arch: Prepare for smp_mb__{before,after}_atomic()
[linux-2.6/btrfs-unstable.git] / kernel / sched / core.c
blob8a70ec091760c7c1e93f0c462e6b0bfcfdaf4b1f
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
96 smp_mb__before_atomic();
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
104 smp_mb__after_atomic();
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
111 unsigned long delta;
112 ktime_t soft, hard, now;
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
134 void update_rq_clock(struct rq *rq)
136 s64 delta;
138 if (rq->skip_clock_update > 0)
139 return;
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 rq->clock += delta;
143 update_rq_clock_task(rq, delta);
147 * Debugging: various feature bits
150 #define SCHED_FEAT(name, enabled) \
151 (1UL << __SCHED_FEAT_##name) * enabled |
153 const_debug unsigned int sysctl_sched_features =
154 #include "features.h"
157 #undef SCHED_FEAT
159 #ifdef CONFIG_SCHED_DEBUG
160 #define SCHED_FEAT(name, enabled) \
161 #name ,
163 static const char * const sched_feat_names[] = {
164 #include "features.h"
167 #undef SCHED_FEAT
169 static int sched_feat_show(struct seq_file *m, void *v)
171 int i;
173 for (i = 0; i < __SCHED_FEAT_NR; i++) {
174 if (!(sysctl_sched_features & (1UL << i)))
175 seq_puts(m, "NO_");
176 seq_printf(m, "%s ", sched_feat_names[i]);
178 seq_puts(m, "\n");
180 return 0;
183 #ifdef HAVE_JUMP_LABEL
185 #define jump_label_key__true STATIC_KEY_INIT_TRUE
186 #define jump_label_key__false STATIC_KEY_INIT_FALSE
188 #define SCHED_FEAT(name, enabled) \
189 jump_label_key__##enabled ,
191 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192 #include "features.h"
195 #undef SCHED_FEAT
197 static void sched_feat_disable(int i)
199 if (static_key_enabled(&sched_feat_keys[i]))
200 static_key_slow_dec(&sched_feat_keys[i]);
203 static void sched_feat_enable(int i)
205 if (!static_key_enabled(&sched_feat_keys[i]))
206 static_key_slow_inc(&sched_feat_keys[i]);
208 #else
209 static void sched_feat_disable(int i) { };
210 static void sched_feat_enable(int i) { };
211 #endif /* HAVE_JUMP_LABEL */
213 static int sched_feat_set(char *cmp)
215 int i;
216 int neg = 0;
218 if (strncmp(cmp, "NO_", 3) == 0) {
219 neg = 1;
220 cmp += 3;
223 for (i = 0; i < __SCHED_FEAT_NR; i++) {
224 if (strcmp(cmp, sched_feat_names[i]) == 0) {
225 if (neg) {
226 sysctl_sched_features &= ~(1UL << i);
227 sched_feat_disable(i);
228 } else {
229 sysctl_sched_features |= (1UL << i);
230 sched_feat_enable(i);
232 break;
236 return i;
239 static ssize_t
240 sched_feat_write(struct file *filp, const char __user *ubuf,
241 size_t cnt, loff_t *ppos)
243 char buf[64];
244 char *cmp;
245 int i;
247 if (cnt > 63)
248 cnt = 63;
250 if (copy_from_user(&buf, ubuf, cnt))
251 return -EFAULT;
253 buf[cnt] = 0;
254 cmp = strstrip(buf);
256 i = sched_feat_set(cmp);
257 if (i == __SCHED_FEAT_NR)
258 return -EINVAL;
260 *ppos += cnt;
262 return cnt;
265 static int sched_feat_open(struct inode *inode, struct file *filp)
267 return single_open(filp, sched_feat_show, NULL);
270 static const struct file_operations sched_feat_fops = {
271 .open = sched_feat_open,
272 .write = sched_feat_write,
273 .read = seq_read,
274 .llseek = seq_lseek,
275 .release = single_release,
278 static __init int sched_init_debug(void)
280 debugfs_create_file("sched_features", 0644, NULL, NULL,
281 &sched_feat_fops);
283 return 0;
285 late_initcall(sched_init_debug);
286 #endif /* CONFIG_SCHED_DEBUG */
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
292 const_debug unsigned int sysctl_sched_nr_migrate = 32;
295 * period over which we average the RT time consumption, measured
296 * in ms.
298 * default: 1s
300 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
303 * period over which we measure -rt task cpu usage in us.
304 * default: 1s
306 unsigned int sysctl_sched_rt_period = 1000000;
308 __read_mostly int scheduler_running;
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
314 int sysctl_sched_rt_runtime = 950000;
317 * __task_rq_lock - lock the rq @p resides on.
319 static inline struct rq *__task_rq_lock(struct task_struct *p)
320 __acquires(rq->lock)
322 struct rq *rq;
324 lockdep_assert_held(&p->pi_lock);
326 for (;;) {
327 rq = task_rq(p);
328 raw_spin_lock(&rq->lock);
329 if (likely(rq == task_rq(p)))
330 return rq;
331 raw_spin_unlock(&rq->lock);
336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
338 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339 __acquires(p->pi_lock)
340 __acquires(rq->lock)
342 struct rq *rq;
344 for (;;) {
345 raw_spin_lock_irqsave(&p->pi_lock, *flags);
346 rq = task_rq(p);
347 raw_spin_lock(&rq->lock);
348 if (likely(rq == task_rq(p)))
349 return rq;
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
355 static void __task_rq_unlock(struct rq *rq)
356 __releases(rq->lock)
358 raw_spin_unlock(&rq->lock);
361 static inline void
362 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363 __releases(rq->lock)
364 __releases(p->pi_lock)
366 raw_spin_unlock(&rq->lock);
367 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
371 * this_rq_lock - lock this runqueue and disable interrupts.
373 static struct rq *this_rq_lock(void)
374 __acquires(rq->lock)
376 struct rq *rq;
378 local_irq_disable();
379 rq = this_rq();
380 raw_spin_lock(&rq->lock);
382 return rq;
385 #ifdef CONFIG_SCHED_HRTICK
387 * Use HR-timers to deliver accurate preemption points.
390 static void hrtick_clear(struct rq *rq)
392 if (hrtimer_active(&rq->hrtick_timer))
393 hrtimer_cancel(&rq->hrtick_timer);
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
400 static enum hrtimer_restart hrtick(struct hrtimer *timer)
402 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
404 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
406 raw_spin_lock(&rq->lock);
407 update_rq_clock(rq);
408 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409 raw_spin_unlock(&rq->lock);
411 return HRTIMER_NORESTART;
414 #ifdef CONFIG_SMP
416 static int __hrtick_restart(struct rq *rq)
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = hrtimer_get_softexpires(timer);
421 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
425 * called from hardirq (IPI) context
427 static void __hrtick_start(void *arg)
429 struct rq *rq = arg;
431 raw_spin_lock(&rq->lock);
432 __hrtick_restart(rq);
433 rq->hrtick_csd_pending = 0;
434 raw_spin_unlock(&rq->lock);
438 * Called to set the hrtick timer state.
440 * called with rq->lock held and irqs disabled
442 void hrtick_start(struct rq *rq, u64 delay)
444 struct hrtimer *timer = &rq->hrtick_timer;
445 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
447 hrtimer_set_expires(timer, time);
449 if (rq == this_rq()) {
450 __hrtick_restart(rq);
451 } else if (!rq->hrtick_csd_pending) {
452 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453 rq->hrtick_csd_pending = 1;
457 static int
458 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
460 int cpu = (int)(long)hcpu;
462 switch (action) {
463 case CPU_UP_CANCELED:
464 case CPU_UP_CANCELED_FROZEN:
465 case CPU_DOWN_PREPARE:
466 case CPU_DOWN_PREPARE_FROZEN:
467 case CPU_DEAD:
468 case CPU_DEAD_FROZEN:
469 hrtick_clear(cpu_rq(cpu));
470 return NOTIFY_OK;
473 return NOTIFY_DONE;
476 static __init void init_hrtick(void)
478 hotcpu_notifier(hotplug_hrtick, 0);
480 #else
482 * Called to set the hrtick timer state.
484 * called with rq->lock held and irqs disabled
486 void hrtick_start(struct rq *rq, u64 delay)
488 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489 HRTIMER_MODE_REL_PINNED, 0);
492 static inline void init_hrtick(void)
495 #endif /* CONFIG_SMP */
497 static void init_rq_hrtick(struct rq *rq)
499 #ifdef CONFIG_SMP
500 rq->hrtick_csd_pending = 0;
502 rq->hrtick_csd.flags = 0;
503 rq->hrtick_csd.func = __hrtick_start;
504 rq->hrtick_csd.info = rq;
505 #endif
507 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508 rq->hrtick_timer.function = hrtick;
510 #else /* CONFIG_SCHED_HRTICK */
511 static inline void hrtick_clear(struct rq *rq)
515 static inline void init_rq_hrtick(struct rq *rq)
519 static inline void init_hrtick(void)
522 #endif /* CONFIG_SCHED_HRTICK */
525 * resched_task - mark a task 'to be rescheduled now'.
527 * On UP this means the setting of the need_resched flag, on SMP it
528 * might also involve a cross-CPU call to trigger the scheduler on
529 * the target CPU.
531 void resched_task(struct task_struct *p)
533 int cpu;
535 lockdep_assert_held(&task_rq(p)->lock);
537 if (test_tsk_need_resched(p))
538 return;
540 set_tsk_need_resched(p);
542 cpu = task_cpu(p);
543 if (cpu == smp_processor_id()) {
544 set_preempt_need_resched();
545 return;
548 /* NEED_RESCHED must be visible before we test polling */
549 smp_mb();
550 if (!tsk_is_polling(p))
551 smp_send_reschedule(cpu);
554 void resched_cpu(int cpu)
556 struct rq *rq = cpu_rq(cpu);
557 unsigned long flags;
559 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
560 return;
561 resched_task(cpu_curr(cpu));
562 raw_spin_unlock_irqrestore(&rq->lock, flags);
565 #ifdef CONFIG_SMP
566 #ifdef CONFIG_NO_HZ_COMMON
568 * In the semi idle case, use the nearest busy cpu for migrating timers
569 * from an idle cpu. This is good for power-savings.
571 * We don't do similar optimization for completely idle system, as
572 * selecting an idle cpu will add more delays to the timers than intended
573 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
575 int get_nohz_timer_target(int pinned)
577 int cpu = smp_processor_id();
578 int i;
579 struct sched_domain *sd;
581 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
582 return cpu;
584 rcu_read_lock();
585 for_each_domain(cpu, sd) {
586 for_each_cpu(i, sched_domain_span(sd)) {
587 if (!idle_cpu(i)) {
588 cpu = i;
589 goto unlock;
593 unlock:
594 rcu_read_unlock();
595 return cpu;
598 * When add_timer_on() enqueues a timer into the timer wheel of an
599 * idle CPU then this timer might expire before the next timer event
600 * which is scheduled to wake up that CPU. In case of a completely
601 * idle system the next event might even be infinite time into the
602 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
603 * leaves the inner idle loop so the newly added timer is taken into
604 * account when the CPU goes back to idle and evaluates the timer
605 * wheel for the next timer event.
607 static void wake_up_idle_cpu(int cpu)
609 struct rq *rq = cpu_rq(cpu);
611 if (cpu == smp_processor_id())
612 return;
615 * This is safe, as this function is called with the timer
616 * wheel base lock of (cpu) held. When the CPU is on the way
617 * to idle and has not yet set rq->curr to idle then it will
618 * be serialized on the timer wheel base lock and take the new
619 * timer into account automatically.
621 if (rq->curr != rq->idle)
622 return;
625 * We can set TIF_RESCHED on the idle task of the other CPU
626 * lockless. The worst case is that the other CPU runs the
627 * idle task through an additional NOOP schedule()
629 set_tsk_need_resched(rq->idle);
631 /* NEED_RESCHED must be visible before we test polling */
632 smp_mb();
633 if (!tsk_is_polling(rq->idle))
634 smp_send_reschedule(cpu);
637 static bool wake_up_full_nohz_cpu(int cpu)
639 if (tick_nohz_full_cpu(cpu)) {
640 if (cpu != smp_processor_id() ||
641 tick_nohz_tick_stopped())
642 smp_send_reschedule(cpu);
643 return true;
646 return false;
649 void wake_up_nohz_cpu(int cpu)
651 if (!wake_up_full_nohz_cpu(cpu))
652 wake_up_idle_cpu(cpu);
655 static inline bool got_nohz_idle_kick(void)
657 int cpu = smp_processor_id();
659 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
660 return false;
662 if (idle_cpu(cpu) && !need_resched())
663 return true;
666 * We can't run Idle Load Balance on this CPU for this time so we
667 * cancel it and clear NOHZ_BALANCE_KICK
669 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
670 return false;
673 #else /* CONFIG_NO_HZ_COMMON */
675 static inline bool got_nohz_idle_kick(void)
677 return false;
680 #endif /* CONFIG_NO_HZ_COMMON */
682 #ifdef CONFIG_NO_HZ_FULL
683 bool sched_can_stop_tick(void)
685 struct rq *rq;
687 rq = this_rq();
689 /* Make sure rq->nr_running update is visible after the IPI */
690 smp_rmb();
692 /* More than one running task need preemption */
693 if (rq->nr_running > 1)
694 return false;
696 return true;
698 #endif /* CONFIG_NO_HZ_FULL */
700 void sched_avg_update(struct rq *rq)
702 s64 period = sched_avg_period();
704 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
706 * Inline assembly required to prevent the compiler
707 * optimising this loop into a divmod call.
708 * See __iter_div_u64_rem() for another example of this.
710 asm("" : "+rm" (rq->age_stamp));
711 rq->age_stamp += period;
712 rq->rt_avg /= 2;
716 #endif /* CONFIG_SMP */
718 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
719 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
721 * Iterate task_group tree rooted at *from, calling @down when first entering a
722 * node and @up when leaving it for the final time.
724 * Caller must hold rcu_lock or sufficient equivalent.
726 int walk_tg_tree_from(struct task_group *from,
727 tg_visitor down, tg_visitor up, void *data)
729 struct task_group *parent, *child;
730 int ret;
732 parent = from;
734 down:
735 ret = (*down)(parent, data);
736 if (ret)
737 goto out;
738 list_for_each_entry_rcu(child, &parent->children, siblings) {
739 parent = child;
740 goto down;
743 continue;
745 ret = (*up)(parent, data);
746 if (ret || parent == from)
747 goto out;
749 child = parent;
750 parent = parent->parent;
751 if (parent)
752 goto up;
753 out:
754 return ret;
757 int tg_nop(struct task_group *tg, void *data)
759 return 0;
761 #endif
763 static void set_load_weight(struct task_struct *p)
765 int prio = p->static_prio - MAX_RT_PRIO;
766 struct load_weight *load = &p->se.load;
769 * SCHED_IDLE tasks get minimal weight:
771 if (p->policy == SCHED_IDLE) {
772 load->weight = scale_load(WEIGHT_IDLEPRIO);
773 load->inv_weight = WMULT_IDLEPRIO;
774 return;
777 load->weight = scale_load(prio_to_weight[prio]);
778 load->inv_weight = prio_to_wmult[prio];
781 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
783 update_rq_clock(rq);
784 sched_info_queued(rq, p);
785 p->sched_class->enqueue_task(rq, p, flags);
788 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
790 update_rq_clock(rq);
791 sched_info_dequeued(rq, p);
792 p->sched_class->dequeue_task(rq, p, flags);
795 void activate_task(struct rq *rq, struct task_struct *p, int flags)
797 if (task_contributes_to_load(p))
798 rq->nr_uninterruptible--;
800 enqueue_task(rq, p, flags);
803 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
805 if (task_contributes_to_load(p))
806 rq->nr_uninterruptible++;
808 dequeue_task(rq, p, flags);
811 static void update_rq_clock_task(struct rq *rq, s64 delta)
814 * In theory, the compile should just see 0 here, and optimize out the call
815 * to sched_rt_avg_update. But I don't trust it...
817 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
818 s64 steal = 0, irq_delta = 0;
819 #endif
820 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
821 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
824 * Since irq_time is only updated on {soft,}irq_exit, we might run into
825 * this case when a previous update_rq_clock() happened inside a
826 * {soft,}irq region.
828 * When this happens, we stop ->clock_task and only update the
829 * prev_irq_time stamp to account for the part that fit, so that a next
830 * update will consume the rest. This ensures ->clock_task is
831 * monotonic.
833 * It does however cause some slight miss-attribution of {soft,}irq
834 * time, a more accurate solution would be to update the irq_time using
835 * the current rq->clock timestamp, except that would require using
836 * atomic ops.
838 if (irq_delta > delta)
839 irq_delta = delta;
841 rq->prev_irq_time += irq_delta;
842 delta -= irq_delta;
843 #endif
844 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
845 if (static_key_false((&paravirt_steal_rq_enabled))) {
846 steal = paravirt_steal_clock(cpu_of(rq));
847 steal -= rq->prev_steal_time_rq;
849 if (unlikely(steal > delta))
850 steal = delta;
852 rq->prev_steal_time_rq += steal;
853 delta -= steal;
855 #endif
857 rq->clock_task += delta;
859 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
860 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
861 sched_rt_avg_update(rq, irq_delta + steal);
862 #endif
865 void sched_set_stop_task(int cpu, struct task_struct *stop)
867 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
868 struct task_struct *old_stop = cpu_rq(cpu)->stop;
870 if (stop) {
872 * Make it appear like a SCHED_FIFO task, its something
873 * userspace knows about and won't get confused about.
875 * Also, it will make PI more or less work without too
876 * much confusion -- but then, stop work should not
877 * rely on PI working anyway.
879 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
881 stop->sched_class = &stop_sched_class;
884 cpu_rq(cpu)->stop = stop;
886 if (old_stop) {
888 * Reset it back to a normal scheduling class so that
889 * it can die in pieces.
891 old_stop->sched_class = &rt_sched_class;
896 * __normal_prio - return the priority that is based on the static prio
898 static inline int __normal_prio(struct task_struct *p)
900 return p->static_prio;
904 * Calculate the expected normal priority: i.e. priority
905 * without taking RT-inheritance into account. Might be
906 * boosted by interactivity modifiers. Changes upon fork,
907 * setprio syscalls, and whenever the interactivity
908 * estimator recalculates.
910 static inline int normal_prio(struct task_struct *p)
912 int prio;
914 if (task_has_dl_policy(p))
915 prio = MAX_DL_PRIO-1;
916 else if (task_has_rt_policy(p))
917 prio = MAX_RT_PRIO-1 - p->rt_priority;
918 else
919 prio = __normal_prio(p);
920 return prio;
924 * Calculate the current priority, i.e. the priority
925 * taken into account by the scheduler. This value might
926 * be boosted by RT tasks, or might be boosted by
927 * interactivity modifiers. Will be RT if the task got
928 * RT-boosted. If not then it returns p->normal_prio.
930 static int effective_prio(struct task_struct *p)
932 p->normal_prio = normal_prio(p);
934 * If we are RT tasks or we were boosted to RT priority,
935 * keep the priority unchanged. Otherwise, update priority
936 * to the normal priority:
938 if (!rt_prio(p->prio))
939 return p->normal_prio;
940 return p->prio;
944 * task_curr - is this task currently executing on a CPU?
945 * @p: the task in question.
947 * Return: 1 if the task is currently executing. 0 otherwise.
949 inline int task_curr(const struct task_struct *p)
951 return cpu_curr(task_cpu(p)) == p;
954 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
955 const struct sched_class *prev_class,
956 int oldprio)
958 if (prev_class != p->sched_class) {
959 if (prev_class->switched_from)
960 prev_class->switched_from(rq, p);
961 p->sched_class->switched_to(rq, p);
962 } else if (oldprio != p->prio || dl_task(p))
963 p->sched_class->prio_changed(rq, p, oldprio);
966 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
968 const struct sched_class *class;
970 if (p->sched_class == rq->curr->sched_class) {
971 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
972 } else {
973 for_each_class(class) {
974 if (class == rq->curr->sched_class)
975 break;
976 if (class == p->sched_class) {
977 resched_task(rq->curr);
978 break;
984 * A queue event has occurred, and we're going to schedule. In
985 * this case, we can save a useless back to back clock update.
987 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
988 rq->skip_clock_update = 1;
991 #ifdef CONFIG_SMP
992 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
994 #ifdef CONFIG_SCHED_DEBUG
996 * We should never call set_task_cpu() on a blocked task,
997 * ttwu() will sort out the placement.
999 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1000 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1002 #ifdef CONFIG_LOCKDEP
1004 * The caller should hold either p->pi_lock or rq->lock, when changing
1005 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1007 * sched_move_task() holds both and thus holding either pins the cgroup,
1008 * see task_group().
1010 * Furthermore, all task_rq users should acquire both locks, see
1011 * task_rq_lock().
1013 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1014 lockdep_is_held(&task_rq(p)->lock)));
1015 #endif
1016 #endif
1018 trace_sched_migrate_task(p, new_cpu);
1020 if (task_cpu(p) != new_cpu) {
1021 if (p->sched_class->migrate_task_rq)
1022 p->sched_class->migrate_task_rq(p, new_cpu);
1023 p->se.nr_migrations++;
1024 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1027 __set_task_cpu(p, new_cpu);
1030 static void __migrate_swap_task(struct task_struct *p, int cpu)
1032 if (p->on_rq) {
1033 struct rq *src_rq, *dst_rq;
1035 src_rq = task_rq(p);
1036 dst_rq = cpu_rq(cpu);
1038 deactivate_task(src_rq, p, 0);
1039 set_task_cpu(p, cpu);
1040 activate_task(dst_rq, p, 0);
1041 check_preempt_curr(dst_rq, p, 0);
1042 } else {
1044 * Task isn't running anymore; make it appear like we migrated
1045 * it before it went to sleep. This means on wakeup we make the
1046 * previous cpu our targer instead of where it really is.
1048 p->wake_cpu = cpu;
1052 struct migration_swap_arg {
1053 struct task_struct *src_task, *dst_task;
1054 int src_cpu, dst_cpu;
1057 static int migrate_swap_stop(void *data)
1059 struct migration_swap_arg *arg = data;
1060 struct rq *src_rq, *dst_rq;
1061 int ret = -EAGAIN;
1063 src_rq = cpu_rq(arg->src_cpu);
1064 dst_rq = cpu_rq(arg->dst_cpu);
1066 double_raw_lock(&arg->src_task->pi_lock,
1067 &arg->dst_task->pi_lock);
1068 double_rq_lock(src_rq, dst_rq);
1069 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1070 goto unlock;
1072 if (task_cpu(arg->src_task) != arg->src_cpu)
1073 goto unlock;
1075 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1076 goto unlock;
1078 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1079 goto unlock;
1081 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1082 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1084 ret = 0;
1086 unlock:
1087 double_rq_unlock(src_rq, dst_rq);
1088 raw_spin_unlock(&arg->dst_task->pi_lock);
1089 raw_spin_unlock(&arg->src_task->pi_lock);
1091 return ret;
1095 * Cross migrate two tasks
1097 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1099 struct migration_swap_arg arg;
1100 int ret = -EINVAL;
1102 arg = (struct migration_swap_arg){
1103 .src_task = cur,
1104 .src_cpu = task_cpu(cur),
1105 .dst_task = p,
1106 .dst_cpu = task_cpu(p),
1109 if (arg.src_cpu == arg.dst_cpu)
1110 goto out;
1113 * These three tests are all lockless; this is OK since all of them
1114 * will be re-checked with proper locks held further down the line.
1116 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1117 goto out;
1119 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1120 goto out;
1122 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1123 goto out;
1125 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1126 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1128 out:
1129 return ret;
1132 struct migration_arg {
1133 struct task_struct *task;
1134 int dest_cpu;
1137 static int migration_cpu_stop(void *data);
1140 * wait_task_inactive - wait for a thread to unschedule.
1142 * If @match_state is nonzero, it's the @p->state value just checked and
1143 * not expected to change. If it changes, i.e. @p might have woken up,
1144 * then return zero. When we succeed in waiting for @p to be off its CPU,
1145 * we return a positive number (its total switch count). If a second call
1146 * a short while later returns the same number, the caller can be sure that
1147 * @p has remained unscheduled the whole time.
1149 * The caller must ensure that the task *will* unschedule sometime soon,
1150 * else this function might spin for a *long* time. This function can't
1151 * be called with interrupts off, or it may introduce deadlock with
1152 * smp_call_function() if an IPI is sent by the same process we are
1153 * waiting to become inactive.
1155 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1157 unsigned long flags;
1158 int running, on_rq;
1159 unsigned long ncsw;
1160 struct rq *rq;
1162 for (;;) {
1164 * We do the initial early heuristics without holding
1165 * any task-queue locks at all. We'll only try to get
1166 * the runqueue lock when things look like they will
1167 * work out!
1169 rq = task_rq(p);
1172 * If the task is actively running on another CPU
1173 * still, just relax and busy-wait without holding
1174 * any locks.
1176 * NOTE! Since we don't hold any locks, it's not
1177 * even sure that "rq" stays as the right runqueue!
1178 * But we don't care, since "task_running()" will
1179 * return false if the runqueue has changed and p
1180 * is actually now running somewhere else!
1182 while (task_running(rq, p)) {
1183 if (match_state && unlikely(p->state != match_state))
1184 return 0;
1185 cpu_relax();
1189 * Ok, time to look more closely! We need the rq
1190 * lock now, to be *sure*. If we're wrong, we'll
1191 * just go back and repeat.
1193 rq = task_rq_lock(p, &flags);
1194 trace_sched_wait_task(p);
1195 running = task_running(rq, p);
1196 on_rq = p->on_rq;
1197 ncsw = 0;
1198 if (!match_state || p->state == match_state)
1199 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1200 task_rq_unlock(rq, p, &flags);
1203 * If it changed from the expected state, bail out now.
1205 if (unlikely(!ncsw))
1206 break;
1209 * Was it really running after all now that we
1210 * checked with the proper locks actually held?
1212 * Oops. Go back and try again..
1214 if (unlikely(running)) {
1215 cpu_relax();
1216 continue;
1220 * It's not enough that it's not actively running,
1221 * it must be off the runqueue _entirely_, and not
1222 * preempted!
1224 * So if it was still runnable (but just not actively
1225 * running right now), it's preempted, and we should
1226 * yield - it could be a while.
1228 if (unlikely(on_rq)) {
1229 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1231 set_current_state(TASK_UNINTERRUPTIBLE);
1232 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1233 continue;
1237 * Ahh, all good. It wasn't running, and it wasn't
1238 * runnable, which means that it will never become
1239 * running in the future either. We're all done!
1241 break;
1244 return ncsw;
1247 /***
1248 * kick_process - kick a running thread to enter/exit the kernel
1249 * @p: the to-be-kicked thread
1251 * Cause a process which is running on another CPU to enter
1252 * kernel-mode, without any delay. (to get signals handled.)
1254 * NOTE: this function doesn't have to take the runqueue lock,
1255 * because all it wants to ensure is that the remote task enters
1256 * the kernel. If the IPI races and the task has been migrated
1257 * to another CPU then no harm is done and the purpose has been
1258 * achieved as well.
1260 void kick_process(struct task_struct *p)
1262 int cpu;
1264 preempt_disable();
1265 cpu = task_cpu(p);
1266 if ((cpu != smp_processor_id()) && task_curr(p))
1267 smp_send_reschedule(cpu);
1268 preempt_enable();
1270 EXPORT_SYMBOL_GPL(kick_process);
1271 #endif /* CONFIG_SMP */
1273 #ifdef CONFIG_SMP
1275 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1277 static int select_fallback_rq(int cpu, struct task_struct *p)
1279 int nid = cpu_to_node(cpu);
1280 const struct cpumask *nodemask = NULL;
1281 enum { cpuset, possible, fail } state = cpuset;
1282 int dest_cpu;
1285 * If the node that the cpu is on has been offlined, cpu_to_node()
1286 * will return -1. There is no cpu on the node, and we should
1287 * select the cpu on the other node.
1289 if (nid != -1) {
1290 nodemask = cpumask_of_node(nid);
1292 /* Look for allowed, online CPU in same node. */
1293 for_each_cpu(dest_cpu, nodemask) {
1294 if (!cpu_online(dest_cpu))
1295 continue;
1296 if (!cpu_active(dest_cpu))
1297 continue;
1298 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1299 return dest_cpu;
1303 for (;;) {
1304 /* Any allowed, online CPU? */
1305 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1306 if (!cpu_online(dest_cpu))
1307 continue;
1308 if (!cpu_active(dest_cpu))
1309 continue;
1310 goto out;
1313 switch (state) {
1314 case cpuset:
1315 /* No more Mr. Nice Guy. */
1316 cpuset_cpus_allowed_fallback(p);
1317 state = possible;
1318 break;
1320 case possible:
1321 do_set_cpus_allowed(p, cpu_possible_mask);
1322 state = fail;
1323 break;
1325 case fail:
1326 BUG();
1327 break;
1331 out:
1332 if (state != cpuset) {
1334 * Don't tell them about moving exiting tasks or
1335 * kernel threads (both mm NULL), since they never
1336 * leave kernel.
1338 if (p->mm && printk_ratelimit()) {
1339 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1340 task_pid_nr(p), p->comm, cpu);
1344 return dest_cpu;
1348 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1350 static inline
1351 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1353 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1356 * In order not to call set_task_cpu() on a blocking task we need
1357 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1358 * cpu.
1360 * Since this is common to all placement strategies, this lives here.
1362 * [ this allows ->select_task() to simply return task_cpu(p) and
1363 * not worry about this generic constraint ]
1365 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1366 !cpu_online(cpu)))
1367 cpu = select_fallback_rq(task_cpu(p), p);
1369 return cpu;
1372 static void update_avg(u64 *avg, u64 sample)
1374 s64 diff = sample - *avg;
1375 *avg += diff >> 3;
1377 #endif
1379 static void
1380 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1382 #ifdef CONFIG_SCHEDSTATS
1383 struct rq *rq = this_rq();
1385 #ifdef CONFIG_SMP
1386 int this_cpu = smp_processor_id();
1388 if (cpu == this_cpu) {
1389 schedstat_inc(rq, ttwu_local);
1390 schedstat_inc(p, se.statistics.nr_wakeups_local);
1391 } else {
1392 struct sched_domain *sd;
1394 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1395 rcu_read_lock();
1396 for_each_domain(this_cpu, sd) {
1397 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1398 schedstat_inc(sd, ttwu_wake_remote);
1399 break;
1402 rcu_read_unlock();
1405 if (wake_flags & WF_MIGRATED)
1406 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1408 #endif /* CONFIG_SMP */
1410 schedstat_inc(rq, ttwu_count);
1411 schedstat_inc(p, se.statistics.nr_wakeups);
1413 if (wake_flags & WF_SYNC)
1414 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1416 #endif /* CONFIG_SCHEDSTATS */
1419 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1421 activate_task(rq, p, en_flags);
1422 p->on_rq = 1;
1424 /* if a worker is waking up, notify workqueue */
1425 if (p->flags & PF_WQ_WORKER)
1426 wq_worker_waking_up(p, cpu_of(rq));
1430 * Mark the task runnable and perform wakeup-preemption.
1432 static void
1433 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1435 check_preempt_curr(rq, p, wake_flags);
1436 trace_sched_wakeup(p, true);
1438 p->state = TASK_RUNNING;
1439 #ifdef CONFIG_SMP
1440 if (p->sched_class->task_woken)
1441 p->sched_class->task_woken(rq, p);
1443 if (rq->idle_stamp) {
1444 u64 delta = rq_clock(rq) - rq->idle_stamp;
1445 u64 max = 2*rq->max_idle_balance_cost;
1447 update_avg(&rq->avg_idle, delta);
1449 if (rq->avg_idle > max)
1450 rq->avg_idle = max;
1452 rq->idle_stamp = 0;
1454 #endif
1457 static void
1458 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1460 #ifdef CONFIG_SMP
1461 if (p->sched_contributes_to_load)
1462 rq->nr_uninterruptible--;
1463 #endif
1465 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1466 ttwu_do_wakeup(rq, p, wake_flags);
1470 * Called in case the task @p isn't fully descheduled from its runqueue,
1471 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1472 * since all we need to do is flip p->state to TASK_RUNNING, since
1473 * the task is still ->on_rq.
1475 static int ttwu_remote(struct task_struct *p, int wake_flags)
1477 struct rq *rq;
1478 int ret = 0;
1480 rq = __task_rq_lock(p);
1481 if (p->on_rq) {
1482 /* check_preempt_curr() may use rq clock */
1483 update_rq_clock(rq);
1484 ttwu_do_wakeup(rq, p, wake_flags);
1485 ret = 1;
1487 __task_rq_unlock(rq);
1489 return ret;
1492 #ifdef CONFIG_SMP
1493 static void sched_ttwu_pending(void)
1495 struct rq *rq = this_rq();
1496 struct llist_node *llist = llist_del_all(&rq->wake_list);
1497 struct task_struct *p;
1499 raw_spin_lock(&rq->lock);
1501 while (llist) {
1502 p = llist_entry(llist, struct task_struct, wake_entry);
1503 llist = llist_next(llist);
1504 ttwu_do_activate(rq, p, 0);
1507 raw_spin_unlock(&rq->lock);
1510 void scheduler_ipi(void)
1513 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1514 * TIF_NEED_RESCHED remotely (for the first time) will also send
1515 * this IPI.
1517 preempt_fold_need_resched();
1519 if (llist_empty(&this_rq()->wake_list)
1520 && !tick_nohz_full_cpu(smp_processor_id())
1521 && !got_nohz_idle_kick())
1522 return;
1525 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1526 * traditionally all their work was done from the interrupt return
1527 * path. Now that we actually do some work, we need to make sure
1528 * we do call them.
1530 * Some archs already do call them, luckily irq_enter/exit nest
1531 * properly.
1533 * Arguably we should visit all archs and update all handlers,
1534 * however a fair share of IPIs are still resched only so this would
1535 * somewhat pessimize the simple resched case.
1537 irq_enter();
1538 tick_nohz_full_check();
1539 sched_ttwu_pending();
1542 * Check if someone kicked us for doing the nohz idle load balance.
1544 if (unlikely(got_nohz_idle_kick())) {
1545 this_rq()->idle_balance = 1;
1546 raise_softirq_irqoff(SCHED_SOFTIRQ);
1548 irq_exit();
1551 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1553 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1554 smp_send_reschedule(cpu);
1557 bool cpus_share_cache(int this_cpu, int that_cpu)
1559 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1561 #endif /* CONFIG_SMP */
1563 static void ttwu_queue(struct task_struct *p, int cpu)
1565 struct rq *rq = cpu_rq(cpu);
1567 #if defined(CONFIG_SMP)
1568 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1569 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1570 ttwu_queue_remote(p, cpu);
1571 return;
1573 #endif
1575 raw_spin_lock(&rq->lock);
1576 ttwu_do_activate(rq, p, 0);
1577 raw_spin_unlock(&rq->lock);
1581 * try_to_wake_up - wake up a thread
1582 * @p: the thread to be awakened
1583 * @state: the mask of task states that can be woken
1584 * @wake_flags: wake modifier flags (WF_*)
1586 * Put it on the run-queue if it's not already there. The "current"
1587 * thread is always on the run-queue (except when the actual
1588 * re-schedule is in progress), and as such you're allowed to do
1589 * the simpler "current->state = TASK_RUNNING" to mark yourself
1590 * runnable without the overhead of this.
1592 * Return: %true if @p was woken up, %false if it was already running.
1593 * or @state didn't match @p's state.
1595 static int
1596 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1598 unsigned long flags;
1599 int cpu, success = 0;
1602 * If we are going to wake up a thread waiting for CONDITION we
1603 * need to ensure that CONDITION=1 done by the caller can not be
1604 * reordered with p->state check below. This pairs with mb() in
1605 * set_current_state() the waiting thread does.
1607 smp_mb__before_spinlock();
1608 raw_spin_lock_irqsave(&p->pi_lock, flags);
1609 if (!(p->state & state))
1610 goto out;
1612 success = 1; /* we're going to change ->state */
1613 cpu = task_cpu(p);
1615 if (p->on_rq && ttwu_remote(p, wake_flags))
1616 goto stat;
1618 #ifdef CONFIG_SMP
1620 * If the owning (remote) cpu is still in the middle of schedule() with
1621 * this task as prev, wait until its done referencing the task.
1623 while (p->on_cpu)
1624 cpu_relax();
1626 * Pairs with the smp_wmb() in finish_lock_switch().
1628 smp_rmb();
1630 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1631 p->state = TASK_WAKING;
1633 if (p->sched_class->task_waking)
1634 p->sched_class->task_waking(p);
1636 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1637 if (task_cpu(p) != cpu) {
1638 wake_flags |= WF_MIGRATED;
1639 set_task_cpu(p, cpu);
1641 #endif /* CONFIG_SMP */
1643 ttwu_queue(p, cpu);
1644 stat:
1645 ttwu_stat(p, cpu, wake_flags);
1646 out:
1647 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1649 return success;
1653 * try_to_wake_up_local - try to wake up a local task with rq lock held
1654 * @p: the thread to be awakened
1656 * Put @p on the run-queue if it's not already there. The caller must
1657 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1658 * the current task.
1660 static void try_to_wake_up_local(struct task_struct *p)
1662 struct rq *rq = task_rq(p);
1664 if (WARN_ON_ONCE(rq != this_rq()) ||
1665 WARN_ON_ONCE(p == current))
1666 return;
1668 lockdep_assert_held(&rq->lock);
1670 if (!raw_spin_trylock(&p->pi_lock)) {
1671 raw_spin_unlock(&rq->lock);
1672 raw_spin_lock(&p->pi_lock);
1673 raw_spin_lock(&rq->lock);
1676 if (!(p->state & TASK_NORMAL))
1677 goto out;
1679 if (!p->on_rq)
1680 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1682 ttwu_do_wakeup(rq, p, 0);
1683 ttwu_stat(p, smp_processor_id(), 0);
1684 out:
1685 raw_spin_unlock(&p->pi_lock);
1689 * wake_up_process - Wake up a specific process
1690 * @p: The process to be woken up.
1692 * Attempt to wake up the nominated process and move it to the set of runnable
1693 * processes.
1695 * Return: 1 if the process was woken up, 0 if it was already running.
1697 * It may be assumed that this function implies a write memory barrier before
1698 * changing the task state if and only if any tasks are woken up.
1700 int wake_up_process(struct task_struct *p)
1702 WARN_ON(task_is_stopped_or_traced(p));
1703 return try_to_wake_up(p, TASK_NORMAL, 0);
1705 EXPORT_SYMBOL(wake_up_process);
1707 int wake_up_state(struct task_struct *p, unsigned int state)
1709 return try_to_wake_up(p, state, 0);
1713 * Perform scheduler related setup for a newly forked process p.
1714 * p is forked by current.
1716 * __sched_fork() is basic setup used by init_idle() too:
1718 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1720 p->on_rq = 0;
1722 p->se.on_rq = 0;
1723 p->se.exec_start = 0;
1724 p->se.sum_exec_runtime = 0;
1725 p->se.prev_sum_exec_runtime = 0;
1726 p->se.nr_migrations = 0;
1727 p->se.vruntime = 0;
1728 INIT_LIST_HEAD(&p->se.group_node);
1730 #ifdef CONFIG_SCHEDSTATS
1731 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1732 #endif
1734 RB_CLEAR_NODE(&p->dl.rb_node);
1735 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1736 p->dl.dl_runtime = p->dl.runtime = 0;
1737 p->dl.dl_deadline = p->dl.deadline = 0;
1738 p->dl.dl_period = 0;
1739 p->dl.flags = 0;
1741 INIT_LIST_HEAD(&p->rt.run_list);
1743 #ifdef CONFIG_PREEMPT_NOTIFIERS
1744 INIT_HLIST_HEAD(&p->preempt_notifiers);
1745 #endif
1747 #ifdef CONFIG_NUMA_BALANCING
1748 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1749 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1750 p->mm->numa_scan_seq = 0;
1753 if (clone_flags & CLONE_VM)
1754 p->numa_preferred_nid = current->numa_preferred_nid;
1755 else
1756 p->numa_preferred_nid = -1;
1758 p->node_stamp = 0ULL;
1759 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1760 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1761 p->numa_work.next = &p->numa_work;
1762 p->numa_faults_memory = NULL;
1763 p->numa_faults_buffer_memory = NULL;
1764 p->last_task_numa_placement = 0;
1765 p->last_sum_exec_runtime = 0;
1767 INIT_LIST_HEAD(&p->numa_entry);
1768 p->numa_group = NULL;
1769 #endif /* CONFIG_NUMA_BALANCING */
1772 #ifdef CONFIG_NUMA_BALANCING
1773 #ifdef CONFIG_SCHED_DEBUG
1774 void set_numabalancing_state(bool enabled)
1776 if (enabled)
1777 sched_feat_set("NUMA");
1778 else
1779 sched_feat_set("NO_NUMA");
1781 #else
1782 __read_mostly bool numabalancing_enabled;
1784 void set_numabalancing_state(bool enabled)
1786 numabalancing_enabled = enabled;
1788 #endif /* CONFIG_SCHED_DEBUG */
1790 #ifdef CONFIG_PROC_SYSCTL
1791 int sysctl_numa_balancing(struct ctl_table *table, int write,
1792 void __user *buffer, size_t *lenp, loff_t *ppos)
1794 struct ctl_table t;
1795 int err;
1796 int state = numabalancing_enabled;
1798 if (write && !capable(CAP_SYS_ADMIN))
1799 return -EPERM;
1801 t = *table;
1802 t.data = &state;
1803 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1804 if (err < 0)
1805 return err;
1806 if (write)
1807 set_numabalancing_state(state);
1808 return err;
1810 #endif
1811 #endif
1814 * fork()/clone()-time setup:
1816 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1818 unsigned long flags;
1819 int cpu = get_cpu();
1821 __sched_fork(clone_flags, p);
1823 * We mark the process as running here. This guarantees that
1824 * nobody will actually run it, and a signal or other external
1825 * event cannot wake it up and insert it on the runqueue either.
1827 p->state = TASK_RUNNING;
1830 * Make sure we do not leak PI boosting priority to the child.
1832 p->prio = current->normal_prio;
1835 * Revert to default priority/policy on fork if requested.
1837 if (unlikely(p->sched_reset_on_fork)) {
1838 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1839 p->policy = SCHED_NORMAL;
1840 p->static_prio = NICE_TO_PRIO(0);
1841 p->rt_priority = 0;
1842 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1843 p->static_prio = NICE_TO_PRIO(0);
1845 p->prio = p->normal_prio = __normal_prio(p);
1846 set_load_weight(p);
1849 * We don't need the reset flag anymore after the fork. It has
1850 * fulfilled its duty:
1852 p->sched_reset_on_fork = 0;
1855 if (dl_prio(p->prio)) {
1856 put_cpu();
1857 return -EAGAIN;
1858 } else if (rt_prio(p->prio)) {
1859 p->sched_class = &rt_sched_class;
1860 } else {
1861 p->sched_class = &fair_sched_class;
1864 if (p->sched_class->task_fork)
1865 p->sched_class->task_fork(p);
1868 * The child is not yet in the pid-hash so no cgroup attach races,
1869 * and the cgroup is pinned to this child due to cgroup_fork()
1870 * is ran before sched_fork().
1872 * Silence PROVE_RCU.
1874 raw_spin_lock_irqsave(&p->pi_lock, flags);
1875 set_task_cpu(p, cpu);
1876 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1878 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1879 if (likely(sched_info_on()))
1880 memset(&p->sched_info, 0, sizeof(p->sched_info));
1881 #endif
1882 #if defined(CONFIG_SMP)
1883 p->on_cpu = 0;
1884 #endif
1885 init_task_preempt_count(p);
1886 #ifdef CONFIG_SMP
1887 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1888 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1889 #endif
1891 put_cpu();
1892 return 0;
1895 unsigned long to_ratio(u64 period, u64 runtime)
1897 if (runtime == RUNTIME_INF)
1898 return 1ULL << 20;
1901 * Doing this here saves a lot of checks in all
1902 * the calling paths, and returning zero seems
1903 * safe for them anyway.
1905 if (period == 0)
1906 return 0;
1908 return div64_u64(runtime << 20, period);
1911 #ifdef CONFIG_SMP
1912 inline struct dl_bw *dl_bw_of(int i)
1914 return &cpu_rq(i)->rd->dl_bw;
1917 static inline int dl_bw_cpus(int i)
1919 struct root_domain *rd = cpu_rq(i)->rd;
1920 int cpus = 0;
1922 for_each_cpu_and(i, rd->span, cpu_active_mask)
1923 cpus++;
1925 return cpus;
1927 #else
1928 inline struct dl_bw *dl_bw_of(int i)
1930 return &cpu_rq(i)->dl.dl_bw;
1933 static inline int dl_bw_cpus(int i)
1935 return 1;
1937 #endif
1939 static inline
1940 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1942 dl_b->total_bw -= tsk_bw;
1945 static inline
1946 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1948 dl_b->total_bw += tsk_bw;
1951 static inline
1952 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1954 return dl_b->bw != -1 &&
1955 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1959 * We must be sure that accepting a new task (or allowing changing the
1960 * parameters of an existing one) is consistent with the bandwidth
1961 * constraints. If yes, this function also accordingly updates the currently
1962 * allocated bandwidth to reflect the new situation.
1964 * This function is called while holding p's rq->lock.
1966 static int dl_overflow(struct task_struct *p, int policy,
1967 const struct sched_attr *attr)
1970 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1971 u64 period = attr->sched_period ?: attr->sched_deadline;
1972 u64 runtime = attr->sched_runtime;
1973 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1974 int cpus, err = -1;
1976 if (new_bw == p->dl.dl_bw)
1977 return 0;
1980 * Either if a task, enters, leave, or stays -deadline but changes
1981 * its parameters, we may need to update accordingly the total
1982 * allocated bandwidth of the container.
1984 raw_spin_lock(&dl_b->lock);
1985 cpus = dl_bw_cpus(task_cpu(p));
1986 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1987 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1988 __dl_add(dl_b, new_bw);
1989 err = 0;
1990 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1991 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1992 __dl_clear(dl_b, p->dl.dl_bw);
1993 __dl_add(dl_b, new_bw);
1994 err = 0;
1995 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1996 __dl_clear(dl_b, p->dl.dl_bw);
1997 err = 0;
1999 raw_spin_unlock(&dl_b->lock);
2001 return err;
2004 extern void init_dl_bw(struct dl_bw *dl_b);
2007 * wake_up_new_task - wake up a newly created task for the first time.
2009 * This function will do some initial scheduler statistics housekeeping
2010 * that must be done for every newly created context, then puts the task
2011 * on the runqueue and wakes it.
2013 void wake_up_new_task(struct task_struct *p)
2015 unsigned long flags;
2016 struct rq *rq;
2018 raw_spin_lock_irqsave(&p->pi_lock, flags);
2019 #ifdef CONFIG_SMP
2021 * Fork balancing, do it here and not earlier because:
2022 * - cpus_allowed can change in the fork path
2023 * - any previously selected cpu might disappear through hotplug
2025 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2026 #endif
2028 /* Initialize new task's runnable average */
2029 init_task_runnable_average(p);
2030 rq = __task_rq_lock(p);
2031 activate_task(rq, p, 0);
2032 p->on_rq = 1;
2033 trace_sched_wakeup_new(p, true);
2034 check_preempt_curr(rq, p, WF_FORK);
2035 #ifdef CONFIG_SMP
2036 if (p->sched_class->task_woken)
2037 p->sched_class->task_woken(rq, p);
2038 #endif
2039 task_rq_unlock(rq, p, &flags);
2042 #ifdef CONFIG_PREEMPT_NOTIFIERS
2045 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2046 * @notifier: notifier struct to register
2048 void preempt_notifier_register(struct preempt_notifier *notifier)
2050 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2052 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2055 * preempt_notifier_unregister - no longer interested in preemption notifications
2056 * @notifier: notifier struct to unregister
2058 * This is safe to call from within a preemption notifier.
2060 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2062 hlist_del(&notifier->link);
2064 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2066 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2068 struct preempt_notifier *notifier;
2070 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2071 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2078 struct preempt_notifier *notifier;
2080 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2081 notifier->ops->sched_out(notifier, next);
2084 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2086 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2090 static void
2091 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2092 struct task_struct *next)
2096 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2099 * prepare_task_switch - prepare to switch tasks
2100 * @rq: the runqueue preparing to switch
2101 * @prev: the current task that is being switched out
2102 * @next: the task we are going to switch to.
2104 * This is called with the rq lock held and interrupts off. It must
2105 * be paired with a subsequent finish_task_switch after the context
2106 * switch.
2108 * prepare_task_switch sets up locking and calls architecture specific
2109 * hooks.
2111 static inline void
2112 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2113 struct task_struct *next)
2115 trace_sched_switch(prev, next);
2116 sched_info_switch(rq, prev, next);
2117 perf_event_task_sched_out(prev, next);
2118 fire_sched_out_preempt_notifiers(prev, next);
2119 prepare_lock_switch(rq, next);
2120 prepare_arch_switch(next);
2124 * finish_task_switch - clean up after a task-switch
2125 * @rq: runqueue associated with task-switch
2126 * @prev: the thread we just switched away from.
2128 * finish_task_switch must be called after the context switch, paired
2129 * with a prepare_task_switch call before the context switch.
2130 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2131 * and do any other architecture-specific cleanup actions.
2133 * Note that we may have delayed dropping an mm in context_switch(). If
2134 * so, we finish that here outside of the runqueue lock. (Doing it
2135 * with the lock held can cause deadlocks; see schedule() for
2136 * details.)
2138 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2139 __releases(rq->lock)
2141 struct mm_struct *mm = rq->prev_mm;
2142 long prev_state;
2144 rq->prev_mm = NULL;
2147 * A task struct has one reference for the use as "current".
2148 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2149 * schedule one last time. The schedule call will never return, and
2150 * the scheduled task must drop that reference.
2151 * The test for TASK_DEAD must occur while the runqueue locks are
2152 * still held, otherwise prev could be scheduled on another cpu, die
2153 * there before we look at prev->state, and then the reference would
2154 * be dropped twice.
2155 * Manfred Spraul <manfred@colorfullife.com>
2157 prev_state = prev->state;
2158 vtime_task_switch(prev);
2159 finish_arch_switch(prev);
2160 perf_event_task_sched_in(prev, current);
2161 finish_lock_switch(rq, prev);
2162 finish_arch_post_lock_switch();
2164 fire_sched_in_preempt_notifiers(current);
2165 if (mm)
2166 mmdrop(mm);
2167 if (unlikely(prev_state == TASK_DEAD)) {
2168 if (prev->sched_class->task_dead)
2169 prev->sched_class->task_dead(prev);
2172 * Remove function-return probe instances associated with this
2173 * task and put them back on the free list.
2175 kprobe_flush_task(prev);
2176 put_task_struct(prev);
2179 tick_nohz_task_switch(current);
2182 #ifdef CONFIG_SMP
2184 /* rq->lock is NOT held, but preemption is disabled */
2185 static inline void post_schedule(struct rq *rq)
2187 if (rq->post_schedule) {
2188 unsigned long flags;
2190 raw_spin_lock_irqsave(&rq->lock, flags);
2191 if (rq->curr->sched_class->post_schedule)
2192 rq->curr->sched_class->post_schedule(rq);
2193 raw_spin_unlock_irqrestore(&rq->lock, flags);
2195 rq->post_schedule = 0;
2199 #else
2201 static inline void post_schedule(struct rq *rq)
2205 #endif
2208 * schedule_tail - first thing a freshly forked thread must call.
2209 * @prev: the thread we just switched away from.
2211 asmlinkage void schedule_tail(struct task_struct *prev)
2212 __releases(rq->lock)
2214 struct rq *rq = this_rq();
2216 finish_task_switch(rq, prev);
2219 * FIXME: do we need to worry about rq being invalidated by the
2220 * task_switch?
2222 post_schedule(rq);
2224 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2225 /* In this case, finish_task_switch does not reenable preemption */
2226 preempt_enable();
2227 #endif
2228 if (current->set_child_tid)
2229 put_user(task_pid_vnr(current), current->set_child_tid);
2233 * context_switch - switch to the new MM and the new
2234 * thread's register state.
2236 static inline void
2237 context_switch(struct rq *rq, struct task_struct *prev,
2238 struct task_struct *next)
2240 struct mm_struct *mm, *oldmm;
2242 prepare_task_switch(rq, prev, next);
2244 mm = next->mm;
2245 oldmm = prev->active_mm;
2247 * For paravirt, this is coupled with an exit in switch_to to
2248 * combine the page table reload and the switch backend into
2249 * one hypercall.
2251 arch_start_context_switch(prev);
2253 if (!mm) {
2254 next->active_mm = oldmm;
2255 atomic_inc(&oldmm->mm_count);
2256 enter_lazy_tlb(oldmm, next);
2257 } else
2258 switch_mm(oldmm, mm, next);
2260 if (!prev->mm) {
2261 prev->active_mm = NULL;
2262 rq->prev_mm = oldmm;
2265 * Since the runqueue lock will be released by the next
2266 * task (which is an invalid locking op but in the case
2267 * of the scheduler it's an obvious special-case), so we
2268 * do an early lockdep release here:
2270 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2271 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2272 #endif
2274 context_tracking_task_switch(prev, next);
2275 /* Here we just switch the register state and the stack. */
2276 switch_to(prev, next, prev);
2278 barrier();
2280 * this_rq must be evaluated again because prev may have moved
2281 * CPUs since it called schedule(), thus the 'rq' on its stack
2282 * frame will be invalid.
2284 finish_task_switch(this_rq(), prev);
2288 * nr_running and nr_context_switches:
2290 * externally visible scheduler statistics: current number of runnable
2291 * threads, total number of context switches performed since bootup.
2293 unsigned long nr_running(void)
2295 unsigned long i, sum = 0;
2297 for_each_online_cpu(i)
2298 sum += cpu_rq(i)->nr_running;
2300 return sum;
2303 unsigned long long nr_context_switches(void)
2305 int i;
2306 unsigned long long sum = 0;
2308 for_each_possible_cpu(i)
2309 sum += cpu_rq(i)->nr_switches;
2311 return sum;
2314 unsigned long nr_iowait(void)
2316 unsigned long i, sum = 0;
2318 for_each_possible_cpu(i)
2319 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2321 return sum;
2324 unsigned long nr_iowait_cpu(int cpu)
2326 struct rq *this = cpu_rq(cpu);
2327 return atomic_read(&this->nr_iowait);
2330 #ifdef CONFIG_SMP
2333 * sched_exec - execve() is a valuable balancing opportunity, because at
2334 * this point the task has the smallest effective memory and cache footprint.
2336 void sched_exec(void)
2338 struct task_struct *p = current;
2339 unsigned long flags;
2340 int dest_cpu;
2342 raw_spin_lock_irqsave(&p->pi_lock, flags);
2343 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2344 if (dest_cpu == smp_processor_id())
2345 goto unlock;
2347 if (likely(cpu_active(dest_cpu))) {
2348 struct migration_arg arg = { p, dest_cpu };
2350 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2351 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2352 return;
2354 unlock:
2355 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2358 #endif
2360 DEFINE_PER_CPU(struct kernel_stat, kstat);
2361 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2363 EXPORT_PER_CPU_SYMBOL(kstat);
2364 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2367 * Return any ns on the sched_clock that have not yet been accounted in
2368 * @p in case that task is currently running.
2370 * Called with task_rq_lock() held on @rq.
2372 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2374 u64 ns = 0;
2376 if (task_current(rq, p)) {
2377 update_rq_clock(rq);
2378 ns = rq_clock_task(rq) - p->se.exec_start;
2379 if ((s64)ns < 0)
2380 ns = 0;
2383 return ns;
2386 unsigned long long task_delta_exec(struct task_struct *p)
2388 unsigned long flags;
2389 struct rq *rq;
2390 u64 ns = 0;
2392 rq = task_rq_lock(p, &flags);
2393 ns = do_task_delta_exec(p, rq);
2394 task_rq_unlock(rq, p, &flags);
2396 return ns;
2400 * Return accounted runtime for the task.
2401 * In case the task is currently running, return the runtime plus current's
2402 * pending runtime that have not been accounted yet.
2404 unsigned long long task_sched_runtime(struct task_struct *p)
2406 unsigned long flags;
2407 struct rq *rq;
2408 u64 ns = 0;
2410 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2412 * 64-bit doesn't need locks to atomically read a 64bit value.
2413 * So we have a optimization chance when the task's delta_exec is 0.
2414 * Reading ->on_cpu is racy, but this is ok.
2416 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2417 * If we race with it entering cpu, unaccounted time is 0. This is
2418 * indistinguishable from the read occurring a few cycles earlier.
2420 if (!p->on_cpu)
2421 return p->se.sum_exec_runtime;
2422 #endif
2424 rq = task_rq_lock(p, &flags);
2425 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2426 task_rq_unlock(rq, p, &flags);
2428 return ns;
2432 * This function gets called by the timer code, with HZ frequency.
2433 * We call it with interrupts disabled.
2435 void scheduler_tick(void)
2437 int cpu = smp_processor_id();
2438 struct rq *rq = cpu_rq(cpu);
2439 struct task_struct *curr = rq->curr;
2441 sched_clock_tick();
2443 raw_spin_lock(&rq->lock);
2444 update_rq_clock(rq);
2445 curr->sched_class->task_tick(rq, curr, 0);
2446 update_cpu_load_active(rq);
2447 raw_spin_unlock(&rq->lock);
2449 perf_event_task_tick();
2451 #ifdef CONFIG_SMP
2452 rq->idle_balance = idle_cpu(cpu);
2453 trigger_load_balance(rq);
2454 #endif
2455 rq_last_tick_reset(rq);
2458 #ifdef CONFIG_NO_HZ_FULL
2460 * scheduler_tick_max_deferment
2462 * Keep at least one tick per second when a single
2463 * active task is running because the scheduler doesn't
2464 * yet completely support full dynticks environment.
2466 * This makes sure that uptime, CFS vruntime, load
2467 * balancing, etc... continue to move forward, even
2468 * with a very low granularity.
2470 * Return: Maximum deferment in nanoseconds.
2472 u64 scheduler_tick_max_deferment(void)
2474 struct rq *rq = this_rq();
2475 unsigned long next, now = ACCESS_ONCE(jiffies);
2477 next = rq->last_sched_tick + HZ;
2479 if (time_before_eq(next, now))
2480 return 0;
2482 return jiffies_to_nsecs(next - now);
2484 #endif
2486 notrace unsigned long get_parent_ip(unsigned long addr)
2488 if (in_lock_functions(addr)) {
2489 addr = CALLER_ADDR2;
2490 if (in_lock_functions(addr))
2491 addr = CALLER_ADDR3;
2493 return addr;
2496 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2497 defined(CONFIG_PREEMPT_TRACER))
2499 void __kprobes preempt_count_add(int val)
2501 #ifdef CONFIG_DEBUG_PREEMPT
2503 * Underflow?
2505 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2506 return;
2507 #endif
2508 __preempt_count_add(val);
2509 #ifdef CONFIG_DEBUG_PREEMPT
2511 * Spinlock count overflowing soon?
2513 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2514 PREEMPT_MASK - 10);
2515 #endif
2516 if (preempt_count() == val) {
2517 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2518 #ifdef CONFIG_DEBUG_PREEMPT
2519 current->preempt_disable_ip = ip;
2520 #endif
2521 trace_preempt_off(CALLER_ADDR0, ip);
2524 EXPORT_SYMBOL(preempt_count_add);
2526 void __kprobes preempt_count_sub(int val)
2528 #ifdef CONFIG_DEBUG_PREEMPT
2530 * Underflow?
2532 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2533 return;
2535 * Is the spinlock portion underflowing?
2537 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2538 !(preempt_count() & PREEMPT_MASK)))
2539 return;
2540 #endif
2542 if (preempt_count() == val)
2543 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2544 __preempt_count_sub(val);
2546 EXPORT_SYMBOL(preempt_count_sub);
2548 #endif
2551 * Print scheduling while atomic bug:
2553 static noinline void __schedule_bug(struct task_struct *prev)
2555 if (oops_in_progress)
2556 return;
2558 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2559 prev->comm, prev->pid, preempt_count());
2561 debug_show_held_locks(prev);
2562 print_modules();
2563 if (irqs_disabled())
2564 print_irqtrace_events(prev);
2565 #ifdef CONFIG_DEBUG_PREEMPT
2566 if (in_atomic_preempt_off()) {
2567 pr_err("Preemption disabled at:");
2568 print_ip_sym(current->preempt_disable_ip);
2569 pr_cont("\n");
2571 #endif
2572 dump_stack();
2573 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2577 * Various schedule()-time debugging checks and statistics:
2579 static inline void schedule_debug(struct task_struct *prev)
2582 * Test if we are atomic. Since do_exit() needs to call into
2583 * schedule() atomically, we ignore that path. Otherwise whine
2584 * if we are scheduling when we should not.
2586 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2587 __schedule_bug(prev);
2588 rcu_sleep_check();
2590 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2592 schedstat_inc(this_rq(), sched_count);
2596 * Pick up the highest-prio task:
2598 static inline struct task_struct *
2599 pick_next_task(struct rq *rq, struct task_struct *prev)
2601 const struct sched_class *class = &fair_sched_class;
2602 struct task_struct *p;
2605 * Optimization: we know that if all tasks are in
2606 * the fair class we can call that function directly:
2608 if (likely(prev->sched_class == class &&
2609 rq->nr_running == rq->cfs.h_nr_running)) {
2610 p = fair_sched_class.pick_next_task(rq, prev);
2611 if (likely(p && p != RETRY_TASK))
2612 return p;
2615 again:
2616 for_each_class(class) {
2617 p = class->pick_next_task(rq, prev);
2618 if (p) {
2619 if (unlikely(p == RETRY_TASK))
2620 goto again;
2621 return p;
2625 BUG(); /* the idle class will always have a runnable task */
2629 * __schedule() is the main scheduler function.
2631 * The main means of driving the scheduler and thus entering this function are:
2633 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2635 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2636 * paths. For example, see arch/x86/entry_64.S.
2638 * To drive preemption between tasks, the scheduler sets the flag in timer
2639 * interrupt handler scheduler_tick().
2641 * 3. Wakeups don't really cause entry into schedule(). They add a
2642 * task to the run-queue and that's it.
2644 * Now, if the new task added to the run-queue preempts the current
2645 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2646 * called on the nearest possible occasion:
2648 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2650 * - in syscall or exception context, at the next outmost
2651 * preempt_enable(). (this might be as soon as the wake_up()'s
2652 * spin_unlock()!)
2654 * - in IRQ context, return from interrupt-handler to
2655 * preemptible context
2657 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2658 * then at the next:
2660 * - cond_resched() call
2661 * - explicit schedule() call
2662 * - return from syscall or exception to user-space
2663 * - return from interrupt-handler to user-space
2665 static void __sched __schedule(void)
2667 struct task_struct *prev, *next;
2668 unsigned long *switch_count;
2669 struct rq *rq;
2670 int cpu;
2672 need_resched:
2673 preempt_disable();
2674 cpu = smp_processor_id();
2675 rq = cpu_rq(cpu);
2676 rcu_note_context_switch(cpu);
2677 prev = rq->curr;
2679 schedule_debug(prev);
2681 if (sched_feat(HRTICK))
2682 hrtick_clear(rq);
2685 * Make sure that signal_pending_state()->signal_pending() below
2686 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2687 * done by the caller to avoid the race with signal_wake_up().
2689 smp_mb__before_spinlock();
2690 raw_spin_lock_irq(&rq->lock);
2692 switch_count = &prev->nivcsw;
2693 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2694 if (unlikely(signal_pending_state(prev->state, prev))) {
2695 prev->state = TASK_RUNNING;
2696 } else {
2697 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2698 prev->on_rq = 0;
2701 * If a worker went to sleep, notify and ask workqueue
2702 * whether it wants to wake up a task to maintain
2703 * concurrency.
2705 if (prev->flags & PF_WQ_WORKER) {
2706 struct task_struct *to_wakeup;
2708 to_wakeup = wq_worker_sleeping(prev, cpu);
2709 if (to_wakeup)
2710 try_to_wake_up_local(to_wakeup);
2713 switch_count = &prev->nvcsw;
2716 if (prev->on_rq || rq->skip_clock_update < 0)
2717 update_rq_clock(rq);
2719 next = pick_next_task(rq, prev);
2720 clear_tsk_need_resched(prev);
2721 clear_preempt_need_resched();
2722 rq->skip_clock_update = 0;
2724 if (likely(prev != next)) {
2725 rq->nr_switches++;
2726 rq->curr = next;
2727 ++*switch_count;
2729 context_switch(rq, prev, next); /* unlocks the rq */
2731 * The context switch have flipped the stack from under us
2732 * and restored the local variables which were saved when
2733 * this task called schedule() in the past. prev == current
2734 * is still correct, but it can be moved to another cpu/rq.
2736 cpu = smp_processor_id();
2737 rq = cpu_rq(cpu);
2738 } else
2739 raw_spin_unlock_irq(&rq->lock);
2741 post_schedule(rq);
2743 sched_preempt_enable_no_resched();
2744 if (need_resched())
2745 goto need_resched;
2748 static inline void sched_submit_work(struct task_struct *tsk)
2750 if (!tsk->state || tsk_is_pi_blocked(tsk))
2751 return;
2753 * If we are going to sleep and we have plugged IO queued,
2754 * make sure to submit it to avoid deadlocks.
2756 if (blk_needs_flush_plug(tsk))
2757 blk_schedule_flush_plug(tsk);
2760 asmlinkage void __sched schedule(void)
2762 struct task_struct *tsk = current;
2764 sched_submit_work(tsk);
2765 __schedule();
2767 EXPORT_SYMBOL(schedule);
2769 #ifdef CONFIG_CONTEXT_TRACKING
2770 asmlinkage void __sched schedule_user(void)
2773 * If we come here after a random call to set_need_resched(),
2774 * or we have been woken up remotely but the IPI has not yet arrived,
2775 * we haven't yet exited the RCU idle mode. Do it here manually until
2776 * we find a better solution.
2778 user_exit();
2779 schedule();
2780 user_enter();
2782 #endif
2785 * schedule_preempt_disabled - called with preemption disabled
2787 * Returns with preemption disabled. Note: preempt_count must be 1
2789 void __sched schedule_preempt_disabled(void)
2791 sched_preempt_enable_no_resched();
2792 schedule();
2793 preempt_disable();
2796 #ifdef CONFIG_PREEMPT
2798 * this is the entry point to schedule() from in-kernel preemption
2799 * off of preempt_enable. Kernel preemptions off return from interrupt
2800 * occur there and call schedule directly.
2802 asmlinkage void __sched notrace preempt_schedule(void)
2805 * If there is a non-zero preempt_count or interrupts are disabled,
2806 * we do not want to preempt the current task. Just return..
2808 if (likely(!preemptible()))
2809 return;
2811 do {
2812 __preempt_count_add(PREEMPT_ACTIVE);
2813 __schedule();
2814 __preempt_count_sub(PREEMPT_ACTIVE);
2817 * Check again in case we missed a preemption opportunity
2818 * between schedule and now.
2820 barrier();
2821 } while (need_resched());
2823 EXPORT_SYMBOL(preempt_schedule);
2824 #endif /* CONFIG_PREEMPT */
2827 * this is the entry point to schedule() from kernel preemption
2828 * off of irq context.
2829 * Note, that this is called and return with irqs disabled. This will
2830 * protect us against recursive calling from irq.
2832 asmlinkage void __sched preempt_schedule_irq(void)
2834 enum ctx_state prev_state;
2836 /* Catch callers which need to be fixed */
2837 BUG_ON(preempt_count() || !irqs_disabled());
2839 prev_state = exception_enter();
2841 do {
2842 __preempt_count_add(PREEMPT_ACTIVE);
2843 local_irq_enable();
2844 __schedule();
2845 local_irq_disable();
2846 __preempt_count_sub(PREEMPT_ACTIVE);
2849 * Check again in case we missed a preemption opportunity
2850 * between schedule and now.
2852 barrier();
2853 } while (need_resched());
2855 exception_exit(prev_state);
2858 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2859 void *key)
2861 return try_to_wake_up(curr->private, mode, wake_flags);
2863 EXPORT_SYMBOL(default_wake_function);
2865 #ifdef CONFIG_RT_MUTEXES
2868 * rt_mutex_setprio - set the current priority of a task
2869 * @p: task
2870 * @prio: prio value (kernel-internal form)
2872 * This function changes the 'effective' priority of a task. It does
2873 * not touch ->normal_prio like __setscheduler().
2875 * Used by the rt_mutex code to implement priority inheritance
2876 * logic. Call site only calls if the priority of the task changed.
2878 void rt_mutex_setprio(struct task_struct *p, int prio)
2880 int oldprio, on_rq, running, enqueue_flag = 0;
2881 struct rq *rq;
2882 const struct sched_class *prev_class;
2884 BUG_ON(prio > MAX_PRIO);
2886 rq = __task_rq_lock(p);
2889 * Idle task boosting is a nono in general. There is one
2890 * exception, when PREEMPT_RT and NOHZ is active:
2892 * The idle task calls get_next_timer_interrupt() and holds
2893 * the timer wheel base->lock on the CPU and another CPU wants
2894 * to access the timer (probably to cancel it). We can safely
2895 * ignore the boosting request, as the idle CPU runs this code
2896 * with interrupts disabled and will complete the lock
2897 * protected section without being interrupted. So there is no
2898 * real need to boost.
2900 if (unlikely(p == rq->idle)) {
2901 WARN_ON(p != rq->curr);
2902 WARN_ON(p->pi_blocked_on);
2903 goto out_unlock;
2906 trace_sched_pi_setprio(p, prio);
2907 p->pi_top_task = rt_mutex_get_top_task(p);
2908 oldprio = p->prio;
2909 prev_class = p->sched_class;
2910 on_rq = p->on_rq;
2911 running = task_current(rq, p);
2912 if (on_rq)
2913 dequeue_task(rq, p, 0);
2914 if (running)
2915 p->sched_class->put_prev_task(rq, p);
2918 * Boosting condition are:
2919 * 1. -rt task is running and holds mutex A
2920 * --> -dl task blocks on mutex A
2922 * 2. -dl task is running and holds mutex A
2923 * --> -dl task blocks on mutex A and could preempt the
2924 * running task
2926 if (dl_prio(prio)) {
2927 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2928 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2929 p->dl.dl_boosted = 1;
2930 p->dl.dl_throttled = 0;
2931 enqueue_flag = ENQUEUE_REPLENISH;
2932 } else
2933 p->dl.dl_boosted = 0;
2934 p->sched_class = &dl_sched_class;
2935 } else if (rt_prio(prio)) {
2936 if (dl_prio(oldprio))
2937 p->dl.dl_boosted = 0;
2938 if (oldprio < prio)
2939 enqueue_flag = ENQUEUE_HEAD;
2940 p->sched_class = &rt_sched_class;
2941 } else {
2942 if (dl_prio(oldprio))
2943 p->dl.dl_boosted = 0;
2944 p->sched_class = &fair_sched_class;
2947 p->prio = prio;
2949 if (running)
2950 p->sched_class->set_curr_task(rq);
2951 if (on_rq)
2952 enqueue_task(rq, p, enqueue_flag);
2954 check_class_changed(rq, p, prev_class, oldprio);
2955 out_unlock:
2956 __task_rq_unlock(rq);
2958 #endif
2960 void set_user_nice(struct task_struct *p, long nice)
2962 int old_prio, delta, on_rq;
2963 unsigned long flags;
2964 struct rq *rq;
2966 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2967 return;
2969 * We have to be careful, if called from sys_setpriority(),
2970 * the task might be in the middle of scheduling on another CPU.
2972 rq = task_rq_lock(p, &flags);
2974 * The RT priorities are set via sched_setscheduler(), but we still
2975 * allow the 'normal' nice value to be set - but as expected
2976 * it wont have any effect on scheduling until the task is
2977 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2979 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2980 p->static_prio = NICE_TO_PRIO(nice);
2981 goto out_unlock;
2983 on_rq = p->on_rq;
2984 if (on_rq)
2985 dequeue_task(rq, p, 0);
2987 p->static_prio = NICE_TO_PRIO(nice);
2988 set_load_weight(p);
2989 old_prio = p->prio;
2990 p->prio = effective_prio(p);
2991 delta = p->prio - old_prio;
2993 if (on_rq) {
2994 enqueue_task(rq, p, 0);
2996 * If the task increased its priority or is running and
2997 * lowered its priority, then reschedule its CPU:
2999 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3000 resched_task(rq->curr);
3002 out_unlock:
3003 task_rq_unlock(rq, p, &flags);
3005 EXPORT_SYMBOL(set_user_nice);
3008 * can_nice - check if a task can reduce its nice value
3009 * @p: task
3010 * @nice: nice value
3012 int can_nice(const struct task_struct *p, const int nice)
3014 /* convert nice value [19,-20] to rlimit style value [1,40] */
3015 int nice_rlim = 20 - nice;
3017 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3018 capable(CAP_SYS_NICE));
3021 #ifdef __ARCH_WANT_SYS_NICE
3024 * sys_nice - change the priority of the current process.
3025 * @increment: priority increment
3027 * sys_setpriority is a more generic, but much slower function that
3028 * does similar things.
3030 SYSCALL_DEFINE1(nice, int, increment)
3032 long nice, retval;
3035 * Setpriority might change our priority at the same moment.
3036 * We don't have to worry. Conceptually one call occurs first
3037 * and we have a single winner.
3039 if (increment < -40)
3040 increment = -40;
3041 if (increment > 40)
3042 increment = 40;
3044 nice = task_nice(current) + increment;
3045 if (nice < MIN_NICE)
3046 nice = MIN_NICE;
3047 if (nice > MAX_NICE)
3048 nice = MAX_NICE;
3050 if (increment < 0 && !can_nice(current, nice))
3051 return -EPERM;
3053 retval = security_task_setnice(current, nice);
3054 if (retval)
3055 return retval;
3057 set_user_nice(current, nice);
3058 return 0;
3061 #endif
3064 * task_prio - return the priority value of a given task.
3065 * @p: the task in question.
3067 * Return: The priority value as seen by users in /proc.
3068 * RT tasks are offset by -200. Normal tasks are centered
3069 * around 0, value goes from -16 to +15.
3071 int task_prio(const struct task_struct *p)
3073 return p->prio - MAX_RT_PRIO;
3077 * idle_cpu - is a given cpu idle currently?
3078 * @cpu: the processor in question.
3080 * Return: 1 if the CPU is currently idle. 0 otherwise.
3082 int idle_cpu(int cpu)
3084 struct rq *rq = cpu_rq(cpu);
3086 if (rq->curr != rq->idle)
3087 return 0;
3089 if (rq->nr_running)
3090 return 0;
3092 #ifdef CONFIG_SMP
3093 if (!llist_empty(&rq->wake_list))
3094 return 0;
3095 #endif
3097 return 1;
3101 * idle_task - return the idle task for a given cpu.
3102 * @cpu: the processor in question.
3104 * Return: The idle task for the cpu @cpu.
3106 struct task_struct *idle_task(int cpu)
3108 return cpu_rq(cpu)->idle;
3112 * find_process_by_pid - find a process with a matching PID value.
3113 * @pid: the pid in question.
3115 * The task of @pid, if found. %NULL otherwise.
3117 static struct task_struct *find_process_by_pid(pid_t pid)
3119 return pid ? find_task_by_vpid(pid) : current;
3123 * This function initializes the sched_dl_entity of a newly becoming
3124 * SCHED_DEADLINE task.
3126 * Only the static values are considered here, the actual runtime and the
3127 * absolute deadline will be properly calculated when the task is enqueued
3128 * for the first time with its new policy.
3130 static void
3131 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3133 struct sched_dl_entity *dl_se = &p->dl;
3135 init_dl_task_timer(dl_se);
3136 dl_se->dl_runtime = attr->sched_runtime;
3137 dl_se->dl_deadline = attr->sched_deadline;
3138 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3139 dl_se->flags = attr->sched_flags;
3140 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3141 dl_se->dl_throttled = 0;
3142 dl_se->dl_new = 1;
3145 static void __setscheduler_params(struct task_struct *p,
3146 const struct sched_attr *attr)
3148 int policy = attr->sched_policy;
3150 if (policy == -1) /* setparam */
3151 policy = p->policy;
3153 p->policy = policy;
3155 if (dl_policy(policy))
3156 __setparam_dl(p, attr);
3157 else if (fair_policy(policy))
3158 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3161 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3162 * !rt_policy. Always setting this ensures that things like
3163 * getparam()/getattr() don't report silly values for !rt tasks.
3165 p->rt_priority = attr->sched_priority;
3166 p->normal_prio = normal_prio(p);
3167 set_load_weight(p);
3170 /* Actually do priority change: must hold pi & rq lock. */
3171 static void __setscheduler(struct rq *rq, struct task_struct *p,
3172 const struct sched_attr *attr)
3174 __setscheduler_params(p, attr);
3177 * If we get here, there was no pi waiters boosting the
3178 * task. It is safe to use the normal prio.
3180 p->prio = normal_prio(p);
3182 if (dl_prio(p->prio))
3183 p->sched_class = &dl_sched_class;
3184 else if (rt_prio(p->prio))
3185 p->sched_class = &rt_sched_class;
3186 else
3187 p->sched_class = &fair_sched_class;
3190 static void
3191 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3193 struct sched_dl_entity *dl_se = &p->dl;
3195 attr->sched_priority = p->rt_priority;
3196 attr->sched_runtime = dl_se->dl_runtime;
3197 attr->sched_deadline = dl_se->dl_deadline;
3198 attr->sched_period = dl_se->dl_period;
3199 attr->sched_flags = dl_se->flags;
3203 * This function validates the new parameters of a -deadline task.
3204 * We ask for the deadline not being zero, and greater or equal
3205 * than the runtime, as well as the period of being zero or
3206 * greater than deadline. Furthermore, we have to be sure that
3207 * user parameters are above the internal resolution (1us); we
3208 * check sched_runtime only since it is always the smaller one.
3210 static bool
3211 __checkparam_dl(const struct sched_attr *attr)
3213 return attr && attr->sched_deadline != 0 &&
3214 (attr->sched_period == 0 ||
3215 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3216 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3217 attr->sched_runtime >= (2 << (DL_SCALE - 1));
3221 * check the target process has a UID that matches the current process's
3223 static bool check_same_owner(struct task_struct *p)
3225 const struct cred *cred = current_cred(), *pcred;
3226 bool match;
3228 rcu_read_lock();
3229 pcred = __task_cred(p);
3230 match = (uid_eq(cred->euid, pcred->euid) ||
3231 uid_eq(cred->euid, pcred->uid));
3232 rcu_read_unlock();
3233 return match;
3236 static int __sched_setscheduler(struct task_struct *p,
3237 const struct sched_attr *attr,
3238 bool user)
3240 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3241 MAX_RT_PRIO - 1 - attr->sched_priority;
3242 int retval, oldprio, oldpolicy = -1, on_rq, running;
3243 int policy = attr->sched_policy;
3244 unsigned long flags;
3245 const struct sched_class *prev_class;
3246 struct rq *rq;
3247 int reset_on_fork;
3249 /* may grab non-irq protected spin_locks */
3250 BUG_ON(in_interrupt());
3251 recheck:
3252 /* double check policy once rq lock held */
3253 if (policy < 0) {
3254 reset_on_fork = p->sched_reset_on_fork;
3255 policy = oldpolicy = p->policy;
3256 } else {
3257 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3259 if (policy != SCHED_DEADLINE &&
3260 policy != SCHED_FIFO && policy != SCHED_RR &&
3261 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3262 policy != SCHED_IDLE)
3263 return -EINVAL;
3266 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3267 return -EINVAL;
3270 * Valid priorities for SCHED_FIFO and SCHED_RR are
3271 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3272 * SCHED_BATCH and SCHED_IDLE is 0.
3274 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3275 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3276 return -EINVAL;
3277 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3278 (rt_policy(policy) != (attr->sched_priority != 0)))
3279 return -EINVAL;
3282 * Allow unprivileged RT tasks to decrease priority:
3284 if (user && !capable(CAP_SYS_NICE)) {
3285 if (fair_policy(policy)) {
3286 if (attr->sched_nice < task_nice(p) &&
3287 !can_nice(p, attr->sched_nice))
3288 return -EPERM;
3291 if (rt_policy(policy)) {
3292 unsigned long rlim_rtprio =
3293 task_rlimit(p, RLIMIT_RTPRIO);
3295 /* can't set/change the rt policy */
3296 if (policy != p->policy && !rlim_rtprio)
3297 return -EPERM;
3299 /* can't increase priority */
3300 if (attr->sched_priority > p->rt_priority &&
3301 attr->sched_priority > rlim_rtprio)
3302 return -EPERM;
3306 * Can't set/change SCHED_DEADLINE policy at all for now
3307 * (safest behavior); in the future we would like to allow
3308 * unprivileged DL tasks to increase their relative deadline
3309 * or reduce their runtime (both ways reducing utilization)
3311 if (dl_policy(policy))
3312 return -EPERM;
3315 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3316 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3318 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3319 if (!can_nice(p, task_nice(p)))
3320 return -EPERM;
3323 /* can't change other user's priorities */
3324 if (!check_same_owner(p))
3325 return -EPERM;
3327 /* Normal users shall not reset the sched_reset_on_fork flag */
3328 if (p->sched_reset_on_fork && !reset_on_fork)
3329 return -EPERM;
3332 if (user) {
3333 retval = security_task_setscheduler(p);
3334 if (retval)
3335 return retval;
3339 * make sure no PI-waiters arrive (or leave) while we are
3340 * changing the priority of the task:
3342 * To be able to change p->policy safely, the appropriate
3343 * runqueue lock must be held.
3345 rq = task_rq_lock(p, &flags);
3348 * Changing the policy of the stop threads its a very bad idea
3350 if (p == rq->stop) {
3351 task_rq_unlock(rq, p, &flags);
3352 return -EINVAL;
3356 * If not changing anything there's no need to proceed further,
3357 * but store a possible modification of reset_on_fork.
3359 if (unlikely(policy == p->policy)) {
3360 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3361 goto change;
3362 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3363 goto change;
3364 if (dl_policy(policy))
3365 goto change;
3367 p->sched_reset_on_fork = reset_on_fork;
3368 task_rq_unlock(rq, p, &flags);
3369 return 0;
3371 change:
3373 if (user) {
3374 #ifdef CONFIG_RT_GROUP_SCHED
3376 * Do not allow realtime tasks into groups that have no runtime
3377 * assigned.
3379 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3380 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3381 !task_group_is_autogroup(task_group(p))) {
3382 task_rq_unlock(rq, p, &flags);
3383 return -EPERM;
3385 #endif
3386 #ifdef CONFIG_SMP
3387 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3388 cpumask_t *span = rq->rd->span;
3391 * Don't allow tasks with an affinity mask smaller than
3392 * the entire root_domain to become SCHED_DEADLINE. We
3393 * will also fail if there's no bandwidth available.
3395 if (!cpumask_subset(span, &p->cpus_allowed) ||
3396 rq->rd->dl_bw.bw == 0) {
3397 task_rq_unlock(rq, p, &flags);
3398 return -EPERM;
3401 #endif
3404 /* recheck policy now with rq lock held */
3405 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3406 policy = oldpolicy = -1;
3407 task_rq_unlock(rq, p, &flags);
3408 goto recheck;
3412 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3413 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3414 * is available.
3416 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3417 task_rq_unlock(rq, p, &flags);
3418 return -EBUSY;
3421 p->sched_reset_on_fork = reset_on_fork;
3422 oldprio = p->prio;
3425 * Special case for priority boosted tasks.
3427 * If the new priority is lower or equal (user space view)
3428 * than the current (boosted) priority, we just store the new
3429 * normal parameters and do not touch the scheduler class and
3430 * the runqueue. This will be done when the task deboost
3431 * itself.
3433 if (rt_mutex_check_prio(p, newprio)) {
3434 __setscheduler_params(p, attr);
3435 task_rq_unlock(rq, p, &flags);
3436 return 0;
3439 on_rq = p->on_rq;
3440 running = task_current(rq, p);
3441 if (on_rq)
3442 dequeue_task(rq, p, 0);
3443 if (running)
3444 p->sched_class->put_prev_task(rq, p);
3446 prev_class = p->sched_class;
3447 __setscheduler(rq, p, attr);
3449 if (running)
3450 p->sched_class->set_curr_task(rq);
3451 if (on_rq) {
3453 * We enqueue to tail when the priority of a task is
3454 * increased (user space view).
3456 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3459 check_class_changed(rq, p, prev_class, oldprio);
3460 task_rq_unlock(rq, p, &flags);
3462 rt_mutex_adjust_pi(p);
3464 return 0;
3467 static int _sched_setscheduler(struct task_struct *p, int policy,
3468 const struct sched_param *param, bool check)
3470 struct sched_attr attr = {
3471 .sched_policy = policy,
3472 .sched_priority = param->sched_priority,
3473 .sched_nice = PRIO_TO_NICE(p->static_prio),
3477 * Fixup the legacy SCHED_RESET_ON_FORK hack
3479 if (policy & SCHED_RESET_ON_FORK) {
3480 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3481 policy &= ~SCHED_RESET_ON_FORK;
3482 attr.sched_policy = policy;
3485 return __sched_setscheduler(p, &attr, check);
3488 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3489 * @p: the task in question.
3490 * @policy: new policy.
3491 * @param: structure containing the new RT priority.
3493 * Return: 0 on success. An error code otherwise.
3495 * NOTE that the task may be already dead.
3497 int sched_setscheduler(struct task_struct *p, int policy,
3498 const struct sched_param *param)
3500 return _sched_setscheduler(p, policy, param, true);
3502 EXPORT_SYMBOL_GPL(sched_setscheduler);
3504 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3506 return __sched_setscheduler(p, attr, true);
3508 EXPORT_SYMBOL_GPL(sched_setattr);
3511 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3512 * @p: the task in question.
3513 * @policy: new policy.
3514 * @param: structure containing the new RT priority.
3516 * Just like sched_setscheduler, only don't bother checking if the
3517 * current context has permission. For example, this is needed in
3518 * stop_machine(): we create temporary high priority worker threads,
3519 * but our caller might not have that capability.
3521 * Return: 0 on success. An error code otherwise.
3523 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3524 const struct sched_param *param)
3526 return _sched_setscheduler(p, policy, param, false);
3529 static int
3530 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3532 struct sched_param lparam;
3533 struct task_struct *p;
3534 int retval;
3536 if (!param || pid < 0)
3537 return -EINVAL;
3538 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3539 return -EFAULT;
3541 rcu_read_lock();
3542 retval = -ESRCH;
3543 p = find_process_by_pid(pid);
3544 if (p != NULL)
3545 retval = sched_setscheduler(p, policy, &lparam);
3546 rcu_read_unlock();
3548 return retval;
3552 * Mimics kernel/events/core.c perf_copy_attr().
3554 static int sched_copy_attr(struct sched_attr __user *uattr,
3555 struct sched_attr *attr)
3557 u32 size;
3558 int ret;
3560 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3561 return -EFAULT;
3564 * zero the full structure, so that a short copy will be nice.
3566 memset(attr, 0, sizeof(*attr));
3568 ret = get_user(size, &uattr->size);
3569 if (ret)
3570 return ret;
3572 if (size > PAGE_SIZE) /* silly large */
3573 goto err_size;
3575 if (!size) /* abi compat */
3576 size = SCHED_ATTR_SIZE_VER0;
3578 if (size < SCHED_ATTR_SIZE_VER0)
3579 goto err_size;
3582 * If we're handed a bigger struct than we know of,
3583 * ensure all the unknown bits are 0 - i.e. new
3584 * user-space does not rely on any kernel feature
3585 * extensions we dont know about yet.
3587 if (size > sizeof(*attr)) {
3588 unsigned char __user *addr;
3589 unsigned char __user *end;
3590 unsigned char val;
3592 addr = (void __user *)uattr + sizeof(*attr);
3593 end = (void __user *)uattr + size;
3595 for (; addr < end; addr++) {
3596 ret = get_user(val, addr);
3597 if (ret)
3598 return ret;
3599 if (val)
3600 goto err_size;
3602 size = sizeof(*attr);
3605 ret = copy_from_user(attr, uattr, size);
3606 if (ret)
3607 return -EFAULT;
3610 * XXX: do we want to be lenient like existing syscalls; or do we want
3611 * to be strict and return an error on out-of-bounds values?
3613 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3615 out:
3616 return ret;
3618 err_size:
3619 put_user(sizeof(*attr), &uattr->size);
3620 ret = -E2BIG;
3621 goto out;
3625 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3626 * @pid: the pid in question.
3627 * @policy: new policy.
3628 * @param: structure containing the new RT priority.
3630 * Return: 0 on success. An error code otherwise.
3632 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3633 struct sched_param __user *, param)
3635 /* negative values for policy are not valid */
3636 if (policy < 0)
3637 return -EINVAL;
3639 return do_sched_setscheduler(pid, policy, param);
3643 * sys_sched_setparam - set/change the RT priority of a thread
3644 * @pid: the pid in question.
3645 * @param: structure containing the new RT priority.
3647 * Return: 0 on success. An error code otherwise.
3649 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3651 return do_sched_setscheduler(pid, -1, param);
3655 * sys_sched_setattr - same as above, but with extended sched_attr
3656 * @pid: the pid in question.
3657 * @uattr: structure containing the extended parameters.
3659 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3660 unsigned int, flags)
3662 struct sched_attr attr;
3663 struct task_struct *p;
3664 int retval;
3666 if (!uattr || pid < 0 || flags)
3667 return -EINVAL;
3669 if (sched_copy_attr(uattr, &attr))
3670 return -EFAULT;
3672 rcu_read_lock();
3673 retval = -ESRCH;
3674 p = find_process_by_pid(pid);
3675 if (p != NULL)
3676 retval = sched_setattr(p, &attr);
3677 rcu_read_unlock();
3679 return retval;
3683 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3684 * @pid: the pid in question.
3686 * Return: On success, the policy of the thread. Otherwise, a negative error
3687 * code.
3689 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3691 struct task_struct *p;
3692 int retval;
3694 if (pid < 0)
3695 return -EINVAL;
3697 retval = -ESRCH;
3698 rcu_read_lock();
3699 p = find_process_by_pid(pid);
3700 if (p) {
3701 retval = security_task_getscheduler(p);
3702 if (!retval)
3703 retval = p->policy
3704 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3706 rcu_read_unlock();
3707 return retval;
3711 * sys_sched_getparam - get the RT priority of a thread
3712 * @pid: the pid in question.
3713 * @param: structure containing the RT priority.
3715 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3716 * code.
3718 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3720 struct sched_param lp;
3721 struct task_struct *p;
3722 int retval;
3724 if (!param || pid < 0)
3725 return -EINVAL;
3727 rcu_read_lock();
3728 p = find_process_by_pid(pid);
3729 retval = -ESRCH;
3730 if (!p)
3731 goto out_unlock;
3733 retval = security_task_getscheduler(p);
3734 if (retval)
3735 goto out_unlock;
3737 if (task_has_dl_policy(p)) {
3738 retval = -EINVAL;
3739 goto out_unlock;
3741 lp.sched_priority = p->rt_priority;
3742 rcu_read_unlock();
3745 * This one might sleep, we cannot do it with a spinlock held ...
3747 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3749 return retval;
3751 out_unlock:
3752 rcu_read_unlock();
3753 return retval;
3756 static int sched_read_attr(struct sched_attr __user *uattr,
3757 struct sched_attr *attr,
3758 unsigned int usize)
3760 int ret;
3762 if (!access_ok(VERIFY_WRITE, uattr, usize))
3763 return -EFAULT;
3766 * If we're handed a smaller struct than we know of,
3767 * ensure all the unknown bits are 0 - i.e. old
3768 * user-space does not get uncomplete information.
3770 if (usize < sizeof(*attr)) {
3771 unsigned char *addr;
3772 unsigned char *end;
3774 addr = (void *)attr + usize;
3775 end = (void *)attr + sizeof(*attr);
3777 for (; addr < end; addr++) {
3778 if (*addr)
3779 goto err_size;
3782 attr->size = usize;
3785 ret = copy_to_user(uattr, attr, attr->size);
3786 if (ret)
3787 return -EFAULT;
3789 out:
3790 return ret;
3792 err_size:
3793 ret = -E2BIG;
3794 goto out;
3798 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3799 * @pid: the pid in question.
3800 * @uattr: structure containing the extended parameters.
3801 * @size: sizeof(attr) for fwd/bwd comp.
3803 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3804 unsigned int, size, unsigned int, flags)
3806 struct sched_attr attr = {
3807 .size = sizeof(struct sched_attr),
3809 struct task_struct *p;
3810 int retval;
3812 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3813 size < SCHED_ATTR_SIZE_VER0 || flags)
3814 return -EINVAL;
3816 rcu_read_lock();
3817 p = find_process_by_pid(pid);
3818 retval = -ESRCH;
3819 if (!p)
3820 goto out_unlock;
3822 retval = security_task_getscheduler(p);
3823 if (retval)
3824 goto out_unlock;
3826 attr.sched_policy = p->policy;
3827 if (p->sched_reset_on_fork)
3828 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3829 if (task_has_dl_policy(p))
3830 __getparam_dl(p, &attr);
3831 else if (task_has_rt_policy(p))
3832 attr.sched_priority = p->rt_priority;
3833 else
3834 attr.sched_nice = task_nice(p);
3836 rcu_read_unlock();
3838 retval = sched_read_attr(uattr, &attr, size);
3839 return retval;
3841 out_unlock:
3842 rcu_read_unlock();
3843 return retval;
3846 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3848 cpumask_var_t cpus_allowed, new_mask;
3849 struct task_struct *p;
3850 int retval;
3852 rcu_read_lock();
3854 p = find_process_by_pid(pid);
3855 if (!p) {
3856 rcu_read_unlock();
3857 return -ESRCH;
3860 /* Prevent p going away */
3861 get_task_struct(p);
3862 rcu_read_unlock();
3864 if (p->flags & PF_NO_SETAFFINITY) {
3865 retval = -EINVAL;
3866 goto out_put_task;
3868 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3869 retval = -ENOMEM;
3870 goto out_put_task;
3872 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3873 retval = -ENOMEM;
3874 goto out_free_cpus_allowed;
3876 retval = -EPERM;
3877 if (!check_same_owner(p)) {
3878 rcu_read_lock();
3879 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3880 rcu_read_unlock();
3881 goto out_unlock;
3883 rcu_read_unlock();
3886 retval = security_task_setscheduler(p);
3887 if (retval)
3888 goto out_unlock;
3891 cpuset_cpus_allowed(p, cpus_allowed);
3892 cpumask_and(new_mask, in_mask, cpus_allowed);
3895 * Since bandwidth control happens on root_domain basis,
3896 * if admission test is enabled, we only admit -deadline
3897 * tasks allowed to run on all the CPUs in the task's
3898 * root_domain.
3900 #ifdef CONFIG_SMP
3901 if (task_has_dl_policy(p)) {
3902 const struct cpumask *span = task_rq(p)->rd->span;
3904 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3905 retval = -EBUSY;
3906 goto out_unlock;
3909 #endif
3910 again:
3911 retval = set_cpus_allowed_ptr(p, new_mask);
3913 if (!retval) {
3914 cpuset_cpus_allowed(p, cpus_allowed);
3915 if (!cpumask_subset(new_mask, cpus_allowed)) {
3917 * We must have raced with a concurrent cpuset
3918 * update. Just reset the cpus_allowed to the
3919 * cpuset's cpus_allowed
3921 cpumask_copy(new_mask, cpus_allowed);
3922 goto again;
3925 out_unlock:
3926 free_cpumask_var(new_mask);
3927 out_free_cpus_allowed:
3928 free_cpumask_var(cpus_allowed);
3929 out_put_task:
3930 put_task_struct(p);
3931 return retval;
3934 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3935 struct cpumask *new_mask)
3937 if (len < cpumask_size())
3938 cpumask_clear(new_mask);
3939 else if (len > cpumask_size())
3940 len = cpumask_size();
3942 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3946 * sys_sched_setaffinity - set the cpu affinity of a process
3947 * @pid: pid of the process
3948 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3949 * @user_mask_ptr: user-space pointer to the new cpu mask
3951 * Return: 0 on success. An error code otherwise.
3953 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3954 unsigned long __user *, user_mask_ptr)
3956 cpumask_var_t new_mask;
3957 int retval;
3959 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3960 return -ENOMEM;
3962 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3963 if (retval == 0)
3964 retval = sched_setaffinity(pid, new_mask);
3965 free_cpumask_var(new_mask);
3966 return retval;
3969 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3971 struct task_struct *p;
3972 unsigned long flags;
3973 int retval;
3975 rcu_read_lock();
3977 retval = -ESRCH;
3978 p = find_process_by_pid(pid);
3979 if (!p)
3980 goto out_unlock;
3982 retval = security_task_getscheduler(p);
3983 if (retval)
3984 goto out_unlock;
3986 raw_spin_lock_irqsave(&p->pi_lock, flags);
3987 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3988 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3990 out_unlock:
3991 rcu_read_unlock();
3993 return retval;
3997 * sys_sched_getaffinity - get the cpu affinity of a process
3998 * @pid: pid of the process
3999 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4000 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4002 * Return: 0 on success. An error code otherwise.
4004 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4005 unsigned long __user *, user_mask_ptr)
4007 int ret;
4008 cpumask_var_t mask;
4010 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4011 return -EINVAL;
4012 if (len & (sizeof(unsigned long)-1))
4013 return -EINVAL;
4015 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4016 return -ENOMEM;
4018 ret = sched_getaffinity(pid, mask);
4019 if (ret == 0) {
4020 size_t retlen = min_t(size_t, len, cpumask_size());
4022 if (copy_to_user(user_mask_ptr, mask, retlen))
4023 ret = -EFAULT;
4024 else
4025 ret = retlen;
4027 free_cpumask_var(mask);
4029 return ret;
4033 * sys_sched_yield - yield the current processor to other threads.
4035 * This function yields the current CPU to other tasks. If there are no
4036 * other threads running on this CPU then this function will return.
4038 * Return: 0.
4040 SYSCALL_DEFINE0(sched_yield)
4042 struct rq *rq = this_rq_lock();
4044 schedstat_inc(rq, yld_count);
4045 current->sched_class->yield_task(rq);
4048 * Since we are going to call schedule() anyway, there's
4049 * no need to preempt or enable interrupts:
4051 __release(rq->lock);
4052 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4053 do_raw_spin_unlock(&rq->lock);
4054 sched_preempt_enable_no_resched();
4056 schedule();
4058 return 0;
4061 static void __cond_resched(void)
4063 __preempt_count_add(PREEMPT_ACTIVE);
4064 __schedule();
4065 __preempt_count_sub(PREEMPT_ACTIVE);
4068 int __sched _cond_resched(void)
4070 if (should_resched()) {
4071 __cond_resched();
4072 return 1;
4074 return 0;
4076 EXPORT_SYMBOL(_cond_resched);
4079 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4080 * call schedule, and on return reacquire the lock.
4082 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4083 * operations here to prevent schedule() from being called twice (once via
4084 * spin_unlock(), once by hand).
4086 int __cond_resched_lock(spinlock_t *lock)
4088 int resched = should_resched();
4089 int ret = 0;
4091 lockdep_assert_held(lock);
4093 if (spin_needbreak(lock) || resched) {
4094 spin_unlock(lock);
4095 if (resched)
4096 __cond_resched();
4097 else
4098 cpu_relax();
4099 ret = 1;
4100 spin_lock(lock);
4102 return ret;
4104 EXPORT_SYMBOL(__cond_resched_lock);
4106 int __sched __cond_resched_softirq(void)
4108 BUG_ON(!in_softirq());
4110 if (should_resched()) {
4111 local_bh_enable();
4112 __cond_resched();
4113 local_bh_disable();
4114 return 1;
4116 return 0;
4118 EXPORT_SYMBOL(__cond_resched_softirq);
4121 * yield - yield the current processor to other threads.
4123 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4125 * The scheduler is at all times free to pick the calling task as the most
4126 * eligible task to run, if removing the yield() call from your code breaks
4127 * it, its already broken.
4129 * Typical broken usage is:
4131 * while (!event)
4132 * yield();
4134 * where one assumes that yield() will let 'the other' process run that will
4135 * make event true. If the current task is a SCHED_FIFO task that will never
4136 * happen. Never use yield() as a progress guarantee!!
4138 * If you want to use yield() to wait for something, use wait_event().
4139 * If you want to use yield() to be 'nice' for others, use cond_resched().
4140 * If you still want to use yield(), do not!
4142 void __sched yield(void)
4144 set_current_state(TASK_RUNNING);
4145 sys_sched_yield();
4147 EXPORT_SYMBOL(yield);
4150 * yield_to - yield the current processor to another thread in
4151 * your thread group, or accelerate that thread toward the
4152 * processor it's on.
4153 * @p: target task
4154 * @preempt: whether task preemption is allowed or not
4156 * It's the caller's job to ensure that the target task struct
4157 * can't go away on us before we can do any checks.
4159 * Return:
4160 * true (>0) if we indeed boosted the target task.
4161 * false (0) if we failed to boost the target.
4162 * -ESRCH if there's no task to yield to.
4164 bool __sched yield_to(struct task_struct *p, bool preempt)
4166 struct task_struct *curr = current;
4167 struct rq *rq, *p_rq;
4168 unsigned long flags;
4169 int yielded = 0;
4171 local_irq_save(flags);
4172 rq = this_rq();
4174 again:
4175 p_rq = task_rq(p);
4177 * If we're the only runnable task on the rq and target rq also
4178 * has only one task, there's absolutely no point in yielding.
4180 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4181 yielded = -ESRCH;
4182 goto out_irq;
4185 double_rq_lock(rq, p_rq);
4186 if (task_rq(p) != p_rq) {
4187 double_rq_unlock(rq, p_rq);
4188 goto again;
4191 if (!curr->sched_class->yield_to_task)
4192 goto out_unlock;
4194 if (curr->sched_class != p->sched_class)
4195 goto out_unlock;
4197 if (task_running(p_rq, p) || p->state)
4198 goto out_unlock;
4200 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4201 if (yielded) {
4202 schedstat_inc(rq, yld_count);
4204 * Make p's CPU reschedule; pick_next_entity takes care of
4205 * fairness.
4207 if (preempt && rq != p_rq)
4208 resched_task(p_rq->curr);
4211 out_unlock:
4212 double_rq_unlock(rq, p_rq);
4213 out_irq:
4214 local_irq_restore(flags);
4216 if (yielded > 0)
4217 schedule();
4219 return yielded;
4221 EXPORT_SYMBOL_GPL(yield_to);
4224 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4225 * that process accounting knows that this is a task in IO wait state.
4227 void __sched io_schedule(void)
4229 struct rq *rq = raw_rq();
4231 delayacct_blkio_start();
4232 atomic_inc(&rq->nr_iowait);
4233 blk_flush_plug(current);
4234 current->in_iowait = 1;
4235 schedule();
4236 current->in_iowait = 0;
4237 atomic_dec(&rq->nr_iowait);
4238 delayacct_blkio_end();
4240 EXPORT_SYMBOL(io_schedule);
4242 long __sched io_schedule_timeout(long timeout)
4244 struct rq *rq = raw_rq();
4245 long ret;
4247 delayacct_blkio_start();
4248 atomic_inc(&rq->nr_iowait);
4249 blk_flush_plug(current);
4250 current->in_iowait = 1;
4251 ret = schedule_timeout(timeout);
4252 current->in_iowait = 0;
4253 atomic_dec(&rq->nr_iowait);
4254 delayacct_blkio_end();
4255 return ret;
4259 * sys_sched_get_priority_max - return maximum RT priority.
4260 * @policy: scheduling class.
4262 * Return: On success, this syscall returns the maximum
4263 * rt_priority that can be used by a given scheduling class.
4264 * On failure, a negative error code is returned.
4266 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4268 int ret = -EINVAL;
4270 switch (policy) {
4271 case SCHED_FIFO:
4272 case SCHED_RR:
4273 ret = MAX_USER_RT_PRIO-1;
4274 break;
4275 case SCHED_DEADLINE:
4276 case SCHED_NORMAL:
4277 case SCHED_BATCH:
4278 case SCHED_IDLE:
4279 ret = 0;
4280 break;
4282 return ret;
4286 * sys_sched_get_priority_min - return minimum RT priority.
4287 * @policy: scheduling class.
4289 * Return: On success, this syscall returns the minimum
4290 * rt_priority that can be used by a given scheduling class.
4291 * On failure, a negative error code is returned.
4293 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4295 int ret = -EINVAL;
4297 switch (policy) {
4298 case SCHED_FIFO:
4299 case SCHED_RR:
4300 ret = 1;
4301 break;
4302 case SCHED_DEADLINE:
4303 case SCHED_NORMAL:
4304 case SCHED_BATCH:
4305 case SCHED_IDLE:
4306 ret = 0;
4308 return ret;
4312 * sys_sched_rr_get_interval - return the default timeslice of a process.
4313 * @pid: pid of the process.
4314 * @interval: userspace pointer to the timeslice value.
4316 * this syscall writes the default timeslice value of a given process
4317 * into the user-space timespec buffer. A value of '0' means infinity.
4319 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4320 * an error code.
4322 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4323 struct timespec __user *, interval)
4325 struct task_struct *p;
4326 unsigned int time_slice;
4327 unsigned long flags;
4328 struct rq *rq;
4329 int retval;
4330 struct timespec t;
4332 if (pid < 0)
4333 return -EINVAL;
4335 retval = -ESRCH;
4336 rcu_read_lock();
4337 p = find_process_by_pid(pid);
4338 if (!p)
4339 goto out_unlock;
4341 retval = security_task_getscheduler(p);
4342 if (retval)
4343 goto out_unlock;
4345 rq = task_rq_lock(p, &flags);
4346 time_slice = 0;
4347 if (p->sched_class->get_rr_interval)
4348 time_slice = p->sched_class->get_rr_interval(rq, p);
4349 task_rq_unlock(rq, p, &flags);
4351 rcu_read_unlock();
4352 jiffies_to_timespec(time_slice, &t);
4353 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4354 return retval;
4356 out_unlock:
4357 rcu_read_unlock();
4358 return retval;
4361 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4363 void sched_show_task(struct task_struct *p)
4365 unsigned long free = 0;
4366 int ppid;
4367 unsigned state;
4369 state = p->state ? __ffs(p->state) + 1 : 0;
4370 printk(KERN_INFO "%-15.15s %c", p->comm,
4371 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4372 #if BITS_PER_LONG == 32
4373 if (state == TASK_RUNNING)
4374 printk(KERN_CONT " running ");
4375 else
4376 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4377 #else
4378 if (state == TASK_RUNNING)
4379 printk(KERN_CONT " running task ");
4380 else
4381 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4382 #endif
4383 #ifdef CONFIG_DEBUG_STACK_USAGE
4384 free = stack_not_used(p);
4385 #endif
4386 rcu_read_lock();
4387 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4388 rcu_read_unlock();
4389 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4390 task_pid_nr(p), ppid,
4391 (unsigned long)task_thread_info(p)->flags);
4393 print_worker_info(KERN_INFO, p);
4394 show_stack(p, NULL);
4397 void show_state_filter(unsigned long state_filter)
4399 struct task_struct *g, *p;
4401 #if BITS_PER_LONG == 32
4402 printk(KERN_INFO
4403 " task PC stack pid father\n");
4404 #else
4405 printk(KERN_INFO
4406 " task PC stack pid father\n");
4407 #endif
4408 rcu_read_lock();
4409 do_each_thread(g, p) {
4411 * reset the NMI-timeout, listing all files on a slow
4412 * console might take a lot of time:
4414 touch_nmi_watchdog();
4415 if (!state_filter || (p->state & state_filter))
4416 sched_show_task(p);
4417 } while_each_thread(g, p);
4419 touch_all_softlockup_watchdogs();
4421 #ifdef CONFIG_SCHED_DEBUG
4422 sysrq_sched_debug_show();
4423 #endif
4424 rcu_read_unlock();
4426 * Only show locks if all tasks are dumped:
4428 if (!state_filter)
4429 debug_show_all_locks();
4432 void init_idle_bootup_task(struct task_struct *idle)
4434 idle->sched_class = &idle_sched_class;
4438 * init_idle - set up an idle thread for a given CPU
4439 * @idle: task in question
4440 * @cpu: cpu the idle task belongs to
4442 * NOTE: this function does not set the idle thread's NEED_RESCHED
4443 * flag, to make booting more robust.
4445 void init_idle(struct task_struct *idle, int cpu)
4447 struct rq *rq = cpu_rq(cpu);
4448 unsigned long flags;
4450 raw_spin_lock_irqsave(&rq->lock, flags);
4452 __sched_fork(0, idle);
4453 idle->state = TASK_RUNNING;
4454 idle->se.exec_start = sched_clock();
4456 do_set_cpus_allowed(idle, cpumask_of(cpu));
4458 * We're having a chicken and egg problem, even though we are
4459 * holding rq->lock, the cpu isn't yet set to this cpu so the
4460 * lockdep check in task_group() will fail.
4462 * Similar case to sched_fork(). / Alternatively we could
4463 * use task_rq_lock() here and obtain the other rq->lock.
4465 * Silence PROVE_RCU
4467 rcu_read_lock();
4468 __set_task_cpu(idle, cpu);
4469 rcu_read_unlock();
4471 rq->curr = rq->idle = idle;
4472 idle->on_rq = 1;
4473 #if defined(CONFIG_SMP)
4474 idle->on_cpu = 1;
4475 #endif
4476 raw_spin_unlock_irqrestore(&rq->lock, flags);
4478 /* Set the preempt count _outside_ the spinlocks! */
4479 init_idle_preempt_count(idle, cpu);
4482 * The idle tasks have their own, simple scheduling class:
4484 idle->sched_class = &idle_sched_class;
4485 ftrace_graph_init_idle_task(idle, cpu);
4486 vtime_init_idle(idle, cpu);
4487 #if defined(CONFIG_SMP)
4488 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4489 #endif
4492 #ifdef CONFIG_SMP
4493 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4495 if (p->sched_class && p->sched_class->set_cpus_allowed)
4496 p->sched_class->set_cpus_allowed(p, new_mask);
4498 cpumask_copy(&p->cpus_allowed, new_mask);
4499 p->nr_cpus_allowed = cpumask_weight(new_mask);
4503 * This is how migration works:
4505 * 1) we invoke migration_cpu_stop() on the target CPU using
4506 * stop_one_cpu().
4507 * 2) stopper starts to run (implicitly forcing the migrated thread
4508 * off the CPU)
4509 * 3) it checks whether the migrated task is still in the wrong runqueue.
4510 * 4) if it's in the wrong runqueue then the migration thread removes
4511 * it and puts it into the right queue.
4512 * 5) stopper completes and stop_one_cpu() returns and the migration
4513 * is done.
4517 * Change a given task's CPU affinity. Migrate the thread to a
4518 * proper CPU and schedule it away if the CPU it's executing on
4519 * is removed from the allowed bitmask.
4521 * NOTE: the caller must have a valid reference to the task, the
4522 * task must not exit() & deallocate itself prematurely. The
4523 * call is not atomic; no spinlocks may be held.
4525 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4527 unsigned long flags;
4528 struct rq *rq;
4529 unsigned int dest_cpu;
4530 int ret = 0;
4532 rq = task_rq_lock(p, &flags);
4534 if (cpumask_equal(&p->cpus_allowed, new_mask))
4535 goto out;
4537 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4538 ret = -EINVAL;
4539 goto out;
4542 do_set_cpus_allowed(p, new_mask);
4544 /* Can the task run on the task's current CPU? If so, we're done */
4545 if (cpumask_test_cpu(task_cpu(p), new_mask))
4546 goto out;
4548 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4549 if (p->on_rq) {
4550 struct migration_arg arg = { p, dest_cpu };
4551 /* Need help from migration thread: drop lock and wait. */
4552 task_rq_unlock(rq, p, &flags);
4553 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4554 tlb_migrate_finish(p->mm);
4555 return 0;
4557 out:
4558 task_rq_unlock(rq, p, &flags);
4560 return ret;
4562 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4565 * Move (not current) task off this cpu, onto dest cpu. We're doing
4566 * this because either it can't run here any more (set_cpus_allowed()
4567 * away from this CPU, or CPU going down), or because we're
4568 * attempting to rebalance this task on exec (sched_exec).
4570 * So we race with normal scheduler movements, but that's OK, as long
4571 * as the task is no longer on this CPU.
4573 * Returns non-zero if task was successfully migrated.
4575 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4577 struct rq *rq_dest, *rq_src;
4578 int ret = 0;
4580 if (unlikely(!cpu_active(dest_cpu)))
4581 return ret;
4583 rq_src = cpu_rq(src_cpu);
4584 rq_dest = cpu_rq(dest_cpu);
4586 raw_spin_lock(&p->pi_lock);
4587 double_rq_lock(rq_src, rq_dest);
4588 /* Already moved. */
4589 if (task_cpu(p) != src_cpu)
4590 goto done;
4591 /* Affinity changed (again). */
4592 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4593 goto fail;
4596 * If we're not on a rq, the next wake-up will ensure we're
4597 * placed properly.
4599 if (p->on_rq) {
4600 dequeue_task(rq_src, p, 0);
4601 set_task_cpu(p, dest_cpu);
4602 enqueue_task(rq_dest, p, 0);
4603 check_preempt_curr(rq_dest, p, 0);
4605 done:
4606 ret = 1;
4607 fail:
4608 double_rq_unlock(rq_src, rq_dest);
4609 raw_spin_unlock(&p->pi_lock);
4610 return ret;
4613 #ifdef CONFIG_NUMA_BALANCING
4614 /* Migrate current task p to target_cpu */
4615 int migrate_task_to(struct task_struct *p, int target_cpu)
4617 struct migration_arg arg = { p, target_cpu };
4618 int curr_cpu = task_cpu(p);
4620 if (curr_cpu == target_cpu)
4621 return 0;
4623 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4624 return -EINVAL;
4626 /* TODO: This is not properly updating schedstats */
4628 trace_sched_move_numa(p, curr_cpu, target_cpu);
4629 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4633 * Requeue a task on a given node and accurately track the number of NUMA
4634 * tasks on the runqueues
4636 void sched_setnuma(struct task_struct *p, int nid)
4638 struct rq *rq;
4639 unsigned long flags;
4640 bool on_rq, running;
4642 rq = task_rq_lock(p, &flags);
4643 on_rq = p->on_rq;
4644 running = task_current(rq, p);
4646 if (on_rq)
4647 dequeue_task(rq, p, 0);
4648 if (running)
4649 p->sched_class->put_prev_task(rq, p);
4651 p->numa_preferred_nid = nid;
4653 if (running)
4654 p->sched_class->set_curr_task(rq);
4655 if (on_rq)
4656 enqueue_task(rq, p, 0);
4657 task_rq_unlock(rq, p, &flags);
4659 #endif
4662 * migration_cpu_stop - this will be executed by a highprio stopper thread
4663 * and performs thread migration by bumping thread off CPU then
4664 * 'pushing' onto another runqueue.
4666 static int migration_cpu_stop(void *data)
4668 struct migration_arg *arg = data;
4671 * The original target cpu might have gone down and we might
4672 * be on another cpu but it doesn't matter.
4674 local_irq_disable();
4675 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4676 local_irq_enable();
4677 return 0;
4680 #ifdef CONFIG_HOTPLUG_CPU
4683 * Ensures that the idle task is using init_mm right before its cpu goes
4684 * offline.
4686 void idle_task_exit(void)
4688 struct mm_struct *mm = current->active_mm;
4690 BUG_ON(cpu_online(smp_processor_id()));
4692 if (mm != &init_mm) {
4693 switch_mm(mm, &init_mm, current);
4694 finish_arch_post_lock_switch();
4696 mmdrop(mm);
4700 * Since this CPU is going 'away' for a while, fold any nr_active delta
4701 * we might have. Assumes we're called after migrate_tasks() so that the
4702 * nr_active count is stable.
4704 * Also see the comment "Global load-average calculations".
4706 static void calc_load_migrate(struct rq *rq)
4708 long delta = calc_load_fold_active(rq);
4709 if (delta)
4710 atomic_long_add(delta, &calc_load_tasks);
4713 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4717 static const struct sched_class fake_sched_class = {
4718 .put_prev_task = put_prev_task_fake,
4721 static struct task_struct fake_task = {
4723 * Avoid pull_{rt,dl}_task()
4725 .prio = MAX_PRIO + 1,
4726 .sched_class = &fake_sched_class,
4730 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4731 * try_to_wake_up()->select_task_rq().
4733 * Called with rq->lock held even though we'er in stop_machine() and
4734 * there's no concurrency possible, we hold the required locks anyway
4735 * because of lock validation efforts.
4737 static void migrate_tasks(unsigned int dead_cpu)
4739 struct rq *rq = cpu_rq(dead_cpu);
4740 struct task_struct *next, *stop = rq->stop;
4741 int dest_cpu;
4744 * Fudge the rq selection such that the below task selection loop
4745 * doesn't get stuck on the currently eligible stop task.
4747 * We're currently inside stop_machine() and the rq is either stuck
4748 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4749 * either way we should never end up calling schedule() until we're
4750 * done here.
4752 rq->stop = NULL;
4755 * put_prev_task() and pick_next_task() sched
4756 * class method both need to have an up-to-date
4757 * value of rq->clock[_task]
4759 update_rq_clock(rq);
4761 for ( ; ; ) {
4763 * There's this thread running, bail when that's the only
4764 * remaining thread.
4766 if (rq->nr_running == 1)
4767 break;
4769 next = pick_next_task(rq, &fake_task);
4770 BUG_ON(!next);
4771 next->sched_class->put_prev_task(rq, next);
4773 /* Find suitable destination for @next, with force if needed. */
4774 dest_cpu = select_fallback_rq(dead_cpu, next);
4775 raw_spin_unlock(&rq->lock);
4777 __migrate_task(next, dead_cpu, dest_cpu);
4779 raw_spin_lock(&rq->lock);
4782 rq->stop = stop;
4785 #endif /* CONFIG_HOTPLUG_CPU */
4787 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4789 static struct ctl_table sd_ctl_dir[] = {
4791 .procname = "sched_domain",
4792 .mode = 0555,
4797 static struct ctl_table sd_ctl_root[] = {
4799 .procname = "kernel",
4800 .mode = 0555,
4801 .child = sd_ctl_dir,
4806 static struct ctl_table *sd_alloc_ctl_entry(int n)
4808 struct ctl_table *entry =
4809 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4811 return entry;
4814 static void sd_free_ctl_entry(struct ctl_table **tablep)
4816 struct ctl_table *entry;
4819 * In the intermediate directories, both the child directory and
4820 * procname are dynamically allocated and could fail but the mode
4821 * will always be set. In the lowest directory the names are
4822 * static strings and all have proc handlers.
4824 for (entry = *tablep; entry->mode; entry++) {
4825 if (entry->child)
4826 sd_free_ctl_entry(&entry->child);
4827 if (entry->proc_handler == NULL)
4828 kfree(entry->procname);
4831 kfree(*tablep);
4832 *tablep = NULL;
4835 static int min_load_idx = 0;
4836 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4838 static void
4839 set_table_entry(struct ctl_table *entry,
4840 const char *procname, void *data, int maxlen,
4841 umode_t mode, proc_handler *proc_handler,
4842 bool load_idx)
4844 entry->procname = procname;
4845 entry->data = data;
4846 entry->maxlen = maxlen;
4847 entry->mode = mode;
4848 entry->proc_handler = proc_handler;
4850 if (load_idx) {
4851 entry->extra1 = &min_load_idx;
4852 entry->extra2 = &max_load_idx;
4856 static struct ctl_table *
4857 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4859 struct ctl_table *table = sd_alloc_ctl_entry(14);
4861 if (table == NULL)
4862 return NULL;
4864 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4865 sizeof(long), 0644, proc_doulongvec_minmax, false);
4866 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4867 sizeof(long), 0644, proc_doulongvec_minmax, false);
4868 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4869 sizeof(int), 0644, proc_dointvec_minmax, true);
4870 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4871 sizeof(int), 0644, proc_dointvec_minmax, true);
4872 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4873 sizeof(int), 0644, proc_dointvec_minmax, true);
4874 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4875 sizeof(int), 0644, proc_dointvec_minmax, true);
4876 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4877 sizeof(int), 0644, proc_dointvec_minmax, true);
4878 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4879 sizeof(int), 0644, proc_dointvec_minmax, false);
4880 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4881 sizeof(int), 0644, proc_dointvec_minmax, false);
4882 set_table_entry(&table[9], "cache_nice_tries",
4883 &sd->cache_nice_tries,
4884 sizeof(int), 0644, proc_dointvec_minmax, false);
4885 set_table_entry(&table[10], "flags", &sd->flags,
4886 sizeof(int), 0644, proc_dointvec_minmax, false);
4887 set_table_entry(&table[11], "max_newidle_lb_cost",
4888 &sd->max_newidle_lb_cost,
4889 sizeof(long), 0644, proc_doulongvec_minmax, false);
4890 set_table_entry(&table[12], "name", sd->name,
4891 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4892 /* &table[13] is terminator */
4894 return table;
4897 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4899 struct ctl_table *entry, *table;
4900 struct sched_domain *sd;
4901 int domain_num = 0, i;
4902 char buf[32];
4904 for_each_domain(cpu, sd)
4905 domain_num++;
4906 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4907 if (table == NULL)
4908 return NULL;
4910 i = 0;
4911 for_each_domain(cpu, sd) {
4912 snprintf(buf, 32, "domain%d", i);
4913 entry->procname = kstrdup(buf, GFP_KERNEL);
4914 entry->mode = 0555;
4915 entry->child = sd_alloc_ctl_domain_table(sd);
4916 entry++;
4917 i++;
4919 return table;
4922 static struct ctl_table_header *sd_sysctl_header;
4923 static void register_sched_domain_sysctl(void)
4925 int i, cpu_num = num_possible_cpus();
4926 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4927 char buf[32];
4929 WARN_ON(sd_ctl_dir[0].child);
4930 sd_ctl_dir[0].child = entry;
4932 if (entry == NULL)
4933 return;
4935 for_each_possible_cpu(i) {
4936 snprintf(buf, 32, "cpu%d", i);
4937 entry->procname = kstrdup(buf, GFP_KERNEL);
4938 entry->mode = 0555;
4939 entry->child = sd_alloc_ctl_cpu_table(i);
4940 entry++;
4943 WARN_ON(sd_sysctl_header);
4944 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4947 /* may be called multiple times per register */
4948 static void unregister_sched_domain_sysctl(void)
4950 if (sd_sysctl_header)
4951 unregister_sysctl_table(sd_sysctl_header);
4952 sd_sysctl_header = NULL;
4953 if (sd_ctl_dir[0].child)
4954 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4956 #else
4957 static void register_sched_domain_sysctl(void)
4960 static void unregister_sched_domain_sysctl(void)
4963 #endif
4965 static void set_rq_online(struct rq *rq)
4967 if (!rq->online) {
4968 const struct sched_class *class;
4970 cpumask_set_cpu(rq->cpu, rq->rd->online);
4971 rq->online = 1;
4973 for_each_class(class) {
4974 if (class->rq_online)
4975 class->rq_online(rq);
4980 static void set_rq_offline(struct rq *rq)
4982 if (rq->online) {
4983 const struct sched_class *class;
4985 for_each_class(class) {
4986 if (class->rq_offline)
4987 class->rq_offline(rq);
4990 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4991 rq->online = 0;
4996 * migration_call - callback that gets triggered when a CPU is added.
4997 * Here we can start up the necessary migration thread for the new CPU.
4999 static int
5000 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5002 int cpu = (long)hcpu;
5003 unsigned long flags;
5004 struct rq *rq = cpu_rq(cpu);
5006 switch (action & ~CPU_TASKS_FROZEN) {
5008 case CPU_UP_PREPARE:
5009 rq->calc_load_update = calc_load_update;
5010 break;
5012 case CPU_ONLINE:
5013 /* Update our root-domain */
5014 raw_spin_lock_irqsave(&rq->lock, flags);
5015 if (rq->rd) {
5016 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5018 set_rq_online(rq);
5020 raw_spin_unlock_irqrestore(&rq->lock, flags);
5021 break;
5023 #ifdef CONFIG_HOTPLUG_CPU
5024 case CPU_DYING:
5025 sched_ttwu_pending();
5026 /* Update our root-domain */
5027 raw_spin_lock_irqsave(&rq->lock, flags);
5028 if (rq->rd) {
5029 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5030 set_rq_offline(rq);
5032 migrate_tasks(cpu);
5033 BUG_ON(rq->nr_running != 1); /* the migration thread */
5034 raw_spin_unlock_irqrestore(&rq->lock, flags);
5035 break;
5037 case CPU_DEAD:
5038 calc_load_migrate(rq);
5039 break;
5040 #endif
5043 update_max_interval();
5045 return NOTIFY_OK;
5049 * Register at high priority so that task migration (migrate_all_tasks)
5050 * happens before everything else. This has to be lower priority than
5051 * the notifier in the perf_event subsystem, though.
5053 static struct notifier_block migration_notifier = {
5054 .notifier_call = migration_call,
5055 .priority = CPU_PRI_MIGRATION,
5058 static int sched_cpu_active(struct notifier_block *nfb,
5059 unsigned long action, void *hcpu)
5061 switch (action & ~CPU_TASKS_FROZEN) {
5062 case CPU_STARTING:
5063 case CPU_DOWN_FAILED:
5064 set_cpu_active((long)hcpu, true);
5065 return NOTIFY_OK;
5066 default:
5067 return NOTIFY_DONE;
5071 static int sched_cpu_inactive(struct notifier_block *nfb,
5072 unsigned long action, void *hcpu)
5074 unsigned long flags;
5075 long cpu = (long)hcpu;
5077 switch (action & ~CPU_TASKS_FROZEN) {
5078 case CPU_DOWN_PREPARE:
5079 set_cpu_active(cpu, false);
5081 /* explicitly allow suspend */
5082 if (!(action & CPU_TASKS_FROZEN)) {
5083 struct dl_bw *dl_b = dl_bw_of(cpu);
5084 bool overflow;
5085 int cpus;
5087 raw_spin_lock_irqsave(&dl_b->lock, flags);
5088 cpus = dl_bw_cpus(cpu);
5089 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5090 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5092 if (overflow)
5093 return notifier_from_errno(-EBUSY);
5095 return NOTIFY_OK;
5098 return NOTIFY_DONE;
5101 static int __init migration_init(void)
5103 void *cpu = (void *)(long)smp_processor_id();
5104 int err;
5106 /* Initialize migration for the boot CPU */
5107 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5108 BUG_ON(err == NOTIFY_BAD);
5109 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5110 register_cpu_notifier(&migration_notifier);
5112 /* Register cpu active notifiers */
5113 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5114 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5116 return 0;
5118 early_initcall(migration_init);
5119 #endif
5121 #ifdef CONFIG_SMP
5123 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5125 #ifdef CONFIG_SCHED_DEBUG
5127 static __read_mostly int sched_debug_enabled;
5129 static int __init sched_debug_setup(char *str)
5131 sched_debug_enabled = 1;
5133 return 0;
5135 early_param("sched_debug", sched_debug_setup);
5137 static inline bool sched_debug(void)
5139 return sched_debug_enabled;
5142 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5143 struct cpumask *groupmask)
5145 struct sched_group *group = sd->groups;
5146 char str[256];
5148 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5149 cpumask_clear(groupmask);
5151 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5153 if (!(sd->flags & SD_LOAD_BALANCE)) {
5154 printk("does not load-balance\n");
5155 if (sd->parent)
5156 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5157 " has parent");
5158 return -1;
5161 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5163 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5164 printk(KERN_ERR "ERROR: domain->span does not contain "
5165 "CPU%d\n", cpu);
5167 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5168 printk(KERN_ERR "ERROR: domain->groups does not contain"
5169 " CPU%d\n", cpu);
5172 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5173 do {
5174 if (!group) {
5175 printk("\n");
5176 printk(KERN_ERR "ERROR: group is NULL\n");
5177 break;
5181 * Even though we initialize ->power to something semi-sane,
5182 * we leave power_orig unset. This allows us to detect if
5183 * domain iteration is still funny without causing /0 traps.
5185 if (!group->sgp->power_orig) {
5186 printk(KERN_CONT "\n");
5187 printk(KERN_ERR "ERROR: domain->cpu_power not "
5188 "set\n");
5189 break;
5192 if (!cpumask_weight(sched_group_cpus(group))) {
5193 printk(KERN_CONT "\n");
5194 printk(KERN_ERR "ERROR: empty group\n");
5195 break;
5198 if (!(sd->flags & SD_OVERLAP) &&
5199 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5200 printk(KERN_CONT "\n");
5201 printk(KERN_ERR "ERROR: repeated CPUs\n");
5202 break;
5205 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5207 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5209 printk(KERN_CONT " %s", str);
5210 if (group->sgp->power != SCHED_POWER_SCALE) {
5211 printk(KERN_CONT " (cpu_power = %d)",
5212 group->sgp->power);
5215 group = group->next;
5216 } while (group != sd->groups);
5217 printk(KERN_CONT "\n");
5219 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5220 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5222 if (sd->parent &&
5223 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5224 printk(KERN_ERR "ERROR: parent span is not a superset "
5225 "of domain->span\n");
5226 return 0;
5229 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5231 int level = 0;
5233 if (!sched_debug_enabled)
5234 return;
5236 if (!sd) {
5237 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5238 return;
5241 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5243 for (;;) {
5244 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5245 break;
5246 level++;
5247 sd = sd->parent;
5248 if (!sd)
5249 break;
5252 #else /* !CONFIG_SCHED_DEBUG */
5253 # define sched_domain_debug(sd, cpu) do { } while (0)
5254 static inline bool sched_debug(void)
5256 return false;
5258 #endif /* CONFIG_SCHED_DEBUG */
5260 static int sd_degenerate(struct sched_domain *sd)
5262 if (cpumask_weight(sched_domain_span(sd)) == 1)
5263 return 1;
5265 /* Following flags need at least 2 groups */
5266 if (sd->flags & (SD_LOAD_BALANCE |
5267 SD_BALANCE_NEWIDLE |
5268 SD_BALANCE_FORK |
5269 SD_BALANCE_EXEC |
5270 SD_SHARE_CPUPOWER |
5271 SD_SHARE_PKG_RESOURCES)) {
5272 if (sd->groups != sd->groups->next)
5273 return 0;
5276 /* Following flags don't use groups */
5277 if (sd->flags & (SD_WAKE_AFFINE))
5278 return 0;
5280 return 1;
5283 static int
5284 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5286 unsigned long cflags = sd->flags, pflags = parent->flags;
5288 if (sd_degenerate(parent))
5289 return 1;
5291 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5292 return 0;
5294 /* Flags needing groups don't count if only 1 group in parent */
5295 if (parent->groups == parent->groups->next) {
5296 pflags &= ~(SD_LOAD_BALANCE |
5297 SD_BALANCE_NEWIDLE |
5298 SD_BALANCE_FORK |
5299 SD_BALANCE_EXEC |
5300 SD_SHARE_CPUPOWER |
5301 SD_SHARE_PKG_RESOURCES |
5302 SD_PREFER_SIBLING);
5303 if (nr_node_ids == 1)
5304 pflags &= ~SD_SERIALIZE;
5306 if (~cflags & pflags)
5307 return 0;
5309 return 1;
5312 static void free_rootdomain(struct rcu_head *rcu)
5314 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5316 cpupri_cleanup(&rd->cpupri);
5317 cpudl_cleanup(&rd->cpudl);
5318 free_cpumask_var(rd->dlo_mask);
5319 free_cpumask_var(rd->rto_mask);
5320 free_cpumask_var(rd->online);
5321 free_cpumask_var(rd->span);
5322 kfree(rd);
5325 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5327 struct root_domain *old_rd = NULL;
5328 unsigned long flags;
5330 raw_spin_lock_irqsave(&rq->lock, flags);
5332 if (rq->rd) {
5333 old_rd = rq->rd;
5335 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5336 set_rq_offline(rq);
5338 cpumask_clear_cpu(rq->cpu, old_rd->span);
5341 * If we dont want to free the old_rd yet then
5342 * set old_rd to NULL to skip the freeing later
5343 * in this function:
5345 if (!atomic_dec_and_test(&old_rd->refcount))
5346 old_rd = NULL;
5349 atomic_inc(&rd->refcount);
5350 rq->rd = rd;
5352 cpumask_set_cpu(rq->cpu, rd->span);
5353 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5354 set_rq_online(rq);
5356 raw_spin_unlock_irqrestore(&rq->lock, flags);
5358 if (old_rd)
5359 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5362 static int init_rootdomain(struct root_domain *rd)
5364 memset(rd, 0, sizeof(*rd));
5366 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5367 goto out;
5368 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5369 goto free_span;
5370 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5371 goto free_online;
5372 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5373 goto free_dlo_mask;
5375 init_dl_bw(&rd->dl_bw);
5376 if (cpudl_init(&rd->cpudl) != 0)
5377 goto free_dlo_mask;
5379 if (cpupri_init(&rd->cpupri) != 0)
5380 goto free_rto_mask;
5381 return 0;
5383 free_rto_mask:
5384 free_cpumask_var(rd->rto_mask);
5385 free_dlo_mask:
5386 free_cpumask_var(rd->dlo_mask);
5387 free_online:
5388 free_cpumask_var(rd->online);
5389 free_span:
5390 free_cpumask_var(rd->span);
5391 out:
5392 return -ENOMEM;
5396 * By default the system creates a single root-domain with all cpus as
5397 * members (mimicking the global state we have today).
5399 struct root_domain def_root_domain;
5401 static void init_defrootdomain(void)
5403 init_rootdomain(&def_root_domain);
5405 atomic_set(&def_root_domain.refcount, 1);
5408 static struct root_domain *alloc_rootdomain(void)
5410 struct root_domain *rd;
5412 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5413 if (!rd)
5414 return NULL;
5416 if (init_rootdomain(rd) != 0) {
5417 kfree(rd);
5418 return NULL;
5421 return rd;
5424 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5426 struct sched_group *tmp, *first;
5428 if (!sg)
5429 return;
5431 first = sg;
5432 do {
5433 tmp = sg->next;
5435 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5436 kfree(sg->sgp);
5438 kfree(sg);
5439 sg = tmp;
5440 } while (sg != first);
5443 static void free_sched_domain(struct rcu_head *rcu)
5445 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5448 * If its an overlapping domain it has private groups, iterate and
5449 * nuke them all.
5451 if (sd->flags & SD_OVERLAP) {
5452 free_sched_groups(sd->groups, 1);
5453 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5454 kfree(sd->groups->sgp);
5455 kfree(sd->groups);
5457 kfree(sd);
5460 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5462 call_rcu(&sd->rcu, free_sched_domain);
5465 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5467 for (; sd; sd = sd->parent)
5468 destroy_sched_domain(sd, cpu);
5472 * Keep a special pointer to the highest sched_domain that has
5473 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5474 * allows us to avoid some pointer chasing select_idle_sibling().
5476 * Also keep a unique ID per domain (we use the first cpu number in
5477 * the cpumask of the domain), this allows us to quickly tell if
5478 * two cpus are in the same cache domain, see cpus_share_cache().
5480 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5481 DEFINE_PER_CPU(int, sd_llc_size);
5482 DEFINE_PER_CPU(int, sd_llc_id);
5483 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5484 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5485 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5487 static void update_top_cache_domain(int cpu)
5489 struct sched_domain *sd;
5490 struct sched_domain *busy_sd = NULL;
5491 int id = cpu;
5492 int size = 1;
5494 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5495 if (sd) {
5496 id = cpumask_first(sched_domain_span(sd));
5497 size = cpumask_weight(sched_domain_span(sd));
5498 busy_sd = sd->parent; /* sd_busy */
5500 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5502 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5503 per_cpu(sd_llc_size, cpu) = size;
5504 per_cpu(sd_llc_id, cpu) = id;
5506 sd = lowest_flag_domain(cpu, SD_NUMA);
5507 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5509 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5510 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5514 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5515 * hold the hotplug lock.
5517 static void
5518 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5520 struct rq *rq = cpu_rq(cpu);
5521 struct sched_domain *tmp;
5523 /* Remove the sched domains which do not contribute to scheduling. */
5524 for (tmp = sd; tmp; ) {
5525 struct sched_domain *parent = tmp->parent;
5526 if (!parent)
5527 break;
5529 if (sd_parent_degenerate(tmp, parent)) {
5530 tmp->parent = parent->parent;
5531 if (parent->parent)
5532 parent->parent->child = tmp;
5534 * Transfer SD_PREFER_SIBLING down in case of a
5535 * degenerate parent; the spans match for this
5536 * so the property transfers.
5538 if (parent->flags & SD_PREFER_SIBLING)
5539 tmp->flags |= SD_PREFER_SIBLING;
5540 destroy_sched_domain(parent, cpu);
5541 } else
5542 tmp = tmp->parent;
5545 if (sd && sd_degenerate(sd)) {
5546 tmp = sd;
5547 sd = sd->parent;
5548 destroy_sched_domain(tmp, cpu);
5549 if (sd)
5550 sd->child = NULL;
5553 sched_domain_debug(sd, cpu);
5555 rq_attach_root(rq, rd);
5556 tmp = rq->sd;
5557 rcu_assign_pointer(rq->sd, sd);
5558 destroy_sched_domains(tmp, cpu);
5560 update_top_cache_domain(cpu);
5563 /* cpus with isolated domains */
5564 static cpumask_var_t cpu_isolated_map;
5566 /* Setup the mask of cpus configured for isolated domains */
5567 static int __init isolated_cpu_setup(char *str)
5569 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5570 cpulist_parse(str, cpu_isolated_map);
5571 return 1;
5574 __setup("isolcpus=", isolated_cpu_setup);
5576 static const struct cpumask *cpu_cpu_mask(int cpu)
5578 return cpumask_of_node(cpu_to_node(cpu));
5581 struct sd_data {
5582 struct sched_domain **__percpu sd;
5583 struct sched_group **__percpu sg;
5584 struct sched_group_power **__percpu sgp;
5587 struct s_data {
5588 struct sched_domain ** __percpu sd;
5589 struct root_domain *rd;
5592 enum s_alloc {
5593 sa_rootdomain,
5594 sa_sd,
5595 sa_sd_storage,
5596 sa_none,
5599 struct sched_domain_topology_level;
5601 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5602 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5604 #define SDTL_OVERLAP 0x01
5606 struct sched_domain_topology_level {
5607 sched_domain_init_f init;
5608 sched_domain_mask_f mask;
5609 int flags;
5610 int numa_level;
5611 struct sd_data data;
5615 * Build an iteration mask that can exclude certain CPUs from the upwards
5616 * domain traversal.
5618 * Asymmetric node setups can result in situations where the domain tree is of
5619 * unequal depth, make sure to skip domains that already cover the entire
5620 * range.
5622 * In that case build_sched_domains() will have terminated the iteration early
5623 * and our sibling sd spans will be empty. Domains should always include the
5624 * cpu they're built on, so check that.
5627 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5629 const struct cpumask *span = sched_domain_span(sd);
5630 struct sd_data *sdd = sd->private;
5631 struct sched_domain *sibling;
5632 int i;
5634 for_each_cpu(i, span) {
5635 sibling = *per_cpu_ptr(sdd->sd, i);
5636 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5637 continue;
5639 cpumask_set_cpu(i, sched_group_mask(sg));
5644 * Return the canonical balance cpu for this group, this is the first cpu
5645 * of this group that's also in the iteration mask.
5647 int group_balance_cpu(struct sched_group *sg)
5649 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5652 static int
5653 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5655 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5656 const struct cpumask *span = sched_domain_span(sd);
5657 struct cpumask *covered = sched_domains_tmpmask;
5658 struct sd_data *sdd = sd->private;
5659 struct sched_domain *child;
5660 int i;
5662 cpumask_clear(covered);
5664 for_each_cpu(i, span) {
5665 struct cpumask *sg_span;
5667 if (cpumask_test_cpu(i, covered))
5668 continue;
5670 child = *per_cpu_ptr(sdd->sd, i);
5672 /* See the comment near build_group_mask(). */
5673 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5674 continue;
5676 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5677 GFP_KERNEL, cpu_to_node(cpu));
5679 if (!sg)
5680 goto fail;
5682 sg_span = sched_group_cpus(sg);
5683 if (child->child) {
5684 child = child->child;
5685 cpumask_copy(sg_span, sched_domain_span(child));
5686 } else
5687 cpumask_set_cpu(i, sg_span);
5689 cpumask_or(covered, covered, sg_span);
5691 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5692 if (atomic_inc_return(&sg->sgp->ref) == 1)
5693 build_group_mask(sd, sg);
5696 * Initialize sgp->power such that even if we mess up the
5697 * domains and no possible iteration will get us here, we won't
5698 * die on a /0 trap.
5700 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5701 sg->sgp->power_orig = sg->sgp->power;
5704 * Make sure the first group of this domain contains the
5705 * canonical balance cpu. Otherwise the sched_domain iteration
5706 * breaks. See update_sg_lb_stats().
5708 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5709 group_balance_cpu(sg) == cpu)
5710 groups = sg;
5712 if (!first)
5713 first = sg;
5714 if (last)
5715 last->next = sg;
5716 last = sg;
5717 last->next = first;
5719 sd->groups = groups;
5721 return 0;
5723 fail:
5724 free_sched_groups(first, 0);
5726 return -ENOMEM;
5729 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5731 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5732 struct sched_domain *child = sd->child;
5734 if (child)
5735 cpu = cpumask_first(sched_domain_span(child));
5737 if (sg) {
5738 *sg = *per_cpu_ptr(sdd->sg, cpu);
5739 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5740 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5743 return cpu;
5747 * build_sched_groups will build a circular linked list of the groups
5748 * covered by the given span, and will set each group's ->cpumask correctly,
5749 * and ->cpu_power to 0.
5751 * Assumes the sched_domain tree is fully constructed
5753 static int
5754 build_sched_groups(struct sched_domain *sd, int cpu)
5756 struct sched_group *first = NULL, *last = NULL;
5757 struct sd_data *sdd = sd->private;
5758 const struct cpumask *span = sched_domain_span(sd);
5759 struct cpumask *covered;
5760 int i;
5762 get_group(cpu, sdd, &sd->groups);
5763 atomic_inc(&sd->groups->ref);
5765 if (cpu != cpumask_first(span))
5766 return 0;
5768 lockdep_assert_held(&sched_domains_mutex);
5769 covered = sched_domains_tmpmask;
5771 cpumask_clear(covered);
5773 for_each_cpu(i, span) {
5774 struct sched_group *sg;
5775 int group, j;
5777 if (cpumask_test_cpu(i, covered))
5778 continue;
5780 group = get_group(i, sdd, &sg);
5781 cpumask_clear(sched_group_cpus(sg));
5782 sg->sgp->power = 0;
5783 cpumask_setall(sched_group_mask(sg));
5785 for_each_cpu(j, span) {
5786 if (get_group(j, sdd, NULL) != group)
5787 continue;
5789 cpumask_set_cpu(j, covered);
5790 cpumask_set_cpu(j, sched_group_cpus(sg));
5793 if (!first)
5794 first = sg;
5795 if (last)
5796 last->next = sg;
5797 last = sg;
5799 last->next = first;
5801 return 0;
5805 * Initialize sched groups cpu_power.
5807 * cpu_power indicates the capacity of sched group, which is used while
5808 * distributing the load between different sched groups in a sched domain.
5809 * Typically cpu_power for all the groups in a sched domain will be same unless
5810 * there are asymmetries in the topology. If there are asymmetries, group
5811 * having more cpu_power will pickup more load compared to the group having
5812 * less cpu_power.
5814 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5816 struct sched_group *sg = sd->groups;
5818 WARN_ON(!sg);
5820 do {
5821 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5822 sg = sg->next;
5823 } while (sg != sd->groups);
5825 if (cpu != group_balance_cpu(sg))
5826 return;
5828 update_group_power(sd, cpu);
5829 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5832 int __weak arch_sd_sibling_asym_packing(void)
5834 return 0*SD_ASYM_PACKING;
5838 * Initializers for schedule domains
5839 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5842 #ifdef CONFIG_SCHED_DEBUG
5843 # define SD_INIT_NAME(sd, type) sd->name = #type
5844 #else
5845 # define SD_INIT_NAME(sd, type) do { } while (0)
5846 #endif
5848 #define SD_INIT_FUNC(type) \
5849 static noinline struct sched_domain * \
5850 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5852 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5853 *sd = SD_##type##_INIT; \
5854 SD_INIT_NAME(sd, type); \
5855 sd->private = &tl->data; \
5856 return sd; \
5859 SD_INIT_FUNC(CPU)
5860 #ifdef CONFIG_SCHED_SMT
5861 SD_INIT_FUNC(SIBLING)
5862 #endif
5863 #ifdef CONFIG_SCHED_MC
5864 SD_INIT_FUNC(MC)
5865 #endif
5866 #ifdef CONFIG_SCHED_BOOK
5867 SD_INIT_FUNC(BOOK)
5868 #endif
5870 static int default_relax_domain_level = -1;
5871 int sched_domain_level_max;
5873 static int __init setup_relax_domain_level(char *str)
5875 if (kstrtoint(str, 0, &default_relax_domain_level))
5876 pr_warn("Unable to set relax_domain_level\n");
5878 return 1;
5880 __setup("relax_domain_level=", setup_relax_domain_level);
5882 static void set_domain_attribute(struct sched_domain *sd,
5883 struct sched_domain_attr *attr)
5885 int request;
5887 if (!attr || attr->relax_domain_level < 0) {
5888 if (default_relax_domain_level < 0)
5889 return;
5890 else
5891 request = default_relax_domain_level;
5892 } else
5893 request = attr->relax_domain_level;
5894 if (request < sd->level) {
5895 /* turn off idle balance on this domain */
5896 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5897 } else {
5898 /* turn on idle balance on this domain */
5899 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5903 static void __sdt_free(const struct cpumask *cpu_map);
5904 static int __sdt_alloc(const struct cpumask *cpu_map);
5906 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5907 const struct cpumask *cpu_map)
5909 switch (what) {
5910 case sa_rootdomain:
5911 if (!atomic_read(&d->rd->refcount))
5912 free_rootdomain(&d->rd->rcu); /* fall through */
5913 case sa_sd:
5914 free_percpu(d->sd); /* fall through */
5915 case sa_sd_storage:
5916 __sdt_free(cpu_map); /* fall through */
5917 case sa_none:
5918 break;
5922 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5923 const struct cpumask *cpu_map)
5925 memset(d, 0, sizeof(*d));
5927 if (__sdt_alloc(cpu_map))
5928 return sa_sd_storage;
5929 d->sd = alloc_percpu(struct sched_domain *);
5930 if (!d->sd)
5931 return sa_sd_storage;
5932 d->rd = alloc_rootdomain();
5933 if (!d->rd)
5934 return sa_sd;
5935 return sa_rootdomain;
5939 * NULL the sd_data elements we've used to build the sched_domain and
5940 * sched_group structure so that the subsequent __free_domain_allocs()
5941 * will not free the data we're using.
5943 static void claim_allocations(int cpu, struct sched_domain *sd)
5945 struct sd_data *sdd = sd->private;
5947 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5948 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5950 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5951 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5953 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5954 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5957 #ifdef CONFIG_SCHED_SMT
5958 static const struct cpumask *cpu_smt_mask(int cpu)
5960 return topology_thread_cpumask(cpu);
5962 #endif
5965 * Topology list, bottom-up.
5967 static struct sched_domain_topology_level default_topology[] = {
5968 #ifdef CONFIG_SCHED_SMT
5969 { sd_init_SIBLING, cpu_smt_mask, },
5970 #endif
5971 #ifdef CONFIG_SCHED_MC
5972 { sd_init_MC, cpu_coregroup_mask, },
5973 #endif
5974 #ifdef CONFIG_SCHED_BOOK
5975 { sd_init_BOOK, cpu_book_mask, },
5976 #endif
5977 { sd_init_CPU, cpu_cpu_mask, },
5978 { NULL, },
5981 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5983 #define for_each_sd_topology(tl) \
5984 for (tl = sched_domain_topology; tl->init; tl++)
5986 #ifdef CONFIG_NUMA
5988 static int sched_domains_numa_levels;
5989 static int *sched_domains_numa_distance;
5990 static struct cpumask ***sched_domains_numa_masks;
5991 static int sched_domains_curr_level;
5993 static inline int sd_local_flags(int level)
5995 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5996 return 0;
5998 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6001 static struct sched_domain *
6002 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6004 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6005 int level = tl->numa_level;
6006 int sd_weight = cpumask_weight(
6007 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6009 *sd = (struct sched_domain){
6010 .min_interval = sd_weight,
6011 .max_interval = 2*sd_weight,
6012 .busy_factor = 32,
6013 .imbalance_pct = 125,
6014 .cache_nice_tries = 2,
6015 .busy_idx = 3,
6016 .idle_idx = 2,
6017 .newidle_idx = 0,
6018 .wake_idx = 0,
6019 .forkexec_idx = 0,
6021 .flags = 1*SD_LOAD_BALANCE
6022 | 1*SD_BALANCE_NEWIDLE
6023 | 0*SD_BALANCE_EXEC
6024 | 0*SD_BALANCE_FORK
6025 | 0*SD_BALANCE_WAKE
6026 | 0*SD_WAKE_AFFINE
6027 | 0*SD_SHARE_CPUPOWER
6028 | 0*SD_SHARE_PKG_RESOURCES
6029 | 1*SD_SERIALIZE
6030 | 0*SD_PREFER_SIBLING
6031 | 1*SD_NUMA
6032 | sd_local_flags(level)
6034 .last_balance = jiffies,
6035 .balance_interval = sd_weight,
6037 SD_INIT_NAME(sd, NUMA);
6038 sd->private = &tl->data;
6041 * Ugly hack to pass state to sd_numa_mask()...
6043 sched_domains_curr_level = tl->numa_level;
6045 return sd;
6048 static const struct cpumask *sd_numa_mask(int cpu)
6050 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6053 static void sched_numa_warn(const char *str)
6055 static int done = false;
6056 int i,j;
6058 if (done)
6059 return;
6061 done = true;
6063 printk(KERN_WARNING "ERROR: %s\n\n", str);
6065 for (i = 0; i < nr_node_ids; i++) {
6066 printk(KERN_WARNING " ");
6067 for (j = 0; j < nr_node_ids; j++)
6068 printk(KERN_CONT "%02d ", node_distance(i,j));
6069 printk(KERN_CONT "\n");
6071 printk(KERN_WARNING "\n");
6074 static bool find_numa_distance(int distance)
6076 int i;
6078 if (distance == node_distance(0, 0))
6079 return true;
6081 for (i = 0; i < sched_domains_numa_levels; i++) {
6082 if (sched_domains_numa_distance[i] == distance)
6083 return true;
6086 return false;
6089 static void sched_init_numa(void)
6091 int next_distance, curr_distance = node_distance(0, 0);
6092 struct sched_domain_topology_level *tl;
6093 int level = 0;
6094 int i, j, k;
6096 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6097 if (!sched_domains_numa_distance)
6098 return;
6101 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6102 * unique distances in the node_distance() table.
6104 * Assumes node_distance(0,j) includes all distances in
6105 * node_distance(i,j) in order to avoid cubic time.
6107 next_distance = curr_distance;
6108 for (i = 0; i < nr_node_ids; i++) {
6109 for (j = 0; j < nr_node_ids; j++) {
6110 for (k = 0; k < nr_node_ids; k++) {
6111 int distance = node_distance(i, k);
6113 if (distance > curr_distance &&
6114 (distance < next_distance ||
6115 next_distance == curr_distance))
6116 next_distance = distance;
6119 * While not a strong assumption it would be nice to know
6120 * about cases where if node A is connected to B, B is not
6121 * equally connected to A.
6123 if (sched_debug() && node_distance(k, i) != distance)
6124 sched_numa_warn("Node-distance not symmetric");
6126 if (sched_debug() && i && !find_numa_distance(distance))
6127 sched_numa_warn("Node-0 not representative");
6129 if (next_distance != curr_distance) {
6130 sched_domains_numa_distance[level++] = next_distance;
6131 sched_domains_numa_levels = level;
6132 curr_distance = next_distance;
6133 } else break;
6137 * In case of sched_debug() we verify the above assumption.
6139 if (!sched_debug())
6140 break;
6143 * 'level' contains the number of unique distances, excluding the
6144 * identity distance node_distance(i,i).
6146 * The sched_domains_numa_distance[] array includes the actual distance
6147 * numbers.
6151 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6152 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6153 * the array will contain less then 'level' members. This could be
6154 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6155 * in other functions.
6157 * We reset it to 'level' at the end of this function.
6159 sched_domains_numa_levels = 0;
6161 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6162 if (!sched_domains_numa_masks)
6163 return;
6166 * Now for each level, construct a mask per node which contains all
6167 * cpus of nodes that are that many hops away from us.
6169 for (i = 0; i < level; i++) {
6170 sched_domains_numa_masks[i] =
6171 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6172 if (!sched_domains_numa_masks[i])
6173 return;
6175 for (j = 0; j < nr_node_ids; j++) {
6176 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6177 if (!mask)
6178 return;
6180 sched_domains_numa_masks[i][j] = mask;
6182 for (k = 0; k < nr_node_ids; k++) {
6183 if (node_distance(j, k) > sched_domains_numa_distance[i])
6184 continue;
6186 cpumask_or(mask, mask, cpumask_of_node(k));
6191 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6192 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6193 if (!tl)
6194 return;
6197 * Copy the default topology bits..
6199 for (i = 0; default_topology[i].init; i++)
6200 tl[i] = default_topology[i];
6203 * .. and append 'j' levels of NUMA goodness.
6205 for (j = 0; j < level; i++, j++) {
6206 tl[i] = (struct sched_domain_topology_level){
6207 .init = sd_numa_init,
6208 .mask = sd_numa_mask,
6209 .flags = SDTL_OVERLAP,
6210 .numa_level = j,
6214 sched_domain_topology = tl;
6216 sched_domains_numa_levels = level;
6219 static void sched_domains_numa_masks_set(int cpu)
6221 int i, j;
6222 int node = cpu_to_node(cpu);
6224 for (i = 0; i < sched_domains_numa_levels; i++) {
6225 for (j = 0; j < nr_node_ids; j++) {
6226 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6227 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6232 static void sched_domains_numa_masks_clear(int cpu)
6234 int i, j;
6235 for (i = 0; i < sched_domains_numa_levels; i++) {
6236 for (j = 0; j < nr_node_ids; j++)
6237 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6242 * Update sched_domains_numa_masks[level][node] array when new cpus
6243 * are onlined.
6245 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6246 unsigned long action,
6247 void *hcpu)
6249 int cpu = (long)hcpu;
6251 switch (action & ~CPU_TASKS_FROZEN) {
6252 case CPU_ONLINE:
6253 sched_domains_numa_masks_set(cpu);
6254 break;
6256 case CPU_DEAD:
6257 sched_domains_numa_masks_clear(cpu);
6258 break;
6260 default:
6261 return NOTIFY_DONE;
6264 return NOTIFY_OK;
6266 #else
6267 static inline void sched_init_numa(void)
6271 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6272 unsigned long action,
6273 void *hcpu)
6275 return 0;
6277 #endif /* CONFIG_NUMA */
6279 static int __sdt_alloc(const struct cpumask *cpu_map)
6281 struct sched_domain_topology_level *tl;
6282 int j;
6284 for_each_sd_topology(tl) {
6285 struct sd_data *sdd = &tl->data;
6287 sdd->sd = alloc_percpu(struct sched_domain *);
6288 if (!sdd->sd)
6289 return -ENOMEM;
6291 sdd->sg = alloc_percpu(struct sched_group *);
6292 if (!sdd->sg)
6293 return -ENOMEM;
6295 sdd->sgp = alloc_percpu(struct sched_group_power *);
6296 if (!sdd->sgp)
6297 return -ENOMEM;
6299 for_each_cpu(j, cpu_map) {
6300 struct sched_domain *sd;
6301 struct sched_group *sg;
6302 struct sched_group_power *sgp;
6304 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6305 GFP_KERNEL, cpu_to_node(j));
6306 if (!sd)
6307 return -ENOMEM;
6309 *per_cpu_ptr(sdd->sd, j) = sd;
6311 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6312 GFP_KERNEL, cpu_to_node(j));
6313 if (!sg)
6314 return -ENOMEM;
6316 sg->next = sg;
6318 *per_cpu_ptr(sdd->sg, j) = sg;
6320 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6321 GFP_KERNEL, cpu_to_node(j));
6322 if (!sgp)
6323 return -ENOMEM;
6325 *per_cpu_ptr(sdd->sgp, j) = sgp;
6329 return 0;
6332 static void __sdt_free(const struct cpumask *cpu_map)
6334 struct sched_domain_topology_level *tl;
6335 int j;
6337 for_each_sd_topology(tl) {
6338 struct sd_data *sdd = &tl->data;
6340 for_each_cpu(j, cpu_map) {
6341 struct sched_domain *sd;
6343 if (sdd->sd) {
6344 sd = *per_cpu_ptr(sdd->sd, j);
6345 if (sd && (sd->flags & SD_OVERLAP))
6346 free_sched_groups(sd->groups, 0);
6347 kfree(*per_cpu_ptr(sdd->sd, j));
6350 if (sdd->sg)
6351 kfree(*per_cpu_ptr(sdd->sg, j));
6352 if (sdd->sgp)
6353 kfree(*per_cpu_ptr(sdd->sgp, j));
6355 free_percpu(sdd->sd);
6356 sdd->sd = NULL;
6357 free_percpu(sdd->sg);
6358 sdd->sg = NULL;
6359 free_percpu(sdd->sgp);
6360 sdd->sgp = NULL;
6364 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6365 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6366 struct sched_domain *child, int cpu)
6368 struct sched_domain *sd = tl->init(tl, cpu);
6369 if (!sd)
6370 return child;
6372 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6373 if (child) {
6374 sd->level = child->level + 1;
6375 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6376 child->parent = sd;
6377 sd->child = child;
6379 set_domain_attribute(sd, attr);
6381 return sd;
6385 * Build sched domains for a given set of cpus and attach the sched domains
6386 * to the individual cpus
6388 static int build_sched_domains(const struct cpumask *cpu_map,
6389 struct sched_domain_attr *attr)
6391 enum s_alloc alloc_state;
6392 struct sched_domain *sd;
6393 struct s_data d;
6394 int i, ret = -ENOMEM;
6396 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6397 if (alloc_state != sa_rootdomain)
6398 goto error;
6400 /* Set up domains for cpus specified by the cpu_map. */
6401 for_each_cpu(i, cpu_map) {
6402 struct sched_domain_topology_level *tl;
6404 sd = NULL;
6405 for_each_sd_topology(tl) {
6406 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6407 if (tl == sched_domain_topology)
6408 *per_cpu_ptr(d.sd, i) = sd;
6409 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6410 sd->flags |= SD_OVERLAP;
6411 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6412 break;
6416 /* Build the groups for the domains */
6417 for_each_cpu(i, cpu_map) {
6418 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6420 if (sd->flags & SD_OVERLAP) {
6421 if (build_overlap_sched_groups(sd, i))
6422 goto error;
6423 } else {
6424 if (build_sched_groups(sd, i))
6425 goto error;
6430 /* Calculate CPU power for physical packages and nodes */
6431 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6432 if (!cpumask_test_cpu(i, cpu_map))
6433 continue;
6435 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6436 claim_allocations(i, sd);
6437 init_sched_groups_power(i, sd);
6441 /* Attach the domains */
6442 rcu_read_lock();
6443 for_each_cpu(i, cpu_map) {
6444 sd = *per_cpu_ptr(d.sd, i);
6445 cpu_attach_domain(sd, d.rd, i);
6447 rcu_read_unlock();
6449 ret = 0;
6450 error:
6451 __free_domain_allocs(&d, alloc_state, cpu_map);
6452 return ret;
6455 static cpumask_var_t *doms_cur; /* current sched domains */
6456 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6457 static struct sched_domain_attr *dattr_cur;
6458 /* attribues of custom domains in 'doms_cur' */
6461 * Special case: If a kmalloc of a doms_cur partition (array of
6462 * cpumask) fails, then fallback to a single sched domain,
6463 * as determined by the single cpumask fallback_doms.
6465 static cpumask_var_t fallback_doms;
6468 * arch_update_cpu_topology lets virtualized architectures update the
6469 * cpu core maps. It is supposed to return 1 if the topology changed
6470 * or 0 if it stayed the same.
6472 int __weak arch_update_cpu_topology(void)
6474 return 0;
6477 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6479 int i;
6480 cpumask_var_t *doms;
6482 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6483 if (!doms)
6484 return NULL;
6485 for (i = 0; i < ndoms; i++) {
6486 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6487 free_sched_domains(doms, i);
6488 return NULL;
6491 return doms;
6494 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6496 unsigned int i;
6497 for (i = 0; i < ndoms; i++)
6498 free_cpumask_var(doms[i]);
6499 kfree(doms);
6503 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6504 * For now this just excludes isolated cpus, but could be used to
6505 * exclude other special cases in the future.
6507 static int init_sched_domains(const struct cpumask *cpu_map)
6509 int err;
6511 arch_update_cpu_topology();
6512 ndoms_cur = 1;
6513 doms_cur = alloc_sched_domains(ndoms_cur);
6514 if (!doms_cur)
6515 doms_cur = &fallback_doms;
6516 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6517 err = build_sched_domains(doms_cur[0], NULL);
6518 register_sched_domain_sysctl();
6520 return err;
6524 * Detach sched domains from a group of cpus specified in cpu_map
6525 * These cpus will now be attached to the NULL domain
6527 static void detach_destroy_domains(const struct cpumask *cpu_map)
6529 int i;
6531 rcu_read_lock();
6532 for_each_cpu(i, cpu_map)
6533 cpu_attach_domain(NULL, &def_root_domain, i);
6534 rcu_read_unlock();
6537 /* handle null as "default" */
6538 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6539 struct sched_domain_attr *new, int idx_new)
6541 struct sched_domain_attr tmp;
6543 /* fast path */
6544 if (!new && !cur)
6545 return 1;
6547 tmp = SD_ATTR_INIT;
6548 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6549 new ? (new + idx_new) : &tmp,
6550 sizeof(struct sched_domain_attr));
6554 * Partition sched domains as specified by the 'ndoms_new'
6555 * cpumasks in the array doms_new[] of cpumasks. This compares
6556 * doms_new[] to the current sched domain partitioning, doms_cur[].
6557 * It destroys each deleted domain and builds each new domain.
6559 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6560 * The masks don't intersect (don't overlap.) We should setup one
6561 * sched domain for each mask. CPUs not in any of the cpumasks will
6562 * not be load balanced. If the same cpumask appears both in the
6563 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6564 * it as it is.
6566 * The passed in 'doms_new' should be allocated using
6567 * alloc_sched_domains. This routine takes ownership of it and will
6568 * free_sched_domains it when done with it. If the caller failed the
6569 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6570 * and partition_sched_domains() will fallback to the single partition
6571 * 'fallback_doms', it also forces the domains to be rebuilt.
6573 * If doms_new == NULL it will be replaced with cpu_online_mask.
6574 * ndoms_new == 0 is a special case for destroying existing domains,
6575 * and it will not create the default domain.
6577 * Call with hotplug lock held
6579 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6580 struct sched_domain_attr *dattr_new)
6582 int i, j, n;
6583 int new_topology;
6585 mutex_lock(&sched_domains_mutex);
6587 /* always unregister in case we don't destroy any domains */
6588 unregister_sched_domain_sysctl();
6590 /* Let architecture update cpu core mappings. */
6591 new_topology = arch_update_cpu_topology();
6593 n = doms_new ? ndoms_new : 0;
6595 /* Destroy deleted domains */
6596 for (i = 0; i < ndoms_cur; i++) {
6597 for (j = 0; j < n && !new_topology; j++) {
6598 if (cpumask_equal(doms_cur[i], doms_new[j])
6599 && dattrs_equal(dattr_cur, i, dattr_new, j))
6600 goto match1;
6602 /* no match - a current sched domain not in new doms_new[] */
6603 detach_destroy_domains(doms_cur[i]);
6604 match1:
6608 n = ndoms_cur;
6609 if (doms_new == NULL) {
6610 n = 0;
6611 doms_new = &fallback_doms;
6612 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6613 WARN_ON_ONCE(dattr_new);
6616 /* Build new domains */
6617 for (i = 0; i < ndoms_new; i++) {
6618 for (j = 0; j < n && !new_topology; j++) {
6619 if (cpumask_equal(doms_new[i], doms_cur[j])
6620 && dattrs_equal(dattr_new, i, dattr_cur, j))
6621 goto match2;
6623 /* no match - add a new doms_new */
6624 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6625 match2:
6629 /* Remember the new sched domains */
6630 if (doms_cur != &fallback_doms)
6631 free_sched_domains(doms_cur, ndoms_cur);
6632 kfree(dattr_cur); /* kfree(NULL) is safe */
6633 doms_cur = doms_new;
6634 dattr_cur = dattr_new;
6635 ndoms_cur = ndoms_new;
6637 register_sched_domain_sysctl();
6639 mutex_unlock(&sched_domains_mutex);
6642 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6645 * Update cpusets according to cpu_active mask. If cpusets are
6646 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6647 * around partition_sched_domains().
6649 * If we come here as part of a suspend/resume, don't touch cpusets because we
6650 * want to restore it back to its original state upon resume anyway.
6652 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6653 void *hcpu)
6655 switch (action) {
6656 case CPU_ONLINE_FROZEN:
6657 case CPU_DOWN_FAILED_FROZEN:
6660 * num_cpus_frozen tracks how many CPUs are involved in suspend
6661 * resume sequence. As long as this is not the last online
6662 * operation in the resume sequence, just build a single sched
6663 * domain, ignoring cpusets.
6665 num_cpus_frozen--;
6666 if (likely(num_cpus_frozen)) {
6667 partition_sched_domains(1, NULL, NULL);
6668 break;
6672 * This is the last CPU online operation. So fall through and
6673 * restore the original sched domains by considering the
6674 * cpuset configurations.
6677 case CPU_ONLINE:
6678 case CPU_DOWN_FAILED:
6679 cpuset_update_active_cpus(true);
6680 break;
6681 default:
6682 return NOTIFY_DONE;
6684 return NOTIFY_OK;
6687 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6688 void *hcpu)
6690 switch (action) {
6691 case CPU_DOWN_PREPARE:
6692 cpuset_update_active_cpus(false);
6693 break;
6694 case CPU_DOWN_PREPARE_FROZEN:
6695 num_cpus_frozen++;
6696 partition_sched_domains(1, NULL, NULL);
6697 break;
6698 default:
6699 return NOTIFY_DONE;
6701 return NOTIFY_OK;
6704 void __init sched_init_smp(void)
6706 cpumask_var_t non_isolated_cpus;
6708 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6709 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6711 sched_init_numa();
6714 * There's no userspace yet to cause hotplug operations; hence all the
6715 * cpu masks are stable and all blatant races in the below code cannot
6716 * happen.
6718 mutex_lock(&sched_domains_mutex);
6719 init_sched_domains(cpu_active_mask);
6720 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6721 if (cpumask_empty(non_isolated_cpus))
6722 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6723 mutex_unlock(&sched_domains_mutex);
6725 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6726 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6727 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6729 init_hrtick();
6731 /* Move init over to a non-isolated CPU */
6732 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6733 BUG();
6734 sched_init_granularity();
6735 free_cpumask_var(non_isolated_cpus);
6737 init_sched_rt_class();
6738 init_sched_dl_class();
6740 #else
6741 void __init sched_init_smp(void)
6743 sched_init_granularity();
6745 #endif /* CONFIG_SMP */
6747 const_debug unsigned int sysctl_timer_migration = 1;
6749 int in_sched_functions(unsigned long addr)
6751 return in_lock_functions(addr) ||
6752 (addr >= (unsigned long)__sched_text_start
6753 && addr < (unsigned long)__sched_text_end);
6756 #ifdef CONFIG_CGROUP_SCHED
6758 * Default task group.
6759 * Every task in system belongs to this group at bootup.
6761 struct task_group root_task_group;
6762 LIST_HEAD(task_groups);
6763 #endif
6765 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6767 void __init sched_init(void)
6769 int i, j;
6770 unsigned long alloc_size = 0, ptr;
6772 #ifdef CONFIG_FAIR_GROUP_SCHED
6773 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6774 #endif
6775 #ifdef CONFIG_RT_GROUP_SCHED
6776 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6777 #endif
6778 #ifdef CONFIG_CPUMASK_OFFSTACK
6779 alloc_size += num_possible_cpus() * cpumask_size();
6780 #endif
6781 if (alloc_size) {
6782 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6784 #ifdef CONFIG_FAIR_GROUP_SCHED
6785 root_task_group.se = (struct sched_entity **)ptr;
6786 ptr += nr_cpu_ids * sizeof(void **);
6788 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6789 ptr += nr_cpu_ids * sizeof(void **);
6791 #endif /* CONFIG_FAIR_GROUP_SCHED */
6792 #ifdef CONFIG_RT_GROUP_SCHED
6793 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6794 ptr += nr_cpu_ids * sizeof(void **);
6796 root_task_group.rt_rq = (struct rt_rq **)ptr;
6797 ptr += nr_cpu_ids * sizeof(void **);
6799 #endif /* CONFIG_RT_GROUP_SCHED */
6800 #ifdef CONFIG_CPUMASK_OFFSTACK
6801 for_each_possible_cpu(i) {
6802 per_cpu(load_balance_mask, i) = (void *)ptr;
6803 ptr += cpumask_size();
6805 #endif /* CONFIG_CPUMASK_OFFSTACK */
6808 init_rt_bandwidth(&def_rt_bandwidth,
6809 global_rt_period(), global_rt_runtime());
6810 init_dl_bandwidth(&def_dl_bandwidth,
6811 global_rt_period(), global_rt_runtime());
6813 #ifdef CONFIG_SMP
6814 init_defrootdomain();
6815 #endif
6817 #ifdef CONFIG_RT_GROUP_SCHED
6818 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6819 global_rt_period(), global_rt_runtime());
6820 #endif /* CONFIG_RT_GROUP_SCHED */
6822 #ifdef CONFIG_CGROUP_SCHED
6823 list_add(&root_task_group.list, &task_groups);
6824 INIT_LIST_HEAD(&root_task_group.children);
6825 INIT_LIST_HEAD(&root_task_group.siblings);
6826 autogroup_init(&init_task);
6828 #endif /* CONFIG_CGROUP_SCHED */
6830 for_each_possible_cpu(i) {
6831 struct rq *rq;
6833 rq = cpu_rq(i);
6834 raw_spin_lock_init(&rq->lock);
6835 rq->nr_running = 0;
6836 rq->calc_load_active = 0;
6837 rq->calc_load_update = jiffies + LOAD_FREQ;
6838 init_cfs_rq(&rq->cfs);
6839 init_rt_rq(&rq->rt, rq);
6840 init_dl_rq(&rq->dl, rq);
6841 #ifdef CONFIG_FAIR_GROUP_SCHED
6842 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6843 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6845 * How much cpu bandwidth does root_task_group get?
6847 * In case of task-groups formed thr' the cgroup filesystem, it
6848 * gets 100% of the cpu resources in the system. This overall
6849 * system cpu resource is divided among the tasks of
6850 * root_task_group and its child task-groups in a fair manner,
6851 * based on each entity's (task or task-group's) weight
6852 * (se->load.weight).
6854 * In other words, if root_task_group has 10 tasks of weight
6855 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6856 * then A0's share of the cpu resource is:
6858 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6860 * We achieve this by letting root_task_group's tasks sit
6861 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6863 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6864 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6865 #endif /* CONFIG_FAIR_GROUP_SCHED */
6867 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6868 #ifdef CONFIG_RT_GROUP_SCHED
6869 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6870 #endif
6872 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6873 rq->cpu_load[j] = 0;
6875 rq->last_load_update_tick = jiffies;
6877 #ifdef CONFIG_SMP
6878 rq->sd = NULL;
6879 rq->rd = NULL;
6880 rq->cpu_power = SCHED_POWER_SCALE;
6881 rq->post_schedule = 0;
6882 rq->active_balance = 0;
6883 rq->next_balance = jiffies;
6884 rq->push_cpu = 0;
6885 rq->cpu = i;
6886 rq->online = 0;
6887 rq->idle_stamp = 0;
6888 rq->avg_idle = 2*sysctl_sched_migration_cost;
6889 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6891 INIT_LIST_HEAD(&rq->cfs_tasks);
6893 rq_attach_root(rq, &def_root_domain);
6894 #ifdef CONFIG_NO_HZ_COMMON
6895 rq->nohz_flags = 0;
6896 #endif
6897 #ifdef CONFIG_NO_HZ_FULL
6898 rq->last_sched_tick = 0;
6899 #endif
6900 #endif
6901 init_rq_hrtick(rq);
6902 atomic_set(&rq->nr_iowait, 0);
6905 set_load_weight(&init_task);
6907 #ifdef CONFIG_PREEMPT_NOTIFIERS
6908 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6909 #endif
6912 * The boot idle thread does lazy MMU switching as well:
6914 atomic_inc(&init_mm.mm_count);
6915 enter_lazy_tlb(&init_mm, current);
6918 * Make us the idle thread. Technically, schedule() should not be
6919 * called from this thread, however somewhere below it might be,
6920 * but because we are the idle thread, we just pick up running again
6921 * when this runqueue becomes "idle".
6923 init_idle(current, smp_processor_id());
6925 calc_load_update = jiffies + LOAD_FREQ;
6928 * During early bootup we pretend to be a normal task:
6930 current->sched_class = &fair_sched_class;
6932 #ifdef CONFIG_SMP
6933 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6934 /* May be allocated at isolcpus cmdline parse time */
6935 if (cpu_isolated_map == NULL)
6936 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6937 idle_thread_set_boot_cpu();
6938 #endif
6939 init_sched_fair_class();
6941 scheduler_running = 1;
6944 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6945 static inline int preempt_count_equals(int preempt_offset)
6947 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6949 return (nested == preempt_offset);
6952 void __might_sleep(const char *file, int line, int preempt_offset)
6954 static unsigned long prev_jiffy; /* ratelimiting */
6956 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6957 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6958 !is_idle_task(current)) ||
6959 system_state != SYSTEM_RUNNING || oops_in_progress)
6960 return;
6961 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6962 return;
6963 prev_jiffy = jiffies;
6965 printk(KERN_ERR
6966 "BUG: sleeping function called from invalid context at %s:%d\n",
6967 file, line);
6968 printk(KERN_ERR
6969 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6970 in_atomic(), irqs_disabled(),
6971 current->pid, current->comm);
6973 debug_show_held_locks(current);
6974 if (irqs_disabled())
6975 print_irqtrace_events(current);
6976 #ifdef CONFIG_DEBUG_PREEMPT
6977 if (!preempt_count_equals(preempt_offset)) {
6978 pr_err("Preemption disabled at:");
6979 print_ip_sym(current->preempt_disable_ip);
6980 pr_cont("\n");
6982 #endif
6983 dump_stack();
6985 EXPORT_SYMBOL(__might_sleep);
6986 #endif
6988 #ifdef CONFIG_MAGIC_SYSRQ
6989 static void normalize_task(struct rq *rq, struct task_struct *p)
6991 const struct sched_class *prev_class = p->sched_class;
6992 struct sched_attr attr = {
6993 .sched_policy = SCHED_NORMAL,
6995 int old_prio = p->prio;
6996 int on_rq;
6998 on_rq = p->on_rq;
6999 if (on_rq)
7000 dequeue_task(rq, p, 0);
7001 __setscheduler(rq, p, &attr);
7002 if (on_rq) {
7003 enqueue_task(rq, p, 0);
7004 resched_task(rq->curr);
7007 check_class_changed(rq, p, prev_class, old_prio);
7010 void normalize_rt_tasks(void)
7012 struct task_struct *g, *p;
7013 unsigned long flags;
7014 struct rq *rq;
7016 read_lock_irqsave(&tasklist_lock, flags);
7017 do_each_thread(g, p) {
7019 * Only normalize user tasks:
7021 if (!p->mm)
7022 continue;
7024 p->se.exec_start = 0;
7025 #ifdef CONFIG_SCHEDSTATS
7026 p->se.statistics.wait_start = 0;
7027 p->se.statistics.sleep_start = 0;
7028 p->se.statistics.block_start = 0;
7029 #endif
7031 if (!dl_task(p) && !rt_task(p)) {
7033 * Renice negative nice level userspace
7034 * tasks back to 0:
7036 if (task_nice(p) < 0 && p->mm)
7037 set_user_nice(p, 0);
7038 continue;
7041 raw_spin_lock(&p->pi_lock);
7042 rq = __task_rq_lock(p);
7044 normalize_task(rq, p);
7046 __task_rq_unlock(rq);
7047 raw_spin_unlock(&p->pi_lock);
7048 } while_each_thread(g, p);
7050 read_unlock_irqrestore(&tasklist_lock, flags);
7053 #endif /* CONFIG_MAGIC_SYSRQ */
7055 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7057 * These functions are only useful for the IA64 MCA handling, or kdb.
7059 * They can only be called when the whole system has been
7060 * stopped - every CPU needs to be quiescent, and no scheduling
7061 * activity can take place. Using them for anything else would
7062 * be a serious bug, and as a result, they aren't even visible
7063 * under any other configuration.
7067 * curr_task - return the current task for a given cpu.
7068 * @cpu: the processor in question.
7070 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7072 * Return: The current task for @cpu.
7074 struct task_struct *curr_task(int cpu)
7076 return cpu_curr(cpu);
7079 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7081 #ifdef CONFIG_IA64
7083 * set_curr_task - set the current task for a given cpu.
7084 * @cpu: the processor in question.
7085 * @p: the task pointer to set.
7087 * Description: This function must only be used when non-maskable interrupts
7088 * are serviced on a separate stack. It allows the architecture to switch the
7089 * notion of the current task on a cpu in a non-blocking manner. This function
7090 * must be called with all CPU's synchronized, and interrupts disabled, the
7091 * and caller must save the original value of the current task (see
7092 * curr_task() above) and restore that value before reenabling interrupts and
7093 * re-starting the system.
7095 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7097 void set_curr_task(int cpu, struct task_struct *p)
7099 cpu_curr(cpu) = p;
7102 #endif
7104 #ifdef CONFIG_CGROUP_SCHED
7105 /* task_group_lock serializes the addition/removal of task groups */
7106 static DEFINE_SPINLOCK(task_group_lock);
7108 static void free_sched_group(struct task_group *tg)
7110 free_fair_sched_group(tg);
7111 free_rt_sched_group(tg);
7112 autogroup_free(tg);
7113 kfree(tg);
7116 /* allocate runqueue etc for a new task group */
7117 struct task_group *sched_create_group(struct task_group *parent)
7119 struct task_group *tg;
7121 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7122 if (!tg)
7123 return ERR_PTR(-ENOMEM);
7125 if (!alloc_fair_sched_group(tg, parent))
7126 goto err;
7128 if (!alloc_rt_sched_group(tg, parent))
7129 goto err;
7131 return tg;
7133 err:
7134 free_sched_group(tg);
7135 return ERR_PTR(-ENOMEM);
7138 void sched_online_group(struct task_group *tg, struct task_group *parent)
7140 unsigned long flags;
7142 spin_lock_irqsave(&task_group_lock, flags);
7143 list_add_rcu(&tg->list, &task_groups);
7145 WARN_ON(!parent); /* root should already exist */
7147 tg->parent = parent;
7148 INIT_LIST_HEAD(&tg->children);
7149 list_add_rcu(&tg->siblings, &parent->children);
7150 spin_unlock_irqrestore(&task_group_lock, flags);
7153 /* rcu callback to free various structures associated with a task group */
7154 static void free_sched_group_rcu(struct rcu_head *rhp)
7156 /* now it should be safe to free those cfs_rqs */
7157 free_sched_group(container_of(rhp, struct task_group, rcu));
7160 /* Destroy runqueue etc associated with a task group */
7161 void sched_destroy_group(struct task_group *tg)
7163 /* wait for possible concurrent references to cfs_rqs complete */
7164 call_rcu(&tg->rcu, free_sched_group_rcu);
7167 void sched_offline_group(struct task_group *tg)
7169 unsigned long flags;
7170 int i;
7172 /* end participation in shares distribution */
7173 for_each_possible_cpu(i)
7174 unregister_fair_sched_group(tg, i);
7176 spin_lock_irqsave(&task_group_lock, flags);
7177 list_del_rcu(&tg->list);
7178 list_del_rcu(&tg->siblings);
7179 spin_unlock_irqrestore(&task_group_lock, flags);
7182 /* change task's runqueue when it moves between groups.
7183 * The caller of this function should have put the task in its new group
7184 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7185 * reflect its new group.
7187 void sched_move_task(struct task_struct *tsk)
7189 struct task_group *tg;
7190 int on_rq, running;
7191 unsigned long flags;
7192 struct rq *rq;
7194 rq = task_rq_lock(tsk, &flags);
7196 running = task_current(rq, tsk);
7197 on_rq = tsk->on_rq;
7199 if (on_rq)
7200 dequeue_task(rq, tsk, 0);
7201 if (unlikely(running))
7202 tsk->sched_class->put_prev_task(rq, tsk);
7204 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7205 lockdep_is_held(&tsk->sighand->siglock)),
7206 struct task_group, css);
7207 tg = autogroup_task_group(tsk, tg);
7208 tsk->sched_task_group = tg;
7210 #ifdef CONFIG_FAIR_GROUP_SCHED
7211 if (tsk->sched_class->task_move_group)
7212 tsk->sched_class->task_move_group(tsk, on_rq);
7213 else
7214 #endif
7215 set_task_rq(tsk, task_cpu(tsk));
7217 if (unlikely(running))
7218 tsk->sched_class->set_curr_task(rq);
7219 if (on_rq)
7220 enqueue_task(rq, tsk, 0);
7222 task_rq_unlock(rq, tsk, &flags);
7224 #endif /* CONFIG_CGROUP_SCHED */
7226 #ifdef CONFIG_RT_GROUP_SCHED
7228 * Ensure that the real time constraints are schedulable.
7230 static DEFINE_MUTEX(rt_constraints_mutex);
7232 /* Must be called with tasklist_lock held */
7233 static inline int tg_has_rt_tasks(struct task_group *tg)
7235 struct task_struct *g, *p;
7237 do_each_thread(g, p) {
7238 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7239 return 1;
7240 } while_each_thread(g, p);
7242 return 0;
7245 struct rt_schedulable_data {
7246 struct task_group *tg;
7247 u64 rt_period;
7248 u64 rt_runtime;
7251 static int tg_rt_schedulable(struct task_group *tg, void *data)
7253 struct rt_schedulable_data *d = data;
7254 struct task_group *child;
7255 unsigned long total, sum = 0;
7256 u64 period, runtime;
7258 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7259 runtime = tg->rt_bandwidth.rt_runtime;
7261 if (tg == d->tg) {
7262 period = d->rt_period;
7263 runtime = d->rt_runtime;
7267 * Cannot have more runtime than the period.
7269 if (runtime > period && runtime != RUNTIME_INF)
7270 return -EINVAL;
7273 * Ensure we don't starve existing RT tasks.
7275 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7276 return -EBUSY;
7278 total = to_ratio(period, runtime);
7281 * Nobody can have more than the global setting allows.
7283 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7284 return -EINVAL;
7287 * The sum of our children's runtime should not exceed our own.
7289 list_for_each_entry_rcu(child, &tg->children, siblings) {
7290 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7291 runtime = child->rt_bandwidth.rt_runtime;
7293 if (child == d->tg) {
7294 period = d->rt_period;
7295 runtime = d->rt_runtime;
7298 sum += to_ratio(period, runtime);
7301 if (sum > total)
7302 return -EINVAL;
7304 return 0;
7307 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7309 int ret;
7311 struct rt_schedulable_data data = {
7312 .tg = tg,
7313 .rt_period = period,
7314 .rt_runtime = runtime,
7317 rcu_read_lock();
7318 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7319 rcu_read_unlock();
7321 return ret;
7324 static int tg_set_rt_bandwidth(struct task_group *tg,
7325 u64 rt_period, u64 rt_runtime)
7327 int i, err = 0;
7329 mutex_lock(&rt_constraints_mutex);
7330 read_lock(&tasklist_lock);
7331 err = __rt_schedulable(tg, rt_period, rt_runtime);
7332 if (err)
7333 goto unlock;
7335 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7336 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7337 tg->rt_bandwidth.rt_runtime = rt_runtime;
7339 for_each_possible_cpu(i) {
7340 struct rt_rq *rt_rq = tg->rt_rq[i];
7342 raw_spin_lock(&rt_rq->rt_runtime_lock);
7343 rt_rq->rt_runtime = rt_runtime;
7344 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7346 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7347 unlock:
7348 read_unlock(&tasklist_lock);
7349 mutex_unlock(&rt_constraints_mutex);
7351 return err;
7354 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7356 u64 rt_runtime, rt_period;
7358 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7359 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7360 if (rt_runtime_us < 0)
7361 rt_runtime = RUNTIME_INF;
7363 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7366 static long sched_group_rt_runtime(struct task_group *tg)
7368 u64 rt_runtime_us;
7370 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7371 return -1;
7373 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7374 do_div(rt_runtime_us, NSEC_PER_USEC);
7375 return rt_runtime_us;
7378 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7380 u64 rt_runtime, rt_period;
7382 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7383 rt_runtime = tg->rt_bandwidth.rt_runtime;
7385 if (rt_period == 0)
7386 return -EINVAL;
7388 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7391 static long sched_group_rt_period(struct task_group *tg)
7393 u64 rt_period_us;
7395 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7396 do_div(rt_period_us, NSEC_PER_USEC);
7397 return rt_period_us;
7399 #endif /* CONFIG_RT_GROUP_SCHED */
7401 #ifdef CONFIG_RT_GROUP_SCHED
7402 static int sched_rt_global_constraints(void)
7404 int ret = 0;
7406 mutex_lock(&rt_constraints_mutex);
7407 read_lock(&tasklist_lock);
7408 ret = __rt_schedulable(NULL, 0, 0);
7409 read_unlock(&tasklist_lock);
7410 mutex_unlock(&rt_constraints_mutex);
7412 return ret;
7415 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7417 /* Don't accept realtime tasks when there is no way for them to run */
7418 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7419 return 0;
7421 return 1;
7424 #else /* !CONFIG_RT_GROUP_SCHED */
7425 static int sched_rt_global_constraints(void)
7427 unsigned long flags;
7428 int i, ret = 0;
7430 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7431 for_each_possible_cpu(i) {
7432 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7434 raw_spin_lock(&rt_rq->rt_runtime_lock);
7435 rt_rq->rt_runtime = global_rt_runtime();
7436 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7438 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7440 return ret;
7442 #endif /* CONFIG_RT_GROUP_SCHED */
7444 static int sched_dl_global_constraints(void)
7446 u64 runtime = global_rt_runtime();
7447 u64 period = global_rt_period();
7448 u64 new_bw = to_ratio(period, runtime);
7449 int cpu, ret = 0;
7450 unsigned long flags;
7453 * Here we want to check the bandwidth not being set to some
7454 * value smaller than the currently allocated bandwidth in
7455 * any of the root_domains.
7457 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7458 * cycling on root_domains... Discussion on different/better
7459 * solutions is welcome!
7461 for_each_possible_cpu(cpu) {
7462 struct dl_bw *dl_b = dl_bw_of(cpu);
7464 raw_spin_lock_irqsave(&dl_b->lock, flags);
7465 if (new_bw < dl_b->total_bw)
7466 ret = -EBUSY;
7467 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7469 if (ret)
7470 break;
7473 return ret;
7476 static void sched_dl_do_global(void)
7478 u64 new_bw = -1;
7479 int cpu;
7480 unsigned long flags;
7482 def_dl_bandwidth.dl_period = global_rt_period();
7483 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7485 if (global_rt_runtime() != RUNTIME_INF)
7486 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7489 * FIXME: As above...
7491 for_each_possible_cpu(cpu) {
7492 struct dl_bw *dl_b = dl_bw_of(cpu);
7494 raw_spin_lock_irqsave(&dl_b->lock, flags);
7495 dl_b->bw = new_bw;
7496 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7500 static int sched_rt_global_validate(void)
7502 if (sysctl_sched_rt_period <= 0)
7503 return -EINVAL;
7505 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7506 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7507 return -EINVAL;
7509 return 0;
7512 static void sched_rt_do_global(void)
7514 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7515 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7518 int sched_rt_handler(struct ctl_table *table, int write,
7519 void __user *buffer, size_t *lenp,
7520 loff_t *ppos)
7522 int old_period, old_runtime;
7523 static DEFINE_MUTEX(mutex);
7524 int ret;
7526 mutex_lock(&mutex);
7527 old_period = sysctl_sched_rt_period;
7528 old_runtime = sysctl_sched_rt_runtime;
7530 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7532 if (!ret && write) {
7533 ret = sched_rt_global_validate();
7534 if (ret)
7535 goto undo;
7537 ret = sched_rt_global_constraints();
7538 if (ret)
7539 goto undo;
7541 ret = sched_dl_global_constraints();
7542 if (ret)
7543 goto undo;
7545 sched_rt_do_global();
7546 sched_dl_do_global();
7548 if (0) {
7549 undo:
7550 sysctl_sched_rt_period = old_period;
7551 sysctl_sched_rt_runtime = old_runtime;
7553 mutex_unlock(&mutex);
7555 return ret;
7558 int sched_rr_handler(struct ctl_table *table, int write,
7559 void __user *buffer, size_t *lenp,
7560 loff_t *ppos)
7562 int ret;
7563 static DEFINE_MUTEX(mutex);
7565 mutex_lock(&mutex);
7566 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7567 /* make sure that internally we keep jiffies */
7568 /* also, writing zero resets timeslice to default */
7569 if (!ret && write) {
7570 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7571 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7573 mutex_unlock(&mutex);
7574 return ret;
7577 #ifdef CONFIG_CGROUP_SCHED
7579 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7581 return css ? container_of(css, struct task_group, css) : NULL;
7584 static struct cgroup_subsys_state *
7585 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7587 struct task_group *parent = css_tg(parent_css);
7588 struct task_group *tg;
7590 if (!parent) {
7591 /* This is early initialization for the top cgroup */
7592 return &root_task_group.css;
7595 tg = sched_create_group(parent);
7596 if (IS_ERR(tg))
7597 return ERR_PTR(-ENOMEM);
7599 return &tg->css;
7602 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7604 struct task_group *tg = css_tg(css);
7605 struct task_group *parent = css_tg(css_parent(css));
7607 if (parent)
7608 sched_online_group(tg, parent);
7609 return 0;
7612 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7614 struct task_group *tg = css_tg(css);
7616 sched_destroy_group(tg);
7619 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7621 struct task_group *tg = css_tg(css);
7623 sched_offline_group(tg);
7626 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7627 struct cgroup_taskset *tset)
7629 struct task_struct *task;
7631 cgroup_taskset_for_each(task, tset) {
7632 #ifdef CONFIG_RT_GROUP_SCHED
7633 if (!sched_rt_can_attach(css_tg(css), task))
7634 return -EINVAL;
7635 #else
7636 /* We don't support RT-tasks being in separate groups */
7637 if (task->sched_class != &fair_sched_class)
7638 return -EINVAL;
7639 #endif
7641 return 0;
7644 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7645 struct cgroup_taskset *tset)
7647 struct task_struct *task;
7649 cgroup_taskset_for_each(task, tset)
7650 sched_move_task(task);
7653 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7654 struct cgroup_subsys_state *old_css,
7655 struct task_struct *task)
7658 * cgroup_exit() is called in the copy_process() failure path.
7659 * Ignore this case since the task hasn't ran yet, this avoids
7660 * trying to poke a half freed task state from generic code.
7662 if (!(task->flags & PF_EXITING))
7663 return;
7665 sched_move_task(task);
7668 #ifdef CONFIG_FAIR_GROUP_SCHED
7669 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7670 struct cftype *cftype, u64 shareval)
7672 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7675 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7676 struct cftype *cft)
7678 struct task_group *tg = css_tg(css);
7680 return (u64) scale_load_down(tg->shares);
7683 #ifdef CONFIG_CFS_BANDWIDTH
7684 static DEFINE_MUTEX(cfs_constraints_mutex);
7686 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7687 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7689 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7691 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7693 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7694 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7696 if (tg == &root_task_group)
7697 return -EINVAL;
7700 * Ensure we have at some amount of bandwidth every period. This is
7701 * to prevent reaching a state of large arrears when throttled via
7702 * entity_tick() resulting in prolonged exit starvation.
7704 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7705 return -EINVAL;
7708 * Likewise, bound things on the otherside by preventing insane quota
7709 * periods. This also allows us to normalize in computing quota
7710 * feasibility.
7712 if (period > max_cfs_quota_period)
7713 return -EINVAL;
7715 mutex_lock(&cfs_constraints_mutex);
7716 ret = __cfs_schedulable(tg, period, quota);
7717 if (ret)
7718 goto out_unlock;
7720 runtime_enabled = quota != RUNTIME_INF;
7721 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7723 * If we need to toggle cfs_bandwidth_used, off->on must occur
7724 * before making related changes, and on->off must occur afterwards
7726 if (runtime_enabled && !runtime_was_enabled)
7727 cfs_bandwidth_usage_inc();
7728 raw_spin_lock_irq(&cfs_b->lock);
7729 cfs_b->period = ns_to_ktime(period);
7730 cfs_b->quota = quota;
7732 __refill_cfs_bandwidth_runtime(cfs_b);
7733 /* restart the period timer (if active) to handle new period expiry */
7734 if (runtime_enabled && cfs_b->timer_active) {
7735 /* force a reprogram */
7736 cfs_b->timer_active = 0;
7737 __start_cfs_bandwidth(cfs_b);
7739 raw_spin_unlock_irq(&cfs_b->lock);
7741 for_each_possible_cpu(i) {
7742 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7743 struct rq *rq = cfs_rq->rq;
7745 raw_spin_lock_irq(&rq->lock);
7746 cfs_rq->runtime_enabled = runtime_enabled;
7747 cfs_rq->runtime_remaining = 0;
7749 if (cfs_rq->throttled)
7750 unthrottle_cfs_rq(cfs_rq);
7751 raw_spin_unlock_irq(&rq->lock);
7753 if (runtime_was_enabled && !runtime_enabled)
7754 cfs_bandwidth_usage_dec();
7755 out_unlock:
7756 mutex_unlock(&cfs_constraints_mutex);
7758 return ret;
7761 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7763 u64 quota, period;
7765 period = ktime_to_ns(tg->cfs_bandwidth.period);
7766 if (cfs_quota_us < 0)
7767 quota = RUNTIME_INF;
7768 else
7769 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7771 return tg_set_cfs_bandwidth(tg, period, quota);
7774 long tg_get_cfs_quota(struct task_group *tg)
7776 u64 quota_us;
7778 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7779 return -1;
7781 quota_us = tg->cfs_bandwidth.quota;
7782 do_div(quota_us, NSEC_PER_USEC);
7784 return quota_us;
7787 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7789 u64 quota, period;
7791 period = (u64)cfs_period_us * NSEC_PER_USEC;
7792 quota = tg->cfs_bandwidth.quota;
7794 return tg_set_cfs_bandwidth(tg, period, quota);
7797 long tg_get_cfs_period(struct task_group *tg)
7799 u64 cfs_period_us;
7801 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7802 do_div(cfs_period_us, NSEC_PER_USEC);
7804 return cfs_period_us;
7807 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7808 struct cftype *cft)
7810 return tg_get_cfs_quota(css_tg(css));
7813 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7814 struct cftype *cftype, s64 cfs_quota_us)
7816 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7819 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7820 struct cftype *cft)
7822 return tg_get_cfs_period(css_tg(css));
7825 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7826 struct cftype *cftype, u64 cfs_period_us)
7828 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7831 struct cfs_schedulable_data {
7832 struct task_group *tg;
7833 u64 period, quota;
7837 * normalize group quota/period to be quota/max_period
7838 * note: units are usecs
7840 static u64 normalize_cfs_quota(struct task_group *tg,
7841 struct cfs_schedulable_data *d)
7843 u64 quota, period;
7845 if (tg == d->tg) {
7846 period = d->period;
7847 quota = d->quota;
7848 } else {
7849 period = tg_get_cfs_period(tg);
7850 quota = tg_get_cfs_quota(tg);
7853 /* note: these should typically be equivalent */
7854 if (quota == RUNTIME_INF || quota == -1)
7855 return RUNTIME_INF;
7857 return to_ratio(period, quota);
7860 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7862 struct cfs_schedulable_data *d = data;
7863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7864 s64 quota = 0, parent_quota = -1;
7866 if (!tg->parent) {
7867 quota = RUNTIME_INF;
7868 } else {
7869 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7871 quota = normalize_cfs_quota(tg, d);
7872 parent_quota = parent_b->hierarchal_quota;
7875 * ensure max(child_quota) <= parent_quota, inherit when no
7876 * limit is set
7878 if (quota == RUNTIME_INF)
7879 quota = parent_quota;
7880 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7881 return -EINVAL;
7883 cfs_b->hierarchal_quota = quota;
7885 return 0;
7888 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7890 int ret;
7891 struct cfs_schedulable_data data = {
7892 .tg = tg,
7893 .period = period,
7894 .quota = quota,
7897 if (quota != RUNTIME_INF) {
7898 do_div(data.period, NSEC_PER_USEC);
7899 do_div(data.quota, NSEC_PER_USEC);
7902 rcu_read_lock();
7903 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7904 rcu_read_unlock();
7906 return ret;
7909 static int cpu_stats_show(struct seq_file *sf, void *v)
7911 struct task_group *tg = css_tg(seq_css(sf));
7912 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7914 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7915 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7916 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7918 return 0;
7920 #endif /* CONFIG_CFS_BANDWIDTH */
7921 #endif /* CONFIG_FAIR_GROUP_SCHED */
7923 #ifdef CONFIG_RT_GROUP_SCHED
7924 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7925 struct cftype *cft, s64 val)
7927 return sched_group_set_rt_runtime(css_tg(css), val);
7930 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7931 struct cftype *cft)
7933 return sched_group_rt_runtime(css_tg(css));
7936 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7937 struct cftype *cftype, u64 rt_period_us)
7939 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7942 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7943 struct cftype *cft)
7945 return sched_group_rt_period(css_tg(css));
7947 #endif /* CONFIG_RT_GROUP_SCHED */
7949 static struct cftype cpu_files[] = {
7950 #ifdef CONFIG_FAIR_GROUP_SCHED
7952 .name = "shares",
7953 .read_u64 = cpu_shares_read_u64,
7954 .write_u64 = cpu_shares_write_u64,
7956 #endif
7957 #ifdef CONFIG_CFS_BANDWIDTH
7959 .name = "cfs_quota_us",
7960 .read_s64 = cpu_cfs_quota_read_s64,
7961 .write_s64 = cpu_cfs_quota_write_s64,
7964 .name = "cfs_period_us",
7965 .read_u64 = cpu_cfs_period_read_u64,
7966 .write_u64 = cpu_cfs_period_write_u64,
7969 .name = "stat",
7970 .seq_show = cpu_stats_show,
7972 #endif
7973 #ifdef CONFIG_RT_GROUP_SCHED
7975 .name = "rt_runtime_us",
7976 .read_s64 = cpu_rt_runtime_read,
7977 .write_s64 = cpu_rt_runtime_write,
7980 .name = "rt_period_us",
7981 .read_u64 = cpu_rt_period_read_uint,
7982 .write_u64 = cpu_rt_period_write_uint,
7984 #endif
7985 { } /* terminate */
7988 struct cgroup_subsys cpu_cgrp_subsys = {
7989 .css_alloc = cpu_cgroup_css_alloc,
7990 .css_free = cpu_cgroup_css_free,
7991 .css_online = cpu_cgroup_css_online,
7992 .css_offline = cpu_cgroup_css_offline,
7993 .can_attach = cpu_cgroup_can_attach,
7994 .attach = cpu_cgroup_attach,
7995 .exit = cpu_cgroup_exit,
7996 .base_cftypes = cpu_files,
7997 .early_init = 1,
8000 #endif /* CONFIG_CGROUP_SCHED */
8002 void dump_cpu_task(int cpu)
8004 pr_info("Task dump for CPU %d:\n", cpu);
8005 sched_show_task(cpu_curr(cpu));