igb: fix handling of mailbox collisions between PF/VF
[linux-2.6/btrfs-unstable.git] / drivers / net / igb / igb_main.c
blob78963a0e128dcf4171c9d8a8d1ac579c0b529d15
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
52 #define DRV_VERSION "2.1.0-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
79 /* required last entry */
80 {0, }
83 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
85 void igb_reset(struct igb_adapter *);
86 static int igb_setup_all_tx_resources(struct igb_adapter *);
87 static int igb_setup_all_rx_resources(struct igb_adapter *);
88 static void igb_free_all_tx_resources(struct igb_adapter *);
89 static void igb_free_all_rx_resources(struct igb_adapter *);
90 static void igb_setup_mrqc(struct igb_adapter *);
91 void igb_update_stats(struct igb_adapter *);
92 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
93 static void __devexit igb_remove(struct pci_dev *pdev);
94 static int igb_sw_init(struct igb_adapter *);
95 static int igb_open(struct net_device *);
96 static int igb_close(struct net_device *);
97 static void igb_configure_tx(struct igb_adapter *);
98 static void igb_configure_rx(struct igb_adapter *);
99 static void igb_clean_all_tx_rings(struct igb_adapter *);
100 static void igb_clean_all_rx_rings(struct igb_adapter *);
101 static void igb_clean_tx_ring(struct igb_ring *);
102 static void igb_clean_rx_ring(struct igb_ring *);
103 static void igb_set_rx_mode(struct net_device *);
104 static void igb_update_phy_info(unsigned long);
105 static void igb_watchdog(unsigned long);
106 static void igb_watchdog_task(struct work_struct *);
107 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
131 static void igb_ping_all_vfs(struct igb_adapter *);
132 static void igb_msg_task(struct igb_adapter *);
133 static void igb_vmm_control(struct igb_adapter *);
134 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
135 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
137 #ifdef CONFIG_PM
138 static int igb_suspend(struct pci_dev *, pm_message_t);
139 static int igb_resume(struct pci_dev *);
140 #endif
141 static void igb_shutdown(struct pci_dev *);
142 #ifdef CONFIG_IGB_DCA
143 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
144 static struct notifier_block dca_notifier = {
145 .notifier_call = igb_notify_dca,
146 .next = NULL,
147 .priority = 0
149 #endif
150 #ifdef CONFIG_NET_POLL_CONTROLLER
151 /* for netdump / net console */
152 static void igb_netpoll(struct net_device *);
153 #endif
154 #ifdef CONFIG_PCI_IOV
155 static unsigned int max_vfs = 0;
156 module_param(max_vfs, uint, 0);
157 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
158 "per physical function");
159 #endif /* CONFIG_PCI_IOV */
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162 pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
166 static struct pci_error_handlers igb_err_handler = {
167 .error_detected = igb_io_error_detected,
168 .slot_reset = igb_io_slot_reset,
169 .resume = igb_io_resume,
173 static struct pci_driver igb_driver = {
174 .name = igb_driver_name,
175 .id_table = igb_pci_tbl,
176 .probe = igb_probe,
177 .remove = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179 /* Power Managment Hooks */
180 .suspend = igb_suspend,
181 .resume = igb_resume,
182 #endif
183 .shutdown = igb_shutdown,
184 .err_handler = &igb_err_handler
187 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
188 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
189 MODULE_LICENSE("GPL");
190 MODULE_VERSION(DRV_VERSION);
193 * igb_read_clock - read raw cycle counter (to be used by time counter)
195 static cycle_t igb_read_clock(const struct cyclecounter *tc)
197 struct igb_adapter *adapter =
198 container_of(tc, struct igb_adapter, cycles);
199 struct e1000_hw *hw = &adapter->hw;
200 u64 stamp = 0;
201 int shift = 0;
204 * The timestamp latches on lowest register read. For the 82580
205 * the lowest register is SYSTIMR instead of SYSTIML. However we never
206 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
208 if (hw->mac.type == e1000_82580) {
209 stamp = rd32(E1000_SYSTIMR) >> 8;
210 shift = IGB_82580_TSYNC_SHIFT;
213 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
214 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
215 return stamp;
218 #ifdef DEBUG
220 * igb_get_hw_dev_name - return device name string
221 * used by hardware layer to print debugging information
223 char *igb_get_hw_dev_name(struct e1000_hw *hw)
225 struct igb_adapter *adapter = hw->back;
226 return adapter->netdev->name;
230 * igb_get_time_str - format current NIC and system time as string
232 static char *igb_get_time_str(struct igb_adapter *adapter,
233 char buffer[160])
235 cycle_t hw = adapter->cycles.read(&adapter->cycles);
236 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
237 struct timespec sys;
238 struct timespec delta;
239 getnstimeofday(&sys);
241 delta = timespec_sub(nic, sys);
243 sprintf(buffer,
244 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
246 (long)nic.tv_sec, nic.tv_nsec,
247 (long)sys.tv_sec, sys.tv_nsec,
248 (long)delta.tv_sec, delta.tv_nsec);
250 return buffer;
252 #endif
255 * igb_init_module - Driver Registration Routine
257 * igb_init_module is the first routine called when the driver is
258 * loaded. All it does is register with the PCI subsystem.
260 static int __init igb_init_module(void)
262 int ret;
263 printk(KERN_INFO "%s - version %s\n",
264 igb_driver_string, igb_driver_version);
266 printk(KERN_INFO "%s\n", igb_copyright);
268 #ifdef CONFIG_IGB_DCA
269 dca_register_notify(&dca_notifier);
270 #endif
271 ret = pci_register_driver(&igb_driver);
272 return ret;
275 module_init(igb_init_module);
278 * igb_exit_module - Driver Exit Cleanup Routine
280 * igb_exit_module is called just before the driver is removed
281 * from memory.
283 static void __exit igb_exit_module(void)
285 #ifdef CONFIG_IGB_DCA
286 dca_unregister_notify(&dca_notifier);
287 #endif
288 pci_unregister_driver(&igb_driver);
291 module_exit(igb_exit_module);
293 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
295 * igb_cache_ring_register - Descriptor ring to register mapping
296 * @adapter: board private structure to initialize
298 * Once we know the feature-set enabled for the device, we'll cache
299 * the register offset the descriptor ring is assigned to.
301 static void igb_cache_ring_register(struct igb_adapter *adapter)
303 int i = 0, j = 0;
304 u32 rbase_offset = adapter->vfs_allocated_count;
306 switch (adapter->hw.mac.type) {
307 case e1000_82576:
308 /* The queues are allocated for virtualization such that VF 0
309 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
310 * In order to avoid collision we start at the first free queue
311 * and continue consuming queues in the same sequence
313 if (adapter->vfs_allocated_count) {
314 for (; i < adapter->rss_queues; i++)
315 adapter->rx_ring[i].reg_idx = rbase_offset +
316 Q_IDX_82576(i);
317 for (; j < adapter->rss_queues; j++)
318 adapter->tx_ring[j].reg_idx = rbase_offset +
319 Q_IDX_82576(j);
321 case e1000_82575:
322 case e1000_82580:
323 default:
324 for (; i < adapter->num_rx_queues; i++)
325 adapter->rx_ring[i].reg_idx = rbase_offset + i;
326 for (; j < adapter->num_tx_queues; j++)
327 adapter->tx_ring[j].reg_idx = rbase_offset + j;
328 break;
332 static void igb_free_queues(struct igb_adapter *adapter)
334 kfree(adapter->tx_ring);
335 kfree(adapter->rx_ring);
337 adapter->tx_ring = NULL;
338 adapter->rx_ring = NULL;
340 adapter->num_rx_queues = 0;
341 adapter->num_tx_queues = 0;
345 * igb_alloc_queues - Allocate memory for all rings
346 * @adapter: board private structure to initialize
348 * We allocate one ring per queue at run-time since we don't know the
349 * number of queues at compile-time.
351 static int igb_alloc_queues(struct igb_adapter *adapter)
353 int i;
355 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
356 sizeof(struct igb_ring), GFP_KERNEL);
357 if (!adapter->tx_ring)
358 goto err;
360 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
361 sizeof(struct igb_ring), GFP_KERNEL);
362 if (!adapter->rx_ring)
363 goto err;
365 for (i = 0; i < adapter->num_tx_queues; i++) {
366 struct igb_ring *ring = &(adapter->tx_ring[i]);
367 ring->count = adapter->tx_ring_count;
368 ring->queue_index = i;
369 ring->pdev = adapter->pdev;
370 ring->netdev = adapter->netdev;
371 /* For 82575, context index must be unique per ring. */
372 if (adapter->hw.mac.type == e1000_82575)
373 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
376 for (i = 0; i < adapter->num_rx_queues; i++) {
377 struct igb_ring *ring = &(adapter->rx_ring[i]);
378 ring->count = adapter->rx_ring_count;
379 ring->queue_index = i;
380 ring->pdev = adapter->pdev;
381 ring->netdev = adapter->netdev;
382 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
383 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
384 /* set flag indicating ring supports SCTP checksum offload */
385 if (adapter->hw.mac.type >= e1000_82576)
386 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
389 igb_cache_ring_register(adapter);
391 return 0;
393 err:
394 igb_free_queues(adapter);
396 return -ENOMEM;
399 #define IGB_N0_QUEUE -1
400 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
402 u32 msixbm = 0;
403 struct igb_adapter *adapter = q_vector->adapter;
404 struct e1000_hw *hw = &adapter->hw;
405 u32 ivar, index;
406 int rx_queue = IGB_N0_QUEUE;
407 int tx_queue = IGB_N0_QUEUE;
409 if (q_vector->rx_ring)
410 rx_queue = q_vector->rx_ring->reg_idx;
411 if (q_vector->tx_ring)
412 tx_queue = q_vector->tx_ring->reg_idx;
414 switch (hw->mac.type) {
415 case e1000_82575:
416 /* The 82575 assigns vectors using a bitmask, which matches the
417 bitmask for the EICR/EIMS/EIMC registers. To assign one
418 or more queues to a vector, we write the appropriate bits
419 into the MSIXBM register for that vector. */
420 if (rx_queue > IGB_N0_QUEUE)
421 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
422 if (tx_queue > IGB_N0_QUEUE)
423 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
424 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
425 q_vector->eims_value = msixbm;
426 break;
427 case e1000_82576:
428 /* 82576 uses a table-based method for assigning vectors.
429 Each queue has a single entry in the table to which we write
430 a vector number along with a "valid" bit. Sadly, the layout
431 of the table is somewhat counterintuitive. */
432 if (rx_queue > IGB_N0_QUEUE) {
433 index = (rx_queue & 0x7);
434 ivar = array_rd32(E1000_IVAR0, index);
435 if (rx_queue < 8) {
436 /* vector goes into low byte of register */
437 ivar = ivar & 0xFFFFFF00;
438 ivar |= msix_vector | E1000_IVAR_VALID;
439 } else {
440 /* vector goes into third byte of register */
441 ivar = ivar & 0xFF00FFFF;
442 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
444 array_wr32(E1000_IVAR0, index, ivar);
446 if (tx_queue > IGB_N0_QUEUE) {
447 index = (tx_queue & 0x7);
448 ivar = array_rd32(E1000_IVAR0, index);
449 if (tx_queue < 8) {
450 /* vector goes into second byte of register */
451 ivar = ivar & 0xFFFF00FF;
452 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
453 } else {
454 /* vector goes into high byte of register */
455 ivar = ivar & 0x00FFFFFF;
456 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
458 array_wr32(E1000_IVAR0, index, ivar);
460 q_vector->eims_value = 1 << msix_vector;
461 break;
462 case e1000_82580:
463 /* 82580 uses the same table-based approach as 82576 but has fewer
464 entries as a result we carry over for queues greater than 4. */
465 if (rx_queue > IGB_N0_QUEUE) {
466 index = (rx_queue >> 1);
467 ivar = array_rd32(E1000_IVAR0, index);
468 if (rx_queue & 0x1) {
469 /* vector goes into third byte of register */
470 ivar = ivar & 0xFF00FFFF;
471 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
472 } else {
473 /* vector goes into low byte of register */
474 ivar = ivar & 0xFFFFFF00;
475 ivar |= msix_vector | E1000_IVAR_VALID;
477 array_wr32(E1000_IVAR0, index, ivar);
479 if (tx_queue > IGB_N0_QUEUE) {
480 index = (tx_queue >> 1);
481 ivar = array_rd32(E1000_IVAR0, index);
482 if (tx_queue & 0x1) {
483 /* vector goes into high byte of register */
484 ivar = ivar & 0x00FFFFFF;
485 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
486 } else {
487 /* vector goes into second byte of register */
488 ivar = ivar & 0xFFFF00FF;
489 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
491 array_wr32(E1000_IVAR0, index, ivar);
493 q_vector->eims_value = 1 << msix_vector;
494 break;
495 default:
496 BUG();
497 break;
502 * igb_configure_msix - Configure MSI-X hardware
504 * igb_configure_msix sets up the hardware to properly
505 * generate MSI-X interrupts.
507 static void igb_configure_msix(struct igb_adapter *adapter)
509 u32 tmp;
510 int i, vector = 0;
511 struct e1000_hw *hw = &adapter->hw;
513 adapter->eims_enable_mask = 0;
515 /* set vector for other causes, i.e. link changes */
516 switch (hw->mac.type) {
517 case e1000_82575:
518 tmp = rd32(E1000_CTRL_EXT);
519 /* enable MSI-X PBA support*/
520 tmp |= E1000_CTRL_EXT_PBA_CLR;
522 /* Auto-Mask interrupts upon ICR read. */
523 tmp |= E1000_CTRL_EXT_EIAME;
524 tmp |= E1000_CTRL_EXT_IRCA;
526 wr32(E1000_CTRL_EXT, tmp);
528 /* enable msix_other interrupt */
529 array_wr32(E1000_MSIXBM(0), vector++,
530 E1000_EIMS_OTHER);
531 adapter->eims_other = E1000_EIMS_OTHER;
533 break;
535 case e1000_82576:
536 case e1000_82580:
537 /* Turn on MSI-X capability first, or our settings
538 * won't stick. And it will take days to debug. */
539 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
540 E1000_GPIE_PBA | E1000_GPIE_EIAME |
541 E1000_GPIE_NSICR);
543 /* enable msix_other interrupt */
544 adapter->eims_other = 1 << vector;
545 tmp = (vector++ | E1000_IVAR_VALID) << 8;
547 wr32(E1000_IVAR_MISC, tmp);
548 break;
549 default:
550 /* do nothing, since nothing else supports MSI-X */
551 break;
552 } /* switch (hw->mac.type) */
554 adapter->eims_enable_mask |= adapter->eims_other;
556 for (i = 0; i < adapter->num_q_vectors; i++) {
557 struct igb_q_vector *q_vector = adapter->q_vector[i];
558 igb_assign_vector(q_vector, vector++);
559 adapter->eims_enable_mask |= q_vector->eims_value;
562 wrfl();
566 * igb_request_msix - Initialize MSI-X interrupts
568 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
569 * kernel.
571 static int igb_request_msix(struct igb_adapter *adapter)
573 struct net_device *netdev = adapter->netdev;
574 struct e1000_hw *hw = &adapter->hw;
575 int i, err = 0, vector = 0;
577 err = request_irq(adapter->msix_entries[vector].vector,
578 igb_msix_other, 0, netdev->name, adapter);
579 if (err)
580 goto out;
581 vector++;
583 for (i = 0; i < adapter->num_q_vectors; i++) {
584 struct igb_q_vector *q_vector = adapter->q_vector[i];
586 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
588 if (q_vector->rx_ring && q_vector->tx_ring)
589 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
590 q_vector->rx_ring->queue_index);
591 else if (q_vector->tx_ring)
592 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
593 q_vector->tx_ring->queue_index);
594 else if (q_vector->rx_ring)
595 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
596 q_vector->rx_ring->queue_index);
597 else
598 sprintf(q_vector->name, "%s-unused", netdev->name);
600 err = request_irq(adapter->msix_entries[vector].vector,
601 igb_msix_ring, 0, q_vector->name,
602 q_vector);
603 if (err)
604 goto out;
605 vector++;
608 igb_configure_msix(adapter);
609 return 0;
610 out:
611 return err;
614 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
616 if (adapter->msix_entries) {
617 pci_disable_msix(adapter->pdev);
618 kfree(adapter->msix_entries);
619 adapter->msix_entries = NULL;
620 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
621 pci_disable_msi(adapter->pdev);
626 * igb_free_q_vectors - Free memory allocated for interrupt vectors
627 * @adapter: board private structure to initialize
629 * This function frees the memory allocated to the q_vectors. In addition if
630 * NAPI is enabled it will delete any references to the NAPI struct prior
631 * to freeing the q_vector.
633 static void igb_free_q_vectors(struct igb_adapter *adapter)
635 int v_idx;
637 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
638 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
639 adapter->q_vector[v_idx] = NULL;
640 netif_napi_del(&q_vector->napi);
641 kfree(q_vector);
643 adapter->num_q_vectors = 0;
647 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
649 * This function resets the device so that it has 0 rx queues, tx queues, and
650 * MSI-X interrupts allocated.
652 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
654 igb_free_queues(adapter);
655 igb_free_q_vectors(adapter);
656 igb_reset_interrupt_capability(adapter);
660 * igb_set_interrupt_capability - set MSI or MSI-X if supported
662 * Attempt to configure interrupts using the best available
663 * capabilities of the hardware and kernel.
665 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
667 int err;
668 int numvecs, i;
670 /* Number of supported queues. */
671 adapter->num_rx_queues = adapter->rss_queues;
672 adapter->num_tx_queues = adapter->rss_queues;
674 /* start with one vector for every rx queue */
675 numvecs = adapter->num_rx_queues;
677 /* if tx handler is seperate add 1 for every tx queue */
678 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
679 numvecs += adapter->num_tx_queues;
681 /* store the number of vectors reserved for queues */
682 adapter->num_q_vectors = numvecs;
684 /* add 1 vector for link status interrupts */
685 numvecs++;
686 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
687 GFP_KERNEL);
688 if (!adapter->msix_entries)
689 goto msi_only;
691 for (i = 0; i < numvecs; i++)
692 adapter->msix_entries[i].entry = i;
694 err = pci_enable_msix(adapter->pdev,
695 adapter->msix_entries,
696 numvecs);
697 if (err == 0)
698 goto out;
700 igb_reset_interrupt_capability(adapter);
702 /* If we can't do MSI-X, try MSI */
703 msi_only:
704 #ifdef CONFIG_PCI_IOV
705 /* disable SR-IOV for non MSI-X configurations */
706 if (adapter->vf_data) {
707 struct e1000_hw *hw = &adapter->hw;
708 /* disable iov and allow time for transactions to clear */
709 pci_disable_sriov(adapter->pdev);
710 msleep(500);
712 kfree(adapter->vf_data);
713 adapter->vf_data = NULL;
714 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
715 msleep(100);
716 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
718 #endif
719 adapter->vfs_allocated_count = 0;
720 adapter->rss_queues = 1;
721 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
722 adapter->num_rx_queues = 1;
723 adapter->num_tx_queues = 1;
724 adapter->num_q_vectors = 1;
725 if (!pci_enable_msi(adapter->pdev))
726 adapter->flags |= IGB_FLAG_HAS_MSI;
727 out:
728 /* Notify the stack of the (possibly) reduced Tx Queue count. */
729 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
730 return;
734 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
735 * @adapter: board private structure to initialize
737 * We allocate one q_vector per queue interrupt. If allocation fails we
738 * return -ENOMEM.
740 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
742 struct igb_q_vector *q_vector;
743 struct e1000_hw *hw = &adapter->hw;
744 int v_idx;
746 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
747 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
748 if (!q_vector)
749 goto err_out;
750 q_vector->adapter = adapter;
751 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
752 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
753 q_vector->itr_val = IGB_START_ITR;
754 q_vector->set_itr = 1;
755 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
756 adapter->q_vector[v_idx] = q_vector;
758 return 0;
760 err_out:
761 while (v_idx) {
762 v_idx--;
763 q_vector = adapter->q_vector[v_idx];
764 netif_napi_del(&q_vector->napi);
765 kfree(q_vector);
766 adapter->q_vector[v_idx] = NULL;
768 return -ENOMEM;
771 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
772 int ring_idx, int v_idx)
774 struct igb_q_vector *q_vector;
776 q_vector = adapter->q_vector[v_idx];
777 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
778 q_vector->rx_ring->q_vector = q_vector;
779 q_vector->itr_val = adapter->rx_itr_setting;
780 if (q_vector->itr_val && q_vector->itr_val <= 3)
781 q_vector->itr_val = IGB_START_ITR;
784 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
785 int ring_idx, int v_idx)
787 struct igb_q_vector *q_vector;
789 q_vector = adapter->q_vector[v_idx];
790 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
791 q_vector->tx_ring->q_vector = q_vector;
792 q_vector->itr_val = adapter->tx_itr_setting;
793 if (q_vector->itr_val && q_vector->itr_val <= 3)
794 q_vector->itr_val = IGB_START_ITR;
798 * igb_map_ring_to_vector - maps allocated queues to vectors
800 * This function maps the recently allocated queues to vectors.
802 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
804 int i;
805 int v_idx = 0;
807 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
808 (adapter->num_q_vectors < adapter->num_tx_queues))
809 return -ENOMEM;
811 if (adapter->num_q_vectors >=
812 (adapter->num_rx_queues + adapter->num_tx_queues)) {
813 for (i = 0; i < adapter->num_rx_queues; i++)
814 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
815 for (i = 0; i < adapter->num_tx_queues; i++)
816 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
817 } else {
818 for (i = 0; i < adapter->num_rx_queues; i++) {
819 if (i < adapter->num_tx_queues)
820 igb_map_tx_ring_to_vector(adapter, i, v_idx);
821 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
823 for (; i < adapter->num_tx_queues; i++)
824 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
826 return 0;
830 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
832 * This function initializes the interrupts and allocates all of the queues.
834 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
836 struct pci_dev *pdev = adapter->pdev;
837 int err;
839 igb_set_interrupt_capability(adapter);
841 err = igb_alloc_q_vectors(adapter);
842 if (err) {
843 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
844 goto err_alloc_q_vectors;
847 err = igb_alloc_queues(adapter);
848 if (err) {
849 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
850 goto err_alloc_queues;
853 err = igb_map_ring_to_vector(adapter);
854 if (err) {
855 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
856 goto err_map_queues;
860 return 0;
861 err_map_queues:
862 igb_free_queues(adapter);
863 err_alloc_queues:
864 igb_free_q_vectors(adapter);
865 err_alloc_q_vectors:
866 igb_reset_interrupt_capability(adapter);
867 return err;
871 * igb_request_irq - initialize interrupts
873 * Attempts to configure interrupts using the best available
874 * capabilities of the hardware and kernel.
876 static int igb_request_irq(struct igb_adapter *adapter)
878 struct net_device *netdev = adapter->netdev;
879 struct pci_dev *pdev = adapter->pdev;
880 struct e1000_hw *hw = &adapter->hw;
881 int err = 0;
883 if (adapter->msix_entries) {
884 err = igb_request_msix(adapter);
885 if (!err)
886 goto request_done;
887 /* fall back to MSI */
888 igb_clear_interrupt_scheme(adapter);
889 if (!pci_enable_msi(adapter->pdev))
890 adapter->flags |= IGB_FLAG_HAS_MSI;
891 igb_free_all_tx_resources(adapter);
892 igb_free_all_rx_resources(adapter);
893 adapter->num_tx_queues = 1;
894 adapter->num_rx_queues = 1;
895 adapter->num_q_vectors = 1;
896 err = igb_alloc_q_vectors(adapter);
897 if (err) {
898 dev_err(&pdev->dev,
899 "Unable to allocate memory for vectors\n");
900 goto request_done;
902 err = igb_alloc_queues(adapter);
903 if (err) {
904 dev_err(&pdev->dev,
905 "Unable to allocate memory for queues\n");
906 igb_free_q_vectors(adapter);
907 goto request_done;
909 igb_setup_all_tx_resources(adapter);
910 igb_setup_all_rx_resources(adapter);
911 } else {
912 switch (hw->mac.type) {
913 case e1000_82575:
914 wr32(E1000_MSIXBM(0),
915 (E1000_EICR_RX_QUEUE0 |
916 E1000_EICR_TX_QUEUE0 |
917 E1000_EIMS_OTHER));
918 break;
919 case e1000_82580:
920 case e1000_82576:
921 wr32(E1000_IVAR0, E1000_IVAR_VALID);
922 break;
923 default:
924 break;
928 if (adapter->flags & IGB_FLAG_HAS_MSI) {
929 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
930 netdev->name, adapter);
931 if (!err)
932 goto request_done;
934 /* fall back to legacy interrupts */
935 igb_reset_interrupt_capability(adapter);
936 adapter->flags &= ~IGB_FLAG_HAS_MSI;
939 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
940 netdev->name, adapter);
942 if (err)
943 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
944 err);
946 request_done:
947 return err;
950 static void igb_free_irq(struct igb_adapter *adapter)
952 if (adapter->msix_entries) {
953 int vector = 0, i;
955 free_irq(adapter->msix_entries[vector++].vector, adapter);
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959 free_irq(adapter->msix_entries[vector++].vector,
960 q_vector);
962 } else {
963 free_irq(adapter->pdev->irq, adapter);
968 * igb_irq_disable - Mask off interrupt generation on the NIC
969 * @adapter: board private structure
971 static void igb_irq_disable(struct igb_adapter *adapter)
973 struct e1000_hw *hw = &adapter->hw;
976 * we need to be careful when disabling interrupts. The VFs are also
977 * mapped into these registers and so clearing the bits can cause
978 * issues on the VF drivers so we only need to clear what we set
980 if (adapter->msix_entries) {
981 u32 regval = rd32(E1000_EIAM);
982 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
983 wr32(E1000_EIMC, adapter->eims_enable_mask);
984 regval = rd32(E1000_EIAC);
985 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
988 wr32(E1000_IAM, 0);
989 wr32(E1000_IMC, ~0);
990 wrfl();
991 synchronize_irq(adapter->pdev->irq);
995 * igb_irq_enable - Enable default interrupt generation settings
996 * @adapter: board private structure
998 static void igb_irq_enable(struct igb_adapter *adapter)
1000 struct e1000_hw *hw = &adapter->hw;
1002 if (adapter->msix_entries) {
1003 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1004 u32 regval = rd32(E1000_EIAC);
1005 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1006 regval = rd32(E1000_EIAM);
1007 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1008 wr32(E1000_EIMS, adapter->eims_enable_mask);
1009 if (adapter->vfs_allocated_count) {
1010 wr32(E1000_MBVFIMR, 0xFF);
1011 ims |= E1000_IMS_VMMB;
1013 if (adapter->hw.mac.type == e1000_82580)
1014 ims |= E1000_IMS_DRSTA;
1016 wr32(E1000_IMS, ims);
1017 } else {
1018 wr32(E1000_IMS, IMS_ENABLE_MASK |
1019 E1000_IMS_DRSTA);
1020 wr32(E1000_IAM, IMS_ENABLE_MASK |
1021 E1000_IMS_DRSTA);
1025 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1027 struct e1000_hw *hw = &adapter->hw;
1028 u16 vid = adapter->hw.mng_cookie.vlan_id;
1029 u16 old_vid = adapter->mng_vlan_id;
1031 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1032 /* add VID to filter table */
1033 igb_vfta_set(hw, vid, true);
1034 adapter->mng_vlan_id = vid;
1035 } else {
1036 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1039 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1040 (vid != old_vid) &&
1041 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1042 /* remove VID from filter table */
1043 igb_vfta_set(hw, old_vid, false);
1048 * igb_release_hw_control - release control of the h/w to f/w
1049 * @adapter: address of board private structure
1051 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1052 * For ASF and Pass Through versions of f/w this means that the
1053 * driver is no longer loaded.
1056 static void igb_release_hw_control(struct igb_adapter *adapter)
1058 struct e1000_hw *hw = &adapter->hw;
1059 u32 ctrl_ext;
1061 /* Let firmware take over control of h/w */
1062 ctrl_ext = rd32(E1000_CTRL_EXT);
1063 wr32(E1000_CTRL_EXT,
1064 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1068 * igb_get_hw_control - get control of the h/w from f/w
1069 * @adapter: address of board private structure
1071 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1072 * For ASF and Pass Through versions of f/w this means that
1073 * the driver is loaded.
1076 static void igb_get_hw_control(struct igb_adapter *adapter)
1078 struct e1000_hw *hw = &adapter->hw;
1079 u32 ctrl_ext;
1081 /* Let firmware know the driver has taken over */
1082 ctrl_ext = rd32(E1000_CTRL_EXT);
1083 wr32(E1000_CTRL_EXT,
1084 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1088 * igb_configure - configure the hardware for RX and TX
1089 * @adapter: private board structure
1091 static void igb_configure(struct igb_adapter *adapter)
1093 struct net_device *netdev = adapter->netdev;
1094 int i;
1096 igb_get_hw_control(adapter);
1097 igb_set_rx_mode(netdev);
1099 igb_restore_vlan(adapter);
1101 igb_setup_tctl(adapter);
1102 igb_setup_mrqc(adapter);
1103 igb_setup_rctl(adapter);
1105 igb_configure_tx(adapter);
1106 igb_configure_rx(adapter);
1108 igb_rx_fifo_flush_82575(&adapter->hw);
1110 /* call igb_desc_unused which always leaves
1111 * at least 1 descriptor unused to make sure
1112 * next_to_use != next_to_clean */
1113 for (i = 0; i < adapter->num_rx_queues; i++) {
1114 struct igb_ring *ring = &adapter->rx_ring[i];
1115 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1119 adapter->tx_queue_len = netdev->tx_queue_len;
1124 * igb_up - Open the interface and prepare it to handle traffic
1125 * @adapter: board private structure
1127 int igb_up(struct igb_adapter *adapter)
1129 struct e1000_hw *hw = &adapter->hw;
1130 int i;
1132 /* hardware has been reset, we need to reload some things */
1133 igb_configure(adapter);
1135 clear_bit(__IGB_DOWN, &adapter->state);
1137 for (i = 0; i < adapter->num_q_vectors; i++) {
1138 struct igb_q_vector *q_vector = adapter->q_vector[i];
1139 napi_enable(&q_vector->napi);
1141 if (adapter->msix_entries)
1142 igb_configure_msix(adapter);
1144 /* Clear any pending interrupts. */
1145 rd32(E1000_ICR);
1146 igb_irq_enable(adapter);
1148 /* notify VFs that reset has been completed */
1149 if (adapter->vfs_allocated_count) {
1150 u32 reg_data = rd32(E1000_CTRL_EXT);
1151 reg_data |= E1000_CTRL_EXT_PFRSTD;
1152 wr32(E1000_CTRL_EXT, reg_data);
1155 netif_tx_start_all_queues(adapter->netdev);
1157 /* start the watchdog. */
1158 hw->mac.get_link_status = 1;
1159 schedule_work(&adapter->watchdog_task);
1161 return 0;
1164 void igb_down(struct igb_adapter *adapter)
1166 struct net_device *netdev = adapter->netdev;
1167 struct e1000_hw *hw = &adapter->hw;
1168 u32 tctl, rctl;
1169 int i;
1171 /* signal that we're down so the interrupt handler does not
1172 * reschedule our watchdog timer */
1173 set_bit(__IGB_DOWN, &adapter->state);
1175 /* disable receives in the hardware */
1176 rctl = rd32(E1000_RCTL);
1177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1178 /* flush and sleep below */
1180 netif_tx_stop_all_queues(netdev);
1182 /* disable transmits in the hardware */
1183 tctl = rd32(E1000_TCTL);
1184 tctl &= ~E1000_TCTL_EN;
1185 wr32(E1000_TCTL, tctl);
1186 /* flush both disables and wait for them to finish */
1187 wrfl();
1188 msleep(10);
1190 for (i = 0; i < adapter->num_q_vectors; i++) {
1191 struct igb_q_vector *q_vector = adapter->q_vector[i];
1192 napi_disable(&q_vector->napi);
1195 igb_irq_disable(adapter);
1197 del_timer_sync(&adapter->watchdog_timer);
1198 del_timer_sync(&adapter->phy_info_timer);
1200 netdev->tx_queue_len = adapter->tx_queue_len;
1201 netif_carrier_off(netdev);
1203 /* record the stats before reset*/
1204 igb_update_stats(adapter);
1206 adapter->link_speed = 0;
1207 adapter->link_duplex = 0;
1209 if (!pci_channel_offline(adapter->pdev))
1210 igb_reset(adapter);
1211 igb_clean_all_tx_rings(adapter);
1212 igb_clean_all_rx_rings(adapter);
1213 #ifdef CONFIG_IGB_DCA
1215 /* since we reset the hardware DCA settings were cleared */
1216 igb_setup_dca(adapter);
1217 #endif
1220 void igb_reinit_locked(struct igb_adapter *adapter)
1222 WARN_ON(in_interrupt());
1223 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1224 msleep(1);
1225 igb_down(adapter);
1226 igb_up(adapter);
1227 clear_bit(__IGB_RESETTING, &adapter->state);
1230 void igb_reset(struct igb_adapter *adapter)
1232 struct pci_dev *pdev = adapter->pdev;
1233 struct e1000_hw *hw = &adapter->hw;
1234 struct e1000_mac_info *mac = &hw->mac;
1235 struct e1000_fc_info *fc = &hw->fc;
1236 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1237 u16 hwm;
1239 /* Repartition Pba for greater than 9k mtu
1240 * To take effect CTRL.RST is required.
1242 switch (mac->type) {
1243 case e1000_82580:
1244 pba = rd32(E1000_RXPBS);
1245 pba = igb_rxpbs_adjust_82580(pba);
1246 break;
1247 case e1000_82576:
1248 pba = rd32(E1000_RXPBS);
1249 pba &= E1000_RXPBS_SIZE_MASK_82576;
1250 break;
1251 case e1000_82575:
1252 default:
1253 pba = E1000_PBA_34K;
1254 break;
1257 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1258 (mac->type < e1000_82576)) {
1259 /* adjust PBA for jumbo frames */
1260 wr32(E1000_PBA, pba);
1262 /* To maintain wire speed transmits, the Tx FIFO should be
1263 * large enough to accommodate two full transmit packets,
1264 * rounded up to the next 1KB and expressed in KB. Likewise,
1265 * the Rx FIFO should be large enough to accommodate at least
1266 * one full receive packet and is similarly rounded up and
1267 * expressed in KB. */
1268 pba = rd32(E1000_PBA);
1269 /* upper 16 bits has Tx packet buffer allocation size in KB */
1270 tx_space = pba >> 16;
1271 /* lower 16 bits has Rx packet buffer allocation size in KB */
1272 pba &= 0xffff;
1273 /* the tx fifo also stores 16 bytes of information about the tx
1274 * but don't include ethernet FCS because hardware appends it */
1275 min_tx_space = (adapter->max_frame_size +
1276 sizeof(union e1000_adv_tx_desc) -
1277 ETH_FCS_LEN) * 2;
1278 min_tx_space = ALIGN(min_tx_space, 1024);
1279 min_tx_space >>= 10;
1280 /* software strips receive CRC, so leave room for it */
1281 min_rx_space = adapter->max_frame_size;
1282 min_rx_space = ALIGN(min_rx_space, 1024);
1283 min_rx_space >>= 10;
1285 /* If current Tx allocation is less than the min Tx FIFO size,
1286 * and the min Tx FIFO size is less than the current Rx FIFO
1287 * allocation, take space away from current Rx allocation */
1288 if (tx_space < min_tx_space &&
1289 ((min_tx_space - tx_space) < pba)) {
1290 pba = pba - (min_tx_space - tx_space);
1292 /* if short on rx space, rx wins and must trump tx
1293 * adjustment */
1294 if (pba < min_rx_space)
1295 pba = min_rx_space;
1297 wr32(E1000_PBA, pba);
1300 /* flow control settings */
1301 /* The high water mark must be low enough to fit one full frame
1302 * (or the size used for early receive) above it in the Rx FIFO.
1303 * Set it to the lower of:
1304 * - 90% of the Rx FIFO size, or
1305 * - the full Rx FIFO size minus one full frame */
1306 hwm = min(((pba << 10) * 9 / 10),
1307 ((pba << 10) - 2 * adapter->max_frame_size));
1309 if (mac->type < e1000_82576) {
1310 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1311 fc->low_water = fc->high_water - 8;
1312 } else {
1313 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1314 fc->low_water = fc->high_water - 16;
1316 fc->pause_time = 0xFFFF;
1317 fc->send_xon = 1;
1318 fc->current_mode = fc->requested_mode;
1320 /* disable receive for all VFs and wait one second */
1321 if (adapter->vfs_allocated_count) {
1322 int i;
1323 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1324 adapter->vf_data[i].flags = 0;
1326 /* ping all the active vfs to let them know we are going down */
1327 igb_ping_all_vfs(adapter);
1329 /* disable transmits and receives */
1330 wr32(E1000_VFRE, 0);
1331 wr32(E1000_VFTE, 0);
1334 /* Allow time for pending master requests to run */
1335 hw->mac.ops.reset_hw(hw);
1336 wr32(E1000_WUC, 0);
1338 if (hw->mac.ops.init_hw(hw))
1339 dev_err(&pdev->dev, "Hardware Error\n");
1341 if (hw->mac.type == e1000_82580) {
1342 u32 reg = rd32(E1000_PCIEMISC);
1343 wr32(E1000_PCIEMISC,
1344 reg & ~E1000_PCIEMISC_LX_DECISION);
1346 igb_update_mng_vlan(adapter);
1348 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1349 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1351 igb_reset_adaptive(hw);
1352 igb_get_phy_info(hw);
1355 static const struct net_device_ops igb_netdev_ops = {
1356 .ndo_open = igb_open,
1357 .ndo_stop = igb_close,
1358 .ndo_start_xmit = igb_xmit_frame_adv,
1359 .ndo_get_stats = igb_get_stats,
1360 .ndo_set_rx_mode = igb_set_rx_mode,
1361 .ndo_set_multicast_list = igb_set_rx_mode,
1362 .ndo_set_mac_address = igb_set_mac,
1363 .ndo_change_mtu = igb_change_mtu,
1364 .ndo_do_ioctl = igb_ioctl,
1365 .ndo_tx_timeout = igb_tx_timeout,
1366 .ndo_validate_addr = eth_validate_addr,
1367 .ndo_vlan_rx_register = igb_vlan_rx_register,
1368 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1369 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1370 #ifdef CONFIG_NET_POLL_CONTROLLER
1371 .ndo_poll_controller = igb_netpoll,
1372 #endif
1376 * igb_probe - Device Initialization Routine
1377 * @pdev: PCI device information struct
1378 * @ent: entry in igb_pci_tbl
1380 * Returns 0 on success, negative on failure
1382 * igb_probe initializes an adapter identified by a pci_dev structure.
1383 * The OS initialization, configuring of the adapter private structure,
1384 * and a hardware reset occur.
1386 static int __devinit igb_probe(struct pci_dev *pdev,
1387 const struct pci_device_id *ent)
1389 struct net_device *netdev;
1390 struct igb_adapter *adapter;
1391 struct e1000_hw *hw;
1392 u16 eeprom_data = 0;
1393 static int global_quad_port_a; /* global quad port a indication */
1394 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1395 unsigned long mmio_start, mmio_len;
1396 int err, pci_using_dac;
1397 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1398 u32 part_num;
1400 err = pci_enable_device_mem(pdev);
1401 if (err)
1402 return err;
1404 pci_using_dac = 0;
1405 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1406 if (!err) {
1407 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1408 if (!err)
1409 pci_using_dac = 1;
1410 } else {
1411 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1412 if (err) {
1413 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1414 if (err) {
1415 dev_err(&pdev->dev, "No usable DMA "
1416 "configuration, aborting\n");
1417 goto err_dma;
1422 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1423 IORESOURCE_MEM),
1424 igb_driver_name);
1425 if (err)
1426 goto err_pci_reg;
1428 pci_enable_pcie_error_reporting(pdev);
1430 pci_set_master(pdev);
1431 pci_save_state(pdev);
1433 err = -ENOMEM;
1434 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1435 IGB_ABS_MAX_TX_QUEUES);
1436 if (!netdev)
1437 goto err_alloc_etherdev;
1439 SET_NETDEV_DEV(netdev, &pdev->dev);
1441 pci_set_drvdata(pdev, netdev);
1442 adapter = netdev_priv(netdev);
1443 adapter->netdev = netdev;
1444 adapter->pdev = pdev;
1445 hw = &adapter->hw;
1446 hw->back = adapter;
1447 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1449 mmio_start = pci_resource_start(pdev, 0);
1450 mmio_len = pci_resource_len(pdev, 0);
1452 err = -EIO;
1453 hw->hw_addr = ioremap(mmio_start, mmio_len);
1454 if (!hw->hw_addr)
1455 goto err_ioremap;
1457 netdev->netdev_ops = &igb_netdev_ops;
1458 igb_set_ethtool_ops(netdev);
1459 netdev->watchdog_timeo = 5 * HZ;
1461 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1463 netdev->mem_start = mmio_start;
1464 netdev->mem_end = mmio_start + mmio_len;
1466 /* PCI config space info */
1467 hw->vendor_id = pdev->vendor;
1468 hw->device_id = pdev->device;
1469 hw->revision_id = pdev->revision;
1470 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1471 hw->subsystem_device_id = pdev->subsystem_device;
1473 /* Copy the default MAC, PHY and NVM function pointers */
1474 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1475 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1476 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1477 /* Initialize skew-specific constants */
1478 err = ei->get_invariants(hw);
1479 if (err)
1480 goto err_sw_init;
1482 /* setup the private structure */
1483 err = igb_sw_init(adapter);
1484 if (err)
1485 goto err_sw_init;
1487 igb_get_bus_info_pcie(hw);
1489 hw->phy.autoneg_wait_to_complete = false;
1490 hw->mac.adaptive_ifs = true;
1492 /* Copper options */
1493 if (hw->phy.media_type == e1000_media_type_copper) {
1494 hw->phy.mdix = AUTO_ALL_MODES;
1495 hw->phy.disable_polarity_correction = false;
1496 hw->phy.ms_type = e1000_ms_hw_default;
1499 if (igb_check_reset_block(hw))
1500 dev_info(&pdev->dev,
1501 "PHY reset is blocked due to SOL/IDER session.\n");
1503 netdev->features = NETIF_F_SG |
1504 NETIF_F_IP_CSUM |
1505 NETIF_F_HW_VLAN_TX |
1506 NETIF_F_HW_VLAN_RX |
1507 NETIF_F_HW_VLAN_FILTER;
1509 netdev->features |= NETIF_F_IPV6_CSUM;
1510 netdev->features |= NETIF_F_TSO;
1511 netdev->features |= NETIF_F_TSO6;
1512 netdev->features |= NETIF_F_GRO;
1514 netdev->vlan_features |= NETIF_F_TSO;
1515 netdev->vlan_features |= NETIF_F_TSO6;
1516 netdev->vlan_features |= NETIF_F_IP_CSUM;
1517 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1518 netdev->vlan_features |= NETIF_F_SG;
1520 if (pci_using_dac)
1521 netdev->features |= NETIF_F_HIGHDMA;
1523 if (hw->mac.type >= e1000_82576)
1524 netdev->features |= NETIF_F_SCTP_CSUM;
1526 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1528 /* before reading the NVM, reset the controller to put the device in a
1529 * known good starting state */
1530 hw->mac.ops.reset_hw(hw);
1532 /* make sure the NVM is good */
1533 if (igb_validate_nvm_checksum(hw) < 0) {
1534 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1535 err = -EIO;
1536 goto err_eeprom;
1539 /* copy the MAC address out of the NVM */
1540 if (hw->mac.ops.read_mac_addr(hw))
1541 dev_err(&pdev->dev, "NVM Read Error\n");
1543 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1544 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1546 if (!is_valid_ether_addr(netdev->perm_addr)) {
1547 dev_err(&pdev->dev, "Invalid MAC Address\n");
1548 err = -EIO;
1549 goto err_eeprom;
1552 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1553 (unsigned long) adapter);
1554 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1555 (unsigned long) adapter);
1557 INIT_WORK(&adapter->reset_task, igb_reset_task);
1558 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1560 /* Initialize link properties that are user-changeable */
1561 adapter->fc_autoneg = true;
1562 hw->mac.autoneg = true;
1563 hw->phy.autoneg_advertised = 0x2f;
1565 hw->fc.requested_mode = e1000_fc_default;
1566 hw->fc.current_mode = e1000_fc_default;
1568 igb_validate_mdi_setting(hw);
1570 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1571 * enable the ACPI Magic Packet filter
1574 if (hw->bus.func == 0)
1575 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1576 else if (hw->mac.type == e1000_82580)
1577 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1578 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1579 &eeprom_data);
1580 else if (hw->bus.func == 1)
1581 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1583 if (eeprom_data & eeprom_apme_mask)
1584 adapter->eeprom_wol |= E1000_WUFC_MAG;
1586 /* now that we have the eeprom settings, apply the special cases where
1587 * the eeprom may be wrong or the board simply won't support wake on
1588 * lan on a particular port */
1589 switch (pdev->device) {
1590 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1591 adapter->eeprom_wol = 0;
1592 break;
1593 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1594 case E1000_DEV_ID_82576_FIBER:
1595 case E1000_DEV_ID_82576_SERDES:
1596 /* Wake events only supported on port A for dual fiber
1597 * regardless of eeprom setting */
1598 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1599 adapter->eeprom_wol = 0;
1600 break;
1601 case E1000_DEV_ID_82576_QUAD_COPPER:
1602 /* if quad port adapter, disable WoL on all but port A */
1603 if (global_quad_port_a != 0)
1604 adapter->eeprom_wol = 0;
1605 else
1606 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1607 /* Reset for multiple quad port adapters */
1608 if (++global_quad_port_a == 4)
1609 global_quad_port_a = 0;
1610 break;
1613 /* initialize the wol settings based on the eeprom settings */
1614 adapter->wol = adapter->eeprom_wol;
1615 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1617 /* reset the hardware with the new settings */
1618 igb_reset(adapter);
1620 /* let the f/w know that the h/w is now under the control of the
1621 * driver. */
1622 igb_get_hw_control(adapter);
1624 strcpy(netdev->name, "eth%d");
1625 err = register_netdev(netdev);
1626 if (err)
1627 goto err_register;
1629 /* carrier off reporting is important to ethtool even BEFORE open */
1630 netif_carrier_off(netdev);
1632 #ifdef CONFIG_IGB_DCA
1633 if (dca_add_requester(&pdev->dev) == 0) {
1634 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1635 dev_info(&pdev->dev, "DCA enabled\n");
1636 igb_setup_dca(adapter);
1639 #endif
1640 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1641 /* print bus type/speed/width info */
1642 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1643 netdev->name,
1644 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1645 "unknown"),
1646 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1647 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1648 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1649 "unknown"),
1650 netdev->dev_addr);
1652 igb_read_part_num(hw, &part_num);
1653 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1654 (part_num >> 8), (part_num & 0xff));
1656 dev_info(&pdev->dev,
1657 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1658 adapter->msix_entries ? "MSI-X" :
1659 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1660 adapter->num_rx_queues, adapter->num_tx_queues);
1662 return 0;
1664 err_register:
1665 igb_release_hw_control(adapter);
1666 err_eeprom:
1667 if (!igb_check_reset_block(hw))
1668 igb_reset_phy(hw);
1670 if (hw->flash_address)
1671 iounmap(hw->flash_address);
1672 err_sw_init:
1673 igb_clear_interrupt_scheme(adapter);
1674 iounmap(hw->hw_addr);
1675 err_ioremap:
1676 free_netdev(netdev);
1677 err_alloc_etherdev:
1678 pci_release_selected_regions(pdev,
1679 pci_select_bars(pdev, IORESOURCE_MEM));
1680 err_pci_reg:
1681 err_dma:
1682 pci_disable_device(pdev);
1683 return err;
1687 * igb_remove - Device Removal Routine
1688 * @pdev: PCI device information struct
1690 * igb_remove is called by the PCI subsystem to alert the driver
1691 * that it should release a PCI device. The could be caused by a
1692 * Hot-Plug event, or because the driver is going to be removed from
1693 * memory.
1695 static void __devexit igb_remove(struct pci_dev *pdev)
1697 struct net_device *netdev = pci_get_drvdata(pdev);
1698 struct igb_adapter *adapter = netdev_priv(netdev);
1699 struct e1000_hw *hw = &adapter->hw;
1701 /* flush_scheduled work may reschedule our watchdog task, so
1702 * explicitly disable watchdog tasks from being rescheduled */
1703 set_bit(__IGB_DOWN, &adapter->state);
1704 del_timer_sync(&adapter->watchdog_timer);
1705 del_timer_sync(&adapter->phy_info_timer);
1707 flush_scheduled_work();
1709 #ifdef CONFIG_IGB_DCA
1710 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1711 dev_info(&pdev->dev, "DCA disabled\n");
1712 dca_remove_requester(&pdev->dev);
1713 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1714 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1716 #endif
1718 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1719 * would have already happened in close and is redundant. */
1720 igb_release_hw_control(adapter);
1722 unregister_netdev(netdev);
1724 if (!igb_check_reset_block(hw))
1725 igb_reset_phy(hw);
1727 igb_clear_interrupt_scheme(adapter);
1729 #ifdef CONFIG_PCI_IOV
1730 /* reclaim resources allocated to VFs */
1731 if (adapter->vf_data) {
1732 /* disable iov and allow time for transactions to clear */
1733 pci_disable_sriov(pdev);
1734 msleep(500);
1736 kfree(adapter->vf_data);
1737 adapter->vf_data = NULL;
1738 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1739 msleep(100);
1740 dev_info(&pdev->dev, "IOV Disabled\n");
1742 #endif
1744 iounmap(hw->hw_addr);
1745 if (hw->flash_address)
1746 iounmap(hw->flash_address);
1747 pci_release_selected_regions(pdev,
1748 pci_select_bars(pdev, IORESOURCE_MEM));
1750 free_netdev(netdev);
1752 pci_disable_pcie_error_reporting(pdev);
1754 pci_disable_device(pdev);
1758 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1759 * @adapter: board private structure to initialize
1761 * This function initializes the vf specific data storage and then attempts to
1762 * allocate the VFs. The reason for ordering it this way is because it is much
1763 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1764 * the memory for the VFs.
1766 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1768 #ifdef CONFIG_PCI_IOV
1769 struct pci_dev *pdev = adapter->pdev;
1771 if (adapter->vfs_allocated_count > 7)
1772 adapter->vfs_allocated_count = 7;
1774 if (adapter->vfs_allocated_count) {
1775 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1776 sizeof(struct vf_data_storage),
1777 GFP_KERNEL);
1778 /* if allocation failed then we do not support SR-IOV */
1779 if (!adapter->vf_data) {
1780 adapter->vfs_allocated_count = 0;
1781 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1782 "Data Storage\n");
1786 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1787 kfree(adapter->vf_data);
1788 adapter->vf_data = NULL;
1789 #endif /* CONFIG_PCI_IOV */
1790 adapter->vfs_allocated_count = 0;
1791 #ifdef CONFIG_PCI_IOV
1792 } else {
1793 unsigned char mac_addr[ETH_ALEN];
1794 int i;
1795 dev_info(&pdev->dev, "%d vfs allocated\n",
1796 adapter->vfs_allocated_count);
1797 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1798 random_ether_addr(mac_addr);
1799 igb_set_vf_mac(adapter, i, mac_addr);
1802 #endif /* CONFIG_PCI_IOV */
1807 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
1808 * @adapter: board private structure to initialize
1810 * igb_init_hw_timer initializes the function pointer and values for the hw
1811 * timer found in hardware.
1813 static void igb_init_hw_timer(struct igb_adapter *adapter)
1815 struct e1000_hw *hw = &adapter->hw;
1817 switch (hw->mac.type) {
1818 case e1000_82580:
1819 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1820 adapter->cycles.read = igb_read_clock;
1821 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1822 adapter->cycles.mult = 1;
1824 * The 82580 timesync updates the system timer every 8ns by 8ns
1825 * and the value cannot be shifted. Instead we need to shift
1826 * the registers to generate a 64bit timer value. As a result
1827 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
1828 * 24 in order to generate a larger value for synchronization.
1830 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
1831 /* disable system timer temporarily by setting bit 31 */
1832 wr32(E1000_TSAUXC, 0x80000000);
1833 wrfl();
1835 /* Set registers so that rollover occurs soon to test this. */
1836 wr32(E1000_SYSTIMR, 0x00000000);
1837 wr32(E1000_SYSTIML, 0x80000000);
1838 wr32(E1000_SYSTIMH, 0x000000FF);
1839 wrfl();
1841 /* enable system timer by clearing bit 31 */
1842 wr32(E1000_TSAUXC, 0x0);
1843 wrfl();
1845 timecounter_init(&adapter->clock,
1846 &adapter->cycles,
1847 ktime_to_ns(ktime_get_real()));
1849 * Synchronize our NIC clock against system wall clock. NIC
1850 * time stamp reading requires ~3us per sample, each sample
1851 * was pretty stable even under load => only require 10
1852 * samples for each offset comparison.
1854 memset(&adapter->compare, 0, sizeof(adapter->compare));
1855 adapter->compare.source = &adapter->clock;
1856 adapter->compare.target = ktime_get_real;
1857 adapter->compare.num_samples = 10;
1858 timecompare_update(&adapter->compare, 0);
1859 break;
1860 case e1000_82576:
1862 * Initialize hardware timer: we keep it running just in case
1863 * that some program needs it later on.
1865 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1866 adapter->cycles.read = igb_read_clock;
1867 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1868 adapter->cycles.mult = 1;
1870 * Scale the NIC clock cycle by a large factor so that
1871 * relatively small clock corrections can be added or
1872 * substracted at each clock tick. The drawbacks of a large
1873 * factor are a) that the clock register overflows more quickly
1874 * (not such a big deal) and b) that the increment per tick has
1875 * to fit into 24 bits. As a result we need to use a shift of
1876 * 19 so we can fit a value of 16 into the TIMINCA register.
1878 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1879 wr32(E1000_TIMINCA,
1880 (1 << E1000_TIMINCA_16NS_SHIFT) |
1881 (16 << IGB_82576_TSYNC_SHIFT));
1883 /* Set registers so that rollover occurs soon to test this. */
1884 wr32(E1000_SYSTIML, 0x00000000);
1885 wr32(E1000_SYSTIMH, 0xFF800000);
1886 wrfl();
1888 timecounter_init(&adapter->clock,
1889 &adapter->cycles,
1890 ktime_to_ns(ktime_get_real()));
1892 * Synchronize our NIC clock against system wall clock. NIC
1893 * time stamp reading requires ~3us per sample, each sample
1894 * was pretty stable even under load => only require 10
1895 * samples for each offset comparison.
1897 memset(&adapter->compare, 0, sizeof(adapter->compare));
1898 adapter->compare.source = &adapter->clock;
1899 adapter->compare.target = ktime_get_real;
1900 adapter->compare.num_samples = 10;
1901 timecompare_update(&adapter->compare, 0);
1902 break;
1903 case e1000_82575:
1904 /* 82575 does not support timesync */
1905 default:
1906 break;
1912 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1913 * @adapter: board private structure to initialize
1915 * igb_sw_init initializes the Adapter private data structure.
1916 * Fields are initialized based on PCI device information and
1917 * OS network device settings (MTU size).
1919 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1921 struct e1000_hw *hw = &adapter->hw;
1922 struct net_device *netdev = adapter->netdev;
1923 struct pci_dev *pdev = adapter->pdev;
1925 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1927 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1928 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1929 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1930 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1932 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1933 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1935 #ifdef CONFIG_PCI_IOV
1936 if (hw->mac.type == e1000_82576)
1937 adapter->vfs_allocated_count = max_vfs;
1939 #endif /* CONFIG_PCI_IOV */
1940 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1943 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
1944 * then we should combine the queues into a queue pair in order to
1945 * conserve interrupts due to limited supply
1947 if ((adapter->rss_queues > 4) ||
1948 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
1949 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1951 /* This call may decrease the number of queues */
1952 if (igb_init_interrupt_scheme(adapter)) {
1953 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1954 return -ENOMEM;
1957 igb_init_hw_timer(adapter);
1958 igb_probe_vfs(adapter);
1960 /* Explicitly disable IRQ since the NIC can be in any state. */
1961 igb_irq_disable(adapter);
1963 set_bit(__IGB_DOWN, &adapter->state);
1964 return 0;
1968 * igb_open - Called when a network interface is made active
1969 * @netdev: network interface device structure
1971 * Returns 0 on success, negative value on failure
1973 * The open entry point is called when a network interface is made
1974 * active by the system (IFF_UP). At this point all resources needed
1975 * for transmit and receive operations are allocated, the interrupt
1976 * handler is registered with the OS, the watchdog timer is started,
1977 * and the stack is notified that the interface is ready.
1979 static int igb_open(struct net_device *netdev)
1981 struct igb_adapter *adapter = netdev_priv(netdev);
1982 struct e1000_hw *hw = &adapter->hw;
1983 int err;
1984 int i;
1986 /* disallow open during test */
1987 if (test_bit(__IGB_TESTING, &adapter->state))
1988 return -EBUSY;
1990 netif_carrier_off(netdev);
1992 /* allocate transmit descriptors */
1993 err = igb_setup_all_tx_resources(adapter);
1994 if (err)
1995 goto err_setup_tx;
1997 /* allocate receive descriptors */
1998 err = igb_setup_all_rx_resources(adapter);
1999 if (err)
2000 goto err_setup_rx;
2002 /* e1000_power_up_phy(adapter); */
2004 /* before we allocate an interrupt, we must be ready to handle it.
2005 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2006 * as soon as we call pci_request_irq, so we have to setup our
2007 * clean_rx handler before we do so. */
2008 igb_configure(adapter);
2010 err = igb_request_irq(adapter);
2011 if (err)
2012 goto err_req_irq;
2014 /* From here on the code is the same as igb_up() */
2015 clear_bit(__IGB_DOWN, &adapter->state);
2017 for (i = 0; i < adapter->num_q_vectors; i++) {
2018 struct igb_q_vector *q_vector = adapter->q_vector[i];
2019 napi_enable(&q_vector->napi);
2022 /* Clear any pending interrupts. */
2023 rd32(E1000_ICR);
2025 igb_irq_enable(adapter);
2027 /* notify VFs that reset has been completed */
2028 if (adapter->vfs_allocated_count) {
2029 u32 reg_data = rd32(E1000_CTRL_EXT);
2030 reg_data |= E1000_CTRL_EXT_PFRSTD;
2031 wr32(E1000_CTRL_EXT, reg_data);
2034 netif_tx_start_all_queues(netdev);
2036 /* start the watchdog. */
2037 hw->mac.get_link_status = 1;
2038 schedule_work(&adapter->watchdog_task);
2040 return 0;
2042 err_req_irq:
2043 igb_release_hw_control(adapter);
2044 /* e1000_power_down_phy(adapter); */
2045 igb_free_all_rx_resources(adapter);
2046 err_setup_rx:
2047 igb_free_all_tx_resources(adapter);
2048 err_setup_tx:
2049 igb_reset(adapter);
2051 return err;
2055 * igb_close - Disables a network interface
2056 * @netdev: network interface device structure
2058 * Returns 0, this is not allowed to fail
2060 * The close entry point is called when an interface is de-activated
2061 * by the OS. The hardware is still under the driver's control, but
2062 * needs to be disabled. A global MAC reset is issued to stop the
2063 * hardware, and all transmit and receive resources are freed.
2065 static int igb_close(struct net_device *netdev)
2067 struct igb_adapter *adapter = netdev_priv(netdev);
2069 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2070 igb_down(adapter);
2072 igb_free_irq(adapter);
2074 igb_free_all_tx_resources(adapter);
2075 igb_free_all_rx_resources(adapter);
2077 return 0;
2081 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2082 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2084 * Return 0 on success, negative on failure
2086 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2088 struct pci_dev *pdev = tx_ring->pdev;
2089 int size;
2091 size = sizeof(struct igb_buffer) * tx_ring->count;
2092 tx_ring->buffer_info = vmalloc(size);
2093 if (!tx_ring->buffer_info)
2094 goto err;
2095 memset(tx_ring->buffer_info, 0, size);
2097 /* round up to nearest 4K */
2098 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2099 tx_ring->size = ALIGN(tx_ring->size, 4096);
2101 tx_ring->desc = pci_alloc_consistent(pdev,
2102 tx_ring->size,
2103 &tx_ring->dma);
2105 if (!tx_ring->desc)
2106 goto err;
2108 tx_ring->next_to_use = 0;
2109 tx_ring->next_to_clean = 0;
2110 return 0;
2112 err:
2113 vfree(tx_ring->buffer_info);
2114 dev_err(&pdev->dev,
2115 "Unable to allocate memory for the transmit descriptor ring\n");
2116 return -ENOMEM;
2120 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2121 * (Descriptors) for all queues
2122 * @adapter: board private structure
2124 * Return 0 on success, negative on failure
2126 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2128 struct pci_dev *pdev = adapter->pdev;
2129 int i, err = 0;
2131 for (i = 0; i < adapter->num_tx_queues; i++) {
2132 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2133 if (err) {
2134 dev_err(&pdev->dev,
2135 "Allocation for Tx Queue %u failed\n", i);
2136 for (i--; i >= 0; i--)
2137 igb_free_tx_resources(&adapter->tx_ring[i]);
2138 break;
2142 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2143 int r_idx = i % adapter->num_tx_queues;
2144 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2146 return err;
2150 * igb_setup_tctl - configure the transmit control registers
2151 * @adapter: Board private structure
2153 void igb_setup_tctl(struct igb_adapter *adapter)
2155 struct e1000_hw *hw = &adapter->hw;
2156 u32 tctl;
2158 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2159 wr32(E1000_TXDCTL(0), 0);
2161 /* Program the Transmit Control Register */
2162 tctl = rd32(E1000_TCTL);
2163 tctl &= ~E1000_TCTL_CT;
2164 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2165 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2167 igb_config_collision_dist(hw);
2169 /* Enable transmits */
2170 tctl |= E1000_TCTL_EN;
2172 wr32(E1000_TCTL, tctl);
2176 * igb_configure_tx_ring - Configure transmit ring after Reset
2177 * @adapter: board private structure
2178 * @ring: tx ring to configure
2180 * Configure a transmit ring after a reset.
2182 void igb_configure_tx_ring(struct igb_adapter *adapter,
2183 struct igb_ring *ring)
2185 struct e1000_hw *hw = &adapter->hw;
2186 u32 txdctl;
2187 u64 tdba = ring->dma;
2188 int reg_idx = ring->reg_idx;
2190 /* disable the queue */
2191 txdctl = rd32(E1000_TXDCTL(reg_idx));
2192 wr32(E1000_TXDCTL(reg_idx),
2193 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2194 wrfl();
2195 mdelay(10);
2197 wr32(E1000_TDLEN(reg_idx),
2198 ring->count * sizeof(union e1000_adv_tx_desc));
2199 wr32(E1000_TDBAL(reg_idx),
2200 tdba & 0x00000000ffffffffULL);
2201 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2203 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2204 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2205 writel(0, ring->head);
2206 writel(0, ring->tail);
2208 txdctl |= IGB_TX_PTHRESH;
2209 txdctl |= IGB_TX_HTHRESH << 8;
2210 txdctl |= IGB_TX_WTHRESH << 16;
2212 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2213 wr32(E1000_TXDCTL(reg_idx), txdctl);
2217 * igb_configure_tx - Configure transmit Unit after Reset
2218 * @adapter: board private structure
2220 * Configure the Tx unit of the MAC after a reset.
2222 static void igb_configure_tx(struct igb_adapter *adapter)
2224 int i;
2226 for (i = 0; i < adapter->num_tx_queues; i++)
2227 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2231 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2232 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2234 * Returns 0 on success, negative on failure
2236 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2238 struct pci_dev *pdev = rx_ring->pdev;
2239 int size, desc_len;
2241 size = sizeof(struct igb_buffer) * rx_ring->count;
2242 rx_ring->buffer_info = vmalloc(size);
2243 if (!rx_ring->buffer_info)
2244 goto err;
2245 memset(rx_ring->buffer_info, 0, size);
2247 desc_len = sizeof(union e1000_adv_rx_desc);
2249 /* Round up to nearest 4K */
2250 rx_ring->size = rx_ring->count * desc_len;
2251 rx_ring->size = ALIGN(rx_ring->size, 4096);
2253 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2254 &rx_ring->dma);
2256 if (!rx_ring->desc)
2257 goto err;
2259 rx_ring->next_to_clean = 0;
2260 rx_ring->next_to_use = 0;
2262 return 0;
2264 err:
2265 vfree(rx_ring->buffer_info);
2266 rx_ring->buffer_info = NULL;
2267 dev_err(&pdev->dev, "Unable to allocate memory for "
2268 "the receive descriptor ring\n");
2269 return -ENOMEM;
2273 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2274 * (Descriptors) for all queues
2275 * @adapter: board private structure
2277 * Return 0 on success, negative on failure
2279 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2281 struct pci_dev *pdev = adapter->pdev;
2282 int i, err = 0;
2284 for (i = 0; i < adapter->num_rx_queues; i++) {
2285 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2286 if (err) {
2287 dev_err(&pdev->dev,
2288 "Allocation for Rx Queue %u failed\n", i);
2289 for (i--; i >= 0; i--)
2290 igb_free_rx_resources(&adapter->rx_ring[i]);
2291 break;
2295 return err;
2299 * igb_setup_mrqc - configure the multiple receive queue control registers
2300 * @adapter: Board private structure
2302 static void igb_setup_mrqc(struct igb_adapter *adapter)
2304 struct e1000_hw *hw = &adapter->hw;
2305 u32 mrqc, rxcsum;
2306 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2307 union e1000_reta {
2308 u32 dword;
2309 u8 bytes[4];
2310 } reta;
2311 static const u8 rsshash[40] = {
2312 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2313 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2314 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2315 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2317 /* Fill out hash function seeds */
2318 for (j = 0; j < 10; j++) {
2319 u32 rsskey = rsshash[(j * 4)];
2320 rsskey |= rsshash[(j * 4) + 1] << 8;
2321 rsskey |= rsshash[(j * 4) + 2] << 16;
2322 rsskey |= rsshash[(j * 4) + 3] << 24;
2323 array_wr32(E1000_RSSRK(0), j, rsskey);
2326 num_rx_queues = adapter->rss_queues;
2328 if (adapter->vfs_allocated_count) {
2329 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2330 switch (hw->mac.type) {
2331 case e1000_82580:
2332 num_rx_queues = 1;
2333 shift = 0;
2334 break;
2335 case e1000_82576:
2336 shift = 3;
2337 num_rx_queues = 2;
2338 break;
2339 case e1000_82575:
2340 shift = 2;
2341 shift2 = 6;
2342 default:
2343 break;
2345 } else {
2346 if (hw->mac.type == e1000_82575)
2347 shift = 6;
2350 for (j = 0; j < (32 * 4); j++) {
2351 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2352 if (shift2)
2353 reta.bytes[j & 3] |= num_rx_queues << shift2;
2354 if ((j & 3) == 3)
2355 wr32(E1000_RETA(j >> 2), reta.dword);
2359 * Disable raw packet checksumming so that RSS hash is placed in
2360 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2361 * offloads as they are enabled by default
2363 rxcsum = rd32(E1000_RXCSUM);
2364 rxcsum |= E1000_RXCSUM_PCSD;
2366 if (adapter->hw.mac.type >= e1000_82576)
2367 /* Enable Receive Checksum Offload for SCTP */
2368 rxcsum |= E1000_RXCSUM_CRCOFL;
2370 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2371 wr32(E1000_RXCSUM, rxcsum);
2373 /* If VMDq is enabled then we set the appropriate mode for that, else
2374 * we default to RSS so that an RSS hash is calculated per packet even
2375 * if we are only using one queue */
2376 if (adapter->vfs_allocated_count) {
2377 if (hw->mac.type > e1000_82575) {
2378 /* Set the default pool for the PF's first queue */
2379 u32 vtctl = rd32(E1000_VT_CTL);
2380 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2381 E1000_VT_CTL_DISABLE_DEF_POOL);
2382 vtctl |= adapter->vfs_allocated_count <<
2383 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2384 wr32(E1000_VT_CTL, vtctl);
2386 if (adapter->rss_queues > 1)
2387 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2388 else
2389 mrqc = E1000_MRQC_ENABLE_VMDQ;
2390 } else {
2391 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2393 igb_vmm_control(adapter);
2395 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2396 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2397 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2398 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2399 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2400 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2401 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2402 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2404 wr32(E1000_MRQC, mrqc);
2408 * igb_setup_rctl - configure the receive control registers
2409 * @adapter: Board private structure
2411 void igb_setup_rctl(struct igb_adapter *adapter)
2413 struct e1000_hw *hw = &adapter->hw;
2414 u32 rctl;
2416 rctl = rd32(E1000_RCTL);
2418 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2419 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2421 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2422 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2425 * enable stripping of CRC. It's unlikely this will break BMC
2426 * redirection as it did with e1000. Newer features require
2427 * that the HW strips the CRC.
2429 rctl |= E1000_RCTL_SECRC;
2431 /* disable store bad packets and clear size bits. */
2432 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2434 /* enable LPE to prevent packets larger than max_frame_size */
2435 rctl |= E1000_RCTL_LPE;
2437 /* disable queue 0 to prevent tail write w/o re-config */
2438 wr32(E1000_RXDCTL(0), 0);
2440 /* Attention!!! For SR-IOV PF driver operations you must enable
2441 * queue drop for all VF and PF queues to prevent head of line blocking
2442 * if an un-trusted VF does not provide descriptors to hardware.
2444 if (adapter->vfs_allocated_count) {
2445 /* set all queue drop enable bits */
2446 wr32(E1000_QDE, ALL_QUEUES);
2449 wr32(E1000_RCTL, rctl);
2452 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2453 int vfn)
2455 struct e1000_hw *hw = &adapter->hw;
2456 u32 vmolr;
2458 /* if it isn't the PF check to see if VFs are enabled and
2459 * increase the size to support vlan tags */
2460 if (vfn < adapter->vfs_allocated_count &&
2461 adapter->vf_data[vfn].vlans_enabled)
2462 size += VLAN_TAG_SIZE;
2464 vmolr = rd32(E1000_VMOLR(vfn));
2465 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2466 vmolr |= size | E1000_VMOLR_LPE;
2467 wr32(E1000_VMOLR(vfn), vmolr);
2469 return 0;
2473 * igb_rlpml_set - set maximum receive packet size
2474 * @adapter: board private structure
2476 * Configure maximum receivable packet size.
2478 static void igb_rlpml_set(struct igb_adapter *adapter)
2480 u32 max_frame_size = adapter->max_frame_size;
2481 struct e1000_hw *hw = &adapter->hw;
2482 u16 pf_id = adapter->vfs_allocated_count;
2484 if (adapter->vlgrp)
2485 max_frame_size += VLAN_TAG_SIZE;
2487 /* if vfs are enabled we set RLPML to the largest possible request
2488 * size and set the VMOLR RLPML to the size we need */
2489 if (pf_id) {
2490 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2491 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2494 wr32(E1000_RLPML, max_frame_size);
2497 static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2499 struct e1000_hw *hw = &adapter->hw;
2500 u32 vmolr;
2503 * This register exists only on 82576 and newer so if we are older then
2504 * we should exit and do nothing
2506 if (hw->mac.type < e1000_82576)
2507 return;
2509 vmolr = rd32(E1000_VMOLR(vfn));
2510 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2511 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2513 /* clear all bits that might not be set */
2514 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2516 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2517 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2519 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2520 * multicast packets
2522 if (vfn <= adapter->vfs_allocated_count)
2523 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2525 wr32(E1000_VMOLR(vfn), vmolr);
2529 * igb_configure_rx_ring - Configure a receive ring after Reset
2530 * @adapter: board private structure
2531 * @ring: receive ring to be configured
2533 * Configure the Rx unit of the MAC after a reset.
2535 void igb_configure_rx_ring(struct igb_adapter *adapter,
2536 struct igb_ring *ring)
2538 struct e1000_hw *hw = &adapter->hw;
2539 u64 rdba = ring->dma;
2540 int reg_idx = ring->reg_idx;
2541 u32 srrctl, rxdctl;
2543 /* disable the queue */
2544 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2545 wr32(E1000_RXDCTL(reg_idx),
2546 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2548 /* Set DMA base address registers */
2549 wr32(E1000_RDBAL(reg_idx),
2550 rdba & 0x00000000ffffffffULL);
2551 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2552 wr32(E1000_RDLEN(reg_idx),
2553 ring->count * sizeof(union e1000_adv_rx_desc));
2555 /* initialize head and tail */
2556 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2557 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2558 writel(0, ring->head);
2559 writel(0, ring->tail);
2561 /* set descriptor configuration */
2562 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2563 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2564 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2565 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2566 srrctl |= IGB_RXBUFFER_16384 >>
2567 E1000_SRRCTL_BSIZEPKT_SHIFT;
2568 #else
2569 srrctl |= (PAGE_SIZE / 2) >>
2570 E1000_SRRCTL_BSIZEPKT_SHIFT;
2571 #endif
2572 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2573 } else {
2574 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2575 E1000_SRRCTL_BSIZEPKT_SHIFT;
2576 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2579 wr32(E1000_SRRCTL(reg_idx), srrctl);
2581 /* set filtering for VMDQ pools */
2582 igb_set_vmolr(adapter, reg_idx & 0x7);
2584 /* enable receive descriptor fetching */
2585 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2586 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2587 rxdctl &= 0xFFF00000;
2588 rxdctl |= IGB_RX_PTHRESH;
2589 rxdctl |= IGB_RX_HTHRESH << 8;
2590 rxdctl |= IGB_RX_WTHRESH << 16;
2591 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2595 * igb_configure_rx - Configure receive Unit after Reset
2596 * @adapter: board private structure
2598 * Configure the Rx unit of the MAC after a reset.
2600 static void igb_configure_rx(struct igb_adapter *adapter)
2602 int i;
2604 /* set UTA to appropriate mode */
2605 igb_set_uta(adapter);
2607 /* set the correct pool for the PF default MAC address in entry 0 */
2608 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2609 adapter->vfs_allocated_count);
2611 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2612 * the Base and Length of the Rx Descriptor Ring */
2613 for (i = 0; i < adapter->num_rx_queues; i++)
2614 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2618 * igb_free_tx_resources - Free Tx Resources per Queue
2619 * @tx_ring: Tx descriptor ring for a specific queue
2621 * Free all transmit software resources
2623 void igb_free_tx_resources(struct igb_ring *tx_ring)
2625 igb_clean_tx_ring(tx_ring);
2627 vfree(tx_ring->buffer_info);
2628 tx_ring->buffer_info = NULL;
2630 /* if not set, then don't free */
2631 if (!tx_ring->desc)
2632 return;
2634 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2635 tx_ring->desc, tx_ring->dma);
2637 tx_ring->desc = NULL;
2641 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2642 * @adapter: board private structure
2644 * Free all transmit software resources
2646 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2648 int i;
2650 for (i = 0; i < adapter->num_tx_queues; i++)
2651 igb_free_tx_resources(&adapter->tx_ring[i]);
2654 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2655 struct igb_buffer *buffer_info)
2657 if (buffer_info->dma) {
2658 if (buffer_info->mapped_as_page)
2659 pci_unmap_page(tx_ring->pdev,
2660 buffer_info->dma,
2661 buffer_info->length,
2662 PCI_DMA_TODEVICE);
2663 else
2664 pci_unmap_single(tx_ring->pdev,
2665 buffer_info->dma,
2666 buffer_info->length,
2667 PCI_DMA_TODEVICE);
2668 buffer_info->dma = 0;
2670 if (buffer_info->skb) {
2671 dev_kfree_skb_any(buffer_info->skb);
2672 buffer_info->skb = NULL;
2674 buffer_info->time_stamp = 0;
2675 buffer_info->length = 0;
2676 buffer_info->next_to_watch = 0;
2677 buffer_info->mapped_as_page = false;
2681 * igb_clean_tx_ring - Free Tx Buffers
2682 * @tx_ring: ring to be cleaned
2684 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2686 struct igb_buffer *buffer_info;
2687 unsigned long size;
2688 unsigned int i;
2690 if (!tx_ring->buffer_info)
2691 return;
2692 /* Free all the Tx ring sk_buffs */
2694 for (i = 0; i < tx_ring->count; i++) {
2695 buffer_info = &tx_ring->buffer_info[i];
2696 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2699 size = sizeof(struct igb_buffer) * tx_ring->count;
2700 memset(tx_ring->buffer_info, 0, size);
2702 /* Zero out the descriptor ring */
2703 memset(tx_ring->desc, 0, tx_ring->size);
2705 tx_ring->next_to_use = 0;
2706 tx_ring->next_to_clean = 0;
2710 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2711 * @adapter: board private structure
2713 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2715 int i;
2717 for (i = 0; i < adapter->num_tx_queues; i++)
2718 igb_clean_tx_ring(&adapter->tx_ring[i]);
2722 * igb_free_rx_resources - Free Rx Resources
2723 * @rx_ring: ring to clean the resources from
2725 * Free all receive software resources
2727 void igb_free_rx_resources(struct igb_ring *rx_ring)
2729 igb_clean_rx_ring(rx_ring);
2731 vfree(rx_ring->buffer_info);
2732 rx_ring->buffer_info = NULL;
2734 /* if not set, then don't free */
2735 if (!rx_ring->desc)
2736 return;
2738 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2739 rx_ring->desc, rx_ring->dma);
2741 rx_ring->desc = NULL;
2745 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2746 * @adapter: board private structure
2748 * Free all receive software resources
2750 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2752 int i;
2754 for (i = 0; i < adapter->num_rx_queues; i++)
2755 igb_free_rx_resources(&adapter->rx_ring[i]);
2759 * igb_clean_rx_ring - Free Rx Buffers per Queue
2760 * @rx_ring: ring to free buffers from
2762 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2764 struct igb_buffer *buffer_info;
2765 unsigned long size;
2766 unsigned int i;
2768 if (!rx_ring->buffer_info)
2769 return;
2771 /* Free all the Rx ring sk_buffs */
2772 for (i = 0; i < rx_ring->count; i++) {
2773 buffer_info = &rx_ring->buffer_info[i];
2774 if (buffer_info->dma) {
2775 pci_unmap_single(rx_ring->pdev,
2776 buffer_info->dma,
2777 rx_ring->rx_buffer_len,
2778 PCI_DMA_FROMDEVICE);
2779 buffer_info->dma = 0;
2782 if (buffer_info->skb) {
2783 dev_kfree_skb(buffer_info->skb);
2784 buffer_info->skb = NULL;
2786 if (buffer_info->page_dma) {
2787 pci_unmap_page(rx_ring->pdev,
2788 buffer_info->page_dma,
2789 PAGE_SIZE / 2,
2790 PCI_DMA_FROMDEVICE);
2791 buffer_info->page_dma = 0;
2793 if (buffer_info->page) {
2794 put_page(buffer_info->page);
2795 buffer_info->page = NULL;
2796 buffer_info->page_offset = 0;
2800 size = sizeof(struct igb_buffer) * rx_ring->count;
2801 memset(rx_ring->buffer_info, 0, size);
2803 /* Zero out the descriptor ring */
2804 memset(rx_ring->desc, 0, rx_ring->size);
2806 rx_ring->next_to_clean = 0;
2807 rx_ring->next_to_use = 0;
2811 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2812 * @adapter: board private structure
2814 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2816 int i;
2818 for (i = 0; i < adapter->num_rx_queues; i++)
2819 igb_clean_rx_ring(&adapter->rx_ring[i]);
2823 * igb_set_mac - Change the Ethernet Address of the NIC
2824 * @netdev: network interface device structure
2825 * @p: pointer to an address structure
2827 * Returns 0 on success, negative on failure
2829 static int igb_set_mac(struct net_device *netdev, void *p)
2831 struct igb_adapter *adapter = netdev_priv(netdev);
2832 struct e1000_hw *hw = &adapter->hw;
2833 struct sockaddr *addr = p;
2835 if (!is_valid_ether_addr(addr->sa_data))
2836 return -EADDRNOTAVAIL;
2838 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2839 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2841 /* set the correct pool for the new PF MAC address in entry 0 */
2842 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2843 adapter->vfs_allocated_count);
2845 return 0;
2849 * igb_write_mc_addr_list - write multicast addresses to MTA
2850 * @netdev: network interface device structure
2852 * Writes multicast address list to the MTA hash table.
2853 * Returns: -ENOMEM on failure
2854 * 0 on no addresses written
2855 * X on writing X addresses to MTA
2857 static int igb_write_mc_addr_list(struct net_device *netdev)
2859 struct igb_adapter *adapter = netdev_priv(netdev);
2860 struct e1000_hw *hw = &adapter->hw;
2861 struct dev_mc_list *mc_ptr = netdev->mc_list;
2862 u8 *mta_list;
2863 u32 vmolr = 0;
2864 int i;
2866 if (!netdev->mc_count) {
2867 /* nothing to program, so clear mc list */
2868 igb_update_mc_addr_list(hw, NULL, 0);
2869 igb_restore_vf_multicasts(adapter);
2870 return 0;
2873 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2874 if (!mta_list)
2875 return -ENOMEM;
2877 /* set vmolr receive overflow multicast bit */
2878 vmolr |= E1000_VMOLR_ROMPE;
2880 /* The shared function expects a packed array of only addresses. */
2881 mc_ptr = netdev->mc_list;
2883 for (i = 0; i < netdev->mc_count; i++) {
2884 if (!mc_ptr)
2885 break;
2886 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2887 mc_ptr = mc_ptr->next;
2889 igb_update_mc_addr_list(hw, mta_list, i);
2890 kfree(mta_list);
2892 return netdev->mc_count;
2896 * igb_write_uc_addr_list - write unicast addresses to RAR table
2897 * @netdev: network interface device structure
2899 * Writes unicast address list to the RAR table.
2900 * Returns: -ENOMEM on failure/insufficient address space
2901 * 0 on no addresses written
2902 * X on writing X addresses to the RAR table
2904 static int igb_write_uc_addr_list(struct net_device *netdev)
2906 struct igb_adapter *adapter = netdev_priv(netdev);
2907 struct e1000_hw *hw = &adapter->hw;
2908 unsigned int vfn = adapter->vfs_allocated_count;
2909 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2910 int count = 0;
2912 /* return ENOMEM indicating insufficient memory for addresses */
2913 if (netdev->uc.count > rar_entries)
2914 return -ENOMEM;
2916 if (netdev->uc.count && rar_entries) {
2917 struct netdev_hw_addr *ha;
2918 list_for_each_entry(ha, &netdev->uc.list, list) {
2919 if (!rar_entries)
2920 break;
2921 igb_rar_set_qsel(adapter, ha->addr,
2922 rar_entries--,
2923 vfn);
2924 count++;
2927 /* write the addresses in reverse order to avoid write combining */
2928 for (; rar_entries > 0 ; rar_entries--) {
2929 wr32(E1000_RAH(rar_entries), 0);
2930 wr32(E1000_RAL(rar_entries), 0);
2932 wrfl();
2934 return count;
2938 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2939 * @netdev: network interface device structure
2941 * The set_rx_mode entry point is called whenever the unicast or multicast
2942 * address lists or the network interface flags are updated. This routine is
2943 * responsible for configuring the hardware for proper unicast, multicast,
2944 * promiscuous mode, and all-multi behavior.
2946 static void igb_set_rx_mode(struct net_device *netdev)
2948 struct igb_adapter *adapter = netdev_priv(netdev);
2949 struct e1000_hw *hw = &adapter->hw;
2950 unsigned int vfn = adapter->vfs_allocated_count;
2951 u32 rctl, vmolr = 0;
2952 int count;
2954 /* Check for Promiscuous and All Multicast modes */
2955 rctl = rd32(E1000_RCTL);
2957 /* clear the effected bits */
2958 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2960 if (netdev->flags & IFF_PROMISC) {
2961 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2962 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2963 } else {
2964 if (netdev->flags & IFF_ALLMULTI) {
2965 rctl |= E1000_RCTL_MPE;
2966 vmolr |= E1000_VMOLR_MPME;
2967 } else {
2969 * Write addresses to the MTA, if the attempt fails
2970 * then we should just turn on promiscous mode so
2971 * that we can at least receive multicast traffic
2973 count = igb_write_mc_addr_list(netdev);
2974 if (count < 0) {
2975 rctl |= E1000_RCTL_MPE;
2976 vmolr |= E1000_VMOLR_MPME;
2977 } else if (count) {
2978 vmolr |= E1000_VMOLR_ROMPE;
2982 * Write addresses to available RAR registers, if there is not
2983 * sufficient space to store all the addresses then enable
2984 * unicast promiscous mode
2986 count = igb_write_uc_addr_list(netdev);
2987 if (count < 0) {
2988 rctl |= E1000_RCTL_UPE;
2989 vmolr |= E1000_VMOLR_ROPE;
2991 rctl |= E1000_RCTL_VFE;
2993 wr32(E1000_RCTL, rctl);
2996 * In order to support SR-IOV and eventually VMDq it is necessary to set
2997 * the VMOLR to enable the appropriate modes. Without this workaround
2998 * we will have issues with VLAN tag stripping not being done for frames
2999 * that are only arriving because we are the default pool
3001 if (hw->mac.type < e1000_82576)
3002 return;
3004 vmolr |= rd32(E1000_VMOLR(vfn)) &
3005 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3006 wr32(E1000_VMOLR(vfn), vmolr);
3007 igb_restore_vf_multicasts(adapter);
3010 /* Need to wait a few seconds after link up to get diagnostic information from
3011 * the phy */
3012 static void igb_update_phy_info(unsigned long data)
3014 struct igb_adapter *adapter = (struct igb_adapter *) data;
3015 igb_get_phy_info(&adapter->hw);
3019 * igb_has_link - check shared code for link and determine up/down
3020 * @adapter: pointer to driver private info
3022 static bool igb_has_link(struct igb_adapter *adapter)
3024 struct e1000_hw *hw = &adapter->hw;
3025 bool link_active = false;
3026 s32 ret_val = 0;
3028 /* get_link_status is set on LSC (link status) interrupt or
3029 * rx sequence error interrupt. get_link_status will stay
3030 * false until the e1000_check_for_link establishes link
3031 * for copper adapters ONLY
3033 switch (hw->phy.media_type) {
3034 case e1000_media_type_copper:
3035 if (hw->mac.get_link_status) {
3036 ret_val = hw->mac.ops.check_for_link(hw);
3037 link_active = !hw->mac.get_link_status;
3038 } else {
3039 link_active = true;
3041 break;
3042 case e1000_media_type_internal_serdes:
3043 ret_val = hw->mac.ops.check_for_link(hw);
3044 link_active = hw->mac.serdes_has_link;
3045 break;
3046 default:
3047 case e1000_media_type_unknown:
3048 break;
3051 return link_active;
3055 * igb_watchdog - Timer Call-back
3056 * @data: pointer to adapter cast into an unsigned long
3058 static void igb_watchdog(unsigned long data)
3060 struct igb_adapter *adapter = (struct igb_adapter *)data;
3061 /* Do the rest outside of interrupt context */
3062 schedule_work(&adapter->watchdog_task);
3065 static void igb_watchdog_task(struct work_struct *work)
3067 struct igb_adapter *adapter = container_of(work,
3068 struct igb_adapter,
3069 watchdog_task);
3070 struct e1000_hw *hw = &adapter->hw;
3071 struct net_device *netdev = adapter->netdev;
3072 u32 link;
3073 int i;
3075 link = igb_has_link(adapter);
3076 if (link) {
3077 if (!netif_carrier_ok(netdev)) {
3078 u32 ctrl;
3079 hw->mac.ops.get_speed_and_duplex(hw,
3080 &adapter->link_speed,
3081 &adapter->link_duplex);
3083 ctrl = rd32(E1000_CTRL);
3084 /* Links status message must follow this format */
3085 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3086 "Flow Control: %s\n",
3087 netdev->name,
3088 adapter->link_speed,
3089 adapter->link_duplex == FULL_DUPLEX ?
3090 "Full Duplex" : "Half Duplex",
3091 ((ctrl & E1000_CTRL_TFCE) &&
3092 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3093 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3094 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3096 /* tweak tx_queue_len according to speed/duplex and
3097 * adjust the timeout factor */
3098 netdev->tx_queue_len = adapter->tx_queue_len;
3099 adapter->tx_timeout_factor = 1;
3100 switch (adapter->link_speed) {
3101 case SPEED_10:
3102 netdev->tx_queue_len = 10;
3103 adapter->tx_timeout_factor = 14;
3104 break;
3105 case SPEED_100:
3106 netdev->tx_queue_len = 100;
3107 /* maybe add some timeout factor ? */
3108 break;
3111 netif_carrier_on(netdev);
3113 igb_ping_all_vfs(adapter);
3115 /* link state has changed, schedule phy info update */
3116 if (!test_bit(__IGB_DOWN, &adapter->state))
3117 mod_timer(&adapter->phy_info_timer,
3118 round_jiffies(jiffies + 2 * HZ));
3120 } else {
3121 if (netif_carrier_ok(netdev)) {
3122 adapter->link_speed = 0;
3123 adapter->link_duplex = 0;
3124 /* Links status message must follow this format */
3125 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3126 netdev->name);
3127 netif_carrier_off(netdev);
3129 igb_ping_all_vfs(adapter);
3131 /* link state has changed, schedule phy info update */
3132 if (!test_bit(__IGB_DOWN, &adapter->state))
3133 mod_timer(&adapter->phy_info_timer,
3134 round_jiffies(jiffies + 2 * HZ));
3138 igb_update_stats(adapter);
3139 igb_update_adaptive(hw);
3141 for (i = 0; i < adapter->num_tx_queues; i++) {
3142 struct igb_ring *tx_ring = &adapter->tx_ring[i];
3143 if (!netif_carrier_ok(netdev)) {
3144 /* We've lost link, so the controller stops DMA,
3145 * but we've got queued Tx work that's never going
3146 * to get done, so reset controller to flush Tx.
3147 * (Do the reset outside of interrupt context). */
3148 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3149 adapter->tx_timeout_count++;
3150 schedule_work(&adapter->reset_task);
3151 /* return immediately since reset is imminent */
3152 return;
3156 /* Force detection of hung controller every watchdog period */
3157 tx_ring->detect_tx_hung = true;
3160 /* Cause software interrupt to ensure rx ring is cleaned */
3161 if (adapter->msix_entries) {
3162 u32 eics = 0;
3163 for (i = 0; i < adapter->num_q_vectors; i++) {
3164 struct igb_q_vector *q_vector = adapter->q_vector[i];
3165 eics |= q_vector->eims_value;
3167 wr32(E1000_EICS, eics);
3168 } else {
3169 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3172 /* Reset the timer */
3173 if (!test_bit(__IGB_DOWN, &adapter->state))
3174 mod_timer(&adapter->watchdog_timer,
3175 round_jiffies(jiffies + 2 * HZ));
3178 enum latency_range {
3179 lowest_latency = 0,
3180 low_latency = 1,
3181 bulk_latency = 2,
3182 latency_invalid = 255
3186 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3188 * Stores a new ITR value based on strictly on packet size. This
3189 * algorithm is less sophisticated than that used in igb_update_itr,
3190 * due to the difficulty of synchronizing statistics across multiple
3191 * receive rings. The divisors and thresholds used by this fuction
3192 * were determined based on theoretical maximum wire speed and testing
3193 * data, in order to minimize response time while increasing bulk
3194 * throughput.
3195 * This functionality is controlled by the InterruptThrottleRate module
3196 * parameter (see igb_param.c)
3197 * NOTE: This function is called only when operating in a multiqueue
3198 * receive environment.
3199 * @q_vector: pointer to q_vector
3201 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3203 int new_val = q_vector->itr_val;
3204 int avg_wire_size = 0;
3205 struct igb_adapter *adapter = q_vector->adapter;
3207 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3208 * ints/sec - ITR timer value of 120 ticks.
3210 if (adapter->link_speed != SPEED_1000) {
3211 new_val = 976;
3212 goto set_itr_val;
3215 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3216 struct igb_ring *ring = q_vector->rx_ring;
3217 avg_wire_size = ring->total_bytes / ring->total_packets;
3220 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3221 struct igb_ring *ring = q_vector->tx_ring;
3222 avg_wire_size = max_t(u32, avg_wire_size,
3223 (ring->total_bytes /
3224 ring->total_packets));
3227 /* if avg_wire_size isn't set no work was done */
3228 if (!avg_wire_size)
3229 goto clear_counts;
3231 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3232 avg_wire_size += 24;
3234 /* Don't starve jumbo frames */
3235 avg_wire_size = min(avg_wire_size, 3000);
3237 /* Give a little boost to mid-size frames */
3238 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3239 new_val = avg_wire_size / 3;
3240 else
3241 new_val = avg_wire_size / 2;
3243 set_itr_val:
3244 if (new_val != q_vector->itr_val) {
3245 q_vector->itr_val = new_val;
3246 q_vector->set_itr = 1;
3248 clear_counts:
3249 if (q_vector->rx_ring) {
3250 q_vector->rx_ring->total_bytes = 0;
3251 q_vector->rx_ring->total_packets = 0;
3253 if (q_vector->tx_ring) {
3254 q_vector->tx_ring->total_bytes = 0;
3255 q_vector->tx_ring->total_packets = 0;
3260 * igb_update_itr - update the dynamic ITR value based on statistics
3261 * Stores a new ITR value based on packets and byte
3262 * counts during the last interrupt. The advantage of per interrupt
3263 * computation is faster updates and more accurate ITR for the current
3264 * traffic pattern. Constants in this function were computed
3265 * based on theoretical maximum wire speed and thresholds were set based
3266 * on testing data as well as attempting to minimize response time
3267 * while increasing bulk throughput.
3268 * this functionality is controlled by the InterruptThrottleRate module
3269 * parameter (see igb_param.c)
3270 * NOTE: These calculations are only valid when operating in a single-
3271 * queue environment.
3272 * @adapter: pointer to adapter
3273 * @itr_setting: current q_vector->itr_val
3274 * @packets: the number of packets during this measurement interval
3275 * @bytes: the number of bytes during this measurement interval
3277 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3278 int packets, int bytes)
3280 unsigned int retval = itr_setting;
3282 if (packets == 0)
3283 goto update_itr_done;
3285 switch (itr_setting) {
3286 case lowest_latency:
3287 /* handle TSO and jumbo frames */
3288 if (bytes/packets > 8000)
3289 retval = bulk_latency;
3290 else if ((packets < 5) && (bytes > 512))
3291 retval = low_latency;
3292 break;
3293 case low_latency: /* 50 usec aka 20000 ints/s */
3294 if (bytes > 10000) {
3295 /* this if handles the TSO accounting */
3296 if (bytes/packets > 8000) {
3297 retval = bulk_latency;
3298 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3299 retval = bulk_latency;
3300 } else if ((packets > 35)) {
3301 retval = lowest_latency;
3303 } else if (bytes/packets > 2000) {
3304 retval = bulk_latency;
3305 } else if (packets <= 2 && bytes < 512) {
3306 retval = lowest_latency;
3308 break;
3309 case bulk_latency: /* 250 usec aka 4000 ints/s */
3310 if (bytes > 25000) {
3311 if (packets > 35)
3312 retval = low_latency;
3313 } else if (bytes < 1500) {
3314 retval = low_latency;
3316 break;
3319 update_itr_done:
3320 return retval;
3323 static void igb_set_itr(struct igb_adapter *adapter)
3325 struct igb_q_vector *q_vector = adapter->q_vector[0];
3326 u16 current_itr;
3327 u32 new_itr = q_vector->itr_val;
3329 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3330 if (adapter->link_speed != SPEED_1000) {
3331 current_itr = 0;
3332 new_itr = 4000;
3333 goto set_itr_now;
3336 adapter->rx_itr = igb_update_itr(adapter,
3337 adapter->rx_itr,
3338 adapter->rx_ring->total_packets,
3339 adapter->rx_ring->total_bytes);
3341 adapter->tx_itr = igb_update_itr(adapter,
3342 adapter->tx_itr,
3343 adapter->tx_ring->total_packets,
3344 adapter->tx_ring->total_bytes);
3345 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3347 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3348 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3349 current_itr = low_latency;
3351 switch (current_itr) {
3352 /* counts and packets in update_itr are dependent on these numbers */
3353 case lowest_latency:
3354 new_itr = 56; /* aka 70,000 ints/sec */
3355 break;
3356 case low_latency:
3357 new_itr = 196; /* aka 20,000 ints/sec */
3358 break;
3359 case bulk_latency:
3360 new_itr = 980; /* aka 4,000 ints/sec */
3361 break;
3362 default:
3363 break;
3366 set_itr_now:
3367 adapter->rx_ring->total_bytes = 0;
3368 adapter->rx_ring->total_packets = 0;
3369 adapter->tx_ring->total_bytes = 0;
3370 adapter->tx_ring->total_packets = 0;
3372 if (new_itr != q_vector->itr_val) {
3373 /* this attempts to bias the interrupt rate towards Bulk
3374 * by adding intermediate steps when interrupt rate is
3375 * increasing */
3376 new_itr = new_itr > q_vector->itr_val ?
3377 max((new_itr * q_vector->itr_val) /
3378 (new_itr + (q_vector->itr_val >> 2)),
3379 new_itr) :
3380 new_itr;
3381 /* Don't write the value here; it resets the adapter's
3382 * internal timer, and causes us to delay far longer than
3383 * we should between interrupts. Instead, we write the ITR
3384 * value at the beginning of the next interrupt so the timing
3385 * ends up being correct.
3387 q_vector->itr_val = new_itr;
3388 q_vector->set_itr = 1;
3391 return;
3394 #define IGB_TX_FLAGS_CSUM 0x00000001
3395 #define IGB_TX_FLAGS_VLAN 0x00000002
3396 #define IGB_TX_FLAGS_TSO 0x00000004
3397 #define IGB_TX_FLAGS_IPV4 0x00000008
3398 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3399 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3400 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3402 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3403 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3405 struct e1000_adv_tx_context_desc *context_desc;
3406 unsigned int i;
3407 int err;
3408 struct igb_buffer *buffer_info;
3409 u32 info = 0, tu_cmd = 0;
3410 u32 mss_l4len_idx, l4len;
3411 *hdr_len = 0;
3413 if (skb_header_cloned(skb)) {
3414 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3415 if (err)
3416 return err;
3419 l4len = tcp_hdrlen(skb);
3420 *hdr_len += l4len;
3422 if (skb->protocol == htons(ETH_P_IP)) {
3423 struct iphdr *iph = ip_hdr(skb);
3424 iph->tot_len = 0;
3425 iph->check = 0;
3426 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3427 iph->daddr, 0,
3428 IPPROTO_TCP,
3430 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3431 ipv6_hdr(skb)->payload_len = 0;
3432 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3433 &ipv6_hdr(skb)->daddr,
3434 0, IPPROTO_TCP, 0);
3437 i = tx_ring->next_to_use;
3439 buffer_info = &tx_ring->buffer_info[i];
3440 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3441 /* VLAN MACLEN IPLEN */
3442 if (tx_flags & IGB_TX_FLAGS_VLAN)
3443 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3444 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3445 *hdr_len += skb_network_offset(skb);
3446 info |= skb_network_header_len(skb);
3447 *hdr_len += skb_network_header_len(skb);
3448 context_desc->vlan_macip_lens = cpu_to_le32(info);
3450 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3451 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3453 if (skb->protocol == htons(ETH_P_IP))
3454 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3455 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3457 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3459 /* MSS L4LEN IDX */
3460 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3461 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3463 /* For 82575, context index must be unique per ring. */
3464 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3465 mss_l4len_idx |= tx_ring->reg_idx << 4;
3467 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3468 context_desc->seqnum_seed = 0;
3470 buffer_info->time_stamp = jiffies;
3471 buffer_info->next_to_watch = i;
3472 buffer_info->dma = 0;
3473 i++;
3474 if (i == tx_ring->count)
3475 i = 0;
3477 tx_ring->next_to_use = i;
3479 return true;
3482 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3483 struct sk_buff *skb, u32 tx_flags)
3485 struct e1000_adv_tx_context_desc *context_desc;
3486 struct pci_dev *pdev = tx_ring->pdev;
3487 struct igb_buffer *buffer_info;
3488 u32 info = 0, tu_cmd = 0;
3489 unsigned int i;
3491 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3492 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3493 i = tx_ring->next_to_use;
3494 buffer_info = &tx_ring->buffer_info[i];
3495 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3497 if (tx_flags & IGB_TX_FLAGS_VLAN)
3498 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3500 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3501 if (skb->ip_summed == CHECKSUM_PARTIAL)
3502 info |= skb_network_header_len(skb);
3504 context_desc->vlan_macip_lens = cpu_to_le32(info);
3506 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3508 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3509 __be16 protocol;
3511 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3512 const struct vlan_ethhdr *vhdr =
3513 (const struct vlan_ethhdr*)skb->data;
3515 protocol = vhdr->h_vlan_encapsulated_proto;
3516 } else {
3517 protocol = skb->protocol;
3520 switch (protocol) {
3521 case cpu_to_be16(ETH_P_IP):
3522 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3523 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3524 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3525 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3526 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3527 break;
3528 case cpu_to_be16(ETH_P_IPV6):
3529 /* XXX what about other V6 headers?? */
3530 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3531 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3532 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3533 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3534 break;
3535 default:
3536 if (unlikely(net_ratelimit()))
3537 dev_warn(&pdev->dev,
3538 "partial checksum but proto=%x!\n",
3539 skb->protocol);
3540 break;
3544 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3545 context_desc->seqnum_seed = 0;
3546 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3547 context_desc->mss_l4len_idx =
3548 cpu_to_le32(tx_ring->reg_idx << 4);
3550 buffer_info->time_stamp = jiffies;
3551 buffer_info->next_to_watch = i;
3552 buffer_info->dma = 0;
3554 i++;
3555 if (i == tx_ring->count)
3556 i = 0;
3557 tx_ring->next_to_use = i;
3559 return true;
3561 return false;
3564 #define IGB_MAX_TXD_PWR 16
3565 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3567 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3568 unsigned int first)
3570 struct igb_buffer *buffer_info;
3571 struct pci_dev *pdev = tx_ring->pdev;
3572 unsigned int len = skb_headlen(skb);
3573 unsigned int count = 0, i;
3574 unsigned int f;
3576 i = tx_ring->next_to_use;
3578 buffer_info = &tx_ring->buffer_info[i];
3579 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3580 buffer_info->length = len;
3581 /* set time_stamp *before* dma to help avoid a possible race */
3582 buffer_info->time_stamp = jiffies;
3583 buffer_info->next_to_watch = i;
3584 buffer_info->dma = pci_map_single(pdev, skb->data, len,
3585 PCI_DMA_TODEVICE);
3586 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3587 goto dma_error;
3589 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3590 struct skb_frag_struct *frag;
3592 i++;
3593 if (i == tx_ring->count)
3594 i = 0;
3596 frag = &skb_shinfo(skb)->frags[f];
3597 len = frag->size;
3599 buffer_info = &tx_ring->buffer_info[i];
3600 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3601 buffer_info->length = len;
3602 buffer_info->time_stamp = jiffies;
3603 buffer_info->next_to_watch = i;
3604 buffer_info->mapped_as_page = true;
3605 buffer_info->dma = pci_map_page(pdev,
3606 frag->page,
3607 frag->page_offset,
3608 len,
3609 PCI_DMA_TODEVICE);
3610 if (pci_dma_mapping_error(pdev, buffer_info->dma))
3611 goto dma_error;
3613 count++;
3616 tx_ring->buffer_info[i].skb = skb;
3617 tx_ring->buffer_info[first].next_to_watch = i;
3619 return ++count;
3621 dma_error:
3622 dev_err(&pdev->dev, "TX DMA map failed\n");
3624 /* clear timestamp and dma mappings for failed buffer_info mapping */
3625 buffer_info->dma = 0;
3626 buffer_info->time_stamp = 0;
3627 buffer_info->length = 0;
3628 buffer_info->next_to_watch = 0;
3629 buffer_info->mapped_as_page = false;
3630 count--;
3632 /* clear timestamp and dma mappings for remaining portion of packet */
3633 while (count >= 0) {
3634 count--;
3635 i--;
3636 if (i < 0)
3637 i += tx_ring->count;
3638 buffer_info = &tx_ring->buffer_info[i];
3639 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3642 return 0;
3645 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3646 int tx_flags, int count, u32 paylen,
3647 u8 hdr_len)
3649 union e1000_adv_tx_desc *tx_desc;
3650 struct igb_buffer *buffer_info;
3651 u32 olinfo_status = 0, cmd_type_len;
3652 unsigned int i = tx_ring->next_to_use;
3654 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3655 E1000_ADVTXD_DCMD_DEXT);
3657 if (tx_flags & IGB_TX_FLAGS_VLAN)
3658 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3660 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3661 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3663 if (tx_flags & IGB_TX_FLAGS_TSO) {
3664 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3666 /* insert tcp checksum */
3667 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3669 /* insert ip checksum */
3670 if (tx_flags & IGB_TX_FLAGS_IPV4)
3671 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3673 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3674 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3677 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3678 (tx_flags & (IGB_TX_FLAGS_CSUM |
3679 IGB_TX_FLAGS_TSO |
3680 IGB_TX_FLAGS_VLAN)))
3681 olinfo_status |= tx_ring->reg_idx << 4;
3683 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3685 do {
3686 buffer_info = &tx_ring->buffer_info[i];
3687 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3688 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3689 tx_desc->read.cmd_type_len =
3690 cpu_to_le32(cmd_type_len | buffer_info->length);
3691 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3692 count--;
3693 i++;
3694 if (i == tx_ring->count)
3695 i = 0;
3696 } while (count > 0);
3698 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
3699 /* Force memory writes to complete before letting h/w
3700 * know there are new descriptors to fetch. (Only
3701 * applicable for weak-ordered memory model archs,
3702 * such as IA-64). */
3703 wmb();
3705 tx_ring->next_to_use = i;
3706 writel(i, tx_ring->tail);
3707 /* we need this if more than one processor can write to our tail
3708 * at a time, it syncronizes IO on IA64/Altix systems */
3709 mmiowb();
3712 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3714 struct net_device *netdev = tx_ring->netdev;
3716 netif_stop_subqueue(netdev, tx_ring->queue_index);
3718 /* Herbert's original patch had:
3719 * smp_mb__after_netif_stop_queue();
3720 * but since that doesn't exist yet, just open code it. */
3721 smp_mb();
3723 /* We need to check again in a case another CPU has just
3724 * made room available. */
3725 if (igb_desc_unused(tx_ring) < size)
3726 return -EBUSY;
3728 /* A reprieve! */
3729 netif_wake_subqueue(netdev, tx_ring->queue_index);
3730 tx_ring->tx_stats.restart_queue++;
3731 return 0;
3734 static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
3736 if (igb_desc_unused(tx_ring) >= size)
3737 return 0;
3738 return __igb_maybe_stop_tx(tx_ring, size);
3741 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3742 struct igb_ring *tx_ring)
3744 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
3745 unsigned int first;
3746 unsigned int tx_flags = 0;
3747 u8 hdr_len = 0;
3748 int tso = 0, count;
3749 union skb_shared_tx *shtx = skb_tx(skb);
3751 /* need: 1 descriptor per page,
3752 * + 2 desc gap to keep tail from touching head,
3753 * + 1 desc for skb->data,
3754 * + 1 desc for context descriptor,
3755 * otherwise try next time */
3756 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3757 /* this is a hard error */
3758 return NETDEV_TX_BUSY;
3761 if (unlikely(shtx->hardware)) {
3762 shtx->in_progress = 1;
3763 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3766 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
3767 tx_flags |= IGB_TX_FLAGS_VLAN;
3768 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3771 if (skb->protocol == htons(ETH_P_IP))
3772 tx_flags |= IGB_TX_FLAGS_IPV4;
3774 first = tx_ring->next_to_use;
3775 if (skb_is_gso(skb)) {
3776 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
3778 if (tso < 0) {
3779 dev_kfree_skb_any(skb);
3780 return NETDEV_TX_OK;
3784 if (tso)
3785 tx_flags |= IGB_TX_FLAGS_TSO;
3786 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
3787 (skb->ip_summed == CHECKSUM_PARTIAL))
3788 tx_flags |= IGB_TX_FLAGS_CSUM;
3791 * count reflects descriptors mapped, if 0 or less then mapping error
3792 * has occured and we need to rewind the descriptor queue
3794 count = igb_tx_map_adv(tx_ring, skb, first);
3795 if (!count) {
3796 dev_kfree_skb_any(skb);
3797 tx_ring->buffer_info[first].time_stamp = 0;
3798 tx_ring->next_to_use = first;
3799 return NETDEV_TX_OK;
3802 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3804 /* Make sure there is space in the ring for the next send. */
3805 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
3807 return NETDEV_TX_OK;
3810 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3811 struct net_device *netdev)
3813 struct igb_adapter *adapter = netdev_priv(netdev);
3814 struct igb_ring *tx_ring;
3815 int r_idx = 0;
3817 if (test_bit(__IGB_DOWN, &adapter->state)) {
3818 dev_kfree_skb_any(skb);
3819 return NETDEV_TX_OK;
3822 if (skb->len <= 0) {
3823 dev_kfree_skb_any(skb);
3824 return NETDEV_TX_OK;
3827 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3828 tx_ring = adapter->multi_tx_table[r_idx];
3830 /* This goes back to the question of how to logically map a tx queue
3831 * to a flow. Right now, performance is impacted slightly negatively
3832 * if using multiple tx queues. If the stack breaks away from a
3833 * single qdisc implementation, we can look at this again. */
3834 return igb_xmit_frame_ring_adv(skb, tx_ring);
3838 * igb_tx_timeout - Respond to a Tx Hang
3839 * @netdev: network interface device structure
3841 static void igb_tx_timeout(struct net_device *netdev)
3843 struct igb_adapter *adapter = netdev_priv(netdev);
3844 struct e1000_hw *hw = &adapter->hw;
3846 /* Do the reset outside of interrupt context */
3847 adapter->tx_timeout_count++;
3849 if (hw->mac.type == e1000_82580)
3850 hw->dev_spec._82575.global_device_reset = true;
3852 schedule_work(&adapter->reset_task);
3853 wr32(E1000_EICS,
3854 (adapter->eims_enable_mask & ~adapter->eims_other));
3857 static void igb_reset_task(struct work_struct *work)
3859 struct igb_adapter *adapter;
3860 adapter = container_of(work, struct igb_adapter, reset_task);
3862 igb_reinit_locked(adapter);
3866 * igb_get_stats - Get System Network Statistics
3867 * @netdev: network interface device structure
3869 * Returns the address of the device statistics structure.
3870 * The statistics are actually updated from the timer callback.
3872 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3874 /* only return the current stats */
3875 return &netdev->stats;
3879 * igb_change_mtu - Change the Maximum Transfer Unit
3880 * @netdev: network interface device structure
3881 * @new_mtu: new value for maximum frame size
3883 * Returns 0 on success, negative on failure
3885 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3887 struct igb_adapter *adapter = netdev_priv(netdev);
3888 struct pci_dev *pdev = adapter->pdev;
3889 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3890 u32 rx_buffer_len, i;
3892 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3893 dev_err(&pdev->dev, "Invalid MTU setting\n");
3894 return -EINVAL;
3897 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3898 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
3899 return -EINVAL;
3902 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3903 msleep(1);
3905 /* igb_down has a dependency on max_frame_size */
3906 adapter->max_frame_size = max_frame;
3908 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3909 * means we reserve 2 more, this pushes us to allocate from the next
3910 * larger slab size.
3911 * i.e. RXBUFFER_2048 --> size-4096 slab
3914 if (max_frame <= IGB_RXBUFFER_1024)
3915 rx_buffer_len = IGB_RXBUFFER_1024;
3916 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3917 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3918 else
3919 rx_buffer_len = IGB_RXBUFFER_128;
3921 if (netif_running(netdev))
3922 igb_down(adapter);
3924 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
3925 netdev->mtu, new_mtu);
3926 netdev->mtu = new_mtu;
3928 for (i = 0; i < adapter->num_rx_queues; i++)
3929 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3931 if (netif_running(netdev))
3932 igb_up(adapter);
3933 else
3934 igb_reset(adapter);
3936 clear_bit(__IGB_RESETTING, &adapter->state);
3938 return 0;
3942 * igb_update_stats - Update the board statistics counters
3943 * @adapter: board private structure
3946 void igb_update_stats(struct igb_adapter *adapter)
3948 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
3949 struct e1000_hw *hw = &adapter->hw;
3950 struct pci_dev *pdev = adapter->pdev;
3951 u32 rnbc;
3952 u16 phy_tmp;
3953 int i;
3954 u64 bytes, packets;
3956 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3959 * Prevent stats update while adapter is being reset, or if the pci
3960 * connection is down.
3962 if (adapter->link_speed == 0)
3963 return;
3964 if (pci_channel_offline(pdev))
3965 return;
3967 bytes = 0;
3968 packets = 0;
3969 for (i = 0; i < adapter->num_rx_queues; i++) {
3970 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3971 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3972 net_stats->rx_fifo_errors += rqdpc_tmp;
3973 bytes += adapter->rx_ring[i].rx_stats.bytes;
3974 packets += adapter->rx_ring[i].rx_stats.packets;
3977 net_stats->rx_bytes = bytes;
3978 net_stats->rx_packets = packets;
3980 bytes = 0;
3981 packets = 0;
3982 for (i = 0; i < adapter->num_tx_queues; i++) {
3983 bytes += adapter->tx_ring[i].tx_stats.bytes;
3984 packets += adapter->tx_ring[i].tx_stats.packets;
3986 net_stats->tx_bytes = bytes;
3987 net_stats->tx_packets = packets;
3989 /* read stats registers */
3990 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3991 adapter->stats.gprc += rd32(E1000_GPRC);
3992 adapter->stats.gorc += rd32(E1000_GORCL);
3993 rd32(E1000_GORCH); /* clear GORCL */
3994 adapter->stats.bprc += rd32(E1000_BPRC);
3995 adapter->stats.mprc += rd32(E1000_MPRC);
3996 adapter->stats.roc += rd32(E1000_ROC);
3998 adapter->stats.prc64 += rd32(E1000_PRC64);
3999 adapter->stats.prc127 += rd32(E1000_PRC127);
4000 adapter->stats.prc255 += rd32(E1000_PRC255);
4001 adapter->stats.prc511 += rd32(E1000_PRC511);
4002 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4003 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4004 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4005 adapter->stats.sec += rd32(E1000_SEC);
4007 adapter->stats.mpc += rd32(E1000_MPC);
4008 adapter->stats.scc += rd32(E1000_SCC);
4009 adapter->stats.ecol += rd32(E1000_ECOL);
4010 adapter->stats.mcc += rd32(E1000_MCC);
4011 adapter->stats.latecol += rd32(E1000_LATECOL);
4012 adapter->stats.dc += rd32(E1000_DC);
4013 adapter->stats.rlec += rd32(E1000_RLEC);
4014 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4015 adapter->stats.xontxc += rd32(E1000_XONTXC);
4016 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4017 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4018 adapter->stats.fcruc += rd32(E1000_FCRUC);
4019 adapter->stats.gptc += rd32(E1000_GPTC);
4020 adapter->stats.gotc += rd32(E1000_GOTCL);
4021 rd32(E1000_GOTCH); /* clear GOTCL */
4022 rnbc = rd32(E1000_RNBC);
4023 adapter->stats.rnbc += rnbc;
4024 net_stats->rx_fifo_errors += rnbc;
4025 adapter->stats.ruc += rd32(E1000_RUC);
4026 adapter->stats.rfc += rd32(E1000_RFC);
4027 adapter->stats.rjc += rd32(E1000_RJC);
4028 adapter->stats.tor += rd32(E1000_TORH);
4029 adapter->stats.tot += rd32(E1000_TOTH);
4030 adapter->stats.tpr += rd32(E1000_TPR);
4032 adapter->stats.ptc64 += rd32(E1000_PTC64);
4033 adapter->stats.ptc127 += rd32(E1000_PTC127);
4034 adapter->stats.ptc255 += rd32(E1000_PTC255);
4035 adapter->stats.ptc511 += rd32(E1000_PTC511);
4036 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4037 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4039 adapter->stats.mptc += rd32(E1000_MPTC);
4040 adapter->stats.bptc += rd32(E1000_BPTC);
4042 /* used for adaptive IFS */
4043 hw->mac.tx_packet_delta = rd32(E1000_TPT);
4044 adapter->stats.tpt += hw->mac.tx_packet_delta;
4045 hw->mac.collision_delta = rd32(E1000_COLC);
4046 adapter->stats.colc += hw->mac.collision_delta;
4048 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4049 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4050 adapter->stats.tncrs += rd32(E1000_TNCRS);
4051 adapter->stats.tsctc += rd32(E1000_TSCTC);
4052 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4054 adapter->stats.iac += rd32(E1000_IAC);
4055 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4056 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4057 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4058 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4059 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4060 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4061 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4062 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4064 /* Fill out the OS statistics structure */
4065 net_stats->multicast = adapter->stats.mprc;
4066 net_stats->collisions = adapter->stats.colc;
4068 /* Rx Errors */
4070 /* RLEC on some newer hardware can be incorrect so build
4071 * our own version based on RUC and ROC */
4072 net_stats->rx_errors = adapter->stats.rxerrc +
4073 adapter->stats.crcerrs + adapter->stats.algnerrc +
4074 adapter->stats.ruc + adapter->stats.roc +
4075 adapter->stats.cexterr;
4076 net_stats->rx_length_errors = adapter->stats.ruc +
4077 adapter->stats.roc;
4078 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4079 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4080 net_stats->rx_missed_errors = adapter->stats.mpc;
4082 /* Tx Errors */
4083 net_stats->tx_errors = adapter->stats.ecol +
4084 adapter->stats.latecol;
4085 net_stats->tx_aborted_errors = adapter->stats.ecol;
4086 net_stats->tx_window_errors = adapter->stats.latecol;
4087 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4089 /* Tx Dropped needs to be maintained elsewhere */
4091 /* Phy Stats */
4092 if (hw->phy.media_type == e1000_media_type_copper) {
4093 if ((adapter->link_speed == SPEED_1000) &&
4094 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4095 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4096 adapter->phy_stats.idle_errors += phy_tmp;
4100 /* Management Stats */
4101 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4102 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4103 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4106 static irqreturn_t igb_msix_other(int irq, void *data)
4108 struct igb_adapter *adapter = data;
4109 struct e1000_hw *hw = &adapter->hw;
4110 u32 icr = rd32(E1000_ICR);
4111 /* reading ICR causes bit 31 of EICR to be cleared */
4113 if (icr & E1000_ICR_DOUTSYNC) {
4114 /* HW is reporting DMA is out of sync */
4115 adapter->stats.doosync++;
4118 /* Check for a mailbox event */
4119 if (icr & E1000_ICR_VMMB)
4120 igb_msg_task(adapter);
4122 if (icr & E1000_ICR_LSC) {
4123 hw->mac.get_link_status = 1;
4124 /* guard against interrupt when we're going down */
4125 if (!test_bit(__IGB_DOWN, &adapter->state))
4126 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4129 if (adapter->vfs_allocated_count)
4130 wr32(E1000_IMS, E1000_IMS_LSC |
4131 E1000_IMS_VMMB |
4132 E1000_IMS_DOUTSYNC);
4133 else
4134 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4135 wr32(E1000_EIMS, adapter->eims_other);
4137 return IRQ_HANDLED;
4140 static void igb_write_itr(struct igb_q_vector *q_vector)
4142 u32 itr_val = q_vector->itr_val & 0x7FFC;
4144 if (!q_vector->set_itr)
4145 return;
4147 if (!itr_val)
4148 itr_val = 0x4;
4150 if (q_vector->itr_shift)
4151 itr_val |= itr_val << q_vector->itr_shift;
4152 else
4153 itr_val |= 0x8000000;
4155 writel(itr_val, q_vector->itr_register);
4156 q_vector->set_itr = 0;
4159 static irqreturn_t igb_msix_ring(int irq, void *data)
4161 struct igb_q_vector *q_vector = data;
4163 /* Write the ITR value calculated from the previous interrupt. */
4164 igb_write_itr(q_vector);
4166 napi_schedule(&q_vector->napi);
4168 return IRQ_HANDLED;
4171 #ifdef CONFIG_IGB_DCA
4172 static void igb_update_dca(struct igb_q_vector *q_vector)
4174 struct igb_adapter *adapter = q_vector->adapter;
4175 struct e1000_hw *hw = &adapter->hw;
4176 int cpu = get_cpu();
4178 if (q_vector->cpu == cpu)
4179 goto out_no_update;
4181 if (q_vector->tx_ring) {
4182 int q = q_vector->tx_ring->reg_idx;
4183 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4184 if (hw->mac.type == e1000_82575) {
4185 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4186 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4187 } else {
4188 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4189 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4190 E1000_DCA_TXCTRL_CPUID_SHIFT;
4192 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4193 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4195 if (q_vector->rx_ring) {
4196 int q = q_vector->rx_ring->reg_idx;
4197 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4198 if (hw->mac.type == e1000_82575) {
4199 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4200 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4201 } else {
4202 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4203 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4204 E1000_DCA_RXCTRL_CPUID_SHIFT;
4206 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4207 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4208 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4209 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4211 q_vector->cpu = cpu;
4212 out_no_update:
4213 put_cpu();
4216 static void igb_setup_dca(struct igb_adapter *adapter)
4218 struct e1000_hw *hw = &adapter->hw;
4219 int i;
4221 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4222 return;
4224 /* Always use CB2 mode, difference is masked in the CB driver. */
4225 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4227 for (i = 0; i < adapter->num_q_vectors; i++) {
4228 struct igb_q_vector *q_vector = adapter->q_vector[i];
4229 q_vector->cpu = -1;
4230 igb_update_dca(q_vector);
4234 static int __igb_notify_dca(struct device *dev, void *data)
4236 struct net_device *netdev = dev_get_drvdata(dev);
4237 struct igb_adapter *adapter = netdev_priv(netdev);
4238 struct pci_dev *pdev = adapter->pdev;
4239 struct e1000_hw *hw = &adapter->hw;
4240 unsigned long event = *(unsigned long *)data;
4242 switch (event) {
4243 case DCA_PROVIDER_ADD:
4244 /* if already enabled, don't do it again */
4245 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4246 break;
4247 if (dca_add_requester(dev) == 0) {
4248 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4249 dev_info(&pdev->dev, "DCA enabled\n");
4250 igb_setup_dca(adapter);
4251 break;
4253 /* Fall Through since DCA is disabled. */
4254 case DCA_PROVIDER_REMOVE:
4255 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4256 /* without this a class_device is left
4257 * hanging around in the sysfs model */
4258 dca_remove_requester(dev);
4259 dev_info(&pdev->dev, "DCA disabled\n");
4260 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4261 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4263 break;
4266 return 0;
4269 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4270 void *p)
4272 int ret_val;
4274 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4275 __igb_notify_dca);
4277 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4279 #endif /* CONFIG_IGB_DCA */
4281 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4283 struct e1000_hw *hw = &adapter->hw;
4284 u32 ping;
4285 int i;
4287 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4288 ping = E1000_PF_CONTROL_MSG;
4289 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4290 ping |= E1000_VT_MSGTYPE_CTS;
4291 igb_write_mbx(hw, &ping, 1, i);
4295 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4297 struct e1000_hw *hw = &adapter->hw;
4298 u32 vmolr = rd32(E1000_VMOLR(vf));
4299 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4301 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4302 IGB_VF_FLAG_MULTI_PROMISC);
4303 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4305 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4306 vmolr |= E1000_VMOLR_MPME;
4307 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4308 } else {
4310 * if we have hashes and we are clearing a multicast promisc
4311 * flag we need to write the hashes to the MTA as this step
4312 * was previously skipped
4314 if (vf_data->num_vf_mc_hashes > 30) {
4315 vmolr |= E1000_VMOLR_MPME;
4316 } else if (vf_data->num_vf_mc_hashes) {
4317 int j;
4318 vmolr |= E1000_VMOLR_ROMPE;
4319 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4320 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4324 wr32(E1000_VMOLR(vf), vmolr);
4326 /* there are flags left unprocessed, likely not supported */
4327 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4328 return -EINVAL;
4330 return 0;
4334 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4335 u32 *msgbuf, u32 vf)
4337 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4338 u16 *hash_list = (u16 *)&msgbuf[1];
4339 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4340 int i;
4342 /* salt away the number of multicast addresses assigned
4343 * to this VF for later use to restore when the PF multi cast
4344 * list changes
4346 vf_data->num_vf_mc_hashes = n;
4348 /* only up to 30 hash values supported */
4349 if (n > 30)
4350 n = 30;
4352 /* store the hashes for later use */
4353 for (i = 0; i < n; i++)
4354 vf_data->vf_mc_hashes[i] = hash_list[i];
4356 /* Flush and reset the mta with the new values */
4357 igb_set_rx_mode(adapter->netdev);
4359 return 0;
4362 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4364 struct e1000_hw *hw = &adapter->hw;
4365 struct vf_data_storage *vf_data;
4366 int i, j;
4368 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4369 u32 vmolr = rd32(E1000_VMOLR(i));
4370 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4372 vf_data = &adapter->vf_data[i];
4374 if ((vf_data->num_vf_mc_hashes > 30) ||
4375 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4376 vmolr |= E1000_VMOLR_MPME;
4377 } else if (vf_data->num_vf_mc_hashes) {
4378 vmolr |= E1000_VMOLR_ROMPE;
4379 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4380 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4382 wr32(E1000_VMOLR(i), vmolr);
4386 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4388 struct e1000_hw *hw = &adapter->hw;
4389 u32 pool_mask, reg, vid;
4390 int i;
4392 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4394 /* Find the vlan filter for this id */
4395 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4396 reg = rd32(E1000_VLVF(i));
4398 /* remove the vf from the pool */
4399 reg &= ~pool_mask;
4401 /* if pool is empty then remove entry from vfta */
4402 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4403 (reg & E1000_VLVF_VLANID_ENABLE)) {
4404 reg = 0;
4405 vid = reg & E1000_VLVF_VLANID_MASK;
4406 igb_vfta_set(hw, vid, false);
4409 wr32(E1000_VLVF(i), reg);
4412 adapter->vf_data[vf].vlans_enabled = 0;
4415 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4417 struct e1000_hw *hw = &adapter->hw;
4418 u32 reg, i;
4420 /* The vlvf table only exists on 82576 hardware and newer */
4421 if (hw->mac.type < e1000_82576)
4422 return -1;
4424 /* we only need to do this if VMDq is enabled */
4425 if (!adapter->vfs_allocated_count)
4426 return -1;
4428 /* Find the vlan filter for this id */
4429 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4430 reg = rd32(E1000_VLVF(i));
4431 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4432 vid == (reg & E1000_VLVF_VLANID_MASK))
4433 break;
4436 if (add) {
4437 if (i == E1000_VLVF_ARRAY_SIZE) {
4438 /* Did not find a matching VLAN ID entry that was
4439 * enabled. Search for a free filter entry, i.e.
4440 * one without the enable bit set
4442 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4443 reg = rd32(E1000_VLVF(i));
4444 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4445 break;
4448 if (i < E1000_VLVF_ARRAY_SIZE) {
4449 /* Found an enabled/available entry */
4450 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4452 /* if !enabled we need to set this up in vfta */
4453 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4454 /* add VID to filter table */
4455 igb_vfta_set(hw, vid, true);
4456 reg |= E1000_VLVF_VLANID_ENABLE;
4458 reg &= ~E1000_VLVF_VLANID_MASK;
4459 reg |= vid;
4460 wr32(E1000_VLVF(i), reg);
4462 /* do not modify RLPML for PF devices */
4463 if (vf >= adapter->vfs_allocated_count)
4464 return 0;
4466 if (!adapter->vf_data[vf].vlans_enabled) {
4467 u32 size;
4468 reg = rd32(E1000_VMOLR(vf));
4469 size = reg & E1000_VMOLR_RLPML_MASK;
4470 size += 4;
4471 reg &= ~E1000_VMOLR_RLPML_MASK;
4472 reg |= size;
4473 wr32(E1000_VMOLR(vf), reg);
4476 adapter->vf_data[vf].vlans_enabled++;
4477 return 0;
4479 } else {
4480 if (i < E1000_VLVF_ARRAY_SIZE) {
4481 /* remove vf from the pool */
4482 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4483 /* if pool is empty then remove entry from vfta */
4484 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4485 reg = 0;
4486 igb_vfta_set(hw, vid, false);
4488 wr32(E1000_VLVF(i), reg);
4490 /* do not modify RLPML for PF devices */
4491 if (vf >= adapter->vfs_allocated_count)
4492 return 0;
4494 adapter->vf_data[vf].vlans_enabled--;
4495 if (!adapter->vf_data[vf].vlans_enabled) {
4496 u32 size;
4497 reg = rd32(E1000_VMOLR(vf));
4498 size = reg & E1000_VMOLR_RLPML_MASK;
4499 size -= 4;
4500 reg &= ~E1000_VMOLR_RLPML_MASK;
4501 reg |= size;
4502 wr32(E1000_VMOLR(vf), reg);
4504 return 0;
4507 return -1;
4510 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4512 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4513 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4515 return igb_vlvf_set(adapter, vid, add, vf);
4518 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4520 /* clear all flags */
4521 adapter->vf_data[vf].flags = 0;
4522 adapter->vf_data[vf].last_nack = jiffies;
4524 /* reset offloads to defaults */
4525 igb_set_vmolr(adapter, vf);
4527 /* reset vlans for device */
4528 igb_clear_vf_vfta(adapter, vf);
4530 /* reset multicast table array for vf */
4531 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4533 /* Flush and reset the mta with the new values */
4534 igb_set_rx_mode(adapter->netdev);
4537 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4539 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4541 /* generate a new mac address as we were hotplug removed/added */
4542 random_ether_addr(vf_mac);
4544 /* process remaining reset events */
4545 igb_vf_reset(adapter, vf);
4548 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4550 struct e1000_hw *hw = &adapter->hw;
4551 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4552 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4553 u32 reg, msgbuf[3];
4554 u8 *addr = (u8 *)(&msgbuf[1]);
4556 /* process all the same items cleared in a function level reset */
4557 igb_vf_reset(adapter, vf);
4559 /* set vf mac address */
4560 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4562 /* enable transmit and receive for vf */
4563 reg = rd32(E1000_VFTE);
4564 wr32(E1000_VFTE, reg | (1 << vf));
4565 reg = rd32(E1000_VFRE);
4566 wr32(E1000_VFRE, reg | (1 << vf));
4568 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4570 /* reply to reset with ack and vf mac address */
4571 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4572 memcpy(addr, vf_mac, 6);
4573 igb_write_mbx(hw, msgbuf, 3, vf);
4576 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4578 unsigned char *addr = (char *)&msg[1];
4579 int err = -1;
4581 if (is_valid_ether_addr(addr))
4582 err = igb_set_vf_mac(adapter, vf, addr);
4584 return err;
4587 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4589 struct e1000_hw *hw = &adapter->hw;
4590 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4591 u32 msg = E1000_VT_MSGTYPE_NACK;
4593 /* if device isn't clear to send it shouldn't be reading either */
4594 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4595 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4596 igb_write_mbx(hw, &msg, 1, vf);
4597 vf_data->last_nack = jiffies;
4601 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4603 struct pci_dev *pdev = adapter->pdev;
4604 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4605 struct e1000_hw *hw = &adapter->hw;
4606 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4607 s32 retval;
4609 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4611 if (retval) {
4612 /* if receive failed revoke VF CTS stats and restart init */
4613 dev_err(&pdev->dev, "Error receiving message from VF\n");
4614 vf_data->flags &= ~IGB_VF_FLAG_CTS;
4615 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4616 return;
4617 goto out;
4620 /* this is a message we already processed, do nothing */
4621 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4622 return;
4625 * until the vf completes a reset it should not be
4626 * allowed to start any configuration.
4629 if (msgbuf[0] == E1000_VF_RESET) {
4630 igb_vf_reset_msg(adapter, vf);
4631 return;
4634 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4635 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
4636 return;
4637 retval = -1;
4638 goto out;
4641 switch ((msgbuf[0] & 0xFFFF)) {
4642 case E1000_VF_SET_MAC_ADDR:
4643 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4644 break;
4645 case E1000_VF_SET_PROMISC:
4646 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4647 break;
4648 case E1000_VF_SET_MULTICAST:
4649 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4650 break;
4651 case E1000_VF_SET_LPE:
4652 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4653 break;
4654 case E1000_VF_SET_VLAN:
4655 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4656 break;
4657 default:
4658 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4659 retval = -1;
4660 break;
4663 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4664 out:
4665 /* notify the VF of the results of what it sent us */
4666 if (retval)
4667 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4668 else
4669 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4671 igb_write_mbx(hw, msgbuf, 1, vf);
4674 static void igb_msg_task(struct igb_adapter *adapter)
4676 struct e1000_hw *hw = &adapter->hw;
4677 u32 vf;
4679 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4680 /* process any reset requests */
4681 if (!igb_check_for_rst(hw, vf))
4682 igb_vf_reset_event(adapter, vf);
4684 /* process any messages pending */
4685 if (!igb_check_for_msg(hw, vf))
4686 igb_rcv_msg_from_vf(adapter, vf);
4688 /* process any acks */
4689 if (!igb_check_for_ack(hw, vf))
4690 igb_rcv_ack_from_vf(adapter, vf);
4695 * igb_set_uta - Set unicast filter table address
4696 * @adapter: board private structure
4698 * The unicast table address is a register array of 32-bit registers.
4699 * The table is meant to be used in a way similar to how the MTA is used
4700 * however due to certain limitations in the hardware it is necessary to
4701 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4702 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4704 static void igb_set_uta(struct igb_adapter *adapter)
4706 struct e1000_hw *hw = &adapter->hw;
4707 int i;
4709 /* The UTA table only exists on 82576 hardware and newer */
4710 if (hw->mac.type < e1000_82576)
4711 return;
4713 /* we only need to do this if VMDq is enabled */
4714 if (!adapter->vfs_allocated_count)
4715 return;
4717 for (i = 0; i < hw->mac.uta_reg_count; i++)
4718 array_wr32(E1000_UTA, i, ~0);
4722 * igb_intr_msi - Interrupt Handler
4723 * @irq: interrupt number
4724 * @data: pointer to a network interface device structure
4726 static irqreturn_t igb_intr_msi(int irq, void *data)
4728 struct igb_adapter *adapter = data;
4729 struct igb_q_vector *q_vector = adapter->q_vector[0];
4730 struct e1000_hw *hw = &adapter->hw;
4731 /* read ICR disables interrupts using IAM */
4732 u32 icr = rd32(E1000_ICR);
4734 igb_write_itr(q_vector);
4736 if (icr & E1000_ICR_DOUTSYNC) {
4737 /* HW is reporting DMA is out of sync */
4738 adapter->stats.doosync++;
4741 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4742 hw->mac.get_link_status = 1;
4743 if (!test_bit(__IGB_DOWN, &adapter->state))
4744 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4747 napi_schedule(&q_vector->napi);
4749 return IRQ_HANDLED;
4753 * igb_intr - Legacy Interrupt Handler
4754 * @irq: interrupt number
4755 * @data: pointer to a network interface device structure
4757 static irqreturn_t igb_intr(int irq, void *data)
4759 struct igb_adapter *adapter = data;
4760 struct igb_q_vector *q_vector = adapter->q_vector[0];
4761 struct e1000_hw *hw = &adapter->hw;
4762 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4763 * need for the IMC write */
4764 u32 icr = rd32(E1000_ICR);
4765 if (!icr)
4766 return IRQ_NONE; /* Not our interrupt */
4768 igb_write_itr(q_vector);
4770 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4771 * not set, then the adapter didn't send an interrupt */
4772 if (!(icr & E1000_ICR_INT_ASSERTED))
4773 return IRQ_NONE;
4775 if (icr & E1000_ICR_DOUTSYNC) {
4776 /* HW is reporting DMA is out of sync */
4777 adapter->stats.doosync++;
4780 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4781 hw->mac.get_link_status = 1;
4782 /* guard against interrupt when we're going down */
4783 if (!test_bit(__IGB_DOWN, &adapter->state))
4784 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4787 napi_schedule(&q_vector->napi);
4789 return IRQ_HANDLED;
4792 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4794 struct igb_adapter *adapter = q_vector->adapter;
4795 struct e1000_hw *hw = &adapter->hw;
4797 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4798 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
4799 if (!adapter->msix_entries)
4800 igb_set_itr(adapter);
4801 else
4802 igb_update_ring_itr(q_vector);
4805 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4806 if (adapter->msix_entries)
4807 wr32(E1000_EIMS, q_vector->eims_value);
4808 else
4809 igb_irq_enable(adapter);
4814 * igb_poll - NAPI Rx polling callback
4815 * @napi: napi polling structure
4816 * @budget: count of how many packets we should handle
4818 static int igb_poll(struct napi_struct *napi, int budget)
4820 struct igb_q_vector *q_vector = container_of(napi,
4821 struct igb_q_vector,
4822 napi);
4823 int tx_clean_complete = 1, work_done = 0;
4825 #ifdef CONFIG_IGB_DCA
4826 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4827 igb_update_dca(q_vector);
4828 #endif
4829 if (q_vector->tx_ring)
4830 tx_clean_complete = igb_clean_tx_irq(q_vector);
4832 if (q_vector->rx_ring)
4833 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4835 if (!tx_clean_complete)
4836 work_done = budget;
4838 /* If not enough Rx work done, exit the polling mode */
4839 if (work_done < budget) {
4840 napi_complete(napi);
4841 igb_ring_irq_enable(q_vector);
4844 return work_done;
4848 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
4849 * @adapter: board private structure
4850 * @shhwtstamps: timestamp structure to update
4851 * @regval: unsigned 64bit system time value.
4853 * We need to convert the system time value stored in the RX/TXSTMP registers
4854 * into a hwtstamp which can be used by the upper level timestamping functions
4856 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4857 struct skb_shared_hwtstamps *shhwtstamps,
4858 u64 regval)
4860 u64 ns;
4863 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
4864 * 24 to match clock shift we setup earlier.
4866 if (adapter->hw.mac.type == e1000_82580)
4867 regval <<= IGB_82580_TSYNC_SHIFT;
4869 ns = timecounter_cyc2time(&adapter->clock, regval);
4870 timecompare_update(&adapter->compare, ns);
4871 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4872 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4873 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4877 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4878 * @q_vector: pointer to q_vector containing needed info
4879 * @skb: packet that was just sent
4881 * If we were asked to do hardware stamping and such a time stamp is
4882 * available, then it must have been for this skb here because we only
4883 * allow only one such packet into the queue.
4885 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
4887 struct igb_adapter *adapter = q_vector->adapter;
4888 union skb_shared_tx *shtx = skb_tx(skb);
4889 struct e1000_hw *hw = &adapter->hw;
4890 struct skb_shared_hwtstamps shhwtstamps;
4891 u64 regval;
4893 /* if skb does not support hw timestamp or TX stamp not valid exit */
4894 if (likely(!shtx->hardware) ||
4895 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4896 return;
4898 regval = rd32(E1000_TXSTMPL);
4899 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4901 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4902 skb_tstamp_tx(skb, &shhwtstamps);
4906 * igb_clean_tx_irq - Reclaim resources after transmit completes
4907 * @q_vector: pointer to q_vector containing needed info
4908 * returns true if ring is completely cleaned
4910 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4912 struct igb_adapter *adapter = q_vector->adapter;
4913 struct igb_ring *tx_ring = q_vector->tx_ring;
4914 struct net_device *netdev = tx_ring->netdev;
4915 struct e1000_hw *hw = &adapter->hw;
4916 struct igb_buffer *buffer_info;
4917 struct sk_buff *skb;
4918 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4919 unsigned int total_bytes = 0, total_packets = 0;
4920 unsigned int i, eop, count = 0;
4921 bool cleaned = false;
4923 i = tx_ring->next_to_clean;
4924 eop = tx_ring->buffer_info[i].next_to_watch;
4925 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4927 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4928 (count < tx_ring->count)) {
4929 for (cleaned = false; !cleaned; count++) {
4930 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4931 buffer_info = &tx_ring->buffer_info[i];
4932 cleaned = (i == eop);
4933 skb = buffer_info->skb;
4935 if (skb) {
4936 unsigned int segs, bytecount;
4937 /* gso_segs is currently only valid for tcp */
4938 segs = skb_shinfo(skb)->gso_segs ?: 1;
4939 /* multiply data chunks by size of headers */
4940 bytecount = ((segs - 1) * skb_headlen(skb)) +
4941 skb->len;
4942 total_packets += segs;
4943 total_bytes += bytecount;
4945 igb_tx_hwtstamp(q_vector, skb);
4948 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4949 tx_desc->wb.status = 0;
4951 i++;
4952 if (i == tx_ring->count)
4953 i = 0;
4955 eop = tx_ring->buffer_info[i].next_to_watch;
4956 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4959 tx_ring->next_to_clean = i;
4961 if (unlikely(count &&
4962 netif_carrier_ok(netdev) &&
4963 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4964 /* Make sure that anybody stopping the queue after this
4965 * sees the new next_to_clean.
4967 smp_mb();
4968 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4969 !(test_bit(__IGB_DOWN, &adapter->state))) {
4970 netif_wake_subqueue(netdev, tx_ring->queue_index);
4971 tx_ring->tx_stats.restart_queue++;
4975 if (tx_ring->detect_tx_hung) {
4976 /* Detect a transmit hang in hardware, this serializes the
4977 * check with the clearing of time_stamp and movement of i */
4978 tx_ring->detect_tx_hung = false;
4979 if (tx_ring->buffer_info[i].time_stamp &&
4980 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4981 (adapter->tx_timeout_factor * HZ)) &&
4982 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
4984 /* detected Tx unit hang */
4985 dev_err(&tx_ring->pdev->dev,
4986 "Detected Tx Unit Hang\n"
4987 " Tx Queue <%d>\n"
4988 " TDH <%x>\n"
4989 " TDT <%x>\n"
4990 " next_to_use <%x>\n"
4991 " next_to_clean <%x>\n"
4992 "buffer_info[next_to_clean]\n"
4993 " time_stamp <%lx>\n"
4994 " next_to_watch <%x>\n"
4995 " jiffies <%lx>\n"
4996 " desc.status <%x>\n",
4997 tx_ring->queue_index,
4998 readl(tx_ring->head),
4999 readl(tx_ring->tail),
5000 tx_ring->next_to_use,
5001 tx_ring->next_to_clean,
5002 tx_ring->buffer_info[eop].time_stamp,
5003 eop,
5004 jiffies,
5005 eop_desc->wb.status);
5006 netif_stop_subqueue(netdev, tx_ring->queue_index);
5009 tx_ring->total_bytes += total_bytes;
5010 tx_ring->total_packets += total_packets;
5011 tx_ring->tx_stats.bytes += total_bytes;
5012 tx_ring->tx_stats.packets += total_packets;
5013 return (count < tx_ring->count);
5017 * igb_receive_skb - helper function to handle rx indications
5018 * @q_vector: structure containing interrupt and ring information
5019 * @skb: packet to send up
5020 * @vlan_tag: vlan tag for packet
5022 static void igb_receive_skb(struct igb_q_vector *q_vector,
5023 struct sk_buff *skb,
5024 u16 vlan_tag)
5026 struct igb_adapter *adapter = q_vector->adapter;
5028 if (vlan_tag)
5029 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5030 vlan_tag, skb);
5031 else
5032 napi_gro_receive(&q_vector->napi, skb);
5035 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5036 u32 status_err, struct sk_buff *skb)
5038 skb->ip_summed = CHECKSUM_NONE;
5040 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5041 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5042 (status_err & E1000_RXD_STAT_IXSM))
5043 return;
5045 /* TCP/UDP checksum error bit is set */
5046 if (status_err &
5047 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5049 * work around errata with sctp packets where the TCPE aka
5050 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5051 * packets, (aka let the stack check the crc32c)
5053 if ((skb->len == 60) &&
5054 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5055 ring->rx_stats.csum_err++;
5057 /* let the stack verify checksum errors */
5058 return;
5060 /* It must be a TCP or UDP packet with a valid checksum */
5061 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5062 skb->ip_summed = CHECKSUM_UNNECESSARY;
5064 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
5067 static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5068 struct sk_buff *skb)
5070 struct igb_adapter *adapter = q_vector->adapter;
5071 struct e1000_hw *hw = &adapter->hw;
5072 u64 regval;
5075 * If this bit is set, then the RX registers contain the time stamp. No
5076 * other packet will be time stamped until we read these registers, so
5077 * read the registers to make them available again. Because only one
5078 * packet can be time stamped at a time, we know that the register
5079 * values must belong to this one here and therefore we don't need to
5080 * compare any of the additional attributes stored for it.
5082 * If nothing went wrong, then it should have a skb_shared_tx that we
5083 * can turn into a skb_shared_hwtstamps.
5085 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
5086 return;
5087 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5088 return;
5090 regval = rd32(E1000_RXSTMPL);
5091 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5093 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5095 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5096 union e1000_adv_rx_desc *rx_desc)
5098 /* HW will not DMA in data larger than the given buffer, even if it
5099 * parses the (NFS, of course) header to be larger. In that case, it
5100 * fills the header buffer and spills the rest into the page.
5102 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5103 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5104 if (hlen > rx_ring->rx_buffer_len)
5105 hlen = rx_ring->rx_buffer_len;
5106 return hlen;
5109 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5110 int *work_done, int budget)
5112 struct igb_ring *rx_ring = q_vector->rx_ring;
5113 struct net_device *netdev = rx_ring->netdev;
5114 struct pci_dev *pdev = rx_ring->pdev;
5115 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5116 struct igb_buffer *buffer_info , *next_buffer;
5117 struct sk_buff *skb;
5118 bool cleaned = false;
5119 int cleaned_count = 0;
5120 int current_node = numa_node_id();
5121 unsigned int total_bytes = 0, total_packets = 0;
5122 unsigned int i;
5123 u32 staterr;
5124 u16 length;
5125 u16 vlan_tag;
5127 i = rx_ring->next_to_clean;
5128 buffer_info = &rx_ring->buffer_info[i];
5129 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5130 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5132 while (staterr & E1000_RXD_STAT_DD) {
5133 if (*work_done >= budget)
5134 break;
5135 (*work_done)++;
5137 skb = buffer_info->skb;
5138 prefetch(skb->data - NET_IP_ALIGN);
5139 buffer_info->skb = NULL;
5141 i++;
5142 if (i == rx_ring->count)
5143 i = 0;
5145 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5146 prefetch(next_rxd);
5147 next_buffer = &rx_ring->buffer_info[i];
5149 length = le16_to_cpu(rx_desc->wb.upper.length);
5150 cleaned = true;
5151 cleaned_count++;
5153 if (buffer_info->dma) {
5154 pci_unmap_single(pdev, buffer_info->dma,
5155 rx_ring->rx_buffer_len,
5156 PCI_DMA_FROMDEVICE);
5157 buffer_info->dma = 0;
5158 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5159 skb_put(skb, length);
5160 goto send_up;
5162 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5165 if (length) {
5166 pci_unmap_page(pdev, buffer_info->page_dma,
5167 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
5168 buffer_info->page_dma = 0;
5170 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
5171 buffer_info->page,
5172 buffer_info->page_offset,
5173 length);
5175 if ((page_count(buffer_info->page) != 1) ||
5176 (page_to_nid(buffer_info->page) != current_node))
5177 buffer_info->page = NULL;
5178 else
5179 get_page(buffer_info->page);
5181 skb->len += length;
5182 skb->data_len += length;
5183 skb->truesize += length;
5186 if (!(staterr & E1000_RXD_STAT_EOP)) {
5187 buffer_info->skb = next_buffer->skb;
5188 buffer_info->dma = next_buffer->dma;
5189 next_buffer->skb = skb;
5190 next_buffer->dma = 0;
5191 goto next_desc;
5193 send_up:
5194 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5195 dev_kfree_skb_irq(skb);
5196 goto next_desc;
5199 igb_rx_hwtstamp(q_vector, staterr, skb);
5200 total_bytes += skb->len;
5201 total_packets++;
5203 igb_rx_checksum_adv(rx_ring, staterr, skb);
5205 skb->protocol = eth_type_trans(skb, netdev);
5206 skb_record_rx_queue(skb, rx_ring->queue_index);
5208 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5209 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5211 igb_receive_skb(q_vector, skb, vlan_tag);
5213 next_desc:
5214 rx_desc->wb.upper.status_error = 0;
5216 /* return some buffers to hardware, one at a time is too slow */
5217 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5218 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5219 cleaned_count = 0;
5222 /* use prefetched values */
5223 rx_desc = next_rxd;
5224 buffer_info = next_buffer;
5225 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5228 rx_ring->next_to_clean = i;
5229 cleaned_count = igb_desc_unused(rx_ring);
5231 if (cleaned_count)
5232 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5234 rx_ring->total_packets += total_packets;
5235 rx_ring->total_bytes += total_bytes;
5236 rx_ring->rx_stats.packets += total_packets;
5237 rx_ring->rx_stats.bytes += total_bytes;
5238 return cleaned;
5242 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5243 * @adapter: address of board private structure
5245 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5247 struct net_device *netdev = rx_ring->netdev;
5248 union e1000_adv_rx_desc *rx_desc;
5249 struct igb_buffer *buffer_info;
5250 struct sk_buff *skb;
5251 unsigned int i;
5252 int bufsz;
5254 i = rx_ring->next_to_use;
5255 buffer_info = &rx_ring->buffer_info[i];
5257 bufsz = rx_ring->rx_buffer_len;
5259 while (cleaned_count--) {
5260 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5262 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5263 if (!buffer_info->page) {
5264 buffer_info->page = netdev_alloc_page(netdev);
5265 if (!buffer_info->page) {
5266 rx_ring->rx_stats.alloc_failed++;
5267 goto no_buffers;
5269 buffer_info->page_offset = 0;
5270 } else {
5271 buffer_info->page_offset ^= PAGE_SIZE / 2;
5273 buffer_info->page_dma =
5274 pci_map_page(rx_ring->pdev, buffer_info->page,
5275 buffer_info->page_offset,
5276 PAGE_SIZE / 2,
5277 PCI_DMA_FROMDEVICE);
5278 if (pci_dma_mapping_error(rx_ring->pdev,
5279 buffer_info->page_dma)) {
5280 buffer_info->page_dma = 0;
5281 rx_ring->rx_stats.alloc_failed++;
5282 goto no_buffers;
5286 skb = buffer_info->skb;
5287 if (!skb) {
5288 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5289 if (!skb) {
5290 rx_ring->rx_stats.alloc_failed++;
5291 goto no_buffers;
5294 buffer_info->skb = skb;
5296 if (!buffer_info->dma) {
5297 buffer_info->dma = pci_map_single(rx_ring->pdev,
5298 skb->data,
5299 bufsz,
5300 PCI_DMA_FROMDEVICE);
5301 if (pci_dma_mapping_error(rx_ring->pdev,
5302 buffer_info->dma)) {
5303 buffer_info->dma = 0;
5304 rx_ring->rx_stats.alloc_failed++;
5305 goto no_buffers;
5308 /* Refresh the desc even if buffer_addrs didn't change because
5309 * each write-back erases this info. */
5310 if (bufsz < IGB_RXBUFFER_1024) {
5311 rx_desc->read.pkt_addr =
5312 cpu_to_le64(buffer_info->page_dma);
5313 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5314 } else {
5315 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5316 rx_desc->read.hdr_addr = 0;
5319 i++;
5320 if (i == rx_ring->count)
5321 i = 0;
5322 buffer_info = &rx_ring->buffer_info[i];
5325 no_buffers:
5326 if (rx_ring->next_to_use != i) {
5327 rx_ring->next_to_use = i;
5328 if (i == 0)
5329 i = (rx_ring->count - 1);
5330 else
5331 i--;
5333 /* Force memory writes to complete before letting h/w
5334 * know there are new descriptors to fetch. (Only
5335 * applicable for weak-ordered memory model archs,
5336 * such as IA-64). */
5337 wmb();
5338 writel(i, rx_ring->tail);
5343 * igb_mii_ioctl -
5344 * @netdev:
5345 * @ifreq:
5346 * @cmd:
5348 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5350 struct igb_adapter *adapter = netdev_priv(netdev);
5351 struct mii_ioctl_data *data = if_mii(ifr);
5353 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5354 return -EOPNOTSUPP;
5356 switch (cmd) {
5357 case SIOCGMIIPHY:
5358 data->phy_id = adapter->hw.phy.addr;
5359 break;
5360 case SIOCGMIIREG:
5361 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5362 &data->val_out))
5363 return -EIO;
5364 break;
5365 case SIOCSMIIREG:
5366 default:
5367 return -EOPNOTSUPP;
5369 return 0;
5373 * igb_hwtstamp_ioctl - control hardware time stamping
5374 * @netdev:
5375 * @ifreq:
5376 * @cmd:
5378 * Outgoing time stamping can be enabled and disabled. Play nice and
5379 * disable it when requested, although it shouldn't case any overhead
5380 * when no packet needs it. At most one packet in the queue may be
5381 * marked for time stamping, otherwise it would be impossible to tell
5382 * for sure to which packet the hardware time stamp belongs.
5384 * Incoming time stamping has to be configured via the hardware
5385 * filters. Not all combinations are supported, in particular event
5386 * type has to be specified. Matching the kind of event packet is
5387 * not supported, with the exception of "all V2 events regardless of
5388 * level 2 or 4".
5391 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5392 struct ifreq *ifr, int cmd)
5394 struct igb_adapter *adapter = netdev_priv(netdev);
5395 struct e1000_hw *hw = &adapter->hw;
5396 struct hwtstamp_config config;
5397 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5398 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5399 u32 tsync_rx_cfg = 0;
5400 bool is_l4 = false;
5401 bool is_l2 = false;
5402 u32 regval;
5404 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5405 return -EFAULT;
5407 /* reserved for future extensions */
5408 if (config.flags)
5409 return -EINVAL;
5411 switch (config.tx_type) {
5412 case HWTSTAMP_TX_OFF:
5413 tsync_tx_ctl = 0;
5414 case HWTSTAMP_TX_ON:
5415 break;
5416 default:
5417 return -ERANGE;
5420 switch (config.rx_filter) {
5421 case HWTSTAMP_FILTER_NONE:
5422 tsync_rx_ctl = 0;
5423 break;
5424 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5425 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5426 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5427 case HWTSTAMP_FILTER_ALL:
5429 * register TSYNCRXCFG must be set, therefore it is not
5430 * possible to time stamp both Sync and Delay_Req messages
5431 * => fall back to time stamping all packets
5433 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5434 config.rx_filter = HWTSTAMP_FILTER_ALL;
5435 break;
5436 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5437 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5438 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5439 is_l4 = true;
5440 break;
5441 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5442 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5443 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5444 is_l4 = true;
5445 break;
5446 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5447 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5448 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5449 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5450 is_l2 = true;
5451 is_l4 = true;
5452 config.rx_filter = HWTSTAMP_FILTER_SOME;
5453 break;
5454 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5455 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5456 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5457 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5458 is_l2 = true;
5459 is_l4 = true;
5460 config.rx_filter = HWTSTAMP_FILTER_SOME;
5461 break;
5462 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5463 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5464 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5465 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5466 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5467 is_l2 = true;
5468 break;
5469 default:
5470 return -ERANGE;
5473 if (hw->mac.type == e1000_82575) {
5474 if (tsync_rx_ctl | tsync_tx_ctl)
5475 return -EINVAL;
5476 return 0;
5479 /* enable/disable TX */
5480 regval = rd32(E1000_TSYNCTXCTL);
5481 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5482 regval |= tsync_tx_ctl;
5483 wr32(E1000_TSYNCTXCTL, regval);
5485 /* enable/disable RX */
5486 regval = rd32(E1000_TSYNCRXCTL);
5487 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5488 regval |= tsync_rx_ctl;
5489 wr32(E1000_TSYNCRXCTL, regval);
5491 /* define which PTP packets are time stamped */
5492 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5494 /* define ethertype filter for timestamped packets */
5495 if (is_l2)
5496 wr32(E1000_ETQF(3),
5497 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5498 E1000_ETQF_1588 | /* enable timestamping */
5499 ETH_P_1588)); /* 1588 eth protocol type */
5500 else
5501 wr32(E1000_ETQF(3), 0);
5503 #define PTP_PORT 319
5504 /* L4 Queue Filter[3]: filter by destination port and protocol */
5505 if (is_l4) {
5506 u32 ftqf = (IPPROTO_UDP /* UDP */
5507 | E1000_FTQF_VF_BP /* VF not compared */
5508 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5509 | E1000_FTQF_MASK); /* mask all inputs */
5510 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5512 wr32(E1000_IMIR(3), htons(PTP_PORT));
5513 wr32(E1000_IMIREXT(3),
5514 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5515 if (hw->mac.type == e1000_82576) {
5516 /* enable source port check */
5517 wr32(E1000_SPQF(3), htons(PTP_PORT));
5518 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5520 wr32(E1000_FTQF(3), ftqf);
5521 } else {
5522 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5524 wrfl();
5526 adapter->hwtstamp_config = config;
5528 /* clear TX/RX time stamp registers, just to be sure */
5529 regval = rd32(E1000_TXSTMPH);
5530 regval = rd32(E1000_RXSTMPH);
5532 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5533 -EFAULT : 0;
5537 * igb_ioctl -
5538 * @netdev:
5539 * @ifreq:
5540 * @cmd:
5542 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5544 switch (cmd) {
5545 case SIOCGMIIPHY:
5546 case SIOCGMIIREG:
5547 case SIOCSMIIREG:
5548 return igb_mii_ioctl(netdev, ifr, cmd);
5549 case SIOCSHWTSTAMP:
5550 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5551 default:
5552 return -EOPNOTSUPP;
5556 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5558 struct igb_adapter *adapter = hw->back;
5559 u16 cap_offset;
5561 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5562 if (!cap_offset)
5563 return -E1000_ERR_CONFIG;
5565 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5567 return 0;
5570 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5572 struct igb_adapter *adapter = hw->back;
5573 u16 cap_offset;
5575 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5576 if (!cap_offset)
5577 return -E1000_ERR_CONFIG;
5579 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5581 return 0;
5584 static void igb_vlan_rx_register(struct net_device *netdev,
5585 struct vlan_group *grp)
5587 struct igb_adapter *adapter = netdev_priv(netdev);
5588 struct e1000_hw *hw = &adapter->hw;
5589 u32 ctrl, rctl;
5591 igb_irq_disable(adapter);
5592 adapter->vlgrp = grp;
5594 if (grp) {
5595 /* enable VLAN tag insert/strip */
5596 ctrl = rd32(E1000_CTRL);
5597 ctrl |= E1000_CTRL_VME;
5598 wr32(E1000_CTRL, ctrl);
5600 /* Disable CFI check */
5601 rctl = rd32(E1000_RCTL);
5602 rctl &= ~E1000_RCTL_CFIEN;
5603 wr32(E1000_RCTL, rctl);
5604 } else {
5605 /* disable VLAN tag insert/strip */
5606 ctrl = rd32(E1000_CTRL);
5607 ctrl &= ~E1000_CTRL_VME;
5608 wr32(E1000_CTRL, ctrl);
5611 igb_rlpml_set(adapter);
5613 if (!test_bit(__IGB_DOWN, &adapter->state))
5614 igb_irq_enable(adapter);
5617 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5619 struct igb_adapter *adapter = netdev_priv(netdev);
5620 struct e1000_hw *hw = &adapter->hw;
5621 int pf_id = adapter->vfs_allocated_count;
5623 /* attempt to add filter to vlvf array */
5624 igb_vlvf_set(adapter, vid, true, pf_id);
5626 /* add the filter since PF can receive vlans w/o entry in vlvf */
5627 igb_vfta_set(hw, vid, true);
5630 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5632 struct igb_adapter *adapter = netdev_priv(netdev);
5633 struct e1000_hw *hw = &adapter->hw;
5634 int pf_id = adapter->vfs_allocated_count;
5635 s32 err;
5637 igb_irq_disable(adapter);
5638 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5640 if (!test_bit(__IGB_DOWN, &adapter->state))
5641 igb_irq_enable(adapter);
5643 /* remove vlan from VLVF table array */
5644 err = igb_vlvf_set(adapter, vid, false, pf_id);
5646 /* if vid was not present in VLVF just remove it from table */
5647 if (err)
5648 igb_vfta_set(hw, vid, false);
5651 static void igb_restore_vlan(struct igb_adapter *adapter)
5653 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5655 if (adapter->vlgrp) {
5656 u16 vid;
5657 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5658 if (!vlan_group_get_device(adapter->vlgrp, vid))
5659 continue;
5660 igb_vlan_rx_add_vid(adapter->netdev, vid);
5665 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5667 struct pci_dev *pdev = adapter->pdev;
5668 struct e1000_mac_info *mac = &adapter->hw.mac;
5670 mac->autoneg = 0;
5672 switch (spddplx) {
5673 case SPEED_10 + DUPLEX_HALF:
5674 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5675 break;
5676 case SPEED_10 + DUPLEX_FULL:
5677 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5678 break;
5679 case SPEED_100 + DUPLEX_HALF:
5680 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5681 break;
5682 case SPEED_100 + DUPLEX_FULL:
5683 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5684 break;
5685 case SPEED_1000 + DUPLEX_FULL:
5686 mac->autoneg = 1;
5687 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5688 break;
5689 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5690 default:
5691 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
5692 return -EINVAL;
5694 return 0;
5697 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5699 struct net_device *netdev = pci_get_drvdata(pdev);
5700 struct igb_adapter *adapter = netdev_priv(netdev);
5701 struct e1000_hw *hw = &adapter->hw;
5702 u32 ctrl, rctl, status;
5703 u32 wufc = adapter->wol;
5704 #ifdef CONFIG_PM
5705 int retval = 0;
5706 #endif
5708 netif_device_detach(netdev);
5710 if (netif_running(netdev))
5711 igb_close(netdev);
5713 igb_clear_interrupt_scheme(adapter);
5715 #ifdef CONFIG_PM
5716 retval = pci_save_state(pdev);
5717 if (retval)
5718 return retval;
5719 #endif
5721 status = rd32(E1000_STATUS);
5722 if (status & E1000_STATUS_LU)
5723 wufc &= ~E1000_WUFC_LNKC;
5725 if (wufc) {
5726 igb_setup_rctl(adapter);
5727 igb_set_rx_mode(netdev);
5729 /* turn on all-multi mode if wake on multicast is enabled */
5730 if (wufc & E1000_WUFC_MC) {
5731 rctl = rd32(E1000_RCTL);
5732 rctl |= E1000_RCTL_MPE;
5733 wr32(E1000_RCTL, rctl);
5736 ctrl = rd32(E1000_CTRL);
5737 /* advertise wake from D3Cold */
5738 #define E1000_CTRL_ADVD3WUC 0x00100000
5739 /* phy power management enable */
5740 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5741 ctrl |= E1000_CTRL_ADVD3WUC;
5742 wr32(E1000_CTRL, ctrl);
5744 /* Allow time for pending master requests to run */
5745 igb_disable_pcie_master(hw);
5747 wr32(E1000_WUC, E1000_WUC_PME_EN);
5748 wr32(E1000_WUFC, wufc);
5749 } else {
5750 wr32(E1000_WUC, 0);
5751 wr32(E1000_WUFC, 0);
5754 *enable_wake = wufc || adapter->en_mng_pt;
5755 if (!*enable_wake)
5756 igb_shutdown_serdes_link_82575(hw);
5758 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5759 * would have already happened in close and is redundant. */
5760 igb_release_hw_control(adapter);
5762 pci_disable_device(pdev);
5764 return 0;
5767 #ifdef CONFIG_PM
5768 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5770 int retval;
5771 bool wake;
5773 retval = __igb_shutdown(pdev, &wake);
5774 if (retval)
5775 return retval;
5777 if (wake) {
5778 pci_prepare_to_sleep(pdev);
5779 } else {
5780 pci_wake_from_d3(pdev, false);
5781 pci_set_power_state(pdev, PCI_D3hot);
5784 return 0;
5787 static int igb_resume(struct pci_dev *pdev)
5789 struct net_device *netdev = pci_get_drvdata(pdev);
5790 struct igb_adapter *adapter = netdev_priv(netdev);
5791 struct e1000_hw *hw = &adapter->hw;
5792 u32 err;
5794 pci_set_power_state(pdev, PCI_D0);
5795 pci_restore_state(pdev);
5797 err = pci_enable_device_mem(pdev);
5798 if (err) {
5799 dev_err(&pdev->dev,
5800 "igb: Cannot enable PCI device from suspend\n");
5801 return err;
5803 pci_set_master(pdev);
5805 pci_enable_wake(pdev, PCI_D3hot, 0);
5806 pci_enable_wake(pdev, PCI_D3cold, 0);
5808 if (igb_init_interrupt_scheme(adapter)) {
5809 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5810 return -ENOMEM;
5813 /* e1000_power_up_phy(adapter); */
5815 igb_reset(adapter);
5817 /* let the f/w know that the h/w is now under the control of the
5818 * driver. */
5819 igb_get_hw_control(adapter);
5821 wr32(E1000_WUS, ~0);
5823 if (netif_running(netdev)) {
5824 err = igb_open(netdev);
5825 if (err)
5826 return err;
5829 netif_device_attach(netdev);
5831 return 0;
5833 #endif
5835 static void igb_shutdown(struct pci_dev *pdev)
5837 bool wake;
5839 __igb_shutdown(pdev, &wake);
5841 if (system_state == SYSTEM_POWER_OFF) {
5842 pci_wake_from_d3(pdev, wake);
5843 pci_set_power_state(pdev, PCI_D3hot);
5847 #ifdef CONFIG_NET_POLL_CONTROLLER
5849 * Polling 'interrupt' - used by things like netconsole to send skbs
5850 * without having to re-enable interrupts. It's not called while
5851 * the interrupt routine is executing.
5853 static void igb_netpoll(struct net_device *netdev)
5855 struct igb_adapter *adapter = netdev_priv(netdev);
5856 struct e1000_hw *hw = &adapter->hw;
5857 int i;
5859 if (!adapter->msix_entries) {
5860 struct igb_q_vector *q_vector = adapter->q_vector[0];
5861 igb_irq_disable(adapter);
5862 napi_schedule(&q_vector->napi);
5863 return;
5866 for (i = 0; i < adapter->num_q_vectors; i++) {
5867 struct igb_q_vector *q_vector = adapter->q_vector[i];
5868 wr32(E1000_EIMC, q_vector->eims_value);
5869 napi_schedule(&q_vector->napi);
5872 #endif /* CONFIG_NET_POLL_CONTROLLER */
5875 * igb_io_error_detected - called when PCI error is detected
5876 * @pdev: Pointer to PCI device
5877 * @state: The current pci connection state
5879 * This function is called after a PCI bus error affecting
5880 * this device has been detected.
5882 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5883 pci_channel_state_t state)
5885 struct net_device *netdev = pci_get_drvdata(pdev);
5886 struct igb_adapter *adapter = netdev_priv(netdev);
5888 netif_device_detach(netdev);
5890 if (state == pci_channel_io_perm_failure)
5891 return PCI_ERS_RESULT_DISCONNECT;
5893 if (netif_running(netdev))
5894 igb_down(adapter);
5895 pci_disable_device(pdev);
5897 /* Request a slot slot reset. */
5898 return PCI_ERS_RESULT_NEED_RESET;
5902 * igb_io_slot_reset - called after the pci bus has been reset.
5903 * @pdev: Pointer to PCI device
5905 * Restart the card from scratch, as if from a cold-boot. Implementation
5906 * resembles the first-half of the igb_resume routine.
5908 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5910 struct net_device *netdev = pci_get_drvdata(pdev);
5911 struct igb_adapter *adapter = netdev_priv(netdev);
5912 struct e1000_hw *hw = &adapter->hw;
5913 pci_ers_result_t result;
5914 int err;
5916 if (pci_enable_device_mem(pdev)) {
5917 dev_err(&pdev->dev,
5918 "Cannot re-enable PCI device after reset.\n");
5919 result = PCI_ERS_RESULT_DISCONNECT;
5920 } else {
5921 pci_set_master(pdev);
5922 pci_restore_state(pdev);
5924 pci_enable_wake(pdev, PCI_D3hot, 0);
5925 pci_enable_wake(pdev, PCI_D3cold, 0);
5927 igb_reset(adapter);
5928 wr32(E1000_WUS, ~0);
5929 result = PCI_ERS_RESULT_RECOVERED;
5932 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5933 if (err) {
5934 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5935 "failed 0x%0x\n", err);
5936 /* non-fatal, continue */
5939 return result;
5943 * igb_io_resume - called when traffic can start flowing again.
5944 * @pdev: Pointer to PCI device
5946 * This callback is called when the error recovery driver tells us that
5947 * its OK to resume normal operation. Implementation resembles the
5948 * second-half of the igb_resume routine.
5950 static void igb_io_resume(struct pci_dev *pdev)
5952 struct net_device *netdev = pci_get_drvdata(pdev);
5953 struct igb_adapter *adapter = netdev_priv(netdev);
5955 if (netif_running(netdev)) {
5956 if (igb_up(adapter)) {
5957 dev_err(&pdev->dev, "igb_up failed after reset\n");
5958 return;
5962 netif_device_attach(netdev);
5964 /* let the f/w know that the h/w is now under the control of the
5965 * driver. */
5966 igb_get_hw_control(adapter);
5969 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5970 u8 qsel)
5972 u32 rar_low, rar_high;
5973 struct e1000_hw *hw = &adapter->hw;
5975 /* HW expects these in little endian so we reverse the byte order
5976 * from network order (big endian) to little endian
5978 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5979 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5980 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5982 /* Indicate to hardware the Address is Valid. */
5983 rar_high |= E1000_RAH_AV;
5985 if (hw->mac.type == e1000_82575)
5986 rar_high |= E1000_RAH_POOL_1 * qsel;
5987 else
5988 rar_high |= E1000_RAH_POOL_1 << qsel;
5990 wr32(E1000_RAL(index), rar_low);
5991 wrfl();
5992 wr32(E1000_RAH(index), rar_high);
5993 wrfl();
5996 static int igb_set_vf_mac(struct igb_adapter *adapter,
5997 int vf, unsigned char *mac_addr)
5999 struct e1000_hw *hw = &adapter->hw;
6000 /* VF MAC addresses start at end of receive addresses and moves
6001 * torwards the first, as a result a collision should not be possible */
6002 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6004 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6006 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6008 return 0;
6011 static void igb_vmm_control(struct igb_adapter *adapter)
6013 struct e1000_hw *hw = &adapter->hw;
6014 u32 reg;
6016 /* replication is not supported for 82575 */
6017 if (hw->mac.type == e1000_82575)
6018 return;
6020 /* enable replication vlan tag stripping */
6021 reg = rd32(E1000_RPLOLR);
6022 reg |= E1000_RPLOLR_STRVLAN;
6023 wr32(E1000_RPLOLR, reg);
6025 /* notify HW that the MAC is adding vlan tags */
6026 reg = rd32(E1000_DTXCTL);
6027 reg |= E1000_DTXCTL_VLAN_ADDED;
6028 wr32(E1000_DTXCTL, reg);
6030 if (adapter->vfs_allocated_count) {
6031 igb_vmdq_set_loopback_pf(hw, true);
6032 igb_vmdq_set_replication_pf(hw, true);
6033 } else {
6034 igb_vmdq_set_loopback_pf(hw, false);
6035 igb_vmdq_set_replication_pf(hw, false);
6039 /* igb_main.c */