net/802: Implement Multiple Registration Protocol (MRP)
[linux-2.6/btrfs-unstable.git] / net / bridge / br_netfilter.c
blobfe43bc7b063f5f49b31c237f3f418b56de15379d
1 /*
2 * Handle firewalling
3 * Linux ethernet bridge
5 * Authors:
6 * Lennert Buytenhek <buytenh@gnu.org>
7 * Bart De Schuymer <bdschuym@pandora.be>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
14 * Lennert dedicates this file to Kerstin Wurdinger.
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
39 #include <asm/uaccess.h>
40 #include "br_private.h"
41 #ifdef CONFIG_SYSCTL
42 #include <linux/sysctl.h>
43 #endif
45 #define skb_origaddr(skb) (((struct bridge_skb_cb *) \
46 (skb->nf_bridge->data))->daddr.ipv4)
47 #define store_orig_dstaddr(skb) (skb_origaddr(skb) = ip_hdr(skb)->daddr)
48 #define dnat_took_place(skb) (skb_origaddr(skb) != ip_hdr(skb)->daddr)
50 #ifdef CONFIG_SYSCTL
51 static struct ctl_table_header *brnf_sysctl_header;
52 static int brnf_call_iptables __read_mostly = 1;
53 static int brnf_call_ip6tables __read_mostly = 1;
54 static int brnf_call_arptables __read_mostly = 1;
55 static int brnf_filter_vlan_tagged __read_mostly = 0;
56 static int brnf_filter_pppoe_tagged __read_mostly = 0;
57 static int brnf_pass_vlan_indev __read_mostly = 0;
58 #else
59 #define brnf_call_iptables 1
60 #define brnf_call_ip6tables 1
61 #define brnf_call_arptables 1
62 #define brnf_filter_vlan_tagged 0
63 #define brnf_filter_pppoe_tagged 0
64 #define brnf_pass_vlan_indev 0
65 #endif
67 #define IS_IP(skb) \
68 (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
70 #define IS_IPV6(skb) \
71 (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
73 #define IS_ARP(skb) \
74 (!vlan_tx_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
76 static inline __be16 vlan_proto(const struct sk_buff *skb)
78 if (vlan_tx_tag_present(skb))
79 return skb->protocol;
80 else if (skb->protocol == htons(ETH_P_8021Q))
81 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
82 else
83 return 0;
86 #define IS_VLAN_IP(skb) \
87 (vlan_proto(skb) == htons(ETH_P_IP) && \
88 brnf_filter_vlan_tagged)
90 #define IS_VLAN_IPV6(skb) \
91 (vlan_proto(skb) == htons(ETH_P_IPV6) && \
92 brnf_filter_vlan_tagged)
94 #define IS_VLAN_ARP(skb) \
95 (vlan_proto(skb) == htons(ETH_P_ARP) && \
96 brnf_filter_vlan_tagged)
98 static inline __be16 pppoe_proto(const struct sk_buff *skb)
100 return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
101 sizeof(struct pppoe_hdr)));
104 #define IS_PPPOE_IP(skb) \
105 (skb->protocol == htons(ETH_P_PPP_SES) && \
106 pppoe_proto(skb) == htons(PPP_IP) && \
107 brnf_filter_pppoe_tagged)
109 #define IS_PPPOE_IPV6(skb) \
110 (skb->protocol == htons(ETH_P_PPP_SES) && \
111 pppoe_proto(skb) == htons(PPP_IPV6) && \
112 brnf_filter_pppoe_tagged)
114 static void fake_update_pmtu(struct dst_entry *dst, struct sock *sk,
115 struct sk_buff *skb, u32 mtu)
119 static void fake_redirect(struct dst_entry *dst, struct sock *sk,
120 struct sk_buff *skb)
124 static u32 *fake_cow_metrics(struct dst_entry *dst, unsigned long old)
126 return NULL;
129 static struct neighbour *fake_neigh_lookup(const struct dst_entry *dst,
130 struct sk_buff *skb,
131 const void *daddr)
133 return NULL;
136 static unsigned int fake_mtu(const struct dst_entry *dst)
138 return dst->dev->mtu;
141 static struct dst_ops fake_dst_ops = {
142 .family = AF_INET,
143 .protocol = cpu_to_be16(ETH_P_IP),
144 .update_pmtu = fake_update_pmtu,
145 .redirect = fake_redirect,
146 .cow_metrics = fake_cow_metrics,
147 .neigh_lookup = fake_neigh_lookup,
148 .mtu = fake_mtu,
152 * Initialize bogus route table used to keep netfilter happy.
153 * Currently, we fill in the PMTU entry because netfilter
154 * refragmentation needs it, and the rt_flags entry because
155 * ipt_REJECT needs it. Future netfilter modules might
156 * require us to fill additional fields.
158 static const u32 br_dst_default_metrics[RTAX_MAX] = {
159 [RTAX_MTU - 1] = 1500,
162 void br_netfilter_rtable_init(struct net_bridge *br)
164 struct rtable *rt = &br->fake_rtable;
166 atomic_set(&rt->dst.__refcnt, 1);
167 rt->dst.dev = br->dev;
168 rt->dst.path = &rt->dst;
169 dst_init_metrics(&rt->dst, br_dst_default_metrics, true);
170 rt->dst.flags = DST_NOXFRM | DST_NOPEER | DST_FAKE_RTABLE;
171 rt->dst.ops = &fake_dst_ops;
174 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
176 struct net_bridge_port *port;
178 port = br_port_get_rcu(dev);
179 return port ? &port->br->fake_rtable : NULL;
182 static inline struct net_device *bridge_parent(const struct net_device *dev)
184 struct net_bridge_port *port;
186 port = br_port_get_rcu(dev);
187 return port ? port->br->dev : NULL;
190 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
192 skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
193 if (likely(skb->nf_bridge))
194 atomic_set(&(skb->nf_bridge->use), 1);
196 return skb->nf_bridge;
199 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
201 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
203 if (atomic_read(&nf_bridge->use) > 1) {
204 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
206 if (tmp) {
207 memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
208 atomic_set(&tmp->use, 1);
210 nf_bridge_put(nf_bridge);
211 nf_bridge = tmp;
213 return nf_bridge;
216 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
218 unsigned int len = nf_bridge_encap_header_len(skb);
220 skb_push(skb, len);
221 skb->network_header -= len;
224 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
226 unsigned int len = nf_bridge_encap_header_len(skb);
228 skb_pull(skb, len);
229 skb->network_header += len;
232 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
234 unsigned int len = nf_bridge_encap_header_len(skb);
236 skb_pull_rcsum(skb, len);
237 skb->network_header += len;
240 static inline void nf_bridge_save_header(struct sk_buff *skb)
242 int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
244 skb_copy_from_linear_data_offset(skb, -header_size,
245 skb->nf_bridge->data, header_size);
248 static inline void nf_bridge_update_protocol(struct sk_buff *skb)
250 if (skb->nf_bridge->mask & BRNF_8021Q)
251 skb->protocol = htons(ETH_P_8021Q);
252 else if (skb->nf_bridge->mask & BRNF_PPPoE)
253 skb->protocol = htons(ETH_P_PPP_SES);
256 /* When handing a packet over to the IP layer
257 * check whether we have a skb that is in the
258 * expected format
261 static int br_parse_ip_options(struct sk_buff *skb)
263 struct ip_options *opt;
264 const struct iphdr *iph;
265 struct net_device *dev = skb->dev;
266 u32 len;
268 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
269 goto inhdr_error;
271 iph = ip_hdr(skb);
272 opt = &(IPCB(skb)->opt);
274 /* Basic sanity checks */
275 if (iph->ihl < 5 || iph->version != 4)
276 goto inhdr_error;
278 if (!pskb_may_pull(skb, iph->ihl*4))
279 goto inhdr_error;
281 iph = ip_hdr(skb);
282 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
283 goto inhdr_error;
285 len = ntohs(iph->tot_len);
286 if (skb->len < len) {
287 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
288 goto drop;
289 } else if (len < (iph->ihl*4))
290 goto inhdr_error;
292 if (pskb_trim_rcsum(skb, len)) {
293 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
294 goto drop;
297 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
298 if (iph->ihl == 5)
299 return 0;
301 opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
302 if (ip_options_compile(dev_net(dev), opt, skb))
303 goto inhdr_error;
305 /* Check correct handling of SRR option */
306 if (unlikely(opt->srr)) {
307 struct in_device *in_dev = __in_dev_get_rcu(dev);
308 if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev))
309 goto drop;
311 if (ip_options_rcv_srr(skb))
312 goto drop;
315 return 0;
317 inhdr_error:
318 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
319 drop:
320 return -1;
323 /* Fill in the header for fragmented IP packets handled by
324 * the IPv4 connection tracking code.
326 int nf_bridge_copy_header(struct sk_buff *skb)
328 int err;
329 unsigned int header_size;
331 nf_bridge_update_protocol(skb);
332 header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
333 err = skb_cow_head(skb, header_size);
334 if (err)
335 return err;
337 skb_copy_to_linear_data_offset(skb, -header_size,
338 skb->nf_bridge->data, header_size);
339 __skb_push(skb, nf_bridge_encap_header_len(skb));
340 return 0;
343 /* PF_BRIDGE/PRE_ROUTING *********************************************/
344 /* Undo the changes made for ip6tables PREROUTING and continue the
345 * bridge PRE_ROUTING hook. */
346 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
348 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
349 struct rtable *rt;
351 if (nf_bridge->mask & BRNF_PKT_TYPE) {
352 skb->pkt_type = PACKET_OTHERHOST;
353 nf_bridge->mask ^= BRNF_PKT_TYPE;
355 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
357 rt = bridge_parent_rtable(nf_bridge->physindev);
358 if (!rt) {
359 kfree_skb(skb);
360 return 0;
362 skb_dst_set_noref(skb, &rt->dst);
364 skb->dev = nf_bridge->physindev;
365 nf_bridge_update_protocol(skb);
366 nf_bridge_push_encap_header(skb);
367 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
368 br_handle_frame_finish, 1);
370 return 0;
373 /* Obtain the correct destination MAC address, while preserving the original
374 * source MAC address. If we already know this address, we just copy it. If we
375 * don't, we use the neighbour framework to find out. In both cases, we make
376 * sure that br_handle_frame_finish() is called afterwards.
378 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
380 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
381 struct neighbour *neigh;
382 struct dst_entry *dst;
384 skb->dev = bridge_parent(skb->dev);
385 if (!skb->dev)
386 goto free_skb;
387 dst = skb_dst(skb);
388 neigh = dst_neigh_lookup_skb(dst, skb);
389 if (neigh) {
390 int ret;
392 if (neigh->hh.hh_len) {
393 neigh_hh_bridge(&neigh->hh, skb);
394 skb->dev = nf_bridge->physindev;
395 ret = br_handle_frame_finish(skb);
396 } else {
397 /* the neighbour function below overwrites the complete
398 * MAC header, so we save the Ethernet source address and
399 * protocol number.
401 skb_copy_from_linear_data_offset(skb,
402 -(ETH_HLEN-ETH_ALEN),
403 skb->nf_bridge->data,
404 ETH_HLEN-ETH_ALEN);
405 /* tell br_dev_xmit to continue with forwarding */
406 nf_bridge->mask |= BRNF_BRIDGED_DNAT;
407 ret = neigh->output(neigh, skb);
409 neigh_release(neigh);
410 return ret;
412 free_skb:
413 kfree_skb(skb);
414 return 0;
417 /* This requires some explaining. If DNAT has taken place,
418 * we will need to fix up the destination Ethernet address.
420 * There are two cases to consider:
421 * 1. The packet was DNAT'ed to a device in the same bridge
422 * port group as it was received on. We can still bridge
423 * the packet.
424 * 2. The packet was DNAT'ed to a different device, either
425 * a non-bridged device or another bridge port group.
426 * The packet will need to be routed.
428 * The correct way of distinguishing between these two cases is to
429 * call ip_route_input() and to look at skb->dst->dev, which is
430 * changed to the destination device if ip_route_input() succeeds.
432 * Let's first consider the case that ip_route_input() succeeds:
434 * If the output device equals the logical bridge device the packet
435 * came in on, we can consider this bridging. The corresponding MAC
436 * address will be obtained in br_nf_pre_routing_finish_bridge.
437 * Otherwise, the packet is considered to be routed and we just
438 * change the destination MAC address so that the packet will
439 * later be passed up to the IP stack to be routed. For a redirected
440 * packet, ip_route_input() will give back the localhost as output device,
441 * which differs from the bridge device.
443 * Let's now consider the case that ip_route_input() fails:
445 * This can be because the destination address is martian, in which case
446 * the packet will be dropped.
447 * If IP forwarding is disabled, ip_route_input() will fail, while
448 * ip_route_output_key() can return success. The source
449 * address for ip_route_output_key() is set to zero, so ip_route_output_key()
450 * thinks we're handling a locally generated packet and won't care
451 * if IP forwarding is enabled. If the output device equals the logical bridge
452 * device, we proceed as if ip_route_input() succeeded. If it differs from the
453 * logical bridge port or if ip_route_output_key() fails we drop the packet.
455 static int br_nf_pre_routing_finish(struct sk_buff *skb)
457 struct net_device *dev = skb->dev;
458 struct iphdr *iph = ip_hdr(skb);
459 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
460 struct rtable *rt;
461 int err;
463 if (nf_bridge->mask & BRNF_PKT_TYPE) {
464 skb->pkt_type = PACKET_OTHERHOST;
465 nf_bridge->mask ^= BRNF_PKT_TYPE;
467 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
468 if (dnat_took_place(skb)) {
469 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
470 struct in_device *in_dev = __in_dev_get_rcu(dev);
472 /* If err equals -EHOSTUNREACH the error is due to a
473 * martian destination or due to the fact that
474 * forwarding is disabled. For most martian packets,
475 * ip_route_output_key() will fail. It won't fail for 2 types of
476 * martian destinations: loopback destinations and destination
477 * 0.0.0.0. In both cases the packet will be dropped because the
478 * destination is the loopback device and not the bridge. */
479 if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
480 goto free_skb;
482 rt = ip_route_output(dev_net(dev), iph->daddr, 0,
483 RT_TOS(iph->tos), 0);
484 if (!IS_ERR(rt)) {
485 /* - Bridged-and-DNAT'ed traffic doesn't
486 * require ip_forwarding. */
487 if (rt->dst.dev == dev) {
488 skb_dst_set(skb, &rt->dst);
489 goto bridged_dnat;
491 ip_rt_put(rt);
493 free_skb:
494 kfree_skb(skb);
495 return 0;
496 } else {
497 if (skb_dst(skb)->dev == dev) {
498 bridged_dnat:
499 skb->dev = nf_bridge->physindev;
500 nf_bridge_update_protocol(skb);
501 nf_bridge_push_encap_header(skb);
502 NF_HOOK_THRESH(NFPROTO_BRIDGE,
503 NF_BR_PRE_ROUTING,
504 skb, skb->dev, NULL,
505 br_nf_pre_routing_finish_bridge,
507 return 0;
509 memcpy(eth_hdr(skb)->h_dest, dev->dev_addr, ETH_ALEN);
510 skb->pkt_type = PACKET_HOST;
512 } else {
513 rt = bridge_parent_rtable(nf_bridge->physindev);
514 if (!rt) {
515 kfree_skb(skb);
516 return 0;
518 skb_dst_set_noref(skb, &rt->dst);
521 skb->dev = nf_bridge->physindev;
522 nf_bridge_update_protocol(skb);
523 nf_bridge_push_encap_header(skb);
524 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
525 br_handle_frame_finish, 1);
527 return 0;
530 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
532 struct net_device *vlan, *br;
534 br = bridge_parent(dev);
535 if (brnf_pass_vlan_indev == 0 || !vlan_tx_tag_present(skb))
536 return br;
538 vlan = __vlan_find_dev_deep(br, vlan_tx_tag_get(skb) & VLAN_VID_MASK);
540 return vlan ? vlan : br;
543 /* Some common code for IPv4/IPv6 */
544 static struct net_device *setup_pre_routing(struct sk_buff *skb)
546 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
548 if (skb->pkt_type == PACKET_OTHERHOST) {
549 skb->pkt_type = PACKET_HOST;
550 nf_bridge->mask |= BRNF_PKT_TYPE;
553 nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
554 nf_bridge->physindev = skb->dev;
555 skb->dev = brnf_get_logical_dev(skb, skb->dev);
556 if (skb->protocol == htons(ETH_P_8021Q))
557 nf_bridge->mask |= BRNF_8021Q;
558 else if (skb->protocol == htons(ETH_P_PPP_SES))
559 nf_bridge->mask |= BRNF_PPPoE;
561 return skb->dev;
564 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
565 static int check_hbh_len(struct sk_buff *skb)
567 unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
568 u32 pkt_len;
569 const unsigned char *nh = skb_network_header(skb);
570 int off = raw - nh;
571 int len = (raw[1] + 1) << 3;
573 if ((raw + len) - skb->data > skb_headlen(skb))
574 goto bad;
576 off += 2;
577 len -= 2;
579 while (len > 0) {
580 int optlen = nh[off + 1] + 2;
582 switch (nh[off]) {
583 case IPV6_TLV_PAD1:
584 optlen = 1;
585 break;
587 case IPV6_TLV_PADN:
588 break;
590 case IPV6_TLV_JUMBO:
591 if (nh[off + 1] != 4 || (off & 3) != 2)
592 goto bad;
593 pkt_len = ntohl(*(__be32 *) (nh + off + 2));
594 if (pkt_len <= IPV6_MAXPLEN ||
595 ipv6_hdr(skb)->payload_len)
596 goto bad;
597 if (pkt_len > skb->len - sizeof(struct ipv6hdr))
598 goto bad;
599 if (pskb_trim_rcsum(skb,
600 pkt_len + sizeof(struct ipv6hdr)))
601 goto bad;
602 nh = skb_network_header(skb);
603 break;
604 default:
605 if (optlen > len)
606 goto bad;
607 break;
609 off += optlen;
610 len -= optlen;
612 if (len == 0)
613 return 0;
614 bad:
615 return -1;
619 /* Replicate the checks that IPv6 does on packet reception and pass the packet
620 * to ip6tables, which doesn't support NAT, so things are fairly simple. */
621 static unsigned int br_nf_pre_routing_ipv6(unsigned int hook,
622 struct sk_buff *skb,
623 const struct net_device *in,
624 const struct net_device *out,
625 int (*okfn)(struct sk_buff *))
627 const struct ipv6hdr *hdr;
628 u32 pkt_len;
630 if (skb->len < sizeof(struct ipv6hdr))
631 return NF_DROP;
633 if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
634 return NF_DROP;
636 hdr = ipv6_hdr(skb);
638 if (hdr->version != 6)
639 return NF_DROP;
641 pkt_len = ntohs(hdr->payload_len);
643 if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
644 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
645 return NF_DROP;
646 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
647 return NF_DROP;
649 if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
650 return NF_DROP;
652 nf_bridge_put(skb->nf_bridge);
653 if (!nf_bridge_alloc(skb))
654 return NF_DROP;
655 if (!setup_pre_routing(skb))
656 return NF_DROP;
658 skb->protocol = htons(ETH_P_IPV6);
659 NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
660 br_nf_pre_routing_finish_ipv6);
662 return NF_STOLEN;
665 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
666 * Replicate the checks that IPv4 does on packet reception.
667 * Set skb->dev to the bridge device (i.e. parent of the
668 * receiving device) to make netfilter happy, the REDIRECT
669 * target in particular. Save the original destination IP
670 * address to be able to detect DNAT afterwards. */
671 static unsigned int br_nf_pre_routing(unsigned int hook, struct sk_buff *skb,
672 const struct net_device *in,
673 const struct net_device *out,
674 int (*okfn)(struct sk_buff *))
676 struct net_bridge_port *p;
677 struct net_bridge *br;
678 __u32 len = nf_bridge_encap_header_len(skb);
680 if (unlikely(!pskb_may_pull(skb, len)))
681 return NF_DROP;
683 p = br_port_get_rcu(in);
684 if (p == NULL)
685 return NF_DROP;
686 br = p->br;
688 if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
689 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
690 return NF_ACCEPT;
692 nf_bridge_pull_encap_header_rcsum(skb);
693 return br_nf_pre_routing_ipv6(hook, skb, in, out, okfn);
696 if (!brnf_call_iptables && !br->nf_call_iptables)
697 return NF_ACCEPT;
699 if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
700 return NF_ACCEPT;
702 nf_bridge_pull_encap_header_rcsum(skb);
704 if (br_parse_ip_options(skb))
705 return NF_DROP;
707 nf_bridge_put(skb->nf_bridge);
708 if (!nf_bridge_alloc(skb))
709 return NF_DROP;
710 if (!setup_pre_routing(skb))
711 return NF_DROP;
712 store_orig_dstaddr(skb);
713 skb->protocol = htons(ETH_P_IP);
715 NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
716 br_nf_pre_routing_finish);
718 return NF_STOLEN;
722 /* PF_BRIDGE/LOCAL_IN ************************************************/
723 /* The packet is locally destined, which requires a real
724 * dst_entry, so detach the fake one. On the way up, the
725 * packet would pass through PRE_ROUTING again (which already
726 * took place when the packet entered the bridge), but we
727 * register an IPv4 PRE_ROUTING 'sabotage' hook that will
728 * prevent this from happening. */
729 static unsigned int br_nf_local_in(unsigned int hook, struct sk_buff *skb,
730 const struct net_device *in,
731 const struct net_device *out,
732 int (*okfn)(struct sk_buff *))
734 br_drop_fake_rtable(skb);
735 return NF_ACCEPT;
738 /* PF_BRIDGE/FORWARD *************************************************/
739 static int br_nf_forward_finish(struct sk_buff *skb)
741 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
742 struct net_device *in;
744 if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
745 in = nf_bridge->physindev;
746 if (nf_bridge->mask & BRNF_PKT_TYPE) {
747 skb->pkt_type = PACKET_OTHERHOST;
748 nf_bridge->mask ^= BRNF_PKT_TYPE;
750 nf_bridge_update_protocol(skb);
751 } else {
752 in = *((struct net_device **)(skb->cb));
754 nf_bridge_push_encap_header(skb);
756 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
757 skb->dev, br_forward_finish, 1);
758 return 0;
762 /* This is the 'purely bridged' case. For IP, we pass the packet to
763 * netfilter with indev and outdev set to the bridge device,
764 * but we are still able to filter on the 'real' indev/outdev
765 * because of the physdev module. For ARP, indev and outdev are the
766 * bridge ports. */
767 static unsigned int br_nf_forward_ip(unsigned int hook, struct sk_buff *skb,
768 const struct net_device *in,
769 const struct net_device *out,
770 int (*okfn)(struct sk_buff *))
772 struct nf_bridge_info *nf_bridge;
773 struct net_device *parent;
774 u_int8_t pf;
776 if (!skb->nf_bridge)
777 return NF_ACCEPT;
779 /* Need exclusive nf_bridge_info since we might have multiple
780 * different physoutdevs. */
781 if (!nf_bridge_unshare(skb))
782 return NF_DROP;
784 parent = bridge_parent(out);
785 if (!parent)
786 return NF_DROP;
788 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
789 pf = NFPROTO_IPV4;
790 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
791 pf = NFPROTO_IPV6;
792 else
793 return NF_ACCEPT;
795 nf_bridge_pull_encap_header(skb);
797 nf_bridge = skb->nf_bridge;
798 if (skb->pkt_type == PACKET_OTHERHOST) {
799 skb->pkt_type = PACKET_HOST;
800 nf_bridge->mask |= BRNF_PKT_TYPE;
803 if (pf == NFPROTO_IPV4 && br_parse_ip_options(skb))
804 return NF_DROP;
806 /* The physdev module checks on this */
807 nf_bridge->mask |= BRNF_BRIDGED;
808 nf_bridge->physoutdev = skb->dev;
809 if (pf == NFPROTO_IPV4)
810 skb->protocol = htons(ETH_P_IP);
811 else
812 skb->protocol = htons(ETH_P_IPV6);
814 NF_HOOK(pf, NF_INET_FORWARD, skb, brnf_get_logical_dev(skb, in), parent,
815 br_nf_forward_finish);
817 return NF_STOLEN;
820 static unsigned int br_nf_forward_arp(unsigned int hook, struct sk_buff *skb,
821 const struct net_device *in,
822 const struct net_device *out,
823 int (*okfn)(struct sk_buff *))
825 struct net_bridge_port *p;
826 struct net_bridge *br;
827 struct net_device **d = (struct net_device **)(skb->cb);
829 p = br_port_get_rcu(out);
830 if (p == NULL)
831 return NF_ACCEPT;
832 br = p->br;
834 if (!brnf_call_arptables && !br->nf_call_arptables)
835 return NF_ACCEPT;
837 if (!IS_ARP(skb)) {
838 if (!IS_VLAN_ARP(skb))
839 return NF_ACCEPT;
840 nf_bridge_pull_encap_header(skb);
843 if (arp_hdr(skb)->ar_pln != 4) {
844 if (IS_VLAN_ARP(skb))
845 nf_bridge_push_encap_header(skb);
846 return NF_ACCEPT;
848 *d = (struct net_device *)in;
849 NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
850 (struct net_device *)out, br_nf_forward_finish);
852 return NF_STOLEN;
855 #if IS_ENABLED(CONFIG_NF_CONNTRACK_IPV4)
856 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
858 int ret;
860 if (skb->nfct != NULL && skb->protocol == htons(ETH_P_IP) &&
861 skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu &&
862 !skb_is_gso(skb)) {
863 if (br_parse_ip_options(skb))
864 /* Drop invalid packet */
865 return NF_DROP;
866 ret = ip_fragment(skb, br_dev_queue_push_xmit);
867 } else
868 ret = br_dev_queue_push_xmit(skb);
870 return ret;
872 #else
873 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
875 return br_dev_queue_push_xmit(skb);
877 #endif
879 /* PF_BRIDGE/POST_ROUTING ********************************************/
880 static unsigned int br_nf_post_routing(unsigned int hook, struct sk_buff *skb,
881 const struct net_device *in,
882 const struct net_device *out,
883 int (*okfn)(struct sk_buff *))
885 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
886 struct net_device *realoutdev = bridge_parent(skb->dev);
887 u_int8_t pf;
889 if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED))
890 return NF_ACCEPT;
892 if (!realoutdev)
893 return NF_DROP;
895 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
896 pf = NFPROTO_IPV4;
897 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
898 pf = NFPROTO_IPV6;
899 else
900 return NF_ACCEPT;
902 /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
903 * about the value of skb->pkt_type. */
904 if (skb->pkt_type == PACKET_OTHERHOST) {
905 skb->pkt_type = PACKET_HOST;
906 nf_bridge->mask |= BRNF_PKT_TYPE;
909 nf_bridge_pull_encap_header(skb);
910 nf_bridge_save_header(skb);
911 if (pf == NFPROTO_IPV4)
912 skb->protocol = htons(ETH_P_IP);
913 else
914 skb->protocol = htons(ETH_P_IPV6);
916 NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
917 br_nf_dev_queue_xmit);
919 return NF_STOLEN;
922 /* IP/SABOTAGE *****************************************************/
923 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
924 * for the second time. */
925 static unsigned int ip_sabotage_in(unsigned int hook, struct sk_buff *skb,
926 const struct net_device *in,
927 const struct net_device *out,
928 int (*okfn)(struct sk_buff *))
930 if (skb->nf_bridge &&
931 !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
932 return NF_STOP;
935 return NF_ACCEPT;
938 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
939 * br_dev_queue_push_xmit is called afterwards */
940 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
942 .hook = br_nf_pre_routing,
943 .owner = THIS_MODULE,
944 .pf = NFPROTO_BRIDGE,
945 .hooknum = NF_BR_PRE_ROUTING,
946 .priority = NF_BR_PRI_BRNF,
949 .hook = br_nf_local_in,
950 .owner = THIS_MODULE,
951 .pf = NFPROTO_BRIDGE,
952 .hooknum = NF_BR_LOCAL_IN,
953 .priority = NF_BR_PRI_BRNF,
956 .hook = br_nf_forward_ip,
957 .owner = THIS_MODULE,
958 .pf = NFPROTO_BRIDGE,
959 .hooknum = NF_BR_FORWARD,
960 .priority = NF_BR_PRI_BRNF - 1,
963 .hook = br_nf_forward_arp,
964 .owner = THIS_MODULE,
965 .pf = NFPROTO_BRIDGE,
966 .hooknum = NF_BR_FORWARD,
967 .priority = NF_BR_PRI_BRNF,
970 .hook = br_nf_post_routing,
971 .owner = THIS_MODULE,
972 .pf = NFPROTO_BRIDGE,
973 .hooknum = NF_BR_POST_ROUTING,
974 .priority = NF_BR_PRI_LAST,
977 .hook = ip_sabotage_in,
978 .owner = THIS_MODULE,
979 .pf = NFPROTO_IPV4,
980 .hooknum = NF_INET_PRE_ROUTING,
981 .priority = NF_IP_PRI_FIRST,
984 .hook = ip_sabotage_in,
985 .owner = THIS_MODULE,
986 .pf = NFPROTO_IPV6,
987 .hooknum = NF_INET_PRE_ROUTING,
988 .priority = NF_IP6_PRI_FIRST,
992 #ifdef CONFIG_SYSCTL
993 static
994 int brnf_sysctl_call_tables(ctl_table * ctl, int write,
995 void __user * buffer, size_t * lenp, loff_t * ppos)
997 int ret;
999 ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1001 if (write && *(int *)(ctl->data))
1002 *(int *)(ctl->data) = 1;
1003 return ret;
1006 static ctl_table brnf_table[] = {
1008 .procname = "bridge-nf-call-arptables",
1009 .data = &brnf_call_arptables,
1010 .maxlen = sizeof(int),
1011 .mode = 0644,
1012 .proc_handler = brnf_sysctl_call_tables,
1015 .procname = "bridge-nf-call-iptables",
1016 .data = &brnf_call_iptables,
1017 .maxlen = sizeof(int),
1018 .mode = 0644,
1019 .proc_handler = brnf_sysctl_call_tables,
1022 .procname = "bridge-nf-call-ip6tables",
1023 .data = &brnf_call_ip6tables,
1024 .maxlen = sizeof(int),
1025 .mode = 0644,
1026 .proc_handler = brnf_sysctl_call_tables,
1029 .procname = "bridge-nf-filter-vlan-tagged",
1030 .data = &brnf_filter_vlan_tagged,
1031 .maxlen = sizeof(int),
1032 .mode = 0644,
1033 .proc_handler = brnf_sysctl_call_tables,
1036 .procname = "bridge-nf-filter-pppoe-tagged",
1037 .data = &brnf_filter_pppoe_tagged,
1038 .maxlen = sizeof(int),
1039 .mode = 0644,
1040 .proc_handler = brnf_sysctl_call_tables,
1043 .procname = "bridge-nf-pass-vlan-input-dev",
1044 .data = &brnf_pass_vlan_indev,
1045 .maxlen = sizeof(int),
1046 .mode = 0644,
1047 .proc_handler = brnf_sysctl_call_tables,
1051 #endif
1053 int __init br_netfilter_init(void)
1055 int ret;
1057 ret = dst_entries_init(&fake_dst_ops);
1058 if (ret < 0)
1059 return ret;
1061 ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1062 if (ret < 0) {
1063 dst_entries_destroy(&fake_dst_ops);
1064 return ret;
1066 #ifdef CONFIG_SYSCTL
1067 brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
1068 if (brnf_sysctl_header == NULL) {
1069 printk(KERN_WARNING
1070 "br_netfilter: can't register to sysctl.\n");
1071 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1072 dst_entries_destroy(&fake_dst_ops);
1073 return -ENOMEM;
1075 #endif
1076 printk(KERN_NOTICE "Bridge firewalling registered\n");
1077 return 0;
1080 void br_netfilter_fini(void)
1082 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1083 #ifdef CONFIG_SYSCTL
1084 unregister_net_sysctl_table(brnf_sysctl_header);
1085 #endif
1086 dst_entries_destroy(&fake_dst_ops);