk_mq_ctx *this_ctx;
1041 struct request_queue *this_q;
1042 struct request *rq;
1043 LIST_HEAD(list);
1044 LIST_HEAD(ctx_list);
1045 unsigned int depth;
1047 list_splice_init(&plug->mq_list, &list);
1049 list_sort(NULL, &list, plug_ctx_cmp);
1051 this_q = NULL;
1052 this_ctx = NULL;
1053 depth = 0;
1055 while (!list_empty(&list)) {
1056 rq = list_entry_rq(list.next);
1057 list_del_init(&rq->queuelist);
1058 BUG_ON(!rq->q);
1059 if (rq->mq_ctx != this_ctx) {
1060 if (this_ctx) {
1061 blk_mq_insert_requests(this_q, this_ctx,
1062 &ctx_list, depth,
1063 from_schedule);
1066 this_ctx = rq->mq_ctx;
1067 this_q = rq->q;
1068 depth = 0;
1071 depth++;
1072 list_add_tail(&rq->queuelist, &ctx_list);
1076 * If 'this_ctx' is set, we know we have entries to complete
1077 * on 'ctx_list'. Do those.
1079 if (this_ctx) {
1080 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1081 from_schedule);
1085 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1087 init_request_from_bio(rq, bio);
1089 if (blk_do_io_stat(rq))
1090 blk_account_io_start(rq, 1);
1093 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1095 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1096 !blk_queue_nomerges(hctx->queue);
1099 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1100 struct blk_mq_ctx *ctx,
1101 struct request *rq, struct bio *bio)
1103 if (!hctx_allow_merges(hctx)) {
1104 blk_mq_bio_to_request(rq, bio);
1105 spin_lock(&ctx->lock);
1106 insert_rq:
1107 __blk_mq_insert_request(hctx, rq, false);
1108 spin_unlock(&ctx->lock);
1109 return false;
1110 } else {
1111 struct request_queue *q = hctx->queue;
1113 spin_lock(&ctx->lock);
1114 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1115 blk_mq_bio_to_request(rq, bio);
1116 goto insert_rq;
1119 spin_unlock(&ctx->lock);
1120 __blk_mq_free_request(hctx, ctx, rq);
1121 return true;
1125 struct blk_map_ctx {
1126 struct blk_mq_hw_ctx *hctx;
1127 struct blk_mq_ctx *ctx;
1130 static struct request *blk_mq_map_request(struct request_queue *q,
1131 struct bio *bio,
1132 struct blk_map_ctx *data)
1134 struct blk_mq_hw_ctx *hctx;
1135 struct blk_mq_ctx *ctx;
1136 struct request *rq;
1137 int rw = bio_data_dir(bio);
1138 struct blk_mq_alloc_data alloc_data;
1140 if (unlikely(blk_mq_queue_enter(q))) {
1141 bio_endio(bio, -EIO);
1142 return NULL;
1145 ctx = blk_mq_get_ctx(q);
1146 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1148 if (rw_is_sync(bio->bi_rw))
1149 rw |= REQ_SYNC;
1151 trace_block_getrq(q, bio, rw);
1152 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1153 hctx);
1154 rq = __blk_mq_alloc_request(&alloc_data, rw);
1155 if (unlikely(!rq)) {
1156 __blk_mq_run_hw_queue(hctx);
1157 blk_mq_put_ctx(ctx);
1158 trace_block_sleeprq(q, bio, rw);
1160 ctx = blk_mq_get_ctx(q);
1161 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1162 blk_mq_set_alloc_data(&alloc_data, q,
1163 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1164 rq = __blk_mq_alloc_request(&alloc_data, rw);
1165 ctx = alloc_data.ctx;
1166 hctx = alloc_data.hctx;
1169 hctx->queued++;
1170 data->hctx = hctx;
1171 data->ctx = ctx;
1172 return rq;
1176 * Multiple hardware queue variant. This will not use per-process plugs,
1177 * but will attempt to bypass the hctx queueing if we can go straight to
1178 * hardware for SYNC IO.
1180 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1182 const int is_sync = rw_is_sync(bio->bi_rw);
1183 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1184 struct blk_map_ctx data;
1185 struct request *rq;
1187 blk_queue_bounce(q, &bio);
1189 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1190 bio_endio(bio, -EIO);
1191 return;
1194 rq = blk_mq_map_request(q, bio, &data);
1195 if (unlikely(!rq))
1196 return;
1198 if (unlikely(is_flush_fua)) {
1199 blk_mq_bio_to_request(rq, bio);
1200 blk_insert_flush(rq);
1201 goto run_queue;
1205 * If the driver supports defer issued based on 'last', then
1206 * queue it up like normal since we can potentially save some
1207 * CPU this way.
1209 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1210 struct blk_mq_queue_data bd = {
1211 .rq = rq,
1212 .list = NULL,
1213 .last = 1
1215 int ret;
1217 blk_mq_bio_to_request(rq, bio);
1220 * For OK queue, we are done. For error, kill it. Any other
1221 * error (busy), just add it to our list as we previously
1222 * would have done
1224 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1225 if (ret == BLK_MQ_RQ_QUEUE_OK)
1226 goto done;
1227 else {
1228 __blk_mq_requeue_request(rq);
1230 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1231 rq->errors = -EIO;
1232 blk_mq_end_request(rq, rq->errors);
1233 goto done;
1238 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1240 * For a SYNC request, send it to the hardware immediately. For
1241 * an ASYNC request, just ensure that we run it later on. The
1242 * latter allows for merging opportunities and more efficient
1243 * dispatching.
1245 run_queue:
1246 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1248 done:
1249 blk_mq_put_ctx(data.ctx);
1253 * Single hardware queue variant. This will attempt to use any per-process
1254 * plug for merging and IO deferral.
1256 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1258 const int is_sync = rw_is_sync(bio->bi_rw);
1259 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1260 unsigned int use_plug, request_count = 0;
1261 struct blk_map_ctx data;
1262 struct request *rq;
1265 * If we have multiple hardware queues, just go directly to
1266 * one of those for sync IO.
1268 use_plug = !is_flush_fua && !is_sync;
1270 blk_queue_bounce(q, &bio);
1272 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1273 bio_endio(bio, -EIO);
1274 return;
1277 if (use_plug && !blk_queue_nomerges(q) &&
1278 blk_attempt_plug_merge(q, bio, &request_count))
1279 return;
1281 rq = blk_mq_map_request(q, bio, &data);
1282 if (unlikely(!rq))
1283 return;
1285 if (unlikely(is_flush_fua)) {
1286 blk_mq_bio_to_request(rq, bio);
1287 blk_insert_flush(rq);
1288 goto run_queue;
1292 * A task plug currently exists. Since this is completely lockless,
1293 * utilize that to temporarily store requests until the task is
1294 * either done or scheduled away.
1296 if (use_plug) {
1297 struct blk_plug *plug = current->plug;
1299 if (plug) {
1300 blk_mq_bio_to_request(rq, bio);
1301 if (list_empty(&plug->mq_list))
1302 trace_block_plug(q);
1303 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1304 blk_flush_plug_list(plug, false);
1305 trace_block_plug(q);
1307 list_add_tail(&rq->queuelist, &plug->mq_list);
1308 blk_mq_put_ctx(data.ctx);
1309 return;
1313 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1315 * For a SYNC request, send it to the hardware immediately. For
1316 * an ASYNC request, just ensure that we run it later on. The
1317 * latter allows for merging opportunities and more efficient
1318 * dispatching.
1320 run_queue:
1321 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1324 blk_mq_put_ctx(data.ctx);
1328 * Default mapping to a software queue, since we use one per CPU.
1330 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1332 return q->queue_hw_ctx[q->mq_map[cpu]];
1334 EXPORT_SYMBOL(blk_mq_map_queue);
1336 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1337 struct blk_mq_tags *tags, unsigned int hctx_idx)
1339 struct page *page;
1341 if (tags->rqs && set->ops->exit_request) {
1342 int i;
1344 for (i = 0; i < tags->nr_tags; i++) {
1345 if (!tags->rqs[i])
1346 continue;
1347 set->ops->exit_request(set->driver_data, tags->rqs[i],
1348 hctx_idx, i);
1349 tags->rqs[i] = NULL;
1353 while (!list_empty(&tags->page_list)) {
1354 page = list_first_entry(&tags->page_list, struct page, lru);
1355 list_del_init(&page->lru);
1356 __free_pages(page, page->private);
1359 kfree(tags->rqs);
1361 blk_mq_free_tags(tags);
1364 static size_t order_to_size(unsigned int order)
1366 return (size_t)PAGE_SIZE << order;
1369 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1370 unsigned int hctx_idx)
1372 struct blk_mq_tags *tags;
1373 unsigned int i, j, entries_per_page, max_order = 4;
1374 size_t rq_size, left;
1376 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1377 set->numa_node,
1378 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1379 if (!tags)
1380 return NULL;
1382 INIT_LIST_HEAD(&tags->page_list);
1384 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1385 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1386 set->numa_node);
1387 if (!tags->rqs) {
1388 blk_mq_free_tags(tags);
1389 return NULL;
1393 * rq_size is the size of the request plus driver payload, rounded
1394 * to the cacheline size
1396 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1397 cache_line_size());
1398 left = rq_size * set->queue_depth;
1400 for (i = 0; i < set->queue_depth; ) {
1401 int this_order = max_order;
1402 struct page *page;
1403 int to_do;
1404 void *p;
1406 while (left < order_to_size(this_order - 1) && this_order)
1407 this_order--;
1409 do {
1410 page = alloc_pages_node(set->numa_node,
1411 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1412 this_order);
1413 if (page)
1414 break;
1415 if (!this_order--)
1416 break;
1417 if (order_to_size(this_order) < rq_size)
1418 break;
1419 } while (1);
1421 if (!page)
1422 goto fail;
1424 page->private = this_order;
1425 list_add_tail(&page->lru, &tags->page_list);
1427 p = page_address(page);
1428 entries_per_page = order_to_size(this_order) / rq_size;
1429 to_do = min(entries_per_page, set->queue_depth - i);
1430 left -= to_do * rq_size;
1431 for (j = 0; j < to_do; j++) {
1432 tags->rqs[i] = p;
1433 tags->rqs[i]->atomic_flags = 0;
1434 tags->rqs[i]->cmd_flags = 0;
1435 if (set->ops->init_request) {
1436 if (set->ops->init_request(set->driver_data,
1437 tags->rqs[i], hctx_idx, i,
1438 set->numa_node)) {
1439 tags->rqs[i] = NULL;
1440 goto fail;
1444 p += rq_size;
1445 i++;
1449 return tags;
1451 fail:
1452 blk_mq_free_rq_map(set, tags, hctx_idx);
1453 return NULL;
1456 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1458 kfree(bitmap->map);
1461 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1463 unsigned int bpw = 8, total, num_maps, i;
1465 bitmap->bits_per_word = bpw;
1467 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1468 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1469 GFP_KERNEL, node);
1470 if (!bitmap->map)
1471 return -ENOMEM;
1473 bitmap->map_size = num_maps;
1475 total = nr_cpu_ids;
1476 for (i = 0; i < num_maps; i++) {
1477 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1478 total -= bitmap->map[i].depth;
1481 return 0;
1484 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1486 struct request_queue *q = hctx->queue;
1487 struct blk_mq_ctx *ctx;
1488 LIST_HEAD(tmp);
1491 * Move ctx entries to new CPU, if this one is going away.
1493 ctx = __blk_mq_get_ctx(q, cpu);
1495 spin_lock(&ctx->lock);
1496 if (!list_empty(&ctx->rq_list)) {
1497 list_splice_init(&ctx->rq_list, &tmp);
1498 blk_mq_hctx_clear_pending(hctx, ctx);
1500 spin_unlock(&ctx->lock);
1502 if (list_empty(&tmp))
1503 return NOTIFY_OK;
1505 ctx = blk_mq_get_ctx(q);
1506 spin_lock(&ctx->lock);
1508 while (!list_empty(&tmp)) {
1509 struct request *rq;
1511 rq = list_first_entry(&tmp, struct request, queuelist);
1512 rq->mq_ctx = ctx;
1513 list_move_tail(&rq->queuelist, &ctx->rq_list);
1516 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1517 blk_mq_hctx_mark_pending(hctx, ctx);
1519 spin_unlock(&ctx->lock);
1521 blk_mq_run_hw_queue(hctx, true);
1522 blk_mq_put_ctx(ctx);
1523 return NOTIFY_OK;
1526 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1528 struct request_queue *q = hctx->queue;
1529 struct blk_mq_tag_set *set = q->tag_set;
1531 if (set->tags[hctx->queue_num])
1532 return NOTIFY_OK;
1534 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1535 if (!set->tags[hctx->queue_num])
1536 return NOTIFY_STOP;
1538 hctx->tags = set->tags[hctx->queue_num];
1539 return NOTIFY_OK;
1542 static int blk_mq_hctx_notify(void *data, unsigned long action,
1543 unsigned int cpu)
1545 struct blk_mq_hw_ctx *hctx = data;
1547 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1548 return blk_mq_hctx_cpu_offline(hctx, cpu);
1549 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1550 return blk_mq_hctx_cpu_online(hctx, cpu);
1552 return NOTIFY_OK;
1555 static void blk_mq_exit_hctx(struct request_queue *q,
1556 struct blk_mq_tag_set *set,
1557 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1559 unsigned flush_start_tag = set->queue_depth;
1561 blk_mq_tag_idle(hctx);
1563 if (set->ops->exit_request)
1564 set->ops->exit_request(set->driver_data,
1565 hctx->fq->flush_rq, hctx_idx,
1566 flush_start_tag + hctx_idx);
1568 if (set->ops->exit_hctx)
1569 set->ops->exit_hctx(hctx, hctx_idx);
1571 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1572 blk_free_flush_queue(hctx->fq);
1573 kfree(hctx->ctxs);
1574 blk_mq_free_bitmap(&hctx->ctx_map);
1577 static void blk_mq_exit_hw_queues(struct request_queue *q,
1578 struct blk_mq_tag_set *set, int nr_queue)
1580 struct blk_mq_hw_ctx *hctx;
1581 unsigned int i;
1583 queue_for_each_hw_ctx(q, hctx, i) {
1584 if (i == nr_queue)
1585 break;
1586 blk_mq_exit_hctx(q, set, hctx, i);
1590 static void blk_mq_free_hw_queues(struct request_queue *q,
1591 struct blk_mq_tag_set *set)
1593 struct blk_mq_hw_ctx *hctx;
1594 unsigned int i;
1596 queue_for_each_hw_ctx(q, hctx, i) {
1597 free_cpumask_var(hctx->cpumask);
1598 kfree(hctx);
1602 static int blk_mq_init_hctx(struct request_queue *q,
1603 struct blk_mq_tag_set *set,
1604 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1606 int node;
1607 unsigned flush_start_tag = set->queue_depth;
1609 node = hctx->numa_node;
1610 if (node == NUMA_NO_NODE)
1611 node = hctx->numa_node = set->numa_node;
1613 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1614 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1615 spin_lock_init(&hctx->lock);
1616 INIT_LIST_HEAD(&hctx->dispatch);
1617 hctx->queue = q;
1618 hctx->queue_num = hctx_idx;
1619 hctx->flags = set->flags;
1620 hctx->cmd_size = set->cmd_size;
1622 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1623 blk_mq_hctx_notify, hctx);
1624 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1626 hctx->tags = set->tags[hctx_idx];
1629 * Allocate space for all possible cpus to avoid allocation at
1630 * runtime
1632 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1633 GFP_KERNEL, node);
1634 if (!hctx->ctxs)
1635 goto unregister_cpu_notifier;
1637 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1638 goto free_ctxs;
1640 hctx->nr_ctx = 0;
1642 if (set->ops->init_hctx &&
1643 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1644 goto free_bitmap;
1646 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1647 if (!hctx->fq)
1648 goto exit_hctx;
1650 if (set->ops->init_request &&
1651 set->ops->init_request(set->driver_data,
1652 hctx->fq->flush_rq, hctx_idx,
1653 flush_start_tag + hctx_idx, node))
1654 goto free_fq;
1656 return 0;
1658 free_fq:
1659 kfree(hctx->fq);
1660 exit_hctx:
1661 if (set->ops->exit_hctx)
1662 set->ops->exit_hctx(hctx, hctx_idx);
1663 free_bitmap:
1664 blk_mq_free_bitmap(&hctx->ctx_map);
1665 free_ctxs:
1666 kfree(hctx->ctxs);
1667 unregister_cpu_notifier:
1668 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1670 return -1;
1673 static int blk_mq_init_hw_queues(struct request_queue *q,
1674 struct blk_mq_tag_set *set)
1676 struct blk_mq_hw_ctx *hctx;
1677 unsigned int i;
1680 * Initialize hardware queues
1682 queue_for_each_hw_ctx(q, hctx, i) {
1683 if (blk_mq_init_hctx(q, set, hctx, i))
1684 break;
1687 if (i == q->nr_hw_queues)
1688 return 0;
1691 * Init failed
1693 blk_mq_exit_hw_queues(q, set, i);
1695 return 1;
1698 static void blk_mq_init_cpu_queues(struct request_queue *q,
1699 unsigned int nr_hw_queues)
1701 unsigned int i;
1703 for_each_possible_cpu(i) {
1704 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1705 struct blk_mq_hw_ctx *hctx;
1707 memset(__ctx, 0, sizeof(*__ctx));
1708 __ctx->cpu = i;
1709 spin_lock_init(&__ctx->lock);
1710 INIT_LIST_HEAD(&__ctx->rq_list);
1711 __ctx->queue = q;
1713 /* If the cpu isn't online, the cpu is mapped to first hctx */
1714 if (!cpu_online(i))
1715 continue;
1717 hctx = q->mq_ops->map_queue(q, i);
1718 cpumask_set_cpu(i, hctx->cpumask);
1719 hctx->nr_ctx++;
1722 * Set local node, IFF we have more than one hw queue. If
1723 * not, we remain on the home node of the device
1725 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1726 hctx->numa_node = cpu_to_node(i);
1730 static void blk_mq_map_swqueue(struct request_queue *q)
1732 unsigned int i;
1733 struct blk_mq_hw_ctx *hctx;
1734 struct blk_mq_ctx *ctx;
1736 queue_for_each_hw_ctx(q, hctx, i) {
1737 cpumask_clear(hctx->cpumask);
1738 hctx->nr_ctx = 0;
1742 * Map software to hardware queues
1744 queue_for_each_ctx(q, ctx, i) {
1745 /* If the cpu isn't online, the cpu is mapped to first hctx */
1746 if (!cpu_online(i))
1747 continue;
1749 hctx = q->mq_ops->map_queue(q, i);
1750 cpumask_set_cpu(i, hctx->cpumask);
1751 ctx->index_hw = hctx->nr_ctx;
1752 hctx->ctxs[hctx->nr_ctx++] = ctx;
1755 queue_for_each_hw_ctx(q, hctx, i) {
1757 * If no software queues are mapped to this hardware queue,
1758 * disable it and free the request entries.
1760 if (!hctx->nr_ctx) {
1761 struct blk_mq_tag_set *set = q->tag_set;
1763 if (set->tags[i]) {
1764 blk_mq_free_rq_map(set, set->tags[i], i);
1765 set->tags[i] = NULL;
1766 hctx->tags = NULL;
1768 continue;
1772 * Initialize batch roundrobin counts
1774 hctx->next_cpu = cpumask_first(hctx->cpumask);
1775 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1779 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1781 struct blk_mq_hw_ctx *hctx;
1782 struct request_queue *q;
1783 bool shared;
1784 int i;
1786 if (set->tag_list.next == set->tag_list.prev)
1787 shared = false;
1788 else
1789 shared = true;
1791 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1792 blk_mq_freeze_queue(q);
1794 queue_for_each_hw_ctx(q, hctx, i) {
1795 if (shared)
1796 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1797 else
1798 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1800 blk_mq_unfreeze_queue(q);
1804 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1806 struct blk_mq_tag_set *set = q->tag_set;
1808 mutex_lock(&set->tag_list_lock);
1809 list_del_init(&q->tag_set_list);
1810 blk_mq_update_tag_set_depth(set);
1811 mutex_unlock(&set->tag_list_lock);
1814 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1815 struct request_queue *q)
1817 q->tag_set = set;
1819 mutex_lock(&set->tag_list_lock);
1820 list_add_tail(&q->tag_set_list, &set->tag_list);
1821 blk_mq_update_tag_set_depth(set);
1822 mutex_unlock(&set->tag_list_lock);
1825 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1827 struct blk_mq_hw_ctx **hctxs;
1828 struct blk_mq_ctx __percpu *ctx;
1829 struct request_queue *q;
1830 unsigned int *map;
1831 int i;
1833 ctx = alloc_percpu(struct blk_mq_ctx);
1834 if (!ctx)
1835 return ERR_PTR(-ENOMEM);
1837 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1838 set->numa_node);
1840 if (!hctxs)
1841 goto err_percpu;
1843 map = blk_mq_make_queue_map(set);
1844 if (!map)
1845 goto err_map;
1847 for (i = 0; i < set->nr_hw_queues; i++) {
1848 int node = blk_mq_hw_queue_to_node(map, i);
1850 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1851 GFP_KERNEL, node);
1852 if (!hctxs[i])
1853 goto err_hctxs;
1855 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1856 node))
1857 goto err_hctxs;
1859 atomic_set(&hctxs[i]->nr_active, 0);
1860 hctxs[i]->numa_node = node;
1861 hctxs[i]->queue_num = i;
1864 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1865 if (!q)
1866 goto err_hctxs;
1869 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1870 * See blk_register_queue() for details.
1872 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1873 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1874 goto err_map;
1876 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1877 blk_queue_rq_timeout(q, 30000);
1879 q->nr_queues = nr_cpu_ids;
1880 q->nr_hw_queues = set->nr_hw_queues;
1881 q->mq_map = map;
1883 q->queue_ctx = ctx;
1884 q->queue_hw_ctx = hctxs;
1886 q->mq_ops = set->ops;
1887 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1889 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1890 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1892 q->sg_reserved_size = INT_MAX;
1894 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1895 INIT_LIST_HEAD(&q->requeue_list);
1896 spin_lock_init(&q->requeue_lock);
1898 if (q->nr_hw_queues > 1)
1899 blk_queue_make_request(q, blk_mq_make_request);
1900 else
1901 blk_queue_make_request(q, blk_sq_make_request);
1903 if (set->timeout)
1904 blk_queue_rq_timeout(q, set->timeout);
1907 * Do this after blk_queue_make_request() overrides it...
1909 q->nr_requests = set->queue_depth;
1911 if (set->ops->complete)
1912 blk_queue_softirq_done(q, set->ops->complete);
1914 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1916 if (blk_mq_init_hw_queues(q, set))
1917 goto err_hw;
1919 mutex_lock(&all_q_mutex);
1920 list_add_tail(&q->all_q_node, &all_q_list);
1921 mutex_unlock(&all_q_mutex);
1923 blk_mq_add_queue_tag_set(set, q);
1925 blk_mq_map_swqueue(q);
1927 return q;
1929 err_hw:
1930 blk_cleanup_queue(q);
1931 err_hctxs:
1932 kfree(map);
1933 for (i = 0; i < set->nr_hw_queues; i++) {
1934 if (!hctxs[i])
1935 break;
1936 free_cpumask_var(hctxs[i]->cpumask);
1937 kfree(hctxs[i]);
1939 err_map:
1940 kfree(hctxs);
1941 err_percpu:
1942 free_percpu(ctx);
1943 return ERR_PTR(-ENOMEM);
1945 EXPORT_SYMBOL(blk_mq_init_queue);
1947 void blk_mq_free_queue(struct request_queue *q)
1949 struct blk_mq_tag_set *set = q->tag_set;
1951 blk_mq_del_queue_tag_set(q);
1953 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1954 blk_mq_free_hw_queues(q, set);
1956 percpu_ref_exit(&q->mq_usage_counter);
1958 free_percpu(q->queue_ctx);
1959 kfree(q->queue_hw_ctx);
1960 kfree(q->mq_map);
1962 q->queue_ctx = NULL;
1963 q->queue_hw_ctx = NULL;
1964 q->mq_map = NULL;
1966 mutex_lock(&all_q_mutex);
1967 list_del_init(&q->all_q_node);
1968 mutex_unlock(&all_q_mutex);
1971 /* Basically redo blk_mq_init_queue with queue frozen */
1972 static void blk_mq_queue_reinit(struct request_queue *q)
1974 WARN_ON_ONCE(!q->mq_freeze_depth);
1976 blk_mq_sysfs_unregister(q);
1978 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1981 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1982 * we should change hctx numa_node according to new topology (this
1983 * involves free and re-allocate memory, worthy doing?)
1986 blk_mq_map_swqueue(q);
1988 blk_mq_sysfs_register(q);
1991 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1992 unsigned long action, void *hcpu)
1994 struct request_queue *q;
1997 * Before new mappings are established, hotadded cpu might already
1998 * start handling requests. This doesn't break anything as we map
1999 * offline CPUs to first hardware queue. We will re-init the queue
2000 * below to get optimal settings.
2002 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2003 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2004 return NOTIFY_OK;
2006 mutex_lock(&all_q_mutex);
2009 * We need to freeze and reinit all existing queues. Freezing
2010 * involves synchronous wait for an RCU grace period and doing it
2011 * one by one may take a long time. Start freezing all queues in
2012 * one swoop and then wait for the completions so that freezing can
2013 * take place in parallel.
2015 list_for_each_entry(q, &all_q_list, all_q_node)
2016 blk_mq_freeze_queue_start(q);
2017 list_for_each_entry(q, &all_q_list, all_q_node)
2018 blk_mq_freeze_queue_wait(q);
2020 list_for_each_entry(q, &all_q_list, all_q_node)
2021 blk_mq_queue_reinit(q);
2023 list_for_each_entry(q, &all_q_list, all_q_node)
2024 blk_mq_unfreeze_queue(q);
2026 mutex_unlock(&all_q_mutex);
2027 return NOTIFY_OK;
2030 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2032 int i;
2034 for (i = 0; i < set->nr_hw_queues; i++) {
2035 set->tags[i] = blk_mq_init_rq_map(set, i);
2036 if (!set->tags[i])
2037 goto out_unwind;
2040 return 0;
2042 out_unwind:
2043 while (--i >= 0)
2044 blk_mq_free_rq_map(set, set->tags[i], i);
2046 return -ENOMEM;
2050 * Allocate the request maps associated with this tag_set. Note that this
2051 * may reduce the depth asked for, if memory is tight. set->queue_depth
2052 * will be updated to reflect the allocated depth.
2054 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2056 unsigned int depth;
2057 int err;
2059 depth = set->queue_depth;
2060 do {
2061 err = __blk_mq_alloc_rq_maps(set);
2062 if (!err)
2063 break;
2065 set->queue_depth >>= 1;
2066 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2067 err = -ENOMEM;
2068 break;
2070 } while (set->queue_depth);
2072 if (!set->queue_depth || err) {
2073 pr_err("blk-mq: failed to allocate request map\n");
2074 return -ENOMEM;
2077 if (depth != set->queue_depth)
2078 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2079 depth, set->queue_depth);
2081 return 0;
2085 * Alloc a tag set to be associated with one or more request queues.
2086 * May fail with EINVAL for various error conditions. May adjust the
2087 * requested depth down, if if it too large. In that case, the set
2088 * value will be stored in set->queue_depth.
2090 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2092 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2094 if (!set->nr_hw_queues)
2095 return -EINVAL;
2096 if (!set->queue_depth)
2097 return -EINVAL;
2098 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2099 return -EINVAL;
2101 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2102 return -EINVAL;
2104 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2105 pr_info("blk-mq: reduced tag depth to %u\n",
2106 BLK_MQ_MAX_DEPTH);
2107 set->queue_depth = BLK_MQ_MAX_DEPTH;
2111 * If a crashdump is active, then we are potentially in a very
2112 * memory constrained environment. Limit us to 1 queue and
2113 * 64 tags to prevent using too much memory.
2115 if (is_kdump_kernel()) {
2116 set->nr_hw_queues = 1;
2117 set->queue_depth = min(64U, set->queue_depth);
2120 set->tags = kmalloc_node(set->nr_hw_queues *
2121 sizeof(struct blk_mq_tags *),
2122 GFP_KERNEL, set->numa_node);
2123 if (!set->tags)
2124 return -ENOMEM;
2126 if (blk_mq_alloc_rq_maps(set))
2127 goto enomem;
2129 mutex_init(&set->tag_list_lock);
2130 INIT_LIST_HEAD(&set->tag_list);
2132 return 0;
2133 enomem:
2134 kfree(set->tags);
2135 set->tags = NULL;
2136 return -ENOMEM;
2138 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2140 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2142 int i;
2144 for (i = 0; i < set->nr_hw_queues; i++) {
2145 if (set->tags[i])
2146 blk_mq_free_rq_map(set, set->tags[i], i);
2149 kfree(set->tags);
2150 set->tags = NULL;
2152 EXPORT_SYMBOL(blk_mq_free_tag_set);
2154 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2156 struct blk_mq_tag_set *set = q->tag_set;
2157 struct blk_mq_hw_ctx *hctx;
2158 int i, ret;
2160 if (!set || nr > set->queue_depth)
2161 return -EINVAL;
2163 ret = 0;
2164 queue_for_each_hw_ctx(q, hctx, i) {
2165 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2166 if (ret)
2167 break;
2170 if (!ret)
2171 q->nr_requests = nr;
2173 return ret;
2176 void blk_mq_disable_hotplug(void)
2178 mutex_lock(&all_q_mutex);
2181 void blk_mq_enable_hotplug(void)
2183 mutex_unlock(&all_q_mutex);
2186 static int __init blk_mq_init(void)
2188 blk_mq_cpu_init();
2190 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2192 return 0;
2194 subsys_initcall(blk_mq_init);