sched/preempt: Fix cond_resched_lock() and cond_resched_softirq()
[linux-2.6/btrfs-unstable.git] / kernel / sched / core.c
blobf5fad2b12bafcd8459b33c8522db2d803b4ea277
1 /*
2 * kernel/sched/core.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
98 void update_rq_clock(struct rq *rq)
100 s64 delta;
102 lockdep_assert_held(&rq->lock);
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
115 * Debugging: various feature bits
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
125 #undef SCHED_FEAT
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
135 #undef SCHED_FEAT
137 static int sched_feat_show(struct seq_file *m, void *v)
139 int i;
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
146 seq_puts(m, "\n");
148 return 0;
151 #ifdef HAVE_JUMP_LABEL
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
163 #undef SCHED_FEAT
165 static void sched_feat_disable(int i)
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
171 static void sched_feat_enable(int i)
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
181 static int sched_feat_set(char *cmp)
183 int i;
184 int neg = 0;
186 if (strncmp(cmp, "NO_", 3) == 0) {
187 neg = 1;
188 cmp += 3;
191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 if (neg) {
194 sysctl_sched_features &= ~(1UL << i);
195 sched_feat_disable(i);
196 } else {
197 sysctl_sched_features |= (1UL << i);
198 sched_feat_enable(i);
200 break;
204 return i;
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
211 char buf[64];
212 char *cmp;
213 int i;
214 struct inode *inode;
216 if (cnt > 63)
217 cnt = 63;
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
228 i = sched_feat_set(cmp);
229 mutex_unlock(&inode->i_mutex);
230 if (i == __SCHED_FEAT_NR)
231 return -EINVAL;
233 *ppos += cnt;
235 return cnt;
238 static int sched_feat_open(struct inode *inode, struct file *filp)
240 return single_open(filp, sched_feat_show, NULL);
243 static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
251 static __init int sched_init_debug(void)
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
256 return 0;
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
268 * period over which we average the RT time consumption, measured
269 * in ms.
271 * default: 1s
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276 * period over which we measure -rt task cpu usage in us.
277 * default: 1s
279 unsigned int sysctl_sched_rt_period = 1000000;
281 __read_mostly int scheduler_running;
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
287 int sysctl_sched_rt_runtime = 950000;
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
293 * this_rq_lock - lock this runqueue and disable interrupts.
295 static struct rq *this_rq_lock(void)
296 __acquires(rq->lock)
298 struct rq *rq;
300 local_irq_disable();
301 rq = this_rq();
302 raw_spin_lock(&rq->lock);
304 return rq;
307 #ifdef CONFIG_SCHED_HRTICK
309 * Use HR-timers to deliver accurate preemption points.
312 static void hrtick_clear(struct rq *rq)
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
328 raw_spin_lock(&rq->lock);
329 update_rq_clock(rq);
330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 raw_spin_unlock(&rq->lock);
333 return HRTIMER_NORESTART;
336 #ifdef CONFIG_SMP
338 static void __hrtick_restart(struct rq *rq)
340 struct hrtimer *timer = &rq->hrtick_timer;
342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
346 * called from hardirq (IPI) context
348 static void __hrtick_start(void *arg)
350 struct rq *rq = arg;
352 raw_spin_lock(&rq->lock);
353 __hrtick_restart(rq);
354 rq->hrtick_csd_pending = 0;
355 raw_spin_unlock(&rq->lock);
359 * Called to set the hrtick timer state.
361 * called with rq->lock held and irqs disabled
363 void hrtick_start(struct rq *rq, u64 delay)
365 struct hrtimer *timer = &rq->hrtick_timer;
366 ktime_t time;
367 s64 delta;
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
376 hrtimer_set_expires(timer, time);
378 if (rq == this_rq()) {
379 __hrtick_restart(rq);
380 } else if (!rq->hrtick_csd_pending) {
381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 rq->hrtick_csd_pending = 1;
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
389 int cpu = (int)(long)hcpu;
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
398 hrtick_clear(cpu_rq(cpu));
399 return NOTIFY_OK;
402 return NOTIFY_DONE;
405 static __init void init_hrtick(void)
407 hotcpu_notifier(hotplug_hrtick, 0);
409 #else
411 * Called to set the hrtick timer state.
413 * called with rq->lock held and irqs disabled
415 void hrtick_start(struct rq *rq, u64 delay)
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
426 static inline void init_hrtick(void)
429 #endif /* CONFIG_SMP */
431 static void init_rq_hrtick(struct rq *rq)
433 #ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439 #endif
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
444 #else /* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
449 static inline void init_rq_hrtick(struct rq *rq)
453 static inline void init_hrtick(void)
456 #endif /* CONFIG_SCHED_HRTICK */
459 * cmpxchg based fetch_or, macro so it works for different integer types
461 #define fetch_or(ptr, val) \
462 ({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
469 __old; \
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
478 static bool set_nr_and_not_polling(struct task_struct *p)
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
490 static bool set_nr_if_polling(struct task_struct *p)
492 struct thread_info *ti = task_thread_info(p);
493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
505 return true;
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
511 set_tsk_need_resched(p);
512 return true;
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
518 return false;
520 #endif
521 #endif
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
525 struct wake_q_node *node = &task->wake_q;
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
538 get_task_struct(task);
541 * The head is context local, there can be no concurrency.
543 *head->lastp = node;
544 head->lastp = &node->next;
547 void wake_up_q(struct wake_q_head *head)
549 struct wake_q_node *node = head->first;
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
564 wake_up_process(task);
565 put_task_struct(task);
570 * resched_curr - mark rq's current task 'to be rescheduled now'.
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
576 void resched_curr(struct rq *rq)
578 struct task_struct *curr = rq->curr;
579 int cpu;
581 lockdep_assert_held(&rq->lock);
583 if (test_tsk_need_resched(curr))
584 return;
586 cpu = cpu_of(rq);
588 if (cpu == smp_processor_id()) {
589 set_tsk_need_resched(curr);
590 set_preempt_need_resched();
591 return;
594 if (set_nr_and_not_polling(curr))
595 smp_send_reschedule(cpu);
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
600 void resched_cpu(int cpu)
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 return;
607 resched_curr(rq);
608 raw_spin_unlock_irqrestore(&rq->lock, flags);
611 #ifdef CONFIG_SMP
612 #ifdef CONFIG_NO_HZ_COMMON
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
621 int get_nohz_timer_target(void)
623 int i, cpu = smp_processor_id();
624 struct sched_domain *sd;
626 if (!idle_cpu(cpu))
627 return cpu;
629 rcu_read_lock();
630 for_each_domain(cpu, sd) {
631 for_each_cpu(i, sched_domain_span(sd)) {
632 if (!idle_cpu(i)) {
633 cpu = i;
634 goto unlock;
638 unlock:
639 rcu_read_unlock();
640 return cpu;
643 * When add_timer_on() enqueues a timer into the timer wheel of an
644 * idle CPU then this timer might expire before the next timer event
645 * which is scheduled to wake up that CPU. In case of a completely
646 * idle system the next event might even be infinite time into the
647 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648 * leaves the inner idle loop so the newly added timer is taken into
649 * account when the CPU goes back to idle and evaluates the timer
650 * wheel for the next timer event.
652 static void wake_up_idle_cpu(int cpu)
654 struct rq *rq = cpu_rq(cpu);
656 if (cpu == smp_processor_id())
657 return;
659 if (set_nr_and_not_polling(rq->idle))
660 smp_send_reschedule(cpu);
661 else
662 trace_sched_wake_idle_without_ipi(cpu);
665 static bool wake_up_full_nohz_cpu(int cpu)
668 * We just need the target to call irq_exit() and re-evaluate
669 * the next tick. The nohz full kick at least implies that.
670 * If needed we can still optimize that later with an
671 * empty IRQ.
673 if (tick_nohz_full_cpu(cpu)) {
674 if (cpu != smp_processor_id() ||
675 tick_nohz_tick_stopped())
676 tick_nohz_full_kick_cpu(cpu);
677 return true;
680 return false;
683 void wake_up_nohz_cpu(int cpu)
685 if (!wake_up_full_nohz_cpu(cpu))
686 wake_up_idle_cpu(cpu);
689 static inline bool got_nohz_idle_kick(void)
691 int cpu = smp_processor_id();
693 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 return false;
696 if (idle_cpu(cpu) && !need_resched())
697 return true;
700 * We can't run Idle Load Balance on this CPU for this time so we
701 * cancel it and clear NOHZ_BALANCE_KICK
703 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 return false;
707 #else /* CONFIG_NO_HZ_COMMON */
709 static inline bool got_nohz_idle_kick(void)
711 return false;
714 #endif /* CONFIG_NO_HZ_COMMON */
716 #ifdef CONFIG_NO_HZ_FULL
717 bool sched_can_stop_tick(void)
720 * FIFO realtime policy runs the highest priority task. Other runnable
721 * tasks are of a lower priority. The scheduler tick does nothing.
723 if (current->policy == SCHED_FIFO)
724 return true;
727 * Round-robin realtime tasks time slice with other tasks at the same
728 * realtime priority. Is this task the only one at this priority?
730 if (current->policy == SCHED_RR) {
731 struct sched_rt_entity *rt_se = &current->rt;
733 return rt_se->run_list.prev == rt_se->run_list.next;
737 * More than one running task need preemption.
738 * nr_running update is assumed to be visible
739 * after IPI is sent from wakers.
741 if (this_rq()->nr_running > 1)
742 return false;
744 return true;
746 #endif /* CONFIG_NO_HZ_FULL */
748 void sched_avg_update(struct rq *rq)
750 s64 period = sched_avg_period();
752 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
758 asm("" : "+rm" (rq->age_stamp));
759 rq->age_stamp += period;
760 rq->rt_avg /= 2;
764 #endif /* CONFIG_SMP */
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
772 * Caller must hold rcu_lock or sufficient equivalent.
774 int walk_tg_tree_from(struct task_group *from,
775 tg_visitor down, tg_visitor up, void *data)
777 struct task_group *parent, *child;
778 int ret;
780 parent = from;
782 down:
783 ret = (*down)(parent, data);
784 if (ret)
785 goto out;
786 list_for_each_entry_rcu(child, &parent->children, siblings) {
787 parent = child;
788 goto down;
791 continue;
793 ret = (*up)(parent, data);
794 if (ret || parent == from)
795 goto out;
797 child = parent;
798 parent = parent->parent;
799 if (parent)
800 goto up;
801 out:
802 return ret;
805 int tg_nop(struct task_group *tg, void *data)
807 return 0;
809 #endif
811 static void set_load_weight(struct task_struct *p)
813 int prio = p->static_prio - MAX_RT_PRIO;
814 struct load_weight *load = &p->se.load;
817 * SCHED_IDLE tasks get minimal weight:
819 if (p->policy == SCHED_IDLE) {
820 load->weight = scale_load(WEIGHT_IDLEPRIO);
821 load->inv_weight = WMULT_IDLEPRIO;
822 return;
825 load->weight = scale_load(prio_to_weight[prio]);
826 load->inv_weight = prio_to_wmult[prio];
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 update_rq_clock(rq);
832 sched_info_queued(rq, p);
833 p->sched_class->enqueue_task(rq, p, flags);
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838 update_rq_clock(rq);
839 sched_info_dequeued(rq, p);
840 p->sched_class->dequeue_task(rq, p, flags);
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 if (task_contributes_to_load(p))
846 rq->nr_uninterruptible--;
848 enqueue_task(rq, p, flags);
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 if (task_contributes_to_load(p))
854 rq->nr_uninterruptible++;
856 dequeue_task(rq, p, flags);
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
874 * {soft,}irq region.
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
879 * monotonic.
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
884 * atomic ops.
886 if (irq_delta > delta)
887 irq_delta = delta;
889 rq->prev_irq_time += irq_delta;
890 delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 if (static_key_false((&paravirt_steal_rq_enabled))) {
894 steal = paravirt_steal_clock(cpu_of(rq));
895 steal -= rq->prev_steal_time_rq;
897 if (unlikely(steal > delta))
898 steal = delta;
900 rq->prev_steal_time_rq += steal;
901 delta -= steal;
903 #endif
905 rq->clock_task += delta;
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918 if (stop) {
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
927 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929 stop->sched_class = &stop_sched_class;
932 cpu_rq(cpu)->stop = stop;
934 if (old_stop) {
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
939 old_stop->sched_class = &rt_sched_class;
944 * __normal_prio - return the priority that is based on the static prio
946 static inline int __normal_prio(struct task_struct *p)
948 return p->static_prio;
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
958 static inline int normal_prio(struct task_struct *p)
960 int prio;
962 if (task_has_dl_policy(p))
963 prio = MAX_DL_PRIO-1;
964 else if (task_has_rt_policy(p))
965 prio = MAX_RT_PRIO-1 - p->rt_priority;
966 else
967 prio = __normal_prio(p);
968 return prio;
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
978 static int effective_prio(struct task_struct *p)
980 p->normal_prio = normal_prio(p);
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
986 if (!rt_prio(p->prio))
987 return p->normal_prio;
988 return p->prio;
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
995 * Return: 1 if the task is currently executing. 0 otherwise.
997 inline int task_curr(const struct task_struct *p)
999 return cpu_curr(task_cpu(p)) == p;
1003 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004 * use the balance_callback list if you want balancing.
1006 * this means any call to check_class_changed() must be followed by a call to
1007 * balance_callback().
1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 const struct sched_class *prev_class,
1011 int oldprio)
1013 if (prev_class != p->sched_class) {
1014 if (prev_class->switched_from)
1015 prev_class->switched_from(rq, p);
1017 p->sched_class->switched_to(rq, p);
1018 } else if (oldprio != p->prio || dl_task(p))
1019 p->sched_class->prio_changed(rq, p, oldprio);
1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 const struct sched_class *class;
1026 if (p->sched_class == rq->curr->sched_class) {
1027 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 } else {
1029 for_each_class(class) {
1030 if (class == rq->curr->sched_class)
1031 break;
1032 if (class == p->sched_class) {
1033 resched_curr(rq);
1034 break;
1040 * A queue event has occurred, and we're going to schedule. In
1041 * this case, we can save a useless back to back clock update.
1043 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044 rq_clock_skip_update(rq, true);
1047 #ifdef CONFIG_SMP
1049 * This is how migration works:
1051 * 1) we invoke migration_cpu_stop() on the target CPU using
1052 * stop_one_cpu().
1053 * 2) stopper starts to run (implicitly forcing the migrated thread
1054 * off the CPU)
1055 * 3) it checks whether the migrated task is still in the wrong runqueue.
1056 * 4) if it's in the wrong runqueue then the migration thread removes
1057 * it and puts it into the right queue.
1058 * 5) stopper completes and stop_one_cpu() returns and the migration
1059 * is done.
1063 * move_queued_task - move a queued task to new rq.
1065 * Returns (locked) new rq. Old rq's lock is released.
1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1069 lockdep_assert_held(&rq->lock);
1071 dequeue_task(rq, p, 0);
1072 p->on_rq = TASK_ON_RQ_MIGRATING;
1073 set_task_cpu(p, new_cpu);
1074 raw_spin_unlock(&rq->lock);
1076 rq = cpu_rq(new_cpu);
1078 raw_spin_lock(&rq->lock);
1079 BUG_ON(task_cpu(p) != new_cpu);
1080 p->on_rq = TASK_ON_RQ_QUEUED;
1081 enqueue_task(rq, p, 0);
1082 check_preempt_curr(rq, p, 0);
1084 return rq;
1087 struct migration_arg {
1088 struct task_struct *task;
1089 int dest_cpu;
1093 * Move (not current) task off this cpu, onto dest cpu. We're doing
1094 * this because either it can't run here any more (set_cpus_allowed()
1095 * away from this CPU, or CPU going down), or because we're
1096 * attempting to rebalance this task on exec (sched_exec).
1098 * So we race with normal scheduler movements, but that's OK, as long
1099 * as the task is no longer on this CPU.
1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1103 if (unlikely(!cpu_active(dest_cpu)))
1104 return rq;
1106 /* Affinity changed (again). */
1107 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108 return rq;
1110 rq = move_queued_task(rq, p, dest_cpu);
1112 return rq;
1116 * migration_cpu_stop - this will be executed by a highprio stopper thread
1117 * and performs thread migration by bumping thread off CPU then
1118 * 'pushing' onto another runqueue.
1120 static int migration_cpu_stop(void *data)
1122 struct migration_arg *arg = data;
1123 struct task_struct *p = arg->task;
1124 struct rq *rq = this_rq();
1127 * The original target cpu might have gone down and we might
1128 * be on another cpu but it doesn't matter.
1130 local_irq_disable();
1132 * We need to explicitly wake pending tasks before running
1133 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 sched_ttwu_pending();
1138 raw_spin_lock(&p->pi_lock);
1139 raw_spin_lock(&rq->lock);
1141 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 * we're holding p->pi_lock.
1145 if (task_rq(p) == rq && task_on_rq_queued(p))
1146 rq = __migrate_task(rq, p, arg->dest_cpu);
1147 raw_spin_unlock(&rq->lock);
1148 raw_spin_unlock(&p->pi_lock);
1150 local_irq_enable();
1151 return 0;
1154 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1156 if (p->sched_class->set_cpus_allowed)
1157 p->sched_class->set_cpus_allowed(p, new_mask);
1159 cpumask_copy(&p->cpus_allowed, new_mask);
1160 p->nr_cpus_allowed = cpumask_weight(new_mask);
1164 * Change a given task's CPU affinity. Migrate the thread to a
1165 * proper CPU and schedule it away if the CPU it's executing on
1166 * is removed from the allowed bitmask.
1168 * NOTE: the caller must have a valid reference to the task, the
1169 * task must not exit() & deallocate itself prematurely. The
1170 * call is not atomic; no spinlocks may be held.
1172 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1174 unsigned long flags;
1175 struct rq *rq;
1176 unsigned int dest_cpu;
1177 int ret = 0;
1179 rq = task_rq_lock(p, &flags);
1181 if (cpumask_equal(&p->cpus_allowed, new_mask))
1182 goto out;
1184 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1185 ret = -EINVAL;
1186 goto out;
1189 do_set_cpus_allowed(p, new_mask);
1191 /* Can the task run on the task's current CPU? If so, we're done */
1192 if (cpumask_test_cpu(task_cpu(p), new_mask))
1193 goto out;
1195 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1196 if (task_running(rq, p) || p->state == TASK_WAKING) {
1197 struct migration_arg arg = { p, dest_cpu };
1198 /* Need help from migration thread: drop lock and wait. */
1199 task_rq_unlock(rq, p, &flags);
1200 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1201 tlb_migrate_finish(p->mm);
1202 return 0;
1203 } else if (task_on_rq_queued(p)) {
1205 * OK, since we're going to drop the lock immediately
1206 * afterwards anyway.
1208 lockdep_unpin_lock(&rq->lock);
1209 rq = move_queued_task(rq, p, dest_cpu);
1210 lockdep_pin_lock(&rq->lock);
1212 out:
1213 task_rq_unlock(rq, p, &flags);
1215 return ret;
1217 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1219 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1221 #ifdef CONFIG_SCHED_DEBUG
1223 * We should never call set_task_cpu() on a blocked task,
1224 * ttwu() will sort out the placement.
1226 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1227 !p->on_rq);
1229 #ifdef CONFIG_LOCKDEP
1231 * The caller should hold either p->pi_lock or rq->lock, when changing
1232 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1234 * sched_move_task() holds both and thus holding either pins the cgroup,
1235 * see task_group().
1237 * Furthermore, all task_rq users should acquire both locks, see
1238 * task_rq_lock().
1240 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1241 lockdep_is_held(&task_rq(p)->lock)));
1242 #endif
1243 #endif
1245 trace_sched_migrate_task(p, new_cpu);
1247 if (task_cpu(p) != new_cpu) {
1248 if (p->sched_class->migrate_task_rq)
1249 p->sched_class->migrate_task_rq(p, new_cpu);
1250 p->se.nr_migrations++;
1251 perf_event_task_migrate(p);
1254 __set_task_cpu(p, new_cpu);
1257 static void __migrate_swap_task(struct task_struct *p, int cpu)
1259 if (task_on_rq_queued(p)) {
1260 struct rq *src_rq, *dst_rq;
1262 src_rq = task_rq(p);
1263 dst_rq = cpu_rq(cpu);
1265 deactivate_task(src_rq, p, 0);
1266 set_task_cpu(p, cpu);
1267 activate_task(dst_rq, p, 0);
1268 check_preempt_curr(dst_rq, p, 0);
1269 } else {
1271 * Task isn't running anymore; make it appear like we migrated
1272 * it before it went to sleep. This means on wakeup we make the
1273 * previous cpu our targer instead of where it really is.
1275 p->wake_cpu = cpu;
1279 struct migration_swap_arg {
1280 struct task_struct *src_task, *dst_task;
1281 int src_cpu, dst_cpu;
1284 static int migrate_swap_stop(void *data)
1286 struct migration_swap_arg *arg = data;
1287 struct rq *src_rq, *dst_rq;
1288 int ret = -EAGAIN;
1290 src_rq = cpu_rq(arg->src_cpu);
1291 dst_rq = cpu_rq(arg->dst_cpu);
1293 double_raw_lock(&arg->src_task->pi_lock,
1294 &arg->dst_task->pi_lock);
1295 double_rq_lock(src_rq, dst_rq);
1296 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1297 goto unlock;
1299 if (task_cpu(arg->src_task) != arg->src_cpu)
1300 goto unlock;
1302 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1303 goto unlock;
1305 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1306 goto unlock;
1308 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1309 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1311 ret = 0;
1313 unlock:
1314 double_rq_unlock(src_rq, dst_rq);
1315 raw_spin_unlock(&arg->dst_task->pi_lock);
1316 raw_spin_unlock(&arg->src_task->pi_lock);
1318 return ret;
1322 * Cross migrate two tasks
1324 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1326 struct migration_swap_arg arg;
1327 int ret = -EINVAL;
1329 arg = (struct migration_swap_arg){
1330 .src_task = cur,
1331 .src_cpu = task_cpu(cur),
1332 .dst_task = p,
1333 .dst_cpu = task_cpu(p),
1336 if (arg.src_cpu == arg.dst_cpu)
1337 goto out;
1340 * These three tests are all lockless; this is OK since all of them
1341 * will be re-checked with proper locks held further down the line.
1343 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1344 goto out;
1346 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1347 goto out;
1349 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1350 goto out;
1352 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1353 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1355 out:
1356 return ret;
1360 * wait_task_inactive - wait for a thread to unschedule.
1362 * If @match_state is nonzero, it's the @p->state value just checked and
1363 * not expected to change. If it changes, i.e. @p might have woken up,
1364 * then return zero. When we succeed in waiting for @p to be off its CPU,
1365 * we return a positive number (its total switch count). If a second call
1366 * a short while later returns the same number, the caller can be sure that
1367 * @p has remained unscheduled the whole time.
1369 * The caller must ensure that the task *will* unschedule sometime soon,
1370 * else this function might spin for a *long* time. This function can't
1371 * be called with interrupts off, or it may introduce deadlock with
1372 * smp_call_function() if an IPI is sent by the same process we are
1373 * waiting to become inactive.
1375 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1377 unsigned long flags;
1378 int running, queued;
1379 unsigned long ncsw;
1380 struct rq *rq;
1382 for (;;) {
1384 * We do the initial early heuristics without holding
1385 * any task-queue locks at all. We'll only try to get
1386 * the runqueue lock when things look like they will
1387 * work out!
1389 rq = task_rq(p);
1392 * If the task is actively running on another CPU
1393 * still, just relax and busy-wait without holding
1394 * any locks.
1396 * NOTE! Since we don't hold any locks, it's not
1397 * even sure that "rq" stays as the right runqueue!
1398 * But we don't care, since "task_running()" will
1399 * return false if the runqueue has changed and p
1400 * is actually now running somewhere else!
1402 while (task_running(rq, p)) {
1403 if (match_state && unlikely(p->state != match_state))
1404 return 0;
1405 cpu_relax();
1409 * Ok, time to look more closely! We need the rq
1410 * lock now, to be *sure*. If we're wrong, we'll
1411 * just go back and repeat.
1413 rq = task_rq_lock(p, &flags);
1414 trace_sched_wait_task(p);
1415 running = task_running(rq, p);
1416 queued = task_on_rq_queued(p);
1417 ncsw = 0;
1418 if (!match_state || p->state == match_state)
1419 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1420 task_rq_unlock(rq, p, &flags);
1423 * If it changed from the expected state, bail out now.
1425 if (unlikely(!ncsw))
1426 break;
1429 * Was it really running after all now that we
1430 * checked with the proper locks actually held?
1432 * Oops. Go back and try again..
1434 if (unlikely(running)) {
1435 cpu_relax();
1436 continue;
1440 * It's not enough that it's not actively running,
1441 * it must be off the runqueue _entirely_, and not
1442 * preempted!
1444 * So if it was still runnable (but just not actively
1445 * running right now), it's preempted, and we should
1446 * yield - it could be a while.
1448 if (unlikely(queued)) {
1449 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1451 set_current_state(TASK_UNINTERRUPTIBLE);
1452 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1453 continue;
1457 * Ahh, all good. It wasn't running, and it wasn't
1458 * runnable, which means that it will never become
1459 * running in the future either. We're all done!
1461 break;
1464 return ncsw;
1467 /***
1468 * kick_process - kick a running thread to enter/exit the kernel
1469 * @p: the to-be-kicked thread
1471 * Cause a process which is running on another CPU to enter
1472 * kernel-mode, without any delay. (to get signals handled.)
1474 * NOTE: this function doesn't have to take the runqueue lock,
1475 * because all it wants to ensure is that the remote task enters
1476 * the kernel. If the IPI races and the task has been migrated
1477 * to another CPU then no harm is done and the purpose has been
1478 * achieved as well.
1480 void kick_process(struct task_struct *p)
1482 int cpu;
1484 preempt_disable();
1485 cpu = task_cpu(p);
1486 if ((cpu != smp_processor_id()) && task_curr(p))
1487 smp_send_reschedule(cpu);
1488 preempt_enable();
1490 EXPORT_SYMBOL_GPL(kick_process);
1493 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1495 static int select_fallback_rq(int cpu, struct task_struct *p)
1497 int nid = cpu_to_node(cpu);
1498 const struct cpumask *nodemask = NULL;
1499 enum { cpuset, possible, fail } state = cpuset;
1500 int dest_cpu;
1503 * If the node that the cpu is on has been offlined, cpu_to_node()
1504 * will return -1. There is no cpu on the node, and we should
1505 * select the cpu on the other node.
1507 if (nid != -1) {
1508 nodemask = cpumask_of_node(nid);
1510 /* Look for allowed, online CPU in same node. */
1511 for_each_cpu(dest_cpu, nodemask) {
1512 if (!cpu_online(dest_cpu))
1513 continue;
1514 if (!cpu_active(dest_cpu))
1515 continue;
1516 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1517 return dest_cpu;
1521 for (;;) {
1522 /* Any allowed, online CPU? */
1523 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1524 if (!cpu_online(dest_cpu))
1525 continue;
1526 if (!cpu_active(dest_cpu))
1527 continue;
1528 goto out;
1531 switch (state) {
1532 case cpuset:
1533 /* No more Mr. Nice Guy. */
1534 cpuset_cpus_allowed_fallback(p);
1535 state = possible;
1536 break;
1538 case possible:
1539 do_set_cpus_allowed(p, cpu_possible_mask);
1540 state = fail;
1541 break;
1543 case fail:
1544 BUG();
1545 break;
1549 out:
1550 if (state != cpuset) {
1552 * Don't tell them about moving exiting tasks or
1553 * kernel threads (both mm NULL), since they never
1554 * leave kernel.
1556 if (p->mm && printk_ratelimit()) {
1557 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1558 task_pid_nr(p), p->comm, cpu);
1562 return dest_cpu;
1566 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1568 static inline
1569 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1571 lockdep_assert_held(&p->pi_lock);
1573 if (p->nr_cpus_allowed > 1)
1574 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1577 * In order not to call set_task_cpu() on a blocking task we need
1578 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1579 * cpu.
1581 * Since this is common to all placement strategies, this lives here.
1583 * [ this allows ->select_task() to simply return task_cpu(p) and
1584 * not worry about this generic constraint ]
1586 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1587 !cpu_online(cpu)))
1588 cpu = select_fallback_rq(task_cpu(p), p);
1590 return cpu;
1593 static void update_avg(u64 *avg, u64 sample)
1595 s64 diff = sample - *avg;
1596 *avg += diff >> 3;
1598 #endif /* CONFIG_SMP */
1600 static void
1601 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1603 #ifdef CONFIG_SCHEDSTATS
1604 struct rq *rq = this_rq();
1606 #ifdef CONFIG_SMP
1607 int this_cpu = smp_processor_id();
1609 if (cpu == this_cpu) {
1610 schedstat_inc(rq, ttwu_local);
1611 schedstat_inc(p, se.statistics.nr_wakeups_local);
1612 } else {
1613 struct sched_domain *sd;
1615 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1616 rcu_read_lock();
1617 for_each_domain(this_cpu, sd) {
1618 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1619 schedstat_inc(sd, ttwu_wake_remote);
1620 break;
1623 rcu_read_unlock();
1626 if (wake_flags & WF_MIGRATED)
1627 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1629 #endif /* CONFIG_SMP */
1631 schedstat_inc(rq, ttwu_count);
1632 schedstat_inc(p, se.statistics.nr_wakeups);
1634 if (wake_flags & WF_SYNC)
1635 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1637 #endif /* CONFIG_SCHEDSTATS */
1640 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1642 activate_task(rq, p, en_flags);
1643 p->on_rq = TASK_ON_RQ_QUEUED;
1645 /* if a worker is waking up, notify workqueue */
1646 if (p->flags & PF_WQ_WORKER)
1647 wq_worker_waking_up(p, cpu_of(rq));
1651 * Mark the task runnable and perform wakeup-preemption.
1653 static void
1654 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1656 check_preempt_curr(rq, p, wake_flags);
1657 p->state = TASK_RUNNING;
1658 trace_sched_wakeup(p);
1660 #ifdef CONFIG_SMP
1661 if (p->sched_class->task_woken) {
1663 * Our task @p is fully woken up and running; so its safe to
1664 * drop the rq->lock, hereafter rq is only used for statistics.
1666 lockdep_unpin_lock(&rq->lock);
1667 p->sched_class->task_woken(rq, p);
1668 lockdep_pin_lock(&rq->lock);
1671 if (rq->idle_stamp) {
1672 u64 delta = rq_clock(rq) - rq->idle_stamp;
1673 u64 max = 2*rq->max_idle_balance_cost;
1675 update_avg(&rq->avg_idle, delta);
1677 if (rq->avg_idle > max)
1678 rq->avg_idle = max;
1680 rq->idle_stamp = 0;
1682 #endif
1685 static void
1686 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1688 lockdep_assert_held(&rq->lock);
1690 #ifdef CONFIG_SMP
1691 if (p->sched_contributes_to_load)
1692 rq->nr_uninterruptible--;
1693 #endif
1695 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1696 ttwu_do_wakeup(rq, p, wake_flags);
1700 * Called in case the task @p isn't fully descheduled from its runqueue,
1701 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702 * since all we need to do is flip p->state to TASK_RUNNING, since
1703 * the task is still ->on_rq.
1705 static int ttwu_remote(struct task_struct *p, int wake_flags)
1707 struct rq *rq;
1708 int ret = 0;
1710 rq = __task_rq_lock(p);
1711 if (task_on_rq_queued(p)) {
1712 /* check_preempt_curr() may use rq clock */
1713 update_rq_clock(rq);
1714 ttwu_do_wakeup(rq, p, wake_flags);
1715 ret = 1;
1717 __task_rq_unlock(rq);
1719 return ret;
1722 #ifdef CONFIG_SMP
1723 void sched_ttwu_pending(void)
1725 struct rq *rq = this_rq();
1726 struct llist_node *llist = llist_del_all(&rq->wake_list);
1727 struct task_struct *p;
1728 unsigned long flags;
1730 if (!llist)
1731 return;
1733 raw_spin_lock_irqsave(&rq->lock, flags);
1734 lockdep_pin_lock(&rq->lock);
1736 while (llist) {
1737 p = llist_entry(llist, struct task_struct, wake_entry);
1738 llist = llist_next(llist);
1739 ttwu_do_activate(rq, p, 0);
1742 lockdep_unpin_lock(&rq->lock);
1743 raw_spin_unlock_irqrestore(&rq->lock, flags);
1746 void scheduler_ipi(void)
1749 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1750 * TIF_NEED_RESCHED remotely (for the first time) will also send
1751 * this IPI.
1753 preempt_fold_need_resched();
1755 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1756 return;
1759 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1760 * traditionally all their work was done from the interrupt return
1761 * path. Now that we actually do some work, we need to make sure
1762 * we do call them.
1764 * Some archs already do call them, luckily irq_enter/exit nest
1765 * properly.
1767 * Arguably we should visit all archs and update all handlers,
1768 * however a fair share of IPIs are still resched only so this would
1769 * somewhat pessimize the simple resched case.
1771 irq_enter();
1772 sched_ttwu_pending();
1775 * Check if someone kicked us for doing the nohz idle load balance.
1777 if (unlikely(got_nohz_idle_kick())) {
1778 this_rq()->idle_balance = 1;
1779 raise_softirq_irqoff(SCHED_SOFTIRQ);
1781 irq_exit();
1784 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1786 struct rq *rq = cpu_rq(cpu);
1788 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1789 if (!set_nr_if_polling(rq->idle))
1790 smp_send_reschedule(cpu);
1791 else
1792 trace_sched_wake_idle_without_ipi(cpu);
1796 void wake_up_if_idle(int cpu)
1798 struct rq *rq = cpu_rq(cpu);
1799 unsigned long flags;
1801 rcu_read_lock();
1803 if (!is_idle_task(rcu_dereference(rq->curr)))
1804 goto out;
1806 if (set_nr_if_polling(rq->idle)) {
1807 trace_sched_wake_idle_without_ipi(cpu);
1808 } else {
1809 raw_spin_lock_irqsave(&rq->lock, flags);
1810 if (is_idle_task(rq->curr))
1811 smp_send_reschedule(cpu);
1812 /* Else cpu is not in idle, do nothing here */
1813 raw_spin_unlock_irqrestore(&rq->lock, flags);
1816 out:
1817 rcu_read_unlock();
1820 bool cpus_share_cache(int this_cpu, int that_cpu)
1822 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1824 #endif /* CONFIG_SMP */
1826 static void ttwu_queue(struct task_struct *p, int cpu)
1828 struct rq *rq = cpu_rq(cpu);
1830 #if defined(CONFIG_SMP)
1831 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1832 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1833 ttwu_queue_remote(p, cpu);
1834 return;
1836 #endif
1838 raw_spin_lock(&rq->lock);
1839 lockdep_pin_lock(&rq->lock);
1840 ttwu_do_activate(rq, p, 0);
1841 lockdep_unpin_lock(&rq->lock);
1842 raw_spin_unlock(&rq->lock);
1846 * try_to_wake_up - wake up a thread
1847 * @p: the thread to be awakened
1848 * @state: the mask of task states that can be woken
1849 * @wake_flags: wake modifier flags (WF_*)
1851 * Put it on the run-queue if it's not already there. The "current"
1852 * thread is always on the run-queue (except when the actual
1853 * re-schedule is in progress), and as such you're allowed to do
1854 * the simpler "current->state = TASK_RUNNING" to mark yourself
1855 * runnable without the overhead of this.
1857 * Return: %true if @p was woken up, %false if it was already running.
1858 * or @state didn't match @p's state.
1860 static int
1861 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1863 unsigned long flags;
1864 int cpu, success = 0;
1867 * If we are going to wake up a thread waiting for CONDITION we
1868 * need to ensure that CONDITION=1 done by the caller can not be
1869 * reordered with p->state check below. This pairs with mb() in
1870 * set_current_state() the waiting thread does.
1872 smp_mb__before_spinlock();
1873 raw_spin_lock_irqsave(&p->pi_lock, flags);
1874 if (!(p->state & state))
1875 goto out;
1877 trace_sched_waking(p);
1879 success = 1; /* we're going to change ->state */
1880 cpu = task_cpu(p);
1882 if (p->on_rq && ttwu_remote(p, wake_flags))
1883 goto stat;
1885 #ifdef CONFIG_SMP
1887 * If the owning (remote) cpu is still in the middle of schedule() with
1888 * this task as prev, wait until its done referencing the task.
1890 while (p->on_cpu)
1891 cpu_relax();
1893 * Pairs with the smp_wmb() in finish_lock_switch().
1895 smp_rmb();
1897 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1898 p->state = TASK_WAKING;
1900 if (p->sched_class->task_waking)
1901 p->sched_class->task_waking(p);
1903 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1904 if (task_cpu(p) != cpu) {
1905 wake_flags |= WF_MIGRATED;
1906 set_task_cpu(p, cpu);
1908 #endif /* CONFIG_SMP */
1910 ttwu_queue(p, cpu);
1911 stat:
1912 ttwu_stat(p, cpu, wake_flags);
1913 out:
1914 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1916 return success;
1920 * try_to_wake_up_local - try to wake up a local task with rq lock held
1921 * @p: the thread to be awakened
1923 * Put @p on the run-queue if it's not already there. The caller must
1924 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1925 * the current task.
1927 static void try_to_wake_up_local(struct task_struct *p)
1929 struct rq *rq = task_rq(p);
1931 if (WARN_ON_ONCE(rq != this_rq()) ||
1932 WARN_ON_ONCE(p == current))
1933 return;
1935 lockdep_assert_held(&rq->lock);
1937 if (!raw_spin_trylock(&p->pi_lock)) {
1939 * This is OK, because current is on_cpu, which avoids it being
1940 * picked for load-balance and preemption/IRQs are still
1941 * disabled avoiding further scheduler activity on it and we've
1942 * not yet picked a replacement task.
1944 lockdep_unpin_lock(&rq->lock);
1945 raw_spin_unlock(&rq->lock);
1946 raw_spin_lock(&p->pi_lock);
1947 raw_spin_lock(&rq->lock);
1948 lockdep_pin_lock(&rq->lock);
1951 if (!(p->state & TASK_NORMAL))
1952 goto out;
1954 trace_sched_waking(p);
1956 if (!task_on_rq_queued(p))
1957 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1959 ttwu_do_wakeup(rq, p, 0);
1960 ttwu_stat(p, smp_processor_id(), 0);
1961 out:
1962 raw_spin_unlock(&p->pi_lock);
1966 * wake_up_process - Wake up a specific process
1967 * @p: The process to be woken up.
1969 * Attempt to wake up the nominated process and move it to the set of runnable
1970 * processes.
1972 * Return: 1 if the process was woken up, 0 if it was already running.
1974 * It may be assumed that this function implies a write memory barrier before
1975 * changing the task state if and only if any tasks are woken up.
1977 int wake_up_process(struct task_struct *p)
1979 WARN_ON(task_is_stopped_or_traced(p));
1980 return try_to_wake_up(p, TASK_NORMAL, 0);
1982 EXPORT_SYMBOL(wake_up_process);
1984 int wake_up_state(struct task_struct *p, unsigned int state)
1986 return try_to_wake_up(p, state, 0);
1990 * This function clears the sched_dl_entity static params.
1992 void __dl_clear_params(struct task_struct *p)
1994 struct sched_dl_entity *dl_se = &p->dl;
1996 dl_se->dl_runtime = 0;
1997 dl_se->dl_deadline = 0;
1998 dl_se->dl_period = 0;
1999 dl_se->flags = 0;
2000 dl_se->dl_bw = 0;
2002 dl_se->dl_throttled = 0;
2003 dl_se->dl_new = 1;
2004 dl_se->dl_yielded = 0;
2008 * Perform scheduler related setup for a newly forked process p.
2009 * p is forked by current.
2011 * __sched_fork() is basic setup used by init_idle() too:
2013 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2015 p->on_rq = 0;
2017 p->se.on_rq = 0;
2018 p->se.exec_start = 0;
2019 p->se.sum_exec_runtime = 0;
2020 p->se.prev_sum_exec_runtime = 0;
2021 p->se.nr_migrations = 0;
2022 p->se.vruntime = 0;
2023 #ifdef CONFIG_SMP
2024 p->se.avg.decay_count = 0;
2025 #endif
2026 INIT_LIST_HEAD(&p->se.group_node);
2028 #ifdef CONFIG_SCHEDSTATS
2029 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2030 #endif
2032 RB_CLEAR_NODE(&p->dl.rb_node);
2033 init_dl_task_timer(&p->dl);
2034 __dl_clear_params(p);
2036 INIT_LIST_HEAD(&p->rt.run_list);
2038 #ifdef CONFIG_PREEMPT_NOTIFIERS
2039 INIT_HLIST_HEAD(&p->preempt_notifiers);
2040 #endif
2042 #ifdef CONFIG_NUMA_BALANCING
2043 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2044 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2045 p->mm->numa_scan_seq = 0;
2048 if (clone_flags & CLONE_VM)
2049 p->numa_preferred_nid = current->numa_preferred_nid;
2050 else
2051 p->numa_preferred_nid = -1;
2053 p->node_stamp = 0ULL;
2054 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2055 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2056 p->numa_work.next = &p->numa_work;
2057 p->numa_faults = NULL;
2058 p->last_task_numa_placement = 0;
2059 p->last_sum_exec_runtime = 0;
2061 p->numa_group = NULL;
2062 #endif /* CONFIG_NUMA_BALANCING */
2065 #ifdef CONFIG_NUMA_BALANCING
2066 #ifdef CONFIG_SCHED_DEBUG
2067 void set_numabalancing_state(bool enabled)
2069 if (enabled)
2070 sched_feat_set("NUMA");
2071 else
2072 sched_feat_set("NO_NUMA");
2074 #else
2075 __read_mostly bool numabalancing_enabled;
2077 void set_numabalancing_state(bool enabled)
2079 numabalancing_enabled = enabled;
2081 #endif /* CONFIG_SCHED_DEBUG */
2083 #ifdef CONFIG_PROC_SYSCTL
2084 int sysctl_numa_balancing(struct ctl_table *table, int write,
2085 void __user *buffer, size_t *lenp, loff_t *ppos)
2087 struct ctl_table t;
2088 int err;
2089 int state = numabalancing_enabled;
2091 if (write && !capable(CAP_SYS_ADMIN))
2092 return -EPERM;
2094 t = *table;
2095 t.data = &state;
2096 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2097 if (err < 0)
2098 return err;
2099 if (write)
2100 set_numabalancing_state(state);
2101 return err;
2103 #endif
2104 #endif
2107 * fork()/clone()-time setup:
2109 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2111 unsigned long flags;
2112 int cpu = get_cpu();
2114 __sched_fork(clone_flags, p);
2116 * We mark the process as running here. This guarantees that
2117 * nobody will actually run it, and a signal or other external
2118 * event cannot wake it up and insert it on the runqueue either.
2120 p->state = TASK_RUNNING;
2123 * Make sure we do not leak PI boosting priority to the child.
2125 p->prio = current->normal_prio;
2128 * Revert to default priority/policy on fork if requested.
2130 if (unlikely(p->sched_reset_on_fork)) {
2131 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2132 p->policy = SCHED_NORMAL;
2133 p->static_prio = NICE_TO_PRIO(0);
2134 p->rt_priority = 0;
2135 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2136 p->static_prio = NICE_TO_PRIO(0);
2138 p->prio = p->normal_prio = __normal_prio(p);
2139 set_load_weight(p);
2142 * We don't need the reset flag anymore after the fork. It has
2143 * fulfilled its duty:
2145 p->sched_reset_on_fork = 0;
2148 if (dl_prio(p->prio)) {
2149 put_cpu();
2150 return -EAGAIN;
2151 } else if (rt_prio(p->prio)) {
2152 p->sched_class = &rt_sched_class;
2153 } else {
2154 p->sched_class = &fair_sched_class;
2157 if (p->sched_class->task_fork)
2158 p->sched_class->task_fork(p);
2161 * The child is not yet in the pid-hash so no cgroup attach races,
2162 * and the cgroup is pinned to this child due to cgroup_fork()
2163 * is ran before sched_fork().
2165 * Silence PROVE_RCU.
2167 raw_spin_lock_irqsave(&p->pi_lock, flags);
2168 set_task_cpu(p, cpu);
2169 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2171 #ifdef CONFIG_SCHED_INFO
2172 if (likely(sched_info_on()))
2173 memset(&p->sched_info, 0, sizeof(p->sched_info));
2174 #endif
2175 #if defined(CONFIG_SMP)
2176 p->on_cpu = 0;
2177 #endif
2178 init_task_preempt_count(p);
2179 #ifdef CONFIG_SMP
2180 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2181 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2182 #endif
2184 put_cpu();
2185 return 0;
2188 unsigned long to_ratio(u64 period, u64 runtime)
2190 if (runtime == RUNTIME_INF)
2191 return 1ULL << 20;
2194 * Doing this here saves a lot of checks in all
2195 * the calling paths, and returning zero seems
2196 * safe for them anyway.
2198 if (period == 0)
2199 return 0;
2201 return div64_u64(runtime << 20, period);
2204 #ifdef CONFIG_SMP
2205 inline struct dl_bw *dl_bw_of(int i)
2207 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2208 "sched RCU must be held");
2209 return &cpu_rq(i)->rd->dl_bw;
2212 static inline int dl_bw_cpus(int i)
2214 struct root_domain *rd = cpu_rq(i)->rd;
2215 int cpus = 0;
2217 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2218 "sched RCU must be held");
2219 for_each_cpu_and(i, rd->span, cpu_active_mask)
2220 cpus++;
2222 return cpus;
2224 #else
2225 inline struct dl_bw *dl_bw_of(int i)
2227 return &cpu_rq(i)->dl.dl_bw;
2230 static inline int dl_bw_cpus(int i)
2232 return 1;
2234 #endif
2237 * We must be sure that accepting a new task (or allowing changing the
2238 * parameters of an existing one) is consistent with the bandwidth
2239 * constraints. If yes, this function also accordingly updates the currently
2240 * allocated bandwidth to reflect the new situation.
2242 * This function is called while holding p's rq->lock.
2244 * XXX we should delay bw change until the task's 0-lag point, see
2245 * __setparam_dl().
2247 static int dl_overflow(struct task_struct *p, int policy,
2248 const struct sched_attr *attr)
2251 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2252 u64 period = attr->sched_period ?: attr->sched_deadline;
2253 u64 runtime = attr->sched_runtime;
2254 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2255 int cpus, err = -1;
2257 if (new_bw == p->dl.dl_bw)
2258 return 0;
2261 * Either if a task, enters, leave, or stays -deadline but changes
2262 * its parameters, we may need to update accordingly the total
2263 * allocated bandwidth of the container.
2265 raw_spin_lock(&dl_b->lock);
2266 cpus = dl_bw_cpus(task_cpu(p));
2267 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2268 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2269 __dl_add(dl_b, new_bw);
2270 err = 0;
2271 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2272 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2273 __dl_clear(dl_b, p->dl.dl_bw);
2274 __dl_add(dl_b, new_bw);
2275 err = 0;
2276 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2277 __dl_clear(dl_b, p->dl.dl_bw);
2278 err = 0;
2280 raw_spin_unlock(&dl_b->lock);
2282 return err;
2285 extern void init_dl_bw(struct dl_bw *dl_b);
2288 * wake_up_new_task - wake up a newly created task for the first time.
2290 * This function will do some initial scheduler statistics housekeeping
2291 * that must be done for every newly created context, then puts the task
2292 * on the runqueue and wakes it.
2294 void wake_up_new_task(struct task_struct *p)
2296 unsigned long flags;
2297 struct rq *rq;
2299 raw_spin_lock_irqsave(&p->pi_lock, flags);
2300 #ifdef CONFIG_SMP
2302 * Fork balancing, do it here and not earlier because:
2303 * - cpus_allowed can change in the fork path
2304 * - any previously selected cpu might disappear through hotplug
2306 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2307 #endif
2309 /* Initialize new task's runnable average */
2310 init_task_runnable_average(p);
2311 rq = __task_rq_lock(p);
2312 activate_task(rq, p, 0);
2313 p->on_rq = TASK_ON_RQ_QUEUED;
2314 trace_sched_wakeup_new(p);
2315 check_preempt_curr(rq, p, WF_FORK);
2316 #ifdef CONFIG_SMP
2317 if (p->sched_class->task_woken)
2318 p->sched_class->task_woken(rq, p);
2319 #endif
2320 task_rq_unlock(rq, p, &flags);
2323 #ifdef CONFIG_PREEMPT_NOTIFIERS
2325 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2327 void preempt_notifier_inc(void)
2329 static_key_slow_inc(&preempt_notifier_key);
2331 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2333 void preempt_notifier_dec(void)
2335 static_key_slow_dec(&preempt_notifier_key);
2337 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2340 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2341 * @notifier: notifier struct to register
2343 void preempt_notifier_register(struct preempt_notifier *notifier)
2345 if (!static_key_false(&preempt_notifier_key))
2346 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2348 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2350 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2353 * preempt_notifier_unregister - no longer interested in preemption notifications
2354 * @notifier: notifier struct to unregister
2356 * This is *not* safe to call from within a preemption notifier.
2358 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2360 hlist_del(&notifier->link);
2362 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2364 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2366 struct preempt_notifier *notifier;
2368 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2369 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2372 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2374 if (static_key_false(&preempt_notifier_key))
2375 __fire_sched_in_preempt_notifiers(curr);
2378 static void
2379 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2380 struct task_struct *next)
2382 struct preempt_notifier *notifier;
2384 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2385 notifier->ops->sched_out(notifier, next);
2388 static __always_inline void
2389 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2390 struct task_struct *next)
2392 if (static_key_false(&preempt_notifier_key))
2393 __fire_sched_out_preempt_notifiers(curr, next);
2396 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2398 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2402 static inline void
2403 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2404 struct task_struct *next)
2408 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2411 * prepare_task_switch - prepare to switch tasks
2412 * @rq: the runqueue preparing to switch
2413 * @prev: the current task that is being switched out
2414 * @next: the task we are going to switch to.
2416 * This is called with the rq lock held and interrupts off. It must
2417 * be paired with a subsequent finish_task_switch after the context
2418 * switch.
2420 * prepare_task_switch sets up locking and calls architecture specific
2421 * hooks.
2423 static inline void
2424 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2425 struct task_struct *next)
2427 trace_sched_switch(prev, next);
2428 sched_info_switch(rq, prev, next);
2429 perf_event_task_sched_out(prev, next);
2430 fire_sched_out_preempt_notifiers(prev, next);
2431 prepare_lock_switch(rq, next);
2432 prepare_arch_switch(next);
2436 * finish_task_switch - clean up after a task-switch
2437 * @prev: the thread we just switched away from.
2439 * finish_task_switch must be called after the context switch, paired
2440 * with a prepare_task_switch call before the context switch.
2441 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2442 * and do any other architecture-specific cleanup actions.
2444 * Note that we may have delayed dropping an mm in context_switch(). If
2445 * so, we finish that here outside of the runqueue lock. (Doing it
2446 * with the lock held can cause deadlocks; see schedule() for
2447 * details.)
2449 * The context switch have flipped the stack from under us and restored the
2450 * local variables which were saved when this task called schedule() in the
2451 * past. prev == current is still correct but we need to recalculate this_rq
2452 * because prev may have moved to another CPU.
2454 static struct rq *finish_task_switch(struct task_struct *prev)
2455 __releases(rq->lock)
2457 struct rq *rq = this_rq();
2458 struct mm_struct *mm = rq->prev_mm;
2459 long prev_state;
2461 rq->prev_mm = NULL;
2464 * A task struct has one reference for the use as "current".
2465 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2466 * schedule one last time. The schedule call will never return, and
2467 * the scheduled task must drop that reference.
2468 * The test for TASK_DEAD must occur while the runqueue locks are
2469 * still held, otherwise prev could be scheduled on another cpu, die
2470 * there before we look at prev->state, and then the reference would
2471 * be dropped twice.
2472 * Manfred Spraul <manfred@colorfullife.com>
2474 prev_state = prev->state;
2475 vtime_task_switch(prev);
2476 finish_arch_switch(prev);
2477 perf_event_task_sched_in(prev, current);
2478 finish_lock_switch(rq, prev);
2479 finish_arch_post_lock_switch();
2481 fire_sched_in_preempt_notifiers(current);
2482 if (mm)
2483 mmdrop(mm);
2484 if (unlikely(prev_state == TASK_DEAD)) {
2485 if (prev->sched_class->task_dead)
2486 prev->sched_class->task_dead(prev);
2489 * Remove function-return probe instances associated with this
2490 * task and put them back on the free list.
2492 kprobe_flush_task(prev);
2493 put_task_struct(prev);
2496 tick_nohz_task_switch(current);
2497 return rq;
2500 #ifdef CONFIG_SMP
2502 /* rq->lock is NOT held, but preemption is disabled */
2503 static void __balance_callback(struct rq *rq)
2505 struct callback_head *head, *next;
2506 void (*func)(struct rq *rq);
2507 unsigned long flags;
2509 raw_spin_lock_irqsave(&rq->lock, flags);
2510 head = rq->balance_callback;
2511 rq->balance_callback = NULL;
2512 while (head) {
2513 func = (void (*)(struct rq *))head->func;
2514 next = head->next;
2515 head->next = NULL;
2516 head = next;
2518 func(rq);
2520 raw_spin_unlock_irqrestore(&rq->lock, flags);
2523 static inline void balance_callback(struct rq *rq)
2525 if (unlikely(rq->balance_callback))
2526 __balance_callback(rq);
2529 #else
2531 static inline void balance_callback(struct rq *rq)
2535 #endif
2538 * schedule_tail - first thing a freshly forked thread must call.
2539 * @prev: the thread we just switched away from.
2541 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2542 __releases(rq->lock)
2544 struct rq *rq;
2546 /* finish_task_switch() drops rq->lock and enables preemtion */
2547 preempt_disable();
2548 rq = finish_task_switch(prev);
2549 balance_callback(rq);
2550 preempt_enable();
2552 if (current->set_child_tid)
2553 put_user(task_pid_vnr(current), current->set_child_tid);
2557 * context_switch - switch to the new MM and the new thread's register state.
2559 static inline struct rq *
2560 context_switch(struct rq *rq, struct task_struct *prev,
2561 struct task_struct *next)
2563 struct mm_struct *mm, *oldmm;
2565 prepare_task_switch(rq, prev, next);
2567 mm = next->mm;
2568 oldmm = prev->active_mm;
2570 * For paravirt, this is coupled with an exit in switch_to to
2571 * combine the page table reload and the switch backend into
2572 * one hypercall.
2574 arch_start_context_switch(prev);
2576 if (!mm) {
2577 next->active_mm = oldmm;
2578 atomic_inc(&oldmm->mm_count);
2579 enter_lazy_tlb(oldmm, next);
2580 } else
2581 switch_mm(oldmm, mm, next);
2583 if (!prev->mm) {
2584 prev->active_mm = NULL;
2585 rq->prev_mm = oldmm;
2588 * Since the runqueue lock will be released by the next
2589 * task (which is an invalid locking op but in the case
2590 * of the scheduler it's an obvious special-case), so we
2591 * do an early lockdep release here:
2593 lockdep_unpin_lock(&rq->lock);
2594 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2596 /* Here we just switch the register state and the stack. */
2597 switch_to(prev, next, prev);
2598 barrier();
2600 return finish_task_switch(prev);
2604 * nr_running and nr_context_switches:
2606 * externally visible scheduler statistics: current number of runnable
2607 * threads, total number of context switches performed since bootup.
2609 unsigned long nr_running(void)
2611 unsigned long i, sum = 0;
2613 for_each_online_cpu(i)
2614 sum += cpu_rq(i)->nr_running;
2616 return sum;
2620 * Check if only the current task is running on the cpu.
2622 bool single_task_running(void)
2624 if (cpu_rq(smp_processor_id())->nr_running == 1)
2625 return true;
2626 else
2627 return false;
2629 EXPORT_SYMBOL(single_task_running);
2631 unsigned long long nr_context_switches(void)
2633 int i;
2634 unsigned long long sum = 0;
2636 for_each_possible_cpu(i)
2637 sum += cpu_rq(i)->nr_switches;
2639 return sum;
2642 unsigned long nr_iowait(void)
2644 unsigned long i, sum = 0;
2646 for_each_possible_cpu(i)
2647 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2649 return sum;
2652 unsigned long nr_iowait_cpu(int cpu)
2654 struct rq *this = cpu_rq(cpu);
2655 return atomic_read(&this->nr_iowait);
2658 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2660 struct rq *rq = this_rq();
2661 *nr_waiters = atomic_read(&rq->nr_iowait);
2662 *load = rq->load.weight;
2665 #ifdef CONFIG_SMP
2668 * sched_exec - execve() is a valuable balancing opportunity, because at
2669 * this point the task has the smallest effective memory and cache footprint.
2671 void sched_exec(void)
2673 struct task_struct *p = current;
2674 unsigned long flags;
2675 int dest_cpu;
2677 raw_spin_lock_irqsave(&p->pi_lock, flags);
2678 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2679 if (dest_cpu == smp_processor_id())
2680 goto unlock;
2682 if (likely(cpu_active(dest_cpu))) {
2683 struct migration_arg arg = { p, dest_cpu };
2685 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2686 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2687 return;
2689 unlock:
2690 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2693 #endif
2695 DEFINE_PER_CPU(struct kernel_stat, kstat);
2696 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2698 EXPORT_PER_CPU_SYMBOL(kstat);
2699 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2702 * Return accounted runtime for the task.
2703 * In case the task is currently running, return the runtime plus current's
2704 * pending runtime that have not been accounted yet.
2706 unsigned long long task_sched_runtime(struct task_struct *p)
2708 unsigned long flags;
2709 struct rq *rq;
2710 u64 ns;
2712 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2714 * 64-bit doesn't need locks to atomically read a 64bit value.
2715 * So we have a optimization chance when the task's delta_exec is 0.
2716 * Reading ->on_cpu is racy, but this is ok.
2718 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2719 * If we race with it entering cpu, unaccounted time is 0. This is
2720 * indistinguishable from the read occurring a few cycles earlier.
2721 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2722 * been accounted, so we're correct here as well.
2724 if (!p->on_cpu || !task_on_rq_queued(p))
2725 return p->se.sum_exec_runtime;
2726 #endif
2728 rq = task_rq_lock(p, &flags);
2730 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2731 * project cycles that may never be accounted to this
2732 * thread, breaking clock_gettime().
2734 if (task_current(rq, p) && task_on_rq_queued(p)) {
2735 update_rq_clock(rq);
2736 p->sched_class->update_curr(rq);
2738 ns = p->se.sum_exec_runtime;
2739 task_rq_unlock(rq, p, &flags);
2741 return ns;
2745 * This function gets called by the timer code, with HZ frequency.
2746 * We call it with interrupts disabled.
2748 void scheduler_tick(void)
2750 int cpu = smp_processor_id();
2751 struct rq *rq = cpu_rq(cpu);
2752 struct task_struct *curr = rq->curr;
2754 sched_clock_tick();
2756 raw_spin_lock(&rq->lock);
2757 update_rq_clock(rq);
2758 curr->sched_class->task_tick(rq, curr, 0);
2759 update_cpu_load_active(rq);
2760 calc_global_load_tick(rq);
2761 raw_spin_unlock(&rq->lock);
2763 perf_event_task_tick();
2765 #ifdef CONFIG_SMP
2766 rq->idle_balance = idle_cpu(cpu);
2767 trigger_load_balance(rq);
2768 #endif
2769 rq_last_tick_reset(rq);
2772 #ifdef CONFIG_NO_HZ_FULL
2774 * scheduler_tick_max_deferment
2776 * Keep at least one tick per second when a single
2777 * active task is running because the scheduler doesn't
2778 * yet completely support full dynticks environment.
2780 * This makes sure that uptime, CFS vruntime, load
2781 * balancing, etc... continue to move forward, even
2782 * with a very low granularity.
2784 * Return: Maximum deferment in nanoseconds.
2786 u64 scheduler_tick_max_deferment(void)
2788 struct rq *rq = this_rq();
2789 unsigned long next, now = READ_ONCE(jiffies);
2791 next = rq->last_sched_tick + HZ;
2793 if (time_before_eq(next, now))
2794 return 0;
2796 return jiffies_to_nsecs(next - now);
2798 #endif
2800 notrace unsigned long get_parent_ip(unsigned long addr)
2802 if (in_lock_functions(addr)) {
2803 addr = CALLER_ADDR2;
2804 if (in_lock_functions(addr))
2805 addr = CALLER_ADDR3;
2807 return addr;
2810 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2811 defined(CONFIG_PREEMPT_TRACER))
2813 void preempt_count_add(int val)
2815 #ifdef CONFIG_DEBUG_PREEMPT
2817 * Underflow?
2819 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2820 return;
2821 #endif
2822 __preempt_count_add(val);
2823 #ifdef CONFIG_DEBUG_PREEMPT
2825 * Spinlock count overflowing soon?
2827 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2828 PREEMPT_MASK - 10);
2829 #endif
2830 if (preempt_count() == val) {
2831 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2832 #ifdef CONFIG_DEBUG_PREEMPT
2833 current->preempt_disable_ip = ip;
2834 #endif
2835 trace_preempt_off(CALLER_ADDR0, ip);
2838 EXPORT_SYMBOL(preempt_count_add);
2839 NOKPROBE_SYMBOL(preempt_count_add);
2841 void preempt_count_sub(int val)
2843 #ifdef CONFIG_DEBUG_PREEMPT
2845 * Underflow?
2847 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2848 return;
2850 * Is the spinlock portion underflowing?
2852 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2853 !(preempt_count() & PREEMPT_MASK)))
2854 return;
2855 #endif
2857 if (preempt_count() == val)
2858 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2859 __preempt_count_sub(val);
2861 EXPORT_SYMBOL(preempt_count_sub);
2862 NOKPROBE_SYMBOL(preempt_count_sub);
2864 #endif
2867 * Print scheduling while atomic bug:
2869 static noinline void __schedule_bug(struct task_struct *prev)
2871 if (oops_in_progress)
2872 return;
2874 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2875 prev->comm, prev->pid, preempt_count());
2877 debug_show_held_locks(prev);
2878 print_modules();
2879 if (irqs_disabled())
2880 print_irqtrace_events(prev);
2881 #ifdef CONFIG_DEBUG_PREEMPT
2882 if (in_atomic_preempt_off()) {
2883 pr_err("Preemption disabled at:");
2884 print_ip_sym(current->preempt_disable_ip);
2885 pr_cont("\n");
2887 #endif
2888 dump_stack();
2889 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2893 * Various schedule()-time debugging checks and statistics:
2895 static inline void schedule_debug(struct task_struct *prev)
2897 #ifdef CONFIG_SCHED_STACK_END_CHECK
2898 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2899 #endif
2901 * Test if we are atomic. Since do_exit() needs to call into
2902 * schedule() atomically, we ignore that path. Otherwise whine
2903 * if we are scheduling when we should not.
2905 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2906 __schedule_bug(prev);
2907 rcu_sleep_check();
2909 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2911 schedstat_inc(this_rq(), sched_count);
2915 * Pick up the highest-prio task:
2917 static inline struct task_struct *
2918 pick_next_task(struct rq *rq, struct task_struct *prev)
2920 const struct sched_class *class = &fair_sched_class;
2921 struct task_struct *p;
2924 * Optimization: we know that if all tasks are in
2925 * the fair class we can call that function directly:
2927 if (likely(prev->sched_class == class &&
2928 rq->nr_running == rq->cfs.h_nr_running)) {
2929 p = fair_sched_class.pick_next_task(rq, prev);
2930 if (unlikely(p == RETRY_TASK))
2931 goto again;
2933 /* assumes fair_sched_class->next == idle_sched_class */
2934 if (unlikely(!p))
2935 p = idle_sched_class.pick_next_task(rq, prev);
2937 return p;
2940 again:
2941 for_each_class(class) {
2942 p = class->pick_next_task(rq, prev);
2943 if (p) {
2944 if (unlikely(p == RETRY_TASK))
2945 goto again;
2946 return p;
2950 BUG(); /* the idle class will always have a runnable task */
2954 * __schedule() is the main scheduler function.
2956 * The main means of driving the scheduler and thus entering this function are:
2958 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2960 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2961 * paths. For example, see arch/x86/entry_64.S.
2963 * To drive preemption between tasks, the scheduler sets the flag in timer
2964 * interrupt handler scheduler_tick().
2966 * 3. Wakeups don't really cause entry into schedule(). They add a
2967 * task to the run-queue and that's it.
2969 * Now, if the new task added to the run-queue preempts the current
2970 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2971 * called on the nearest possible occasion:
2973 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2975 * - in syscall or exception context, at the next outmost
2976 * preempt_enable(). (this might be as soon as the wake_up()'s
2977 * spin_unlock()!)
2979 * - in IRQ context, return from interrupt-handler to
2980 * preemptible context
2982 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2983 * then at the next:
2985 * - cond_resched() call
2986 * - explicit schedule() call
2987 * - return from syscall or exception to user-space
2988 * - return from interrupt-handler to user-space
2990 * WARNING: must be called with preemption disabled!
2992 static void __sched __schedule(void)
2994 struct task_struct *prev, *next;
2995 unsigned long *switch_count;
2996 struct rq *rq;
2997 int cpu;
2999 cpu = smp_processor_id();
3000 rq = cpu_rq(cpu);
3001 rcu_note_context_switch();
3002 prev = rq->curr;
3004 schedule_debug(prev);
3006 if (sched_feat(HRTICK))
3007 hrtick_clear(rq);
3010 * Make sure that signal_pending_state()->signal_pending() below
3011 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3012 * done by the caller to avoid the race with signal_wake_up().
3014 smp_mb__before_spinlock();
3015 raw_spin_lock_irq(&rq->lock);
3016 lockdep_pin_lock(&rq->lock);
3018 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3020 switch_count = &prev->nivcsw;
3021 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3022 if (unlikely(signal_pending_state(prev->state, prev))) {
3023 prev->state = TASK_RUNNING;
3024 } else {
3025 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3026 prev->on_rq = 0;
3029 * If a worker went to sleep, notify and ask workqueue
3030 * whether it wants to wake up a task to maintain
3031 * concurrency.
3033 if (prev->flags & PF_WQ_WORKER) {
3034 struct task_struct *to_wakeup;
3036 to_wakeup = wq_worker_sleeping(prev, cpu);
3037 if (to_wakeup)
3038 try_to_wake_up_local(to_wakeup);
3041 switch_count = &prev->nvcsw;
3044 if (task_on_rq_queued(prev))
3045 update_rq_clock(rq);
3047 next = pick_next_task(rq, prev);
3048 clear_tsk_need_resched(prev);
3049 clear_preempt_need_resched();
3050 rq->clock_skip_update = 0;
3052 if (likely(prev != next)) {
3053 rq->nr_switches++;
3054 rq->curr = next;
3055 ++*switch_count;
3057 rq = context_switch(rq, prev, next); /* unlocks the rq */
3058 cpu = cpu_of(rq);
3059 } else {
3060 lockdep_unpin_lock(&rq->lock);
3061 raw_spin_unlock_irq(&rq->lock);
3064 balance_callback(rq);
3067 static inline void sched_submit_work(struct task_struct *tsk)
3069 if (!tsk->state || tsk_is_pi_blocked(tsk))
3070 return;
3072 * If we are going to sleep and we have plugged IO queued,
3073 * make sure to submit it to avoid deadlocks.
3075 if (blk_needs_flush_plug(tsk))
3076 blk_schedule_flush_plug(tsk);
3079 asmlinkage __visible void __sched schedule(void)
3081 struct task_struct *tsk = current;
3083 sched_submit_work(tsk);
3084 do {
3085 preempt_disable();
3086 __schedule();
3087 sched_preempt_enable_no_resched();
3088 } while (need_resched());
3090 EXPORT_SYMBOL(schedule);
3092 #ifdef CONFIG_CONTEXT_TRACKING
3093 asmlinkage __visible void __sched schedule_user(void)
3096 * If we come here after a random call to set_need_resched(),
3097 * or we have been woken up remotely but the IPI has not yet arrived,
3098 * we haven't yet exited the RCU idle mode. Do it here manually until
3099 * we find a better solution.
3101 * NB: There are buggy callers of this function. Ideally we
3102 * should warn if prev_state != CONTEXT_USER, but that will trigger
3103 * too frequently to make sense yet.
3105 enum ctx_state prev_state = exception_enter();
3106 schedule();
3107 exception_exit(prev_state);
3109 #endif
3112 * schedule_preempt_disabled - called with preemption disabled
3114 * Returns with preemption disabled. Note: preempt_count must be 1
3116 void __sched schedule_preempt_disabled(void)
3118 sched_preempt_enable_no_resched();
3119 schedule();
3120 preempt_disable();
3123 static void __sched notrace preempt_schedule_common(void)
3125 do {
3126 preempt_active_enter();
3127 __schedule();
3128 preempt_active_exit();
3131 * Check again in case we missed a preemption opportunity
3132 * between schedule and now.
3134 } while (need_resched());
3137 #ifdef CONFIG_PREEMPT
3139 * this is the entry point to schedule() from in-kernel preemption
3140 * off of preempt_enable. Kernel preemptions off return from interrupt
3141 * occur there and call schedule directly.
3143 asmlinkage __visible void __sched notrace preempt_schedule(void)
3146 * If there is a non-zero preempt_count or interrupts are disabled,
3147 * we do not want to preempt the current task. Just return..
3149 if (likely(!preemptible()))
3150 return;
3152 preempt_schedule_common();
3154 NOKPROBE_SYMBOL(preempt_schedule);
3155 EXPORT_SYMBOL(preempt_schedule);
3158 * preempt_schedule_notrace - preempt_schedule called by tracing
3160 * The tracing infrastructure uses preempt_enable_notrace to prevent
3161 * recursion and tracing preempt enabling caused by the tracing
3162 * infrastructure itself. But as tracing can happen in areas coming
3163 * from userspace or just about to enter userspace, a preempt enable
3164 * can occur before user_exit() is called. This will cause the scheduler
3165 * to be called when the system is still in usermode.
3167 * To prevent this, the preempt_enable_notrace will use this function
3168 * instead of preempt_schedule() to exit user context if needed before
3169 * calling the scheduler.
3171 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3173 enum ctx_state prev_ctx;
3175 if (likely(!preemptible()))
3176 return;
3178 do {
3180 * Use raw __prempt_count() ops that don't call function.
3181 * We can't call functions before disabling preemption which
3182 * disarm preemption tracing recursions.
3184 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3185 barrier();
3187 * Needs preempt disabled in case user_exit() is traced
3188 * and the tracer calls preempt_enable_notrace() causing
3189 * an infinite recursion.
3191 prev_ctx = exception_enter();
3192 __schedule();
3193 exception_exit(prev_ctx);
3195 barrier();
3196 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3197 } while (need_resched());
3199 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3201 #endif /* CONFIG_PREEMPT */
3204 * this is the entry point to schedule() from kernel preemption
3205 * off of irq context.
3206 * Note, that this is called and return with irqs disabled. This will
3207 * protect us against recursive calling from irq.
3209 asmlinkage __visible void __sched preempt_schedule_irq(void)
3211 enum ctx_state prev_state;
3213 /* Catch callers which need to be fixed */
3214 BUG_ON(preempt_count() || !irqs_disabled());
3216 prev_state = exception_enter();
3218 do {
3219 preempt_active_enter();
3220 local_irq_enable();
3221 __schedule();
3222 local_irq_disable();
3223 preempt_active_exit();
3224 } while (need_resched());
3226 exception_exit(prev_state);
3229 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3230 void *key)
3232 return try_to_wake_up(curr->private, mode, wake_flags);
3234 EXPORT_SYMBOL(default_wake_function);
3236 #ifdef CONFIG_RT_MUTEXES
3239 * rt_mutex_setprio - set the current priority of a task
3240 * @p: task
3241 * @prio: prio value (kernel-internal form)
3243 * This function changes the 'effective' priority of a task. It does
3244 * not touch ->normal_prio like __setscheduler().
3246 * Used by the rt_mutex code to implement priority inheritance
3247 * logic. Call site only calls if the priority of the task changed.
3249 void rt_mutex_setprio(struct task_struct *p, int prio)
3251 int oldprio, queued, running, enqueue_flag = 0;
3252 struct rq *rq;
3253 const struct sched_class *prev_class;
3255 BUG_ON(prio > MAX_PRIO);
3257 rq = __task_rq_lock(p);
3260 * Idle task boosting is a nono in general. There is one
3261 * exception, when PREEMPT_RT and NOHZ is active:
3263 * The idle task calls get_next_timer_interrupt() and holds
3264 * the timer wheel base->lock on the CPU and another CPU wants
3265 * to access the timer (probably to cancel it). We can safely
3266 * ignore the boosting request, as the idle CPU runs this code
3267 * with interrupts disabled and will complete the lock
3268 * protected section without being interrupted. So there is no
3269 * real need to boost.
3271 if (unlikely(p == rq->idle)) {
3272 WARN_ON(p != rq->curr);
3273 WARN_ON(p->pi_blocked_on);
3274 goto out_unlock;
3277 trace_sched_pi_setprio(p, prio);
3278 oldprio = p->prio;
3279 prev_class = p->sched_class;
3280 queued = task_on_rq_queued(p);
3281 running = task_current(rq, p);
3282 if (queued)
3283 dequeue_task(rq, p, 0);
3284 if (running)
3285 put_prev_task(rq, p);
3288 * Boosting condition are:
3289 * 1. -rt task is running and holds mutex A
3290 * --> -dl task blocks on mutex A
3292 * 2. -dl task is running and holds mutex A
3293 * --> -dl task blocks on mutex A and could preempt the
3294 * running task
3296 if (dl_prio(prio)) {
3297 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3298 if (!dl_prio(p->normal_prio) ||
3299 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3300 p->dl.dl_boosted = 1;
3301 enqueue_flag = ENQUEUE_REPLENISH;
3302 } else
3303 p->dl.dl_boosted = 0;
3304 p->sched_class = &dl_sched_class;
3305 } else if (rt_prio(prio)) {
3306 if (dl_prio(oldprio))
3307 p->dl.dl_boosted = 0;
3308 if (oldprio < prio)
3309 enqueue_flag = ENQUEUE_HEAD;
3310 p->sched_class = &rt_sched_class;
3311 } else {
3312 if (dl_prio(oldprio))
3313 p->dl.dl_boosted = 0;
3314 if (rt_prio(oldprio))
3315 p->rt.timeout = 0;
3316 p->sched_class = &fair_sched_class;
3319 p->prio = prio;
3321 if (running)
3322 p->sched_class->set_curr_task(rq);
3323 if (queued)
3324 enqueue_task(rq, p, enqueue_flag);
3326 check_class_changed(rq, p, prev_class, oldprio);
3327 out_unlock:
3328 preempt_disable(); /* avoid rq from going away on us */
3329 __task_rq_unlock(rq);
3331 balance_callback(rq);
3332 preempt_enable();
3334 #endif
3336 void set_user_nice(struct task_struct *p, long nice)
3338 int old_prio, delta, queued;
3339 unsigned long flags;
3340 struct rq *rq;
3342 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3343 return;
3345 * We have to be careful, if called from sys_setpriority(),
3346 * the task might be in the middle of scheduling on another CPU.
3348 rq = task_rq_lock(p, &flags);
3350 * The RT priorities are set via sched_setscheduler(), but we still
3351 * allow the 'normal' nice value to be set - but as expected
3352 * it wont have any effect on scheduling until the task is
3353 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3355 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3356 p->static_prio = NICE_TO_PRIO(nice);
3357 goto out_unlock;
3359 queued = task_on_rq_queued(p);
3360 if (queued)
3361 dequeue_task(rq, p, 0);
3363 p->static_prio = NICE_TO_PRIO(nice);
3364 set_load_weight(p);
3365 old_prio = p->prio;
3366 p->prio = effective_prio(p);
3367 delta = p->prio - old_prio;
3369 if (queued) {
3370 enqueue_task(rq, p, 0);
3372 * If the task increased its priority or is running and
3373 * lowered its priority, then reschedule its CPU:
3375 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3376 resched_curr(rq);
3378 out_unlock:
3379 task_rq_unlock(rq, p, &flags);
3381 EXPORT_SYMBOL(set_user_nice);
3384 * can_nice - check if a task can reduce its nice value
3385 * @p: task
3386 * @nice: nice value
3388 int can_nice(const struct task_struct *p, const int nice)
3390 /* convert nice value [19,-20] to rlimit style value [1,40] */
3391 int nice_rlim = nice_to_rlimit(nice);
3393 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3394 capable(CAP_SYS_NICE));
3397 #ifdef __ARCH_WANT_SYS_NICE
3400 * sys_nice - change the priority of the current process.
3401 * @increment: priority increment
3403 * sys_setpriority is a more generic, but much slower function that
3404 * does similar things.
3406 SYSCALL_DEFINE1(nice, int, increment)
3408 long nice, retval;
3411 * Setpriority might change our priority at the same moment.
3412 * We don't have to worry. Conceptually one call occurs first
3413 * and we have a single winner.
3415 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3416 nice = task_nice(current) + increment;
3418 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3419 if (increment < 0 && !can_nice(current, nice))
3420 return -EPERM;
3422 retval = security_task_setnice(current, nice);
3423 if (retval)
3424 return retval;
3426 set_user_nice(current, nice);
3427 return 0;
3430 #endif
3433 * task_prio - return the priority value of a given task.
3434 * @p: the task in question.
3436 * Return: The priority value as seen by users in /proc.
3437 * RT tasks are offset by -200. Normal tasks are centered
3438 * around 0, value goes from -16 to +15.
3440 int task_prio(const struct task_struct *p)
3442 return p->prio - MAX_RT_PRIO;
3446 * idle_cpu - is a given cpu idle currently?
3447 * @cpu: the processor in question.
3449 * Return: 1 if the CPU is currently idle. 0 otherwise.
3451 int idle_cpu(int cpu)
3453 struct rq *rq = cpu_rq(cpu);
3455 if (rq->curr != rq->idle)
3456 return 0;
3458 if (rq->nr_running)
3459 return 0;
3461 #ifdef CONFIG_SMP
3462 if (!llist_empty(&rq->wake_list))
3463 return 0;
3464 #endif
3466 return 1;
3470 * idle_task - return the idle task for a given cpu.
3471 * @cpu: the processor in question.
3473 * Return: The idle task for the cpu @cpu.
3475 struct task_struct *idle_task(int cpu)
3477 return cpu_rq(cpu)->idle;
3481 * find_process_by_pid - find a process with a matching PID value.
3482 * @pid: the pid in question.
3484 * The task of @pid, if found. %NULL otherwise.
3486 static struct task_struct *find_process_by_pid(pid_t pid)
3488 return pid ? find_task_by_vpid(pid) : current;
3492 * This function initializes the sched_dl_entity of a newly becoming
3493 * SCHED_DEADLINE task.
3495 * Only the static values are considered here, the actual runtime and the
3496 * absolute deadline will be properly calculated when the task is enqueued
3497 * for the first time with its new policy.
3499 static void
3500 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3502 struct sched_dl_entity *dl_se = &p->dl;
3504 dl_se->dl_runtime = attr->sched_runtime;
3505 dl_se->dl_deadline = attr->sched_deadline;
3506 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3507 dl_se->flags = attr->sched_flags;
3508 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3511 * Changing the parameters of a task is 'tricky' and we're not doing
3512 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3514 * What we SHOULD do is delay the bandwidth release until the 0-lag
3515 * point. This would include retaining the task_struct until that time
3516 * and change dl_overflow() to not immediately decrement the current
3517 * amount.
3519 * Instead we retain the current runtime/deadline and let the new
3520 * parameters take effect after the current reservation period lapses.
3521 * This is safe (albeit pessimistic) because the 0-lag point is always
3522 * before the current scheduling deadline.
3524 * We can still have temporary overloads because we do not delay the
3525 * change in bandwidth until that time; so admission control is
3526 * not on the safe side. It does however guarantee tasks will never
3527 * consume more than promised.
3532 * sched_setparam() passes in -1 for its policy, to let the functions
3533 * it calls know not to change it.
3535 #define SETPARAM_POLICY -1
3537 static void __setscheduler_params(struct task_struct *p,
3538 const struct sched_attr *attr)
3540 int policy = attr->sched_policy;
3542 if (policy == SETPARAM_POLICY)
3543 policy = p->policy;
3545 p->policy = policy;
3547 if (dl_policy(policy))
3548 __setparam_dl(p, attr);
3549 else if (fair_policy(policy))
3550 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3553 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3554 * !rt_policy. Always setting this ensures that things like
3555 * getparam()/getattr() don't report silly values for !rt tasks.
3557 p->rt_priority = attr->sched_priority;
3558 p->normal_prio = normal_prio(p);
3559 set_load_weight(p);
3562 /* Actually do priority change: must hold pi & rq lock. */
3563 static void __setscheduler(struct rq *rq, struct task_struct *p,
3564 const struct sched_attr *attr, bool keep_boost)
3566 __setscheduler_params(p, attr);
3569 * Keep a potential priority boosting if called from
3570 * sched_setscheduler().
3572 if (keep_boost)
3573 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3574 else
3575 p->prio = normal_prio(p);
3577 if (dl_prio(p->prio))
3578 p->sched_class = &dl_sched_class;
3579 else if (rt_prio(p->prio))
3580 p->sched_class = &rt_sched_class;
3581 else
3582 p->sched_class = &fair_sched_class;
3585 static void
3586 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3588 struct sched_dl_entity *dl_se = &p->dl;
3590 attr->sched_priority = p->rt_priority;
3591 attr->sched_runtime = dl_se->dl_runtime;
3592 attr->sched_deadline = dl_se->dl_deadline;
3593 attr->sched_period = dl_se->dl_period;
3594 attr->sched_flags = dl_se->flags;
3598 * This function validates the new parameters of a -deadline task.
3599 * We ask for the deadline not being zero, and greater or equal
3600 * than the runtime, as well as the period of being zero or
3601 * greater than deadline. Furthermore, we have to be sure that
3602 * user parameters are above the internal resolution of 1us (we
3603 * check sched_runtime only since it is always the smaller one) and
3604 * below 2^63 ns (we have to check both sched_deadline and
3605 * sched_period, as the latter can be zero).
3607 static bool
3608 __checkparam_dl(const struct sched_attr *attr)
3610 /* deadline != 0 */
3611 if (attr->sched_deadline == 0)
3612 return false;
3615 * Since we truncate DL_SCALE bits, make sure we're at least
3616 * that big.
3618 if (attr->sched_runtime < (1ULL << DL_SCALE))
3619 return false;
3622 * Since we use the MSB for wrap-around and sign issues, make
3623 * sure it's not set (mind that period can be equal to zero).
3625 if (attr->sched_deadline & (1ULL << 63) ||
3626 attr->sched_period & (1ULL << 63))
3627 return false;
3629 /* runtime <= deadline <= period (if period != 0) */
3630 if ((attr->sched_period != 0 &&
3631 attr->sched_period < attr->sched_deadline) ||
3632 attr->sched_deadline < attr->sched_runtime)
3633 return false;
3635 return true;
3639 * check the target process has a UID that matches the current process's
3641 static bool check_same_owner(struct task_struct *p)
3643 const struct cred *cred = current_cred(), *pcred;
3644 bool match;
3646 rcu_read_lock();
3647 pcred = __task_cred(p);
3648 match = (uid_eq(cred->euid, pcred->euid) ||
3649 uid_eq(cred->euid, pcred->uid));
3650 rcu_read_unlock();
3651 return match;
3654 static bool dl_param_changed(struct task_struct *p,
3655 const struct sched_attr *attr)
3657 struct sched_dl_entity *dl_se = &p->dl;
3659 if (dl_se->dl_runtime != attr->sched_runtime ||
3660 dl_se->dl_deadline != attr->sched_deadline ||
3661 dl_se->dl_period != attr->sched_period ||
3662 dl_se->flags != attr->sched_flags)
3663 return true;
3665 return false;
3668 static int __sched_setscheduler(struct task_struct *p,
3669 const struct sched_attr *attr,
3670 bool user, bool pi)
3672 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3673 MAX_RT_PRIO - 1 - attr->sched_priority;
3674 int retval, oldprio, oldpolicy = -1, queued, running;
3675 int new_effective_prio, policy = attr->sched_policy;
3676 unsigned long flags;
3677 const struct sched_class *prev_class;
3678 struct rq *rq;
3679 int reset_on_fork;
3681 /* may grab non-irq protected spin_locks */
3682 BUG_ON(in_interrupt());
3683 recheck:
3684 /* double check policy once rq lock held */
3685 if (policy < 0) {
3686 reset_on_fork = p->sched_reset_on_fork;
3687 policy = oldpolicy = p->policy;
3688 } else {
3689 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3691 if (policy != SCHED_DEADLINE &&
3692 policy != SCHED_FIFO && policy != SCHED_RR &&
3693 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3694 policy != SCHED_IDLE)
3695 return -EINVAL;
3698 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3699 return -EINVAL;
3702 * Valid priorities for SCHED_FIFO and SCHED_RR are
3703 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3704 * SCHED_BATCH and SCHED_IDLE is 0.
3706 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3707 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3708 return -EINVAL;
3709 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3710 (rt_policy(policy) != (attr->sched_priority != 0)))
3711 return -EINVAL;
3714 * Allow unprivileged RT tasks to decrease priority:
3716 if (user && !capable(CAP_SYS_NICE)) {
3717 if (fair_policy(policy)) {
3718 if (attr->sched_nice < task_nice(p) &&
3719 !can_nice(p, attr->sched_nice))
3720 return -EPERM;
3723 if (rt_policy(policy)) {
3724 unsigned long rlim_rtprio =
3725 task_rlimit(p, RLIMIT_RTPRIO);
3727 /* can't set/change the rt policy */
3728 if (policy != p->policy && !rlim_rtprio)
3729 return -EPERM;
3731 /* can't increase priority */
3732 if (attr->sched_priority > p->rt_priority &&
3733 attr->sched_priority > rlim_rtprio)
3734 return -EPERM;
3738 * Can't set/change SCHED_DEADLINE policy at all for now
3739 * (safest behavior); in the future we would like to allow
3740 * unprivileged DL tasks to increase their relative deadline
3741 * or reduce their runtime (both ways reducing utilization)
3743 if (dl_policy(policy))
3744 return -EPERM;
3747 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3748 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3750 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3751 if (!can_nice(p, task_nice(p)))
3752 return -EPERM;
3755 /* can't change other user's priorities */
3756 if (!check_same_owner(p))
3757 return -EPERM;
3759 /* Normal users shall not reset the sched_reset_on_fork flag */
3760 if (p->sched_reset_on_fork && !reset_on_fork)
3761 return -EPERM;
3764 if (user) {
3765 retval = security_task_setscheduler(p);
3766 if (retval)
3767 return retval;
3771 * make sure no PI-waiters arrive (or leave) while we are
3772 * changing the priority of the task:
3774 * To be able to change p->policy safely, the appropriate
3775 * runqueue lock must be held.
3777 rq = task_rq_lock(p, &flags);
3780 * Changing the policy of the stop threads its a very bad idea
3782 if (p == rq->stop) {
3783 task_rq_unlock(rq, p, &flags);
3784 return -EINVAL;
3788 * If not changing anything there's no need to proceed further,
3789 * but store a possible modification of reset_on_fork.
3791 if (unlikely(policy == p->policy)) {
3792 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3793 goto change;
3794 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3795 goto change;
3796 if (dl_policy(policy) && dl_param_changed(p, attr))
3797 goto change;
3799 p->sched_reset_on_fork = reset_on_fork;
3800 task_rq_unlock(rq, p, &flags);
3801 return 0;
3803 change:
3805 if (user) {
3806 #ifdef CONFIG_RT_GROUP_SCHED
3808 * Do not allow realtime tasks into groups that have no runtime
3809 * assigned.
3811 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3812 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3813 !task_group_is_autogroup(task_group(p))) {
3814 task_rq_unlock(rq, p, &flags);
3815 return -EPERM;
3817 #endif
3818 #ifdef CONFIG_SMP
3819 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3820 cpumask_t *span = rq->rd->span;
3823 * Don't allow tasks with an affinity mask smaller than
3824 * the entire root_domain to become SCHED_DEADLINE. We
3825 * will also fail if there's no bandwidth available.
3827 if (!cpumask_subset(span, &p->cpus_allowed) ||
3828 rq->rd->dl_bw.bw == 0) {
3829 task_rq_unlock(rq, p, &flags);
3830 return -EPERM;
3833 #endif
3836 /* recheck policy now with rq lock held */
3837 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3838 policy = oldpolicy = -1;
3839 task_rq_unlock(rq, p, &flags);
3840 goto recheck;
3844 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3845 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3846 * is available.
3848 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3849 task_rq_unlock(rq, p, &flags);
3850 return -EBUSY;
3853 p->sched_reset_on_fork = reset_on_fork;
3854 oldprio = p->prio;
3856 if (pi) {
3858 * Take priority boosted tasks into account. If the new
3859 * effective priority is unchanged, we just store the new
3860 * normal parameters and do not touch the scheduler class and
3861 * the runqueue. This will be done when the task deboost
3862 * itself.
3864 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3865 if (new_effective_prio == oldprio) {
3866 __setscheduler_params(p, attr);
3867 task_rq_unlock(rq, p, &flags);
3868 return 0;
3872 queued = task_on_rq_queued(p);
3873 running = task_current(rq, p);
3874 if (queued)
3875 dequeue_task(rq, p, 0);
3876 if (running)
3877 put_prev_task(rq, p);
3879 prev_class = p->sched_class;
3880 __setscheduler(rq, p, attr, pi);
3882 if (running)
3883 p->sched_class->set_curr_task(rq);
3884 if (queued) {
3886 * We enqueue to tail when the priority of a task is
3887 * increased (user space view).
3889 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3892 check_class_changed(rq, p, prev_class, oldprio);
3893 preempt_disable(); /* avoid rq from going away on us */
3894 task_rq_unlock(rq, p, &flags);
3896 if (pi)
3897 rt_mutex_adjust_pi(p);
3900 * Run balance callbacks after we've adjusted the PI chain.
3902 balance_callback(rq);
3903 preempt_enable();
3905 return 0;
3908 static int _sched_setscheduler(struct task_struct *p, int policy,
3909 const struct sched_param *param, bool check)
3911 struct sched_attr attr = {
3912 .sched_policy = policy,
3913 .sched_priority = param->sched_priority,
3914 .sched_nice = PRIO_TO_NICE(p->static_prio),
3917 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3918 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3919 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3920 policy &= ~SCHED_RESET_ON_FORK;
3921 attr.sched_policy = policy;
3924 return __sched_setscheduler(p, &attr, check, true);
3927 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3928 * @p: the task in question.
3929 * @policy: new policy.
3930 * @param: structure containing the new RT priority.
3932 * Return: 0 on success. An error code otherwise.
3934 * NOTE that the task may be already dead.
3936 int sched_setscheduler(struct task_struct *p, int policy,
3937 const struct sched_param *param)
3939 return _sched_setscheduler(p, policy, param, true);
3941 EXPORT_SYMBOL_GPL(sched_setscheduler);
3943 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3945 return __sched_setscheduler(p, attr, true, true);
3947 EXPORT_SYMBOL_GPL(sched_setattr);
3950 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3951 * @p: the task in question.
3952 * @policy: new policy.
3953 * @param: structure containing the new RT priority.
3955 * Just like sched_setscheduler, only don't bother checking if the
3956 * current context has permission. For example, this is needed in
3957 * stop_machine(): we create temporary high priority worker threads,
3958 * but our caller might not have that capability.
3960 * Return: 0 on success. An error code otherwise.
3962 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3963 const struct sched_param *param)
3965 return _sched_setscheduler(p, policy, param, false);
3968 static int
3969 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3971 struct sched_param lparam;
3972 struct task_struct *p;
3973 int retval;
3975 if (!param || pid < 0)
3976 return -EINVAL;
3977 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3978 return -EFAULT;
3980 rcu_read_lock();
3981 retval = -ESRCH;
3982 p = find_process_by_pid(pid);
3983 if (p != NULL)
3984 retval = sched_setscheduler(p, policy, &lparam);
3985 rcu_read_unlock();
3987 return retval;
3991 * Mimics kernel/events/core.c perf_copy_attr().
3993 static int sched_copy_attr(struct sched_attr __user *uattr,
3994 struct sched_attr *attr)
3996 u32 size;
3997 int ret;
3999 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4000 return -EFAULT;
4003 * zero the full structure, so that a short copy will be nice.
4005 memset(attr, 0, sizeof(*attr));
4007 ret = get_user(size, &uattr->size);
4008 if (ret)
4009 return ret;
4011 if (size > PAGE_SIZE) /* silly large */
4012 goto err_size;
4014 if (!size) /* abi compat */
4015 size = SCHED_ATTR_SIZE_VER0;
4017 if (size < SCHED_ATTR_SIZE_VER0)
4018 goto err_size;
4021 * If we're handed a bigger struct than we know of,
4022 * ensure all the unknown bits are 0 - i.e. new
4023 * user-space does not rely on any kernel feature
4024 * extensions we dont know about yet.
4026 if (size > sizeof(*attr)) {
4027 unsigned char __user *addr;
4028 unsigned char __user *end;
4029 unsigned char val;
4031 addr = (void __user *)uattr + sizeof(*attr);
4032 end = (void __user *)uattr + size;
4034 for (; addr < end; addr++) {
4035 ret = get_user(val, addr);
4036 if (ret)
4037 return ret;
4038 if (val)
4039 goto err_size;
4041 size = sizeof(*attr);
4044 ret = copy_from_user(attr, uattr, size);
4045 if (ret)
4046 return -EFAULT;
4049 * XXX: do we want to be lenient like existing syscalls; or do we want
4050 * to be strict and return an error on out-of-bounds values?
4052 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4054 return 0;
4056 err_size:
4057 put_user(sizeof(*attr), &uattr->size);
4058 return -E2BIG;
4062 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4063 * @pid: the pid in question.
4064 * @policy: new policy.
4065 * @param: structure containing the new RT priority.
4067 * Return: 0 on success. An error code otherwise.
4069 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4070 struct sched_param __user *, param)
4072 /* negative values for policy are not valid */
4073 if (policy < 0)
4074 return -EINVAL;
4076 return do_sched_setscheduler(pid, policy, param);
4080 * sys_sched_setparam - set/change the RT priority of a thread
4081 * @pid: the pid in question.
4082 * @param: structure containing the new RT priority.
4084 * Return: 0 on success. An error code otherwise.
4086 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4088 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4092 * sys_sched_setattr - same as above, but with extended sched_attr
4093 * @pid: the pid in question.
4094 * @uattr: structure containing the extended parameters.
4095 * @flags: for future extension.
4097 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4098 unsigned int, flags)
4100 struct sched_attr attr;
4101 struct task_struct *p;
4102 int retval;
4104 if (!uattr || pid < 0 || flags)
4105 return -EINVAL;
4107 retval = sched_copy_attr(uattr, &attr);
4108 if (retval)
4109 return retval;
4111 if ((int)attr.sched_policy < 0)
4112 return -EINVAL;
4114 rcu_read_lock();
4115 retval = -ESRCH;
4116 p = find_process_by_pid(pid);
4117 if (p != NULL)
4118 retval = sched_setattr(p, &attr);
4119 rcu_read_unlock();
4121 return retval;
4125 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4126 * @pid: the pid in question.
4128 * Return: On success, the policy of the thread. Otherwise, a negative error
4129 * code.
4131 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4133 struct task_struct *p;
4134 int retval;
4136 if (pid < 0)
4137 return -EINVAL;
4139 retval = -ESRCH;
4140 rcu_read_lock();
4141 p = find_process_by_pid(pid);
4142 if (p) {
4143 retval = security_task_getscheduler(p);
4144 if (!retval)
4145 retval = p->policy
4146 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4148 rcu_read_unlock();
4149 return retval;
4153 * sys_sched_getparam - get the RT priority of a thread
4154 * @pid: the pid in question.
4155 * @param: structure containing the RT priority.
4157 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4158 * code.
4160 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4162 struct sched_param lp = { .sched_priority = 0 };
4163 struct task_struct *p;
4164 int retval;
4166 if (!param || pid < 0)
4167 return -EINVAL;
4169 rcu_read_lock();
4170 p = find_process_by_pid(pid);
4171 retval = -ESRCH;
4172 if (!p)
4173 goto out_unlock;
4175 retval = security_task_getscheduler(p);
4176 if (retval)
4177 goto out_unlock;
4179 if (task_has_rt_policy(p))
4180 lp.sched_priority = p->rt_priority;
4181 rcu_read_unlock();
4184 * This one might sleep, we cannot do it with a spinlock held ...
4186 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4188 return retval;
4190 out_unlock:
4191 rcu_read_unlock();
4192 return retval;
4195 static int sched_read_attr(struct sched_attr __user *uattr,
4196 struct sched_attr *attr,
4197 unsigned int usize)
4199 int ret;
4201 if (!access_ok(VERIFY_WRITE, uattr, usize))
4202 return -EFAULT;
4205 * If we're handed a smaller struct than we know of,
4206 * ensure all the unknown bits are 0 - i.e. old
4207 * user-space does not get uncomplete information.
4209 if (usize < sizeof(*attr)) {
4210 unsigned char *addr;
4211 unsigned char *end;
4213 addr = (void *)attr + usize;
4214 end = (void *)attr + sizeof(*attr);
4216 for (; addr < end; addr++) {
4217 if (*addr)
4218 return -EFBIG;
4221 attr->size = usize;
4224 ret = copy_to_user(uattr, attr, attr->size);
4225 if (ret)
4226 return -EFAULT;
4228 return 0;
4232 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4233 * @pid: the pid in question.
4234 * @uattr: structure containing the extended parameters.
4235 * @size: sizeof(attr) for fwd/bwd comp.
4236 * @flags: for future extension.
4238 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4239 unsigned int, size, unsigned int, flags)
4241 struct sched_attr attr = {
4242 .size = sizeof(struct sched_attr),
4244 struct task_struct *p;
4245 int retval;
4247 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4248 size < SCHED_ATTR_SIZE_VER0 || flags)
4249 return -EINVAL;
4251 rcu_read_lock();
4252 p = find_process_by_pid(pid);
4253 retval = -ESRCH;
4254 if (!p)
4255 goto out_unlock;
4257 retval = security_task_getscheduler(p);
4258 if (retval)
4259 goto out_unlock;
4261 attr.sched_policy = p->policy;
4262 if (p->sched_reset_on_fork)
4263 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4264 if (task_has_dl_policy(p))
4265 __getparam_dl(p, &attr);
4266 else if (task_has_rt_policy(p))
4267 attr.sched_priority = p->rt_priority;
4268 else
4269 attr.sched_nice = task_nice(p);
4271 rcu_read_unlock();
4273 retval = sched_read_attr(uattr, &attr, size);
4274 return retval;
4276 out_unlock:
4277 rcu_read_unlock();
4278 return retval;
4281 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4283 cpumask_var_t cpus_allowed, new_mask;
4284 struct task_struct *p;
4285 int retval;
4287 rcu_read_lock();
4289 p = find_process_by_pid(pid);
4290 if (!p) {
4291 rcu_read_unlock();
4292 return -ESRCH;
4295 /* Prevent p going away */
4296 get_task_struct(p);
4297 rcu_read_unlock();
4299 if (p->flags & PF_NO_SETAFFINITY) {
4300 retval = -EINVAL;
4301 goto out_put_task;
4303 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4304 retval = -ENOMEM;
4305 goto out_put_task;
4307 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4308 retval = -ENOMEM;
4309 goto out_free_cpus_allowed;
4311 retval = -EPERM;
4312 if (!check_same_owner(p)) {
4313 rcu_read_lock();
4314 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4315 rcu_read_unlock();
4316 goto out_free_new_mask;
4318 rcu_read_unlock();
4321 retval = security_task_setscheduler(p);
4322 if (retval)
4323 goto out_free_new_mask;
4326 cpuset_cpus_allowed(p, cpus_allowed);
4327 cpumask_and(new_mask, in_mask, cpus_allowed);
4330 * Since bandwidth control happens on root_domain basis,
4331 * if admission test is enabled, we only admit -deadline
4332 * tasks allowed to run on all the CPUs in the task's
4333 * root_domain.
4335 #ifdef CONFIG_SMP
4336 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4337 rcu_read_lock();
4338 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4339 retval = -EBUSY;
4340 rcu_read_unlock();
4341 goto out_free_new_mask;
4343 rcu_read_unlock();
4345 #endif
4346 again:
4347 retval = set_cpus_allowed_ptr(p, new_mask);
4349 if (!retval) {
4350 cpuset_cpus_allowed(p, cpus_allowed);
4351 if (!cpumask_subset(new_mask, cpus_allowed)) {
4353 * We must have raced with a concurrent cpuset
4354 * update. Just reset the cpus_allowed to the
4355 * cpuset's cpus_allowed
4357 cpumask_copy(new_mask, cpus_allowed);
4358 goto again;
4361 out_free_new_mask:
4362 free_cpumask_var(new_mask);
4363 out_free_cpus_allowed:
4364 free_cpumask_var(cpus_allowed);
4365 out_put_task:
4366 put_task_struct(p);
4367 return retval;
4370 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4371 struct cpumask *new_mask)
4373 if (len < cpumask_size())
4374 cpumask_clear(new_mask);
4375 else if (len > cpumask_size())
4376 len = cpumask_size();
4378 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4382 * sys_sched_setaffinity - set the cpu affinity of a process
4383 * @pid: pid of the process
4384 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4385 * @user_mask_ptr: user-space pointer to the new cpu mask
4387 * Return: 0 on success. An error code otherwise.
4389 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4390 unsigned long __user *, user_mask_ptr)
4392 cpumask_var_t new_mask;
4393 int retval;
4395 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4396 return -ENOMEM;
4398 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4399 if (retval == 0)
4400 retval = sched_setaffinity(pid, new_mask);
4401 free_cpumask_var(new_mask);
4402 return retval;
4405 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4407 struct task_struct *p;
4408 unsigned long flags;
4409 int retval;
4411 rcu_read_lock();
4413 retval = -ESRCH;
4414 p = find_process_by_pid(pid);
4415 if (!p)
4416 goto out_unlock;
4418 retval = security_task_getscheduler(p);
4419 if (retval)
4420 goto out_unlock;
4422 raw_spin_lock_irqsave(&p->pi_lock, flags);
4423 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4424 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4426 out_unlock:
4427 rcu_read_unlock();
4429 return retval;
4433 * sys_sched_getaffinity - get the cpu affinity of a process
4434 * @pid: pid of the process
4435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4436 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4438 * Return: 0 on success. An error code otherwise.
4440 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4441 unsigned long __user *, user_mask_ptr)
4443 int ret;
4444 cpumask_var_t mask;
4446 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4447 return -EINVAL;
4448 if (len & (sizeof(unsigned long)-1))
4449 return -EINVAL;
4451 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4452 return -ENOMEM;
4454 ret = sched_getaffinity(pid, mask);
4455 if (ret == 0) {
4456 size_t retlen = min_t(size_t, len, cpumask_size());
4458 if (copy_to_user(user_mask_ptr, mask, retlen))
4459 ret = -EFAULT;
4460 else
4461 ret = retlen;
4463 free_cpumask_var(mask);
4465 return ret;
4469 * sys_sched_yield - yield the current processor to other threads.
4471 * This function yields the current CPU to other tasks. If there are no
4472 * other threads running on this CPU then this function will return.
4474 * Return: 0.
4476 SYSCALL_DEFINE0(sched_yield)
4478 struct rq *rq = this_rq_lock();
4480 schedstat_inc(rq, yld_count);
4481 current->sched_class->yield_task(rq);
4484 * Since we are going to call schedule() anyway, there's
4485 * no need to preempt or enable interrupts:
4487 __release(rq->lock);
4488 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4489 do_raw_spin_unlock(&rq->lock);
4490 sched_preempt_enable_no_resched();
4492 schedule();
4494 return 0;
4497 int __sched _cond_resched(void)
4499 if (should_resched(0)) {
4500 preempt_schedule_common();
4501 return 1;
4503 return 0;
4505 EXPORT_SYMBOL(_cond_resched);
4508 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4509 * call schedule, and on return reacquire the lock.
4511 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4512 * operations here to prevent schedule() from being called twice (once via
4513 * spin_unlock(), once by hand).
4515 int __cond_resched_lock(spinlock_t *lock)
4517 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4518 int ret = 0;
4520 lockdep_assert_held(lock);
4522 if (spin_needbreak(lock) || resched) {
4523 spin_unlock(lock);
4524 if (resched)
4525 preempt_schedule_common();
4526 else
4527 cpu_relax();
4528 ret = 1;
4529 spin_lock(lock);
4531 return ret;
4533 EXPORT_SYMBOL(__cond_resched_lock);
4535 int __sched __cond_resched_softirq(void)
4537 BUG_ON(!in_softirq());
4539 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4540 local_bh_enable();
4541 preempt_schedule_common();
4542 local_bh_disable();
4543 return 1;
4545 return 0;
4547 EXPORT_SYMBOL(__cond_resched_softirq);
4550 * yield - yield the current processor to other threads.
4552 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4554 * The scheduler is at all times free to pick the calling task as the most
4555 * eligible task to run, if removing the yield() call from your code breaks
4556 * it, its already broken.
4558 * Typical broken usage is:
4560 * while (!event)
4561 * yield();
4563 * where one assumes that yield() will let 'the other' process run that will
4564 * make event true. If the current task is a SCHED_FIFO task that will never
4565 * happen. Never use yield() as a progress guarantee!!
4567 * If you want to use yield() to wait for something, use wait_event().
4568 * If you want to use yield() to be 'nice' for others, use cond_resched().
4569 * If you still want to use yield(), do not!
4571 void __sched yield(void)
4573 set_current_state(TASK_RUNNING);
4574 sys_sched_yield();
4576 EXPORT_SYMBOL(yield);
4579 * yield_to - yield the current processor to another thread in
4580 * your thread group, or accelerate that thread toward the
4581 * processor it's on.
4582 * @p: target task
4583 * @preempt: whether task preemption is allowed or not
4585 * It's the caller's job to ensure that the target task struct
4586 * can't go away on us before we can do any checks.
4588 * Return:
4589 * true (>0) if we indeed boosted the target task.
4590 * false (0) if we failed to boost the target.
4591 * -ESRCH if there's no task to yield to.
4593 int __sched yield_to(struct task_struct *p, bool preempt)
4595 struct task_struct *curr = current;
4596 struct rq *rq, *p_rq;
4597 unsigned long flags;
4598 int yielded = 0;
4600 local_irq_save(flags);
4601 rq = this_rq();
4603 again:
4604 p_rq = task_rq(p);
4606 * If we're the only runnable task on the rq and target rq also
4607 * has only one task, there's absolutely no point in yielding.
4609 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4610 yielded = -ESRCH;
4611 goto out_irq;
4614 double_rq_lock(rq, p_rq);
4615 if (task_rq(p) != p_rq) {
4616 double_rq_unlock(rq, p_rq);
4617 goto again;
4620 if (!curr->sched_class->yield_to_task)
4621 goto out_unlock;
4623 if (curr->sched_class != p->sched_class)
4624 goto out_unlock;
4626 if (task_running(p_rq, p) || p->state)
4627 goto out_unlock;
4629 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4630 if (yielded) {
4631 schedstat_inc(rq, yld_count);
4633 * Make p's CPU reschedule; pick_next_entity takes care of
4634 * fairness.
4636 if (preempt && rq != p_rq)
4637 resched_curr(p_rq);
4640 out_unlock:
4641 double_rq_unlock(rq, p_rq);
4642 out_irq:
4643 local_irq_restore(flags);
4645 if (yielded > 0)
4646 schedule();
4648 return yielded;
4650 EXPORT_SYMBOL_GPL(yield_to);
4653 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4654 * that process accounting knows that this is a task in IO wait state.
4656 long __sched io_schedule_timeout(long timeout)
4658 int old_iowait = current->in_iowait;
4659 struct rq *rq;
4660 long ret;
4662 current->in_iowait = 1;
4663 blk_schedule_flush_plug(current);
4665 delayacct_blkio_start();
4666 rq = raw_rq();
4667 atomic_inc(&rq->nr_iowait);
4668 ret = schedule_timeout(timeout);
4669 current->in_iowait = old_iowait;
4670 atomic_dec(&rq->nr_iowait);
4671 delayacct_blkio_end();
4673 return ret;
4675 EXPORT_SYMBOL(io_schedule_timeout);
4678 * sys_sched_get_priority_max - return maximum RT priority.
4679 * @policy: scheduling class.
4681 * Return: On success, this syscall returns the maximum
4682 * rt_priority that can be used by a given scheduling class.
4683 * On failure, a negative error code is returned.
4685 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4687 int ret = -EINVAL;
4689 switch (policy) {
4690 case SCHED_FIFO:
4691 case SCHED_RR:
4692 ret = MAX_USER_RT_PRIO-1;
4693 break;
4694 case SCHED_DEADLINE:
4695 case SCHED_NORMAL:
4696 case SCHED_BATCH:
4697 case SCHED_IDLE:
4698 ret = 0;
4699 break;
4701 return ret;
4705 * sys_sched_get_priority_min - return minimum RT priority.
4706 * @policy: scheduling class.
4708 * Return: On success, this syscall returns the minimum
4709 * rt_priority that can be used by a given scheduling class.
4710 * On failure, a negative error code is returned.
4712 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4714 int ret = -EINVAL;
4716 switch (policy) {
4717 case SCHED_FIFO:
4718 case SCHED_RR:
4719 ret = 1;
4720 break;
4721 case SCHED_DEADLINE:
4722 case SCHED_NORMAL:
4723 case SCHED_BATCH:
4724 case SCHED_IDLE:
4725 ret = 0;
4727 return ret;
4731 * sys_sched_rr_get_interval - return the default timeslice of a process.
4732 * @pid: pid of the process.
4733 * @interval: userspace pointer to the timeslice value.
4735 * this syscall writes the default timeslice value of a given process
4736 * into the user-space timespec buffer. A value of '0' means infinity.
4738 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4739 * an error code.
4741 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4742 struct timespec __user *, interval)
4744 struct task_struct *p;
4745 unsigned int time_slice;
4746 unsigned long flags;
4747 struct rq *rq;
4748 int retval;
4749 struct timespec t;
4751 if (pid < 0)
4752 return -EINVAL;
4754 retval = -ESRCH;
4755 rcu_read_lock();
4756 p = find_process_by_pid(pid);
4757 if (!p)
4758 goto out_unlock;
4760 retval = security_task_getscheduler(p);
4761 if (retval)
4762 goto out_unlock;
4764 rq = task_rq_lock(p, &flags);
4765 time_slice = 0;
4766 if (p->sched_class->get_rr_interval)
4767 time_slice = p->sched_class->get_rr_interval(rq, p);
4768 task_rq_unlock(rq, p, &flags);
4770 rcu_read_unlock();
4771 jiffies_to_timespec(time_slice, &t);
4772 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4773 return retval;
4775 out_unlock:
4776 rcu_read_unlock();
4777 return retval;
4780 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4782 void sched_show_task(struct task_struct *p)
4784 unsigned long free = 0;
4785 int ppid;
4786 unsigned long state = p->state;
4788 if (state)
4789 state = __ffs(state) + 1;
4790 printk(KERN_INFO "%-15.15s %c", p->comm,
4791 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4792 #if BITS_PER_LONG == 32
4793 if (state == TASK_RUNNING)
4794 printk(KERN_CONT " running ");
4795 else
4796 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4797 #else
4798 if (state == TASK_RUNNING)
4799 printk(KERN_CONT " running task ");
4800 else
4801 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4802 #endif
4803 #ifdef CONFIG_DEBUG_STACK_USAGE
4804 free = stack_not_used(p);
4805 #endif
4806 ppid = 0;
4807 rcu_read_lock();
4808 if (pid_alive(p))
4809 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4810 rcu_read_unlock();
4811 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4812 task_pid_nr(p), ppid,
4813 (unsigned long)task_thread_info(p)->flags);
4815 print_worker_info(KERN_INFO, p);
4816 show_stack(p, NULL);
4819 void show_state_filter(unsigned long state_filter)
4821 struct task_struct *g, *p;
4823 #if BITS_PER_LONG == 32
4824 printk(KERN_INFO
4825 " task PC stack pid father\n");
4826 #else
4827 printk(KERN_INFO
4828 " task PC stack pid father\n");
4829 #endif
4830 rcu_read_lock();
4831 for_each_process_thread(g, p) {
4833 * reset the NMI-timeout, listing all files on a slow
4834 * console might take a lot of time:
4836 touch_nmi_watchdog();
4837 if (!state_filter || (p->state & state_filter))
4838 sched_show_task(p);
4841 touch_all_softlockup_watchdogs();
4843 #ifdef CONFIG_SCHED_DEBUG
4844 sysrq_sched_debug_show();
4845 #endif
4846 rcu_read_unlock();
4848 * Only show locks if all tasks are dumped:
4850 if (!state_filter)
4851 debug_show_all_locks();
4854 void init_idle_bootup_task(struct task_struct *idle)
4856 idle->sched_class = &idle_sched_class;
4860 * init_idle - set up an idle thread for a given CPU
4861 * @idle: task in question
4862 * @cpu: cpu the idle task belongs to
4864 * NOTE: this function does not set the idle thread's NEED_RESCHED
4865 * flag, to make booting more robust.
4867 void init_idle(struct task_struct *idle, int cpu)
4869 struct rq *rq = cpu_rq(cpu);
4870 unsigned long flags;
4872 raw_spin_lock_irqsave(&rq->lock, flags);
4874 __sched_fork(0, idle);
4875 idle->state = TASK_RUNNING;
4876 idle->se.exec_start = sched_clock();
4878 do_set_cpus_allowed(idle, cpumask_of(cpu));
4880 * We're having a chicken and egg problem, even though we are
4881 * holding rq->lock, the cpu isn't yet set to this cpu so the
4882 * lockdep check in task_group() will fail.
4884 * Similar case to sched_fork(). / Alternatively we could
4885 * use task_rq_lock() here and obtain the other rq->lock.
4887 * Silence PROVE_RCU
4889 rcu_read_lock();
4890 __set_task_cpu(idle, cpu);
4891 rcu_read_unlock();
4893 rq->curr = rq->idle = idle;
4894 idle->on_rq = TASK_ON_RQ_QUEUED;
4895 #if defined(CONFIG_SMP)
4896 idle->on_cpu = 1;
4897 #endif
4898 raw_spin_unlock_irqrestore(&rq->lock, flags);
4900 /* Set the preempt count _outside_ the spinlocks! */
4901 init_idle_preempt_count(idle, cpu);
4904 * The idle tasks have their own, simple scheduling class:
4906 idle->sched_class = &idle_sched_class;
4907 ftrace_graph_init_idle_task(idle, cpu);
4908 vtime_init_idle(idle, cpu);
4909 #if defined(CONFIG_SMP)
4910 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4911 #endif
4914 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4915 const struct cpumask *trial)
4917 int ret = 1, trial_cpus;
4918 struct dl_bw *cur_dl_b;
4919 unsigned long flags;
4921 if (!cpumask_weight(cur))
4922 return ret;
4924 rcu_read_lock_sched();
4925 cur_dl_b = dl_bw_of(cpumask_any(cur));
4926 trial_cpus = cpumask_weight(trial);
4928 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4929 if (cur_dl_b->bw != -1 &&
4930 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4931 ret = 0;
4932 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4933 rcu_read_unlock_sched();
4935 return ret;
4938 int task_can_attach(struct task_struct *p,
4939 const struct cpumask *cs_cpus_allowed)
4941 int ret = 0;
4944 * Kthreads which disallow setaffinity shouldn't be moved
4945 * to a new cpuset; we don't want to change their cpu
4946 * affinity and isolating such threads by their set of
4947 * allowed nodes is unnecessary. Thus, cpusets are not
4948 * applicable for such threads. This prevents checking for
4949 * success of set_cpus_allowed_ptr() on all attached tasks
4950 * before cpus_allowed may be changed.
4952 if (p->flags & PF_NO_SETAFFINITY) {
4953 ret = -EINVAL;
4954 goto out;
4957 #ifdef CONFIG_SMP
4958 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4959 cs_cpus_allowed)) {
4960 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4961 cs_cpus_allowed);
4962 struct dl_bw *dl_b;
4963 bool overflow;
4964 int cpus;
4965 unsigned long flags;
4967 rcu_read_lock_sched();
4968 dl_b = dl_bw_of(dest_cpu);
4969 raw_spin_lock_irqsave(&dl_b->lock, flags);
4970 cpus = dl_bw_cpus(dest_cpu);
4971 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4972 if (overflow)
4973 ret = -EBUSY;
4974 else {
4976 * We reserve space for this task in the destination
4977 * root_domain, as we can't fail after this point.
4978 * We will free resources in the source root_domain
4979 * later on (see set_cpus_allowed_dl()).
4981 __dl_add(dl_b, p->dl.dl_bw);
4983 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4984 rcu_read_unlock_sched();
4987 #endif
4988 out:
4989 return ret;
4992 #ifdef CONFIG_SMP
4994 #ifdef CONFIG_NUMA_BALANCING
4995 /* Migrate current task p to target_cpu */
4996 int migrate_task_to(struct task_struct *p, int target_cpu)
4998 struct migration_arg arg = { p, target_cpu };
4999 int curr_cpu = task_cpu(p);
5001 if (curr_cpu == target_cpu)
5002 return 0;
5004 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5005 return -EINVAL;
5007 /* TODO: This is not properly updating schedstats */
5009 trace_sched_move_numa(p, curr_cpu, target_cpu);
5010 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5014 * Requeue a task on a given node and accurately track the number of NUMA
5015 * tasks on the runqueues
5017 void sched_setnuma(struct task_struct *p, int nid)
5019 struct rq *rq;
5020 unsigned long flags;
5021 bool queued, running;
5023 rq = task_rq_lock(p, &flags);
5024 queued = task_on_rq_queued(p);
5025 running = task_current(rq, p);
5027 if (queued)
5028 dequeue_task(rq, p, 0);
5029 if (running)
5030 put_prev_task(rq, p);
5032 p->numa_preferred_nid = nid;
5034 if (running)
5035 p->sched_class->set_curr_task(rq);
5036 if (queued)
5037 enqueue_task(rq, p, 0);
5038 task_rq_unlock(rq, p, &flags);
5040 #endif /* CONFIG_NUMA_BALANCING */
5042 #ifdef CONFIG_HOTPLUG_CPU
5044 * Ensures that the idle task is using init_mm right before its cpu goes
5045 * offline.
5047 void idle_task_exit(void)
5049 struct mm_struct *mm = current->active_mm;
5051 BUG_ON(cpu_online(smp_processor_id()));
5053 if (mm != &init_mm) {
5054 switch_mm(mm, &init_mm, current);
5055 finish_arch_post_lock_switch();
5057 mmdrop(mm);
5061 * Since this CPU is going 'away' for a while, fold any nr_active delta
5062 * we might have. Assumes we're called after migrate_tasks() so that the
5063 * nr_active count is stable.
5065 * Also see the comment "Global load-average calculations".
5067 static void calc_load_migrate(struct rq *rq)
5069 long delta = calc_load_fold_active(rq);
5070 if (delta)
5071 atomic_long_add(delta, &calc_load_tasks);
5074 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5078 static const struct sched_class fake_sched_class = {
5079 .put_prev_task = put_prev_task_fake,
5082 static struct task_struct fake_task = {
5084 * Avoid pull_{rt,dl}_task()
5086 .prio = MAX_PRIO + 1,
5087 .sched_class = &fake_sched_class,
5091 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5092 * try_to_wake_up()->select_task_rq().
5094 * Called with rq->lock held even though we'er in stop_machine() and
5095 * there's no concurrency possible, we hold the required locks anyway
5096 * because of lock validation efforts.
5098 static void migrate_tasks(struct rq *dead_rq)
5100 struct rq *rq = dead_rq;
5101 struct task_struct *next, *stop = rq->stop;
5102 int dest_cpu;
5105 * Fudge the rq selection such that the below task selection loop
5106 * doesn't get stuck on the currently eligible stop task.
5108 * We're currently inside stop_machine() and the rq is either stuck
5109 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5110 * either way we should never end up calling schedule() until we're
5111 * done here.
5113 rq->stop = NULL;
5116 * put_prev_task() and pick_next_task() sched
5117 * class method both need to have an up-to-date
5118 * value of rq->clock[_task]
5120 update_rq_clock(rq);
5122 for (;;) {
5124 * There's this thread running, bail when that's the only
5125 * remaining thread.
5127 if (rq->nr_running == 1)
5128 break;
5131 * Ensure rq->lock covers the entire task selection
5132 * until the migration.
5134 lockdep_pin_lock(&rq->lock);
5135 next = pick_next_task(rq, &fake_task);
5136 BUG_ON(!next);
5137 next->sched_class->put_prev_task(rq, next);
5139 /* Find suitable destination for @next, with force if needed. */
5140 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5142 lockdep_unpin_lock(&rq->lock);
5143 rq = __migrate_task(rq, next, dest_cpu);
5144 if (rq != dead_rq) {
5145 raw_spin_unlock(&rq->lock);
5146 rq = dead_rq;
5147 raw_spin_lock(&rq->lock);
5151 rq->stop = stop;
5153 #endif /* CONFIG_HOTPLUG_CPU */
5155 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5157 static struct ctl_table sd_ctl_dir[] = {
5159 .procname = "sched_domain",
5160 .mode = 0555,
5165 static struct ctl_table sd_ctl_root[] = {
5167 .procname = "kernel",
5168 .mode = 0555,
5169 .child = sd_ctl_dir,
5174 static struct ctl_table *sd_alloc_ctl_entry(int n)
5176 struct ctl_table *entry =
5177 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5179 return entry;
5182 static void sd_free_ctl_entry(struct ctl_table **tablep)
5184 struct ctl_table *entry;
5187 * In the intermediate directories, both the child directory and
5188 * procname are dynamically allocated and could fail but the mode
5189 * will always be set. In the lowest directory the names are
5190 * static strings and all have proc handlers.
5192 for (entry = *tablep; entry->mode; entry++) {
5193 if (entry->child)
5194 sd_free_ctl_entry(&entry->child);
5195 if (entry->proc_handler == NULL)
5196 kfree(entry->procname);
5199 kfree(*tablep);
5200 *tablep = NULL;
5203 static int min_load_idx = 0;
5204 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5206 static void
5207 set_table_entry(struct ctl_table *entry,
5208 const char *procname, void *data, int maxlen,
5209 umode_t mode, proc_handler *proc_handler,
5210 bool load_idx)
5212 entry->procname = procname;
5213 entry->data = data;
5214 entry->maxlen = maxlen;
5215 entry->mode = mode;
5216 entry->proc_handler = proc_handler;
5218 if (load_idx) {
5219 entry->extra1 = &min_load_idx;
5220 entry->extra2 = &max_load_idx;
5224 static struct ctl_table *
5225 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5227 struct ctl_table *table = sd_alloc_ctl_entry(14);
5229 if (table == NULL)
5230 return NULL;
5232 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5233 sizeof(long), 0644, proc_doulongvec_minmax, false);
5234 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5235 sizeof(long), 0644, proc_doulongvec_minmax, false);
5236 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5237 sizeof(int), 0644, proc_dointvec_minmax, true);
5238 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5239 sizeof(int), 0644, proc_dointvec_minmax, true);
5240 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5241 sizeof(int), 0644, proc_dointvec_minmax, true);
5242 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5243 sizeof(int), 0644, proc_dointvec_minmax, true);
5244 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5245 sizeof(int), 0644, proc_dointvec_minmax, true);
5246 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5247 sizeof(int), 0644, proc_dointvec_minmax, false);
5248 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5249 sizeof(int), 0644, proc_dointvec_minmax, false);
5250 set_table_entry(&table[9], "cache_nice_tries",
5251 &sd->cache_nice_tries,
5252 sizeof(int), 0644, proc_dointvec_minmax, false);
5253 set_table_entry(&table[10], "flags", &sd->flags,
5254 sizeof(int), 0644, proc_dointvec_minmax, false);
5255 set_table_entry(&table[11], "max_newidle_lb_cost",
5256 &sd->max_newidle_lb_cost,
5257 sizeof(long), 0644, proc_doulongvec_minmax, false);
5258 set_table_entry(&table[12], "name", sd->name,
5259 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5260 /* &table[13] is terminator */
5262 return table;
5265 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5267 struct ctl_table *entry, *table;
5268 struct sched_domain *sd;
5269 int domain_num = 0, i;
5270 char buf[32];
5272 for_each_domain(cpu, sd)
5273 domain_num++;
5274 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5275 if (table == NULL)
5276 return NULL;
5278 i = 0;
5279 for_each_domain(cpu, sd) {
5280 snprintf(buf, 32, "domain%d", i);
5281 entry->procname = kstrdup(buf, GFP_KERNEL);
5282 entry->mode = 0555;
5283 entry->child = sd_alloc_ctl_domain_table(sd);
5284 entry++;
5285 i++;
5287 return table;
5290 static struct ctl_table_header *sd_sysctl_header;
5291 static void register_sched_domain_sysctl(void)
5293 int i, cpu_num = num_possible_cpus();
5294 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5295 char buf[32];
5297 WARN_ON(sd_ctl_dir[0].child);
5298 sd_ctl_dir[0].child = entry;
5300 if (entry == NULL)
5301 return;
5303 for_each_possible_cpu(i) {
5304 snprintf(buf, 32, "cpu%d", i);
5305 entry->procname = kstrdup(buf, GFP_KERNEL);
5306 entry->mode = 0555;
5307 entry->child = sd_alloc_ctl_cpu_table(i);
5308 entry++;
5311 WARN_ON(sd_sysctl_header);
5312 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5315 /* may be called multiple times per register */
5316 static void unregister_sched_domain_sysctl(void)
5318 unregister_sysctl_table(sd_sysctl_header);
5319 sd_sysctl_header = NULL;
5320 if (sd_ctl_dir[0].child)
5321 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5323 #else
5324 static void register_sched_domain_sysctl(void)
5327 static void unregister_sched_domain_sysctl(void)
5330 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5332 static void set_rq_online(struct rq *rq)
5334 if (!rq->online) {
5335 const struct sched_class *class;
5337 cpumask_set_cpu(rq->cpu, rq->rd->online);
5338 rq->online = 1;
5340 for_each_class(class) {
5341 if (class->rq_online)
5342 class->rq_online(rq);
5347 static void set_rq_offline(struct rq *rq)
5349 if (rq->online) {
5350 const struct sched_class *class;
5352 for_each_class(class) {
5353 if (class->rq_offline)
5354 class->rq_offline(rq);
5357 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5358 rq->online = 0;
5363 * migration_call - callback that gets triggered when a CPU is added.
5364 * Here we can start up the necessary migration thread for the new CPU.
5366 static int
5367 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5369 int cpu = (long)hcpu;
5370 unsigned long flags;
5371 struct rq *rq = cpu_rq(cpu);
5373 switch (action & ~CPU_TASKS_FROZEN) {
5375 case CPU_UP_PREPARE:
5376 rq->calc_load_update = calc_load_update;
5377 break;
5379 case CPU_ONLINE:
5380 /* Update our root-domain */
5381 raw_spin_lock_irqsave(&rq->lock, flags);
5382 if (rq->rd) {
5383 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5385 set_rq_online(rq);
5387 raw_spin_unlock_irqrestore(&rq->lock, flags);
5388 break;
5390 #ifdef CONFIG_HOTPLUG_CPU
5391 case CPU_DYING:
5392 sched_ttwu_pending();
5393 /* Update our root-domain */
5394 raw_spin_lock_irqsave(&rq->lock, flags);
5395 if (rq->rd) {
5396 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5397 set_rq_offline(rq);
5399 migrate_tasks(rq);
5400 BUG_ON(rq->nr_running != 1); /* the migration thread */
5401 raw_spin_unlock_irqrestore(&rq->lock, flags);
5402 break;
5404 case CPU_DEAD:
5405 calc_load_migrate(rq);
5406 break;
5407 #endif
5410 update_max_interval();
5412 return NOTIFY_OK;
5416 * Register at high priority so that task migration (migrate_all_tasks)
5417 * happens before everything else. This has to be lower priority than
5418 * the notifier in the perf_event subsystem, though.
5420 static struct notifier_block migration_notifier = {
5421 .notifier_call = migration_call,
5422 .priority = CPU_PRI_MIGRATION,
5425 static void set_cpu_rq_start_time(void)
5427 int cpu = smp_processor_id();
5428 struct rq *rq = cpu_rq(cpu);
5429 rq->age_stamp = sched_clock_cpu(cpu);
5432 static int sched_cpu_active(struct notifier_block *nfb,
5433 unsigned long action, void *hcpu)
5435 switch (action & ~CPU_TASKS_FROZEN) {
5436 case CPU_STARTING:
5437 set_cpu_rq_start_time();
5438 return NOTIFY_OK;
5439 case CPU_DOWN_FAILED:
5440 set_cpu_active((long)hcpu, true);
5441 return NOTIFY_OK;
5442 default:
5443 return NOTIFY_DONE;
5447 static int sched_cpu_inactive(struct notifier_block *nfb,
5448 unsigned long action, void *hcpu)
5450 switch (action & ~CPU_TASKS_FROZEN) {
5451 case CPU_DOWN_PREPARE:
5452 set_cpu_active((long)hcpu, false);
5453 return NOTIFY_OK;
5454 default:
5455 return NOTIFY_DONE;
5459 static int __init migration_init(void)
5461 void *cpu = (void *)(long)smp_processor_id();
5462 int err;
5464 /* Initialize migration for the boot CPU */
5465 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5466 BUG_ON(err == NOTIFY_BAD);
5467 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5468 register_cpu_notifier(&migration_notifier);
5470 /* Register cpu active notifiers */
5471 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5472 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5474 return 0;
5476 early_initcall(migration_init);
5478 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5480 #ifdef CONFIG_SCHED_DEBUG
5482 static __read_mostly int sched_debug_enabled;
5484 static int __init sched_debug_setup(char *str)
5486 sched_debug_enabled = 1;
5488 return 0;
5490 early_param("sched_debug", sched_debug_setup);
5492 static inline bool sched_debug(void)
5494 return sched_debug_enabled;
5497 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5498 struct cpumask *groupmask)
5500 struct sched_group *group = sd->groups;
5502 cpumask_clear(groupmask);
5504 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5506 if (!(sd->flags & SD_LOAD_BALANCE)) {
5507 printk("does not load-balance\n");
5508 if (sd->parent)
5509 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5510 " has parent");
5511 return -1;
5514 printk(KERN_CONT "span %*pbl level %s\n",
5515 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5517 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5518 printk(KERN_ERR "ERROR: domain->span does not contain "
5519 "CPU%d\n", cpu);
5521 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5522 printk(KERN_ERR "ERROR: domain->groups does not contain"
5523 " CPU%d\n", cpu);
5526 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5527 do {
5528 if (!group) {
5529 printk("\n");
5530 printk(KERN_ERR "ERROR: group is NULL\n");
5531 break;
5534 if (!cpumask_weight(sched_group_cpus(group))) {
5535 printk(KERN_CONT "\n");
5536 printk(KERN_ERR "ERROR: empty group\n");
5537 break;
5540 if (!(sd->flags & SD_OVERLAP) &&
5541 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5542 printk(KERN_CONT "\n");
5543 printk(KERN_ERR "ERROR: repeated CPUs\n");
5544 break;
5547 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5549 printk(KERN_CONT " %*pbl",
5550 cpumask_pr_args(sched_group_cpus(group)));
5551 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5552 printk(KERN_CONT " (cpu_capacity = %d)",
5553 group->sgc->capacity);
5556 group = group->next;
5557 } while (group != sd->groups);
5558 printk(KERN_CONT "\n");
5560 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5561 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5563 if (sd->parent &&
5564 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5565 printk(KERN_ERR "ERROR: parent span is not a superset "
5566 "of domain->span\n");
5567 return 0;
5570 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5572 int level = 0;
5574 if (!sched_debug_enabled)
5575 return;
5577 if (!sd) {
5578 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5579 return;
5582 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5584 for (;;) {
5585 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5586 break;
5587 level++;
5588 sd = sd->parent;
5589 if (!sd)
5590 break;
5593 #else /* !CONFIG_SCHED_DEBUG */
5594 # define sched_domain_debug(sd, cpu) do { } while (0)
5595 static inline bool sched_debug(void)
5597 return false;
5599 #endif /* CONFIG_SCHED_DEBUG */
5601 static int sd_degenerate(struct sched_domain *sd)
5603 if (cpumask_weight(sched_domain_span(sd)) == 1)
5604 return 1;
5606 /* Following flags need at least 2 groups */
5607 if (sd->flags & (SD_LOAD_BALANCE |
5608 SD_BALANCE_NEWIDLE |
5609 SD_BALANCE_FORK |
5610 SD_BALANCE_EXEC |
5611 SD_SHARE_CPUCAPACITY |
5612 SD_SHARE_PKG_RESOURCES |
5613 SD_SHARE_POWERDOMAIN)) {
5614 if (sd->groups != sd->groups->next)
5615 return 0;
5618 /* Following flags don't use groups */
5619 if (sd->flags & (SD_WAKE_AFFINE))
5620 return 0;
5622 return 1;
5625 static int
5626 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5628 unsigned long cflags = sd->flags, pflags = parent->flags;
5630 if (sd_degenerate(parent))
5631 return 1;
5633 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5634 return 0;
5636 /* Flags needing groups don't count if only 1 group in parent */
5637 if (parent->groups == parent->groups->next) {
5638 pflags &= ~(SD_LOAD_BALANCE |
5639 SD_BALANCE_NEWIDLE |
5640 SD_BALANCE_FORK |
5641 SD_BALANCE_EXEC |
5642 SD_SHARE_CPUCAPACITY |
5643 SD_SHARE_PKG_RESOURCES |
5644 SD_PREFER_SIBLING |
5645 SD_SHARE_POWERDOMAIN);
5646 if (nr_node_ids == 1)
5647 pflags &= ~SD_SERIALIZE;
5649 if (~cflags & pflags)
5650 return 0;
5652 return 1;
5655 static void free_rootdomain(struct rcu_head *rcu)
5657 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5659 cpupri_cleanup(&rd->cpupri);
5660 cpudl_cleanup(&rd->cpudl);
5661 free_cpumask_var(rd->dlo_mask);
5662 free_cpumask_var(rd->rto_mask);
5663 free_cpumask_var(rd->online);
5664 free_cpumask_var(rd->span);
5665 kfree(rd);
5668 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5670 struct root_domain *old_rd = NULL;
5671 unsigned long flags;
5673 raw_spin_lock_irqsave(&rq->lock, flags);
5675 if (rq->rd) {
5676 old_rd = rq->rd;
5678 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5679 set_rq_offline(rq);
5681 cpumask_clear_cpu(rq->cpu, old_rd->span);
5684 * If we dont want to free the old_rd yet then
5685 * set old_rd to NULL to skip the freeing later
5686 * in this function:
5688 if (!atomic_dec_and_test(&old_rd->refcount))
5689 old_rd = NULL;
5692 atomic_inc(&rd->refcount);
5693 rq->rd = rd;
5695 cpumask_set_cpu(rq->cpu, rd->span);
5696 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5697 set_rq_online(rq);
5699 raw_spin_unlock_irqrestore(&rq->lock, flags);
5701 if (old_rd)
5702 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5705 static int init_rootdomain(struct root_domain *rd)
5707 memset(rd, 0, sizeof(*rd));
5709 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5710 goto out;
5711 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5712 goto free_span;
5713 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5714 goto free_online;
5715 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5716 goto free_dlo_mask;
5718 init_dl_bw(&rd->dl_bw);
5719 if (cpudl_init(&rd->cpudl) != 0)
5720 goto free_dlo_mask;
5722 if (cpupri_init(&rd->cpupri) != 0)
5723 goto free_rto_mask;
5724 return 0;
5726 free_rto_mask:
5727 free_cpumask_var(rd->rto_mask);
5728 free_dlo_mask:
5729 free_cpumask_var(rd->dlo_mask);
5730 free_online:
5731 free_cpumask_var(rd->online);
5732 free_span:
5733 free_cpumask_var(rd->span);
5734 out:
5735 return -ENOMEM;
5739 * By default the system creates a single root-domain with all cpus as
5740 * members (mimicking the global state we have today).
5742 struct root_domain def_root_domain;
5744 static void init_defrootdomain(void)
5746 init_rootdomain(&def_root_domain);
5748 atomic_set(&def_root_domain.refcount, 1);
5751 static struct root_domain *alloc_rootdomain(void)
5753 struct root_domain *rd;
5755 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5756 if (!rd)
5757 return NULL;
5759 if (init_rootdomain(rd) != 0) {
5760 kfree(rd);
5761 return NULL;
5764 return rd;
5767 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5769 struct sched_group *tmp, *first;
5771 if (!sg)
5772 return;
5774 first = sg;
5775 do {
5776 tmp = sg->next;
5778 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5779 kfree(sg->sgc);
5781 kfree(sg);
5782 sg = tmp;
5783 } while (sg != first);
5786 static void free_sched_domain(struct rcu_head *rcu)
5788 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5791 * If its an overlapping domain it has private groups, iterate and
5792 * nuke them all.
5794 if (sd->flags & SD_OVERLAP) {
5795 free_sched_groups(sd->groups, 1);
5796 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5797 kfree(sd->groups->sgc);
5798 kfree(sd->groups);
5800 kfree(sd);
5803 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5805 call_rcu(&sd->rcu, free_sched_domain);
5808 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5810 for (; sd; sd = sd->parent)
5811 destroy_sched_domain(sd, cpu);
5815 * Keep a special pointer to the highest sched_domain that has
5816 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5817 * allows us to avoid some pointer chasing select_idle_sibling().
5819 * Also keep a unique ID per domain (we use the first cpu number in
5820 * the cpumask of the domain), this allows us to quickly tell if
5821 * two cpus are in the same cache domain, see cpus_share_cache().
5823 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5824 DEFINE_PER_CPU(int, sd_llc_size);
5825 DEFINE_PER_CPU(int, sd_llc_id);
5826 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5827 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5828 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5830 static void update_top_cache_domain(int cpu)
5832 struct sched_domain *sd;
5833 struct sched_domain *busy_sd = NULL;
5834 int id = cpu;
5835 int size = 1;
5837 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5838 if (sd) {
5839 id = cpumask_first(sched_domain_span(sd));
5840 size = cpumask_weight(sched_domain_span(sd));
5841 busy_sd = sd->parent; /* sd_busy */
5843 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5845 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5846 per_cpu(sd_llc_size, cpu) = size;
5847 per_cpu(sd_llc_id, cpu) = id;
5849 sd = lowest_flag_domain(cpu, SD_NUMA);
5850 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5852 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5853 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5857 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5858 * hold the hotplug lock.
5860 static void
5861 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5863 struct rq *rq = cpu_rq(cpu);
5864 struct sched_domain *tmp;
5866 /* Remove the sched domains which do not contribute to scheduling. */
5867 for (tmp = sd; tmp; ) {
5868 struct sched_domain *parent = tmp->parent;
5869 if (!parent)
5870 break;
5872 if (sd_parent_degenerate(tmp, parent)) {
5873 tmp->parent = parent->parent;
5874 if (parent->parent)
5875 parent->parent->child = tmp;
5877 * Transfer SD_PREFER_SIBLING down in case of a
5878 * degenerate parent; the spans match for this
5879 * so the property transfers.
5881 if (parent->flags & SD_PREFER_SIBLING)
5882 tmp->flags |= SD_PREFER_SIBLING;
5883 destroy_sched_domain(parent, cpu);
5884 } else
5885 tmp = tmp->parent;
5888 if (sd && sd_degenerate(sd)) {
5889 tmp = sd;
5890 sd = sd->parent;
5891 destroy_sched_domain(tmp, cpu);
5892 if (sd)
5893 sd->child = NULL;
5896 sched_domain_debug(sd, cpu);
5898 rq_attach_root(rq, rd);
5899 tmp = rq->sd;
5900 rcu_assign_pointer(rq->sd, sd);
5901 destroy_sched_domains(tmp, cpu);
5903 update_top_cache_domain(cpu);
5906 /* Setup the mask of cpus configured for isolated domains */
5907 static int __init isolated_cpu_setup(char *str)
5909 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5910 cpulist_parse(str, cpu_isolated_map);
5911 return 1;
5914 __setup("isolcpus=", isolated_cpu_setup);
5916 struct s_data {
5917 struct sched_domain ** __percpu sd;
5918 struct root_domain *rd;
5921 enum s_alloc {
5922 sa_rootdomain,
5923 sa_sd,
5924 sa_sd_storage,
5925 sa_none,
5929 * Build an iteration mask that can exclude certain CPUs from the upwards
5930 * domain traversal.
5932 * Asymmetric node setups can result in situations where the domain tree is of
5933 * unequal depth, make sure to skip domains that already cover the entire
5934 * range.
5936 * In that case build_sched_domains() will have terminated the iteration early
5937 * and our sibling sd spans will be empty. Domains should always include the
5938 * cpu they're built on, so check that.
5941 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5943 const struct cpumask *span = sched_domain_span(sd);
5944 struct sd_data *sdd = sd->private;
5945 struct sched_domain *sibling;
5946 int i;
5948 for_each_cpu(i, span) {
5949 sibling = *per_cpu_ptr(sdd->sd, i);
5950 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5951 continue;
5953 cpumask_set_cpu(i, sched_group_mask(sg));
5958 * Return the canonical balance cpu for this group, this is the first cpu
5959 * of this group that's also in the iteration mask.
5961 int group_balance_cpu(struct sched_group *sg)
5963 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5966 static int
5967 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5969 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5970 const struct cpumask *span = sched_domain_span(sd);
5971 struct cpumask *covered = sched_domains_tmpmask;
5972 struct sd_data *sdd = sd->private;
5973 struct sched_domain *sibling;
5974 int i;
5976 cpumask_clear(covered);
5978 for_each_cpu(i, span) {
5979 struct cpumask *sg_span;
5981 if (cpumask_test_cpu(i, covered))
5982 continue;
5984 sibling = *per_cpu_ptr(sdd->sd, i);
5986 /* See the comment near build_group_mask(). */
5987 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5988 continue;
5990 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5991 GFP_KERNEL, cpu_to_node(cpu));
5993 if (!sg)
5994 goto fail;
5996 sg_span = sched_group_cpus(sg);
5997 if (sibling->child)
5998 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5999 else
6000 cpumask_set_cpu(i, sg_span);
6002 cpumask_or(covered, covered, sg_span);
6004 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6005 if (atomic_inc_return(&sg->sgc->ref) == 1)
6006 build_group_mask(sd, sg);
6009 * Initialize sgc->capacity such that even if we mess up the
6010 * domains and no possible iteration will get us here, we won't
6011 * die on a /0 trap.
6013 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6016 * Make sure the first group of this domain contains the
6017 * canonical balance cpu. Otherwise the sched_domain iteration
6018 * breaks. See update_sg_lb_stats().
6020 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6021 group_balance_cpu(sg) == cpu)
6022 groups = sg;
6024 if (!first)
6025 first = sg;
6026 if (last)
6027 last->next = sg;
6028 last = sg;
6029 last->next = first;
6031 sd->groups = groups;
6033 return 0;
6035 fail:
6036 free_sched_groups(first, 0);
6038 return -ENOMEM;
6041 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6043 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6044 struct sched_domain *child = sd->child;
6046 if (child)
6047 cpu = cpumask_first(sched_domain_span(child));
6049 if (sg) {
6050 *sg = *per_cpu_ptr(sdd->sg, cpu);
6051 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6052 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6055 return cpu;
6059 * build_sched_groups will build a circular linked list of the groups
6060 * covered by the given span, and will set each group's ->cpumask correctly,
6061 * and ->cpu_capacity to 0.
6063 * Assumes the sched_domain tree is fully constructed
6065 static int
6066 build_sched_groups(struct sched_domain *sd, int cpu)
6068 struct sched_group *first = NULL, *last = NULL;
6069 struct sd_data *sdd = sd->private;
6070 const struct cpumask *span = sched_domain_span(sd);
6071 struct cpumask *covered;
6072 int i;
6074 get_group(cpu, sdd, &sd->groups);
6075 atomic_inc(&sd->groups->ref);
6077 if (cpu != cpumask_first(span))
6078 return 0;
6080 lockdep_assert_held(&sched_domains_mutex);
6081 covered = sched_domains_tmpmask;
6083 cpumask_clear(covered);
6085 for_each_cpu(i, span) {
6086 struct sched_group *sg;
6087 int group, j;
6089 if (cpumask_test_cpu(i, covered))
6090 continue;
6092 group = get_group(i, sdd, &sg);
6093 cpumask_setall(sched_group_mask(sg));
6095 for_each_cpu(j, span) {
6096 if (get_group(j, sdd, NULL) != group)
6097 continue;
6099 cpumask_set_cpu(j, covered);
6100 cpumask_set_cpu(j, sched_group_cpus(sg));
6103 if (!first)
6104 first = sg;
6105 if (last)
6106 last->next = sg;
6107 last = sg;
6109 last->next = first;
6111 return 0;
6115 * Initialize sched groups cpu_capacity.
6117 * cpu_capacity indicates the capacity of sched group, which is used while
6118 * distributing the load between different sched groups in a sched domain.
6119 * Typically cpu_capacity for all the groups in a sched domain will be same
6120 * unless there are asymmetries in the topology. If there are asymmetries,
6121 * group having more cpu_capacity will pickup more load compared to the
6122 * group having less cpu_capacity.
6124 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6126 struct sched_group *sg = sd->groups;
6128 WARN_ON(!sg);
6130 do {
6131 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6132 sg = sg->next;
6133 } while (sg != sd->groups);
6135 if (cpu != group_balance_cpu(sg))
6136 return;
6138 update_group_capacity(sd, cpu);
6139 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6143 * Initializers for schedule domains
6144 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6147 static int default_relax_domain_level = -1;
6148 int sched_domain_level_max;
6150 static int __init setup_relax_domain_level(char *str)
6152 if (kstrtoint(str, 0, &default_relax_domain_level))
6153 pr_warn("Unable to set relax_domain_level\n");
6155 return 1;
6157 __setup("relax_domain_level=", setup_relax_domain_level);
6159 static void set_domain_attribute(struct sched_domain *sd,
6160 struct sched_domain_attr *attr)
6162 int request;
6164 if (!attr || attr->relax_domain_level < 0) {
6165 if (default_relax_domain_level < 0)
6166 return;
6167 else
6168 request = default_relax_domain_level;
6169 } else
6170 request = attr->relax_domain_level;
6171 if (request < sd->level) {
6172 /* turn off idle balance on this domain */
6173 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6174 } else {
6175 /* turn on idle balance on this domain */
6176 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6180 static void __sdt_free(const struct cpumask *cpu_map);
6181 static int __sdt_alloc(const struct cpumask *cpu_map);
6183 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6184 const struct cpumask *cpu_map)
6186 switch (what) {
6187 case sa_rootdomain:
6188 if (!atomic_read(&d->rd->refcount))
6189 free_rootdomain(&d->rd->rcu); /* fall through */
6190 case sa_sd:
6191 free_percpu(d->sd); /* fall through */
6192 case sa_sd_storage:
6193 __sdt_free(cpu_map); /* fall through */
6194 case sa_none:
6195 break;
6199 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6200 const struct cpumask *cpu_map)
6202 memset(d, 0, sizeof(*d));
6204 if (__sdt_alloc(cpu_map))
6205 return sa_sd_storage;
6206 d->sd = alloc_percpu(struct sched_domain *);
6207 if (!d->sd)
6208 return sa_sd_storage;
6209 d->rd = alloc_rootdomain();
6210 if (!d->rd)
6211 return sa_sd;
6212 return sa_rootdomain;
6216 * NULL the sd_data elements we've used to build the sched_domain and
6217 * sched_group structure so that the subsequent __free_domain_allocs()
6218 * will not free the data we're using.
6220 static void claim_allocations(int cpu, struct sched_domain *sd)
6222 struct sd_data *sdd = sd->private;
6224 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6225 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6227 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6228 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6230 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6231 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6234 #ifdef CONFIG_NUMA
6235 static int sched_domains_numa_levels;
6236 enum numa_topology_type sched_numa_topology_type;
6237 static int *sched_domains_numa_distance;
6238 int sched_max_numa_distance;
6239 static struct cpumask ***sched_domains_numa_masks;
6240 static int sched_domains_curr_level;
6241 #endif
6244 * SD_flags allowed in topology descriptions.
6246 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6247 * SD_SHARE_PKG_RESOURCES - describes shared caches
6248 * SD_NUMA - describes NUMA topologies
6249 * SD_SHARE_POWERDOMAIN - describes shared power domain
6251 * Odd one out:
6252 * SD_ASYM_PACKING - describes SMT quirks
6254 #define TOPOLOGY_SD_FLAGS \
6255 (SD_SHARE_CPUCAPACITY | \
6256 SD_SHARE_PKG_RESOURCES | \
6257 SD_NUMA | \
6258 SD_ASYM_PACKING | \
6259 SD_SHARE_POWERDOMAIN)
6261 static struct sched_domain *
6262 sd_init(struct sched_domain_topology_level *tl, int cpu)
6264 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6265 int sd_weight, sd_flags = 0;
6267 #ifdef CONFIG_NUMA
6269 * Ugly hack to pass state to sd_numa_mask()...
6271 sched_domains_curr_level = tl->numa_level;
6272 #endif
6274 sd_weight = cpumask_weight(tl->mask(cpu));
6276 if (tl->sd_flags)
6277 sd_flags = (*tl->sd_flags)();
6278 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6279 "wrong sd_flags in topology description\n"))
6280 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6282 *sd = (struct sched_domain){
6283 .min_interval = sd_weight,
6284 .max_interval = 2*sd_weight,
6285 .busy_factor = 32,
6286 .imbalance_pct = 125,
6288 .cache_nice_tries = 0,
6289 .busy_idx = 0,
6290 .idle_idx = 0,
6291 .newidle_idx = 0,
6292 .wake_idx = 0,
6293 .forkexec_idx = 0,
6295 .flags = 1*SD_LOAD_BALANCE
6296 | 1*SD_BALANCE_NEWIDLE
6297 | 1*SD_BALANCE_EXEC
6298 | 1*SD_BALANCE_FORK
6299 | 0*SD_BALANCE_WAKE
6300 | 1*SD_WAKE_AFFINE
6301 | 0*SD_SHARE_CPUCAPACITY
6302 | 0*SD_SHARE_PKG_RESOURCES
6303 | 0*SD_SERIALIZE
6304 | 0*SD_PREFER_SIBLING
6305 | 0*SD_NUMA
6306 | sd_flags
6309 .last_balance = jiffies,
6310 .balance_interval = sd_weight,
6311 .smt_gain = 0,
6312 .max_newidle_lb_cost = 0,
6313 .next_decay_max_lb_cost = jiffies,
6314 #ifdef CONFIG_SCHED_DEBUG
6315 .name = tl->name,
6316 #endif
6320 * Convert topological properties into behaviour.
6323 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6324 sd->flags |= SD_PREFER_SIBLING;
6325 sd->imbalance_pct = 110;
6326 sd->smt_gain = 1178; /* ~15% */
6328 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6329 sd->imbalance_pct = 117;
6330 sd->cache_nice_tries = 1;
6331 sd->busy_idx = 2;
6333 #ifdef CONFIG_NUMA
6334 } else if (sd->flags & SD_NUMA) {
6335 sd->cache_nice_tries = 2;
6336 sd->busy_idx = 3;
6337 sd->idle_idx = 2;
6339 sd->flags |= SD_SERIALIZE;
6340 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6341 sd->flags &= ~(SD_BALANCE_EXEC |
6342 SD_BALANCE_FORK |
6343 SD_WAKE_AFFINE);
6346 #endif
6347 } else {
6348 sd->flags |= SD_PREFER_SIBLING;
6349 sd->cache_nice_tries = 1;
6350 sd->busy_idx = 2;
6351 sd->idle_idx = 1;
6354 sd->private = &tl->data;
6356 return sd;
6360 * Topology list, bottom-up.
6362 static struct sched_domain_topology_level default_topology[] = {
6363 #ifdef CONFIG_SCHED_SMT
6364 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6365 #endif
6366 #ifdef CONFIG_SCHED_MC
6367 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6368 #endif
6369 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6370 { NULL, },
6373 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6375 #define for_each_sd_topology(tl) \
6376 for (tl = sched_domain_topology; tl->mask; tl++)
6378 void set_sched_topology(struct sched_domain_topology_level *tl)
6380 sched_domain_topology = tl;
6383 #ifdef CONFIG_NUMA
6385 static const struct cpumask *sd_numa_mask(int cpu)
6387 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6390 static void sched_numa_warn(const char *str)
6392 static int done = false;
6393 int i,j;
6395 if (done)
6396 return;
6398 done = true;
6400 printk(KERN_WARNING "ERROR: %s\n\n", str);
6402 for (i = 0; i < nr_node_ids; i++) {
6403 printk(KERN_WARNING " ");
6404 for (j = 0; j < nr_node_ids; j++)
6405 printk(KERN_CONT "%02d ", node_distance(i,j));
6406 printk(KERN_CONT "\n");
6408 printk(KERN_WARNING "\n");
6411 bool find_numa_distance(int distance)
6413 int i;
6415 if (distance == node_distance(0, 0))
6416 return true;
6418 for (i = 0; i < sched_domains_numa_levels; i++) {
6419 if (sched_domains_numa_distance[i] == distance)
6420 return true;
6423 return false;
6427 * A system can have three types of NUMA topology:
6428 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6429 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6430 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6432 * The difference between a glueless mesh topology and a backplane
6433 * topology lies in whether communication between not directly
6434 * connected nodes goes through intermediary nodes (where programs
6435 * could run), or through backplane controllers. This affects
6436 * placement of programs.
6438 * The type of topology can be discerned with the following tests:
6439 * - If the maximum distance between any nodes is 1 hop, the system
6440 * is directly connected.
6441 * - If for two nodes A and B, located N > 1 hops away from each other,
6442 * there is an intermediary node C, which is < N hops away from both
6443 * nodes A and B, the system is a glueless mesh.
6445 static void init_numa_topology_type(void)
6447 int a, b, c, n;
6449 n = sched_max_numa_distance;
6451 if (n <= 1)
6452 sched_numa_topology_type = NUMA_DIRECT;
6454 for_each_online_node(a) {
6455 for_each_online_node(b) {
6456 /* Find two nodes furthest removed from each other. */
6457 if (node_distance(a, b) < n)
6458 continue;
6460 /* Is there an intermediary node between a and b? */
6461 for_each_online_node(c) {
6462 if (node_distance(a, c) < n &&
6463 node_distance(b, c) < n) {
6464 sched_numa_topology_type =
6465 NUMA_GLUELESS_MESH;
6466 return;
6470 sched_numa_topology_type = NUMA_BACKPLANE;
6471 return;
6476 static void sched_init_numa(void)
6478 int next_distance, curr_distance = node_distance(0, 0);
6479 struct sched_domain_topology_level *tl;
6480 int level = 0;
6481 int i, j, k;
6483 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6484 if (!sched_domains_numa_distance)
6485 return;
6488 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6489 * unique distances in the node_distance() table.
6491 * Assumes node_distance(0,j) includes all distances in
6492 * node_distance(i,j) in order to avoid cubic time.
6494 next_distance = curr_distance;
6495 for (i = 0; i < nr_node_ids; i++) {
6496 for (j = 0; j < nr_node_ids; j++) {
6497 for (k = 0; k < nr_node_ids; k++) {
6498 int distance = node_distance(i, k);
6500 if (distance > curr_distance &&
6501 (distance < next_distance ||
6502 next_distance == curr_distance))
6503 next_distance = distance;
6506 * While not a strong assumption it would be nice to know
6507 * about cases where if node A is connected to B, B is not
6508 * equally connected to A.
6510 if (sched_debug() && node_distance(k, i) != distance)
6511 sched_numa_warn("Node-distance not symmetric");
6513 if (sched_debug() && i && !find_numa_distance(distance))
6514 sched_numa_warn("Node-0 not representative");
6516 if (next_distance != curr_distance) {
6517 sched_domains_numa_distance[level++] = next_distance;
6518 sched_domains_numa_levels = level;
6519 curr_distance = next_distance;
6520 } else break;
6524 * In case of sched_debug() we verify the above assumption.
6526 if (!sched_debug())
6527 break;
6530 if (!level)
6531 return;
6534 * 'level' contains the number of unique distances, excluding the
6535 * identity distance node_distance(i,i).
6537 * The sched_domains_numa_distance[] array includes the actual distance
6538 * numbers.
6542 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6543 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6544 * the array will contain less then 'level' members. This could be
6545 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6546 * in other functions.
6548 * We reset it to 'level' at the end of this function.
6550 sched_domains_numa_levels = 0;
6552 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6553 if (!sched_domains_numa_masks)
6554 return;
6557 * Now for each level, construct a mask per node which contains all
6558 * cpus of nodes that are that many hops away from us.
6560 for (i = 0; i < level; i++) {
6561 sched_domains_numa_masks[i] =
6562 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6563 if (!sched_domains_numa_masks[i])
6564 return;
6566 for (j = 0; j < nr_node_ids; j++) {
6567 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6568 if (!mask)
6569 return;
6571 sched_domains_numa_masks[i][j] = mask;
6573 for (k = 0; k < nr_node_ids; k++) {
6574 if (node_distance(j, k) > sched_domains_numa_distance[i])
6575 continue;
6577 cpumask_or(mask, mask, cpumask_of_node(k));
6582 /* Compute default topology size */
6583 for (i = 0; sched_domain_topology[i].mask; i++);
6585 tl = kzalloc((i + level + 1) *
6586 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6587 if (!tl)
6588 return;
6591 * Copy the default topology bits..
6593 for (i = 0; sched_domain_topology[i].mask; i++)
6594 tl[i] = sched_domain_topology[i];
6597 * .. and append 'j' levels of NUMA goodness.
6599 for (j = 0; j < level; i++, j++) {
6600 tl[i] = (struct sched_domain_topology_level){
6601 .mask = sd_numa_mask,
6602 .sd_flags = cpu_numa_flags,
6603 .flags = SDTL_OVERLAP,
6604 .numa_level = j,
6605 SD_INIT_NAME(NUMA)
6609 sched_domain_topology = tl;
6611 sched_domains_numa_levels = level;
6612 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6614 init_numa_topology_type();
6617 static void sched_domains_numa_masks_set(int cpu)
6619 int i, j;
6620 int node = cpu_to_node(cpu);
6622 for (i = 0; i < sched_domains_numa_levels; i++) {
6623 for (j = 0; j < nr_node_ids; j++) {
6624 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6625 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6630 static void sched_domains_numa_masks_clear(int cpu)
6632 int i, j;
6633 for (i = 0; i < sched_domains_numa_levels; i++) {
6634 for (j = 0; j < nr_node_ids; j++)
6635 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6640 * Update sched_domains_numa_masks[level][node] array when new cpus
6641 * are onlined.
6643 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6644 unsigned long action,
6645 void *hcpu)
6647 int cpu = (long)hcpu;
6649 switch (action & ~CPU_TASKS_FROZEN) {
6650 case CPU_ONLINE:
6651 sched_domains_numa_masks_set(cpu);
6652 break;
6654 case CPU_DEAD:
6655 sched_domains_numa_masks_clear(cpu);
6656 break;
6658 default:
6659 return NOTIFY_DONE;
6662 return NOTIFY_OK;
6664 #else
6665 static inline void sched_init_numa(void)
6669 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6670 unsigned long action,
6671 void *hcpu)
6673 return 0;
6675 #endif /* CONFIG_NUMA */
6677 static int __sdt_alloc(const struct cpumask *cpu_map)
6679 struct sched_domain_topology_level *tl;
6680 int j;
6682 for_each_sd_topology(tl) {
6683 struct sd_data *sdd = &tl->data;
6685 sdd->sd = alloc_percpu(struct sched_domain *);
6686 if (!sdd->sd)
6687 return -ENOMEM;
6689 sdd->sg = alloc_percpu(struct sched_group *);
6690 if (!sdd->sg)
6691 return -ENOMEM;
6693 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6694 if (!sdd->sgc)
6695 return -ENOMEM;
6697 for_each_cpu(j, cpu_map) {
6698 struct sched_domain *sd;
6699 struct sched_group *sg;
6700 struct sched_group_capacity *sgc;
6702 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6703 GFP_KERNEL, cpu_to_node(j));
6704 if (!sd)
6705 return -ENOMEM;
6707 *per_cpu_ptr(sdd->sd, j) = sd;
6709 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6710 GFP_KERNEL, cpu_to_node(j));
6711 if (!sg)
6712 return -ENOMEM;
6714 sg->next = sg;
6716 *per_cpu_ptr(sdd->sg, j) = sg;
6718 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6719 GFP_KERNEL, cpu_to_node(j));
6720 if (!sgc)
6721 return -ENOMEM;
6723 *per_cpu_ptr(sdd->sgc, j) = sgc;
6727 return 0;
6730 static void __sdt_free(const struct cpumask *cpu_map)
6732 struct sched_domain_topology_level *tl;
6733 int j;
6735 for_each_sd_topology(tl) {
6736 struct sd_data *sdd = &tl->data;
6738 for_each_cpu(j, cpu_map) {
6739 struct sched_domain *sd;
6741 if (sdd->sd) {
6742 sd = *per_cpu_ptr(sdd->sd, j);
6743 if (sd && (sd->flags & SD_OVERLAP))
6744 free_sched_groups(sd->groups, 0);
6745 kfree(*per_cpu_ptr(sdd->sd, j));
6748 if (sdd->sg)
6749 kfree(*per_cpu_ptr(sdd->sg, j));
6750 if (sdd->sgc)
6751 kfree(*per_cpu_ptr(sdd->sgc, j));
6753 free_percpu(sdd->sd);
6754 sdd->sd = NULL;
6755 free_percpu(sdd->sg);
6756 sdd->sg = NULL;
6757 free_percpu(sdd->sgc);
6758 sdd->sgc = NULL;
6762 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6763 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6764 struct sched_domain *child, int cpu)
6766 struct sched_domain *sd = sd_init(tl, cpu);
6767 if (!sd)
6768 return child;
6770 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6771 if (child) {
6772 sd->level = child->level + 1;
6773 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6774 child->parent = sd;
6775 sd->child = child;
6777 if (!cpumask_subset(sched_domain_span(child),
6778 sched_domain_span(sd))) {
6779 pr_err("BUG: arch topology borken\n");
6780 #ifdef CONFIG_SCHED_DEBUG
6781 pr_err(" the %s domain not a subset of the %s domain\n",
6782 child->name, sd->name);
6783 #endif
6784 /* Fixup, ensure @sd has at least @child cpus. */
6785 cpumask_or(sched_domain_span(sd),
6786 sched_domain_span(sd),
6787 sched_domain_span(child));
6791 set_domain_attribute(sd, attr);
6793 return sd;
6797 * Build sched domains for a given set of cpus and attach the sched domains
6798 * to the individual cpus
6800 static int build_sched_domains(const struct cpumask *cpu_map,
6801 struct sched_domain_attr *attr)
6803 enum s_alloc alloc_state;
6804 struct sched_domain *sd;
6805 struct s_data d;
6806 int i, ret = -ENOMEM;
6808 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6809 if (alloc_state != sa_rootdomain)
6810 goto error;
6812 /* Set up domains for cpus specified by the cpu_map. */
6813 for_each_cpu(i, cpu_map) {
6814 struct sched_domain_topology_level *tl;
6816 sd = NULL;
6817 for_each_sd_topology(tl) {
6818 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6819 if (tl == sched_domain_topology)
6820 *per_cpu_ptr(d.sd, i) = sd;
6821 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6822 sd->flags |= SD_OVERLAP;
6823 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6824 break;
6828 /* Build the groups for the domains */
6829 for_each_cpu(i, cpu_map) {
6830 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6831 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6832 if (sd->flags & SD_OVERLAP) {
6833 if (build_overlap_sched_groups(sd, i))
6834 goto error;
6835 } else {
6836 if (build_sched_groups(sd, i))
6837 goto error;
6842 /* Calculate CPU capacity for physical packages and nodes */
6843 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6844 if (!cpumask_test_cpu(i, cpu_map))
6845 continue;
6847 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6848 claim_allocations(i, sd);
6849 init_sched_groups_capacity(i, sd);
6853 /* Attach the domains */
6854 rcu_read_lock();
6855 for_each_cpu(i, cpu_map) {
6856 sd = *per_cpu_ptr(d.sd, i);
6857 cpu_attach_domain(sd, d.rd, i);
6859 rcu_read_unlock();
6861 ret = 0;
6862 error:
6863 __free_domain_allocs(&d, alloc_state, cpu_map);
6864 return ret;
6867 static cpumask_var_t *doms_cur; /* current sched domains */
6868 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6869 static struct sched_domain_attr *dattr_cur;
6870 /* attribues of custom domains in 'doms_cur' */
6873 * Special case: If a kmalloc of a doms_cur partition (array of
6874 * cpumask) fails, then fallback to a single sched domain,
6875 * as determined by the single cpumask fallback_doms.
6877 static cpumask_var_t fallback_doms;
6880 * arch_update_cpu_topology lets virtualized architectures update the
6881 * cpu core maps. It is supposed to return 1 if the topology changed
6882 * or 0 if it stayed the same.
6884 int __weak arch_update_cpu_topology(void)
6886 return 0;
6889 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6891 int i;
6892 cpumask_var_t *doms;
6894 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6895 if (!doms)
6896 return NULL;
6897 for (i = 0; i < ndoms; i++) {
6898 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6899 free_sched_domains(doms, i);
6900 return NULL;
6903 return doms;
6906 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6908 unsigned int i;
6909 for (i = 0; i < ndoms; i++)
6910 free_cpumask_var(doms[i]);
6911 kfree(doms);
6915 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6916 * For now this just excludes isolated cpus, but could be used to
6917 * exclude other special cases in the future.
6919 static int init_sched_domains(const struct cpumask *cpu_map)
6921 int err;
6923 arch_update_cpu_topology();
6924 ndoms_cur = 1;
6925 doms_cur = alloc_sched_domains(ndoms_cur);
6926 if (!doms_cur)
6927 doms_cur = &fallback_doms;
6928 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6929 err = build_sched_domains(doms_cur[0], NULL);
6930 register_sched_domain_sysctl();
6932 return err;
6936 * Detach sched domains from a group of cpus specified in cpu_map
6937 * These cpus will now be attached to the NULL domain
6939 static void detach_destroy_domains(const struct cpumask *cpu_map)
6941 int i;
6943 rcu_read_lock();
6944 for_each_cpu(i, cpu_map)
6945 cpu_attach_domain(NULL, &def_root_domain, i);
6946 rcu_read_unlock();
6949 /* handle null as "default" */
6950 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6951 struct sched_domain_attr *new, int idx_new)
6953 struct sched_domain_attr tmp;
6955 /* fast path */
6956 if (!new && !cur)
6957 return 1;
6959 tmp = SD_ATTR_INIT;
6960 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6961 new ? (new + idx_new) : &tmp,
6962 sizeof(struct sched_domain_attr));
6966 * Partition sched domains as specified by the 'ndoms_new'
6967 * cpumasks in the array doms_new[] of cpumasks. This compares
6968 * doms_new[] to the current sched domain partitioning, doms_cur[].
6969 * It destroys each deleted domain and builds each new domain.
6971 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6972 * The masks don't intersect (don't overlap.) We should setup one
6973 * sched domain for each mask. CPUs not in any of the cpumasks will
6974 * not be load balanced. If the same cpumask appears both in the
6975 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6976 * it as it is.
6978 * The passed in 'doms_new' should be allocated using
6979 * alloc_sched_domains. This routine takes ownership of it and will
6980 * free_sched_domains it when done with it. If the caller failed the
6981 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6982 * and partition_sched_domains() will fallback to the single partition
6983 * 'fallback_doms', it also forces the domains to be rebuilt.
6985 * If doms_new == NULL it will be replaced with cpu_online_mask.
6986 * ndoms_new == 0 is a special case for destroying existing domains,
6987 * and it will not create the default domain.
6989 * Call with hotplug lock held
6991 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6992 struct sched_domain_attr *dattr_new)
6994 int i, j, n;
6995 int new_topology;
6997 mutex_lock(&sched_domains_mutex);
6999 /* always unregister in case we don't destroy any domains */
7000 unregister_sched_domain_sysctl();
7002 /* Let architecture update cpu core mappings. */
7003 new_topology = arch_update_cpu_topology();
7005 n = doms_new ? ndoms_new : 0;
7007 /* Destroy deleted domains */
7008 for (i = 0; i < ndoms_cur; i++) {
7009 for (j = 0; j < n && !new_topology; j++) {
7010 if (cpumask_equal(doms_cur[i], doms_new[j])
7011 && dattrs_equal(dattr_cur, i, dattr_new, j))
7012 goto match1;
7014 /* no match - a current sched domain not in new doms_new[] */
7015 detach_destroy_domains(doms_cur[i]);
7016 match1:
7020 n = ndoms_cur;
7021 if (doms_new == NULL) {
7022 n = 0;
7023 doms_new = &fallback_doms;
7024 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7025 WARN_ON_ONCE(dattr_new);
7028 /* Build new domains */
7029 for (i = 0; i < ndoms_new; i++) {
7030 for (j = 0; j < n && !new_topology; j++) {
7031 if (cpumask_equal(doms_new[i], doms_cur[j])
7032 && dattrs_equal(dattr_new, i, dattr_cur, j))
7033 goto match2;
7035 /* no match - add a new doms_new */
7036 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7037 match2:
7041 /* Remember the new sched domains */
7042 if (doms_cur != &fallback_doms)
7043 free_sched_domains(doms_cur, ndoms_cur);
7044 kfree(dattr_cur); /* kfree(NULL) is safe */
7045 doms_cur = doms_new;
7046 dattr_cur = dattr_new;
7047 ndoms_cur = ndoms_new;
7049 register_sched_domain_sysctl();
7051 mutex_unlock(&sched_domains_mutex);
7054 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7057 * Update cpusets according to cpu_active mask. If cpusets are
7058 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7059 * around partition_sched_domains().
7061 * If we come here as part of a suspend/resume, don't touch cpusets because we
7062 * want to restore it back to its original state upon resume anyway.
7064 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7065 void *hcpu)
7067 switch (action) {
7068 case CPU_ONLINE_FROZEN:
7069 case CPU_DOWN_FAILED_FROZEN:
7072 * num_cpus_frozen tracks how many CPUs are involved in suspend
7073 * resume sequence. As long as this is not the last online
7074 * operation in the resume sequence, just build a single sched
7075 * domain, ignoring cpusets.
7077 num_cpus_frozen--;
7078 if (likely(num_cpus_frozen)) {
7079 partition_sched_domains(1, NULL, NULL);
7080 break;
7084 * This is the last CPU online operation. So fall through and
7085 * restore the original sched domains by considering the
7086 * cpuset configurations.
7089 case CPU_ONLINE:
7090 cpuset_update_active_cpus(true);
7091 break;
7092 default:
7093 return NOTIFY_DONE;
7095 return NOTIFY_OK;
7098 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7099 void *hcpu)
7101 unsigned long flags;
7102 long cpu = (long)hcpu;
7103 struct dl_bw *dl_b;
7104 bool overflow;
7105 int cpus;
7107 switch (action) {
7108 case CPU_DOWN_PREPARE:
7109 rcu_read_lock_sched();
7110 dl_b = dl_bw_of(cpu);
7112 raw_spin_lock_irqsave(&dl_b->lock, flags);
7113 cpus = dl_bw_cpus(cpu);
7114 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7115 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7117 rcu_read_unlock_sched();
7119 if (overflow)
7120 return notifier_from_errno(-EBUSY);
7121 cpuset_update_active_cpus(false);
7122 break;
7123 case CPU_DOWN_PREPARE_FROZEN:
7124 num_cpus_frozen++;
7125 partition_sched_domains(1, NULL, NULL);
7126 break;
7127 default:
7128 return NOTIFY_DONE;
7130 return NOTIFY_OK;
7133 void __init sched_init_smp(void)
7135 cpumask_var_t non_isolated_cpus;
7137 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7138 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7140 /* nohz_full won't take effect without isolating the cpus. */
7141 tick_nohz_full_add_cpus_to(cpu_isolated_map);
7143 sched_init_numa();
7146 * There's no userspace yet to cause hotplug operations; hence all the
7147 * cpu masks are stable and all blatant races in the below code cannot
7148 * happen.
7150 mutex_lock(&sched_domains_mutex);
7151 init_sched_domains(cpu_active_mask);
7152 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7153 if (cpumask_empty(non_isolated_cpus))
7154 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7155 mutex_unlock(&sched_domains_mutex);
7157 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7158 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7159 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7161 init_hrtick();
7163 /* Move init over to a non-isolated CPU */
7164 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7165 BUG();
7166 sched_init_granularity();
7167 free_cpumask_var(non_isolated_cpus);
7169 init_sched_rt_class();
7170 init_sched_dl_class();
7172 #else
7173 void __init sched_init_smp(void)
7175 sched_init_granularity();
7177 #endif /* CONFIG_SMP */
7179 int in_sched_functions(unsigned long addr)
7181 return in_lock_functions(addr) ||
7182 (addr >= (unsigned long)__sched_text_start
7183 && addr < (unsigned long)__sched_text_end);
7186 #ifdef CONFIG_CGROUP_SCHED
7188 * Default task group.
7189 * Every task in system belongs to this group at bootup.
7191 struct task_group root_task_group;
7192 LIST_HEAD(task_groups);
7193 #endif
7195 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7197 void __init sched_init(void)
7199 int i, j;
7200 unsigned long alloc_size = 0, ptr;
7202 #ifdef CONFIG_FAIR_GROUP_SCHED
7203 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7204 #endif
7205 #ifdef CONFIG_RT_GROUP_SCHED
7206 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7207 #endif
7208 if (alloc_size) {
7209 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7211 #ifdef CONFIG_FAIR_GROUP_SCHED
7212 root_task_group.se = (struct sched_entity **)ptr;
7213 ptr += nr_cpu_ids * sizeof(void **);
7215 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7216 ptr += nr_cpu_ids * sizeof(void **);
7218 #endif /* CONFIG_FAIR_GROUP_SCHED */
7219 #ifdef CONFIG_RT_GROUP_SCHED
7220 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7221 ptr += nr_cpu_ids * sizeof(void **);
7223 root_task_group.rt_rq = (struct rt_rq **)ptr;
7224 ptr += nr_cpu_ids * sizeof(void **);
7226 #endif /* CONFIG_RT_GROUP_SCHED */
7228 #ifdef CONFIG_CPUMASK_OFFSTACK
7229 for_each_possible_cpu(i) {
7230 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7231 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7233 #endif /* CONFIG_CPUMASK_OFFSTACK */
7235 init_rt_bandwidth(&def_rt_bandwidth,
7236 global_rt_period(), global_rt_runtime());
7237 init_dl_bandwidth(&def_dl_bandwidth,
7238 global_rt_period(), global_rt_runtime());
7240 #ifdef CONFIG_SMP
7241 init_defrootdomain();
7242 #endif
7244 #ifdef CONFIG_RT_GROUP_SCHED
7245 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7246 global_rt_period(), global_rt_runtime());
7247 #endif /* CONFIG_RT_GROUP_SCHED */
7249 #ifdef CONFIG_CGROUP_SCHED
7250 list_add(&root_task_group.list, &task_groups);
7251 INIT_LIST_HEAD(&root_task_group.children);
7252 INIT_LIST_HEAD(&root_task_group.siblings);
7253 autogroup_init(&init_task);
7255 #endif /* CONFIG_CGROUP_SCHED */
7257 for_each_possible_cpu(i) {
7258 struct rq *rq;
7260 rq = cpu_rq(i);
7261 raw_spin_lock_init(&rq->lock);
7262 rq->nr_running = 0;
7263 rq->calc_load_active = 0;
7264 rq->calc_load_update = jiffies + LOAD_FREQ;
7265 init_cfs_rq(&rq->cfs);
7266 init_rt_rq(&rq->rt);
7267 init_dl_rq(&rq->dl);
7268 #ifdef CONFIG_FAIR_GROUP_SCHED
7269 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7270 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7272 * How much cpu bandwidth does root_task_group get?
7274 * In case of task-groups formed thr' the cgroup filesystem, it
7275 * gets 100% of the cpu resources in the system. This overall
7276 * system cpu resource is divided among the tasks of
7277 * root_task_group and its child task-groups in a fair manner,
7278 * based on each entity's (task or task-group's) weight
7279 * (se->load.weight).
7281 * In other words, if root_task_group has 10 tasks of weight
7282 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7283 * then A0's share of the cpu resource is:
7285 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7287 * We achieve this by letting root_task_group's tasks sit
7288 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7290 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7291 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7292 #endif /* CONFIG_FAIR_GROUP_SCHED */
7294 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7295 #ifdef CONFIG_RT_GROUP_SCHED
7296 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7297 #endif
7299 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7300 rq->cpu_load[j] = 0;
7302 rq->last_load_update_tick = jiffies;
7304 #ifdef CONFIG_SMP
7305 rq->sd = NULL;
7306 rq->rd = NULL;
7307 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7308 rq->balance_callback = NULL;
7309 rq->active_balance = 0;
7310 rq->next_balance = jiffies;
7311 rq->push_cpu = 0;
7312 rq->cpu = i;
7313 rq->online = 0;
7314 rq->idle_stamp = 0;
7315 rq->avg_idle = 2*sysctl_sched_migration_cost;
7316 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7318 INIT_LIST_HEAD(&rq->cfs_tasks);
7320 rq_attach_root(rq, &def_root_domain);
7321 #ifdef CONFIG_NO_HZ_COMMON
7322 rq->nohz_flags = 0;
7323 #endif
7324 #ifdef CONFIG_NO_HZ_FULL
7325 rq->last_sched_tick = 0;
7326 #endif
7327 #endif
7328 init_rq_hrtick(rq);
7329 atomic_set(&rq->nr_iowait, 0);
7332 set_load_weight(&init_task);
7334 #ifdef CONFIG_PREEMPT_NOTIFIERS
7335 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7336 #endif
7339 * The boot idle thread does lazy MMU switching as well:
7341 atomic_inc(&init_mm.mm_count);
7342 enter_lazy_tlb(&init_mm, current);
7345 * During early bootup we pretend to be a normal task:
7347 current->sched_class = &fair_sched_class;
7350 * Make us the idle thread. Technically, schedule() should not be
7351 * called from this thread, however somewhere below it might be,
7352 * but because we are the idle thread, we just pick up running again
7353 * when this runqueue becomes "idle".
7355 init_idle(current, smp_processor_id());
7357 calc_load_update = jiffies + LOAD_FREQ;
7359 #ifdef CONFIG_SMP
7360 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7361 /* May be allocated at isolcpus cmdline parse time */
7362 if (cpu_isolated_map == NULL)
7363 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7364 idle_thread_set_boot_cpu();
7365 set_cpu_rq_start_time();
7366 #endif
7367 init_sched_fair_class();
7369 scheduler_running = 1;
7372 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7373 static inline int preempt_count_equals(int preempt_offset)
7375 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7377 return (nested == preempt_offset);
7380 void __might_sleep(const char *file, int line, int preempt_offset)
7383 * Blocking primitives will set (and therefore destroy) current->state,
7384 * since we will exit with TASK_RUNNING make sure we enter with it,
7385 * otherwise we will destroy state.
7387 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7388 "do not call blocking ops when !TASK_RUNNING; "
7389 "state=%lx set at [<%p>] %pS\n",
7390 current->state,
7391 (void *)current->task_state_change,
7392 (void *)current->task_state_change);
7394 ___might_sleep(file, line, preempt_offset);
7396 EXPORT_SYMBOL(__might_sleep);
7398 void ___might_sleep(const char *file, int line, int preempt_offset)
7400 static unsigned long prev_jiffy; /* ratelimiting */
7402 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7403 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7404 !is_idle_task(current)) ||
7405 system_state != SYSTEM_RUNNING || oops_in_progress)
7406 return;
7407 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7408 return;
7409 prev_jiffy = jiffies;
7411 printk(KERN_ERR
7412 "BUG: sleeping function called from invalid context at %s:%d\n",
7413 file, line);
7414 printk(KERN_ERR
7415 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7416 in_atomic(), irqs_disabled(),
7417 current->pid, current->comm);
7419 if (task_stack_end_corrupted(current))
7420 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7422 debug_show_held_locks(current);
7423 if (irqs_disabled())
7424 print_irqtrace_events(current);
7425 #ifdef CONFIG_DEBUG_PREEMPT
7426 if (!preempt_count_equals(preempt_offset)) {
7427 pr_err("Preemption disabled at:");
7428 print_ip_sym(current->preempt_disable_ip);
7429 pr_cont("\n");
7431 #endif
7432 dump_stack();
7434 EXPORT_SYMBOL(___might_sleep);
7435 #endif
7437 #ifdef CONFIG_MAGIC_SYSRQ
7438 void normalize_rt_tasks(void)
7440 struct task_struct *g, *p;
7441 struct sched_attr attr = {
7442 .sched_policy = SCHED_NORMAL,
7445 read_lock(&tasklist_lock);
7446 for_each_process_thread(g, p) {
7448 * Only normalize user tasks:
7450 if (p->flags & PF_KTHREAD)
7451 continue;
7453 p->se.exec_start = 0;
7454 #ifdef CONFIG_SCHEDSTATS
7455 p->se.statistics.wait_start = 0;
7456 p->se.statistics.sleep_start = 0;
7457 p->se.statistics.block_start = 0;
7458 #endif
7460 if (!dl_task(p) && !rt_task(p)) {
7462 * Renice negative nice level userspace
7463 * tasks back to 0:
7465 if (task_nice(p) < 0)
7466 set_user_nice(p, 0);
7467 continue;
7470 __sched_setscheduler(p, &attr, false, false);
7472 read_unlock(&tasklist_lock);
7475 #endif /* CONFIG_MAGIC_SYSRQ */
7477 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7479 * These functions are only useful for the IA64 MCA handling, or kdb.
7481 * They can only be called when the whole system has been
7482 * stopped - every CPU needs to be quiescent, and no scheduling
7483 * activity can take place. Using them for anything else would
7484 * be a serious bug, and as a result, they aren't even visible
7485 * under any other configuration.
7489 * curr_task - return the current task for a given cpu.
7490 * @cpu: the processor in question.
7492 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7494 * Return: The current task for @cpu.
7496 struct task_struct *curr_task(int cpu)
7498 return cpu_curr(cpu);
7501 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7503 #ifdef CONFIG_IA64
7505 * set_curr_task - set the current task for a given cpu.
7506 * @cpu: the processor in question.
7507 * @p: the task pointer to set.
7509 * Description: This function must only be used when non-maskable interrupts
7510 * are serviced on a separate stack. It allows the architecture to switch the
7511 * notion of the current task on a cpu in a non-blocking manner. This function
7512 * must be called with all CPU's synchronized, and interrupts disabled, the
7513 * and caller must save the original value of the current task (see
7514 * curr_task() above) and restore that value before reenabling interrupts and
7515 * re-starting the system.
7517 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7519 void set_curr_task(int cpu, struct task_struct *p)
7521 cpu_curr(cpu) = p;
7524 #endif
7526 #ifdef CONFIG_CGROUP_SCHED
7527 /* task_group_lock serializes the addition/removal of task groups */
7528 static DEFINE_SPINLOCK(task_group_lock);
7530 static void free_sched_group(struct task_group *tg)
7532 free_fair_sched_group(tg);
7533 free_rt_sched_group(tg);
7534 autogroup_free(tg);
7535 kfree(tg);
7538 /* allocate runqueue etc for a new task group */
7539 struct task_group *sched_create_group(struct task_group *parent)
7541 struct task_group *tg;
7543 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7544 if (!tg)
7545 return ERR_PTR(-ENOMEM);
7547 if (!alloc_fair_sched_group(tg, parent))
7548 goto err;
7550 if (!alloc_rt_sched_group(tg, parent))
7551 goto err;
7553 return tg;
7555 err:
7556 free_sched_group(tg);
7557 return ERR_PTR(-ENOMEM);
7560 void sched_online_group(struct task_group *tg, struct task_group *parent)
7562 unsigned long flags;
7564 spin_lock_irqsave(&task_group_lock, flags);
7565 list_add_rcu(&tg->list, &task_groups);
7567 WARN_ON(!parent); /* root should already exist */
7569 tg->parent = parent;
7570 INIT_LIST_HEAD(&tg->children);
7571 list_add_rcu(&tg->siblings, &parent->children);
7572 spin_unlock_irqrestore(&task_group_lock, flags);
7575 /* rcu callback to free various structures associated with a task group */
7576 static void free_sched_group_rcu(struct rcu_head *rhp)
7578 /* now it should be safe to free those cfs_rqs */
7579 free_sched_group(container_of(rhp, struct task_group, rcu));
7582 /* Destroy runqueue etc associated with a task group */
7583 void sched_destroy_group(struct task_group *tg)
7585 /* wait for possible concurrent references to cfs_rqs complete */
7586 call_rcu(&tg->rcu, free_sched_group_rcu);
7589 void sched_offline_group(struct task_group *tg)
7591 unsigned long flags;
7592 int i;
7594 /* end participation in shares distribution */
7595 for_each_possible_cpu(i)
7596 unregister_fair_sched_group(tg, i);
7598 spin_lock_irqsave(&task_group_lock, flags);
7599 list_del_rcu(&tg->list);
7600 list_del_rcu(&tg->siblings);
7601 spin_unlock_irqrestore(&task_group_lock, flags);
7604 /* change task's runqueue when it moves between groups.
7605 * The caller of this function should have put the task in its new group
7606 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7607 * reflect its new group.
7609 void sched_move_task(struct task_struct *tsk)
7611 struct task_group *tg;
7612 int queued, running;
7613 unsigned long flags;
7614 struct rq *rq;
7616 rq = task_rq_lock(tsk, &flags);
7618 running = task_current(rq, tsk);
7619 queued = task_on_rq_queued(tsk);
7621 if (queued)
7622 dequeue_task(rq, tsk, 0);
7623 if (unlikely(running))
7624 put_prev_task(rq, tsk);
7627 * All callers are synchronized by task_rq_lock(); we do not use RCU
7628 * which is pointless here. Thus, we pass "true" to task_css_check()
7629 * to prevent lockdep warnings.
7631 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7632 struct task_group, css);
7633 tg = autogroup_task_group(tsk, tg);
7634 tsk->sched_task_group = tg;
7636 #ifdef CONFIG_FAIR_GROUP_SCHED
7637 if (tsk->sched_class->task_move_group)
7638 tsk->sched_class->task_move_group(tsk, queued);
7639 else
7640 #endif
7641 set_task_rq(tsk, task_cpu(tsk));
7643 if (unlikely(running))
7644 tsk->sched_class->set_curr_task(rq);
7645 if (queued)
7646 enqueue_task(rq, tsk, 0);
7648 task_rq_unlock(rq, tsk, &flags);
7650 #endif /* CONFIG_CGROUP_SCHED */
7652 #ifdef CONFIG_RT_GROUP_SCHED
7654 * Ensure that the real time constraints are schedulable.
7656 static DEFINE_MUTEX(rt_constraints_mutex);
7658 /* Must be called with tasklist_lock held */
7659 static inline int tg_has_rt_tasks(struct task_group *tg)
7661 struct task_struct *g, *p;
7664 * Autogroups do not have RT tasks; see autogroup_create().
7666 if (task_group_is_autogroup(tg))
7667 return 0;
7669 for_each_process_thread(g, p) {
7670 if (rt_task(p) && task_group(p) == tg)
7671 return 1;
7674 return 0;
7677 struct rt_schedulable_data {
7678 struct task_group *tg;
7679 u64 rt_period;
7680 u64 rt_runtime;
7683 static int tg_rt_schedulable(struct task_group *tg, void *data)
7685 struct rt_schedulable_data *d = data;
7686 struct task_group *child;
7687 unsigned long total, sum = 0;
7688 u64 period, runtime;
7690 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7691 runtime = tg->rt_bandwidth.rt_runtime;
7693 if (tg == d->tg) {
7694 period = d->rt_period;
7695 runtime = d->rt_runtime;
7699 * Cannot have more runtime than the period.
7701 if (runtime > period && runtime != RUNTIME_INF)
7702 return -EINVAL;
7705 * Ensure we don't starve existing RT tasks.
7707 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7708 return -EBUSY;
7710 total = to_ratio(period, runtime);
7713 * Nobody can have more than the global setting allows.
7715 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7716 return -EINVAL;
7719 * The sum of our children's runtime should not exceed our own.
7721 list_for_each_entry_rcu(child, &tg->children, siblings) {
7722 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7723 runtime = child->rt_bandwidth.rt_runtime;
7725 if (child == d->tg) {
7726 period = d->rt_period;
7727 runtime = d->rt_runtime;
7730 sum += to_ratio(period, runtime);
7733 if (sum > total)
7734 return -EINVAL;
7736 return 0;
7739 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7741 int ret;
7743 struct rt_schedulable_data data = {
7744 .tg = tg,
7745 .rt_period = period,
7746 .rt_runtime = runtime,
7749 rcu_read_lock();
7750 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7751 rcu_read_unlock();
7753 return ret;
7756 static int tg_set_rt_bandwidth(struct task_group *tg,
7757 u64 rt_period, u64 rt_runtime)
7759 int i, err = 0;
7762 * Disallowing the root group RT runtime is BAD, it would disallow the
7763 * kernel creating (and or operating) RT threads.
7765 if (tg == &root_task_group && rt_runtime == 0)
7766 return -EINVAL;
7768 /* No period doesn't make any sense. */
7769 if (rt_period == 0)
7770 return -EINVAL;
7772 mutex_lock(&rt_constraints_mutex);
7773 read_lock(&tasklist_lock);
7774 err = __rt_schedulable(tg, rt_period, rt_runtime);
7775 if (err)
7776 goto unlock;
7778 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7779 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7780 tg->rt_bandwidth.rt_runtime = rt_runtime;
7782 for_each_possible_cpu(i) {
7783 struct rt_rq *rt_rq = tg->rt_rq[i];
7785 raw_spin_lock(&rt_rq->rt_runtime_lock);
7786 rt_rq->rt_runtime = rt_runtime;
7787 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7789 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7790 unlock:
7791 read_unlock(&tasklist_lock);
7792 mutex_unlock(&rt_constraints_mutex);
7794 return err;
7797 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7799 u64 rt_runtime, rt_period;
7801 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7802 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7803 if (rt_runtime_us < 0)
7804 rt_runtime = RUNTIME_INF;
7806 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7809 static long sched_group_rt_runtime(struct task_group *tg)
7811 u64 rt_runtime_us;
7813 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7814 return -1;
7816 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7817 do_div(rt_runtime_us, NSEC_PER_USEC);
7818 return rt_runtime_us;
7821 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7823 u64 rt_runtime, rt_period;
7825 rt_period = rt_period_us * NSEC_PER_USEC;
7826 rt_runtime = tg->rt_bandwidth.rt_runtime;
7828 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7831 static long sched_group_rt_period(struct task_group *tg)
7833 u64 rt_period_us;
7835 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7836 do_div(rt_period_us, NSEC_PER_USEC);
7837 return rt_period_us;
7839 #endif /* CONFIG_RT_GROUP_SCHED */
7841 #ifdef CONFIG_RT_GROUP_SCHED
7842 static int sched_rt_global_constraints(void)
7844 int ret = 0;
7846 mutex_lock(&rt_constraints_mutex);
7847 read_lock(&tasklist_lock);
7848 ret = __rt_schedulable(NULL, 0, 0);
7849 read_unlock(&tasklist_lock);
7850 mutex_unlock(&rt_constraints_mutex);
7852 return ret;
7855 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7857 /* Don't accept realtime tasks when there is no way for them to run */
7858 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7859 return 0;
7861 return 1;
7864 #else /* !CONFIG_RT_GROUP_SCHED */
7865 static int sched_rt_global_constraints(void)
7867 unsigned long flags;
7868 int i, ret = 0;
7870 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7871 for_each_possible_cpu(i) {
7872 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7874 raw_spin_lock(&rt_rq->rt_runtime_lock);
7875 rt_rq->rt_runtime = global_rt_runtime();
7876 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7878 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7880 return ret;
7882 #endif /* CONFIG_RT_GROUP_SCHED */
7884 static int sched_dl_global_validate(void)
7886 u64 runtime = global_rt_runtime();
7887 u64 period = global_rt_period();
7888 u64 new_bw = to_ratio(period, runtime);
7889 struct dl_bw *dl_b;
7890 int cpu, ret = 0;
7891 unsigned long flags;
7894 * Here we want to check the bandwidth not being set to some
7895 * value smaller than the currently allocated bandwidth in
7896 * any of the root_domains.
7898 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7899 * cycling on root_domains... Discussion on different/better
7900 * solutions is welcome!
7902 for_each_possible_cpu(cpu) {
7903 rcu_read_lock_sched();
7904 dl_b = dl_bw_of(cpu);
7906 raw_spin_lock_irqsave(&dl_b->lock, flags);
7907 if (new_bw < dl_b->total_bw)
7908 ret = -EBUSY;
7909 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7911 rcu_read_unlock_sched();
7913 if (ret)
7914 break;
7917 return ret;
7920 static void sched_dl_do_global(void)
7922 u64 new_bw = -1;
7923 struct dl_bw *dl_b;
7924 int cpu;
7925 unsigned long flags;
7927 def_dl_bandwidth.dl_period = global_rt_period();
7928 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7930 if (global_rt_runtime() != RUNTIME_INF)
7931 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7934 * FIXME: As above...
7936 for_each_possible_cpu(cpu) {
7937 rcu_read_lock_sched();
7938 dl_b = dl_bw_of(cpu);
7940 raw_spin_lock_irqsave(&dl_b->lock, flags);
7941 dl_b->bw = new_bw;
7942 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7944 rcu_read_unlock_sched();
7948 static int sched_rt_global_validate(void)
7950 if (sysctl_sched_rt_period <= 0)
7951 return -EINVAL;
7953 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7954 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7955 return -EINVAL;
7957 return 0;
7960 static void sched_rt_do_global(void)
7962 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7963 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7966 int sched_rt_handler(struct ctl_table *table, int write,
7967 void __user *buffer, size_t *lenp,
7968 loff_t *ppos)
7970 int old_period, old_runtime;
7971 static DEFINE_MUTEX(mutex);
7972 int ret;
7974 mutex_lock(&mutex);
7975 old_period = sysctl_sched_rt_period;
7976 old_runtime = sysctl_sched_rt_runtime;
7978 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7980 if (!ret && write) {
7981 ret = sched_rt_global_validate();
7982 if (ret)
7983 goto undo;
7985 ret = sched_dl_global_validate();
7986 if (ret)
7987 goto undo;
7989 ret = sched_rt_global_constraints();
7990 if (ret)
7991 goto undo;
7993 sched_rt_do_global();
7994 sched_dl_do_global();
7996 if (0) {
7997 undo:
7998 sysctl_sched_rt_period = old_period;
7999 sysctl_sched_rt_runtime = old_runtime;
8001 mutex_unlock(&mutex);
8003 return ret;
8006 int sched_rr_handler(struct ctl_table *table, int write,
8007 void __user *buffer, size_t *lenp,
8008 loff_t *ppos)
8010 int ret;
8011 static DEFINE_MUTEX(mutex);
8013 mutex_lock(&mutex);
8014 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8015 /* make sure that internally we keep jiffies */
8016 /* also, writing zero resets timeslice to default */
8017 if (!ret && write) {
8018 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8019 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8021 mutex_unlock(&mutex);
8022 return ret;
8025 #ifdef CONFIG_CGROUP_SCHED
8027 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8029 return css ? container_of(css, struct task_group, css) : NULL;
8032 static struct cgroup_subsys_state *
8033 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8035 struct task_group *parent = css_tg(parent_css);
8036 struct task_group *tg;
8038 if (!parent) {
8039 /* This is early initialization for the top cgroup */
8040 return &root_task_group.css;
8043 tg = sched_create_group(parent);
8044 if (IS_ERR(tg))
8045 return ERR_PTR(-ENOMEM);
8047 return &tg->css;
8050 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8052 struct task_group *tg = css_tg(css);
8053 struct task_group *parent = css_tg(css->parent);
8055 if (parent)
8056 sched_online_group(tg, parent);
8057 return 0;
8060 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8062 struct task_group *tg = css_tg(css);
8064 sched_destroy_group(tg);
8067 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8069 struct task_group *tg = css_tg(css);
8071 sched_offline_group(tg);
8074 static void cpu_cgroup_fork(struct task_struct *task)
8076 sched_move_task(task);
8079 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8080 struct cgroup_taskset *tset)
8082 struct task_struct *task;
8084 cgroup_taskset_for_each(task, tset) {
8085 #ifdef CONFIG_RT_GROUP_SCHED
8086 if (!sched_rt_can_attach(css_tg(css), task))
8087 return -EINVAL;
8088 #else
8089 /* We don't support RT-tasks being in separate groups */
8090 if (task->sched_class != &fair_sched_class)
8091 return -EINVAL;
8092 #endif
8094 return 0;
8097 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8098 struct cgroup_taskset *tset)
8100 struct task_struct *task;
8102 cgroup_taskset_for_each(task, tset)
8103 sched_move_task(task);
8106 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8107 struct cgroup_subsys_state *old_css,
8108 struct task_struct *task)
8111 * cgroup_exit() is called in the copy_process() failure path.
8112 * Ignore this case since the task hasn't ran yet, this avoids
8113 * trying to poke a half freed task state from generic code.
8115 if (!(task->flags & PF_EXITING))
8116 return;
8118 sched_move_task(task);
8121 #ifdef CONFIG_FAIR_GROUP_SCHED
8122 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8123 struct cftype *cftype, u64 shareval)
8125 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8128 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8129 struct cftype *cft)
8131 struct task_group *tg = css_tg(css);
8133 return (u64) scale_load_down(tg->shares);
8136 #ifdef CONFIG_CFS_BANDWIDTH
8137 static DEFINE_MUTEX(cfs_constraints_mutex);
8139 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8140 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8142 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8144 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8146 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8147 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8149 if (tg == &root_task_group)
8150 return -EINVAL;
8153 * Ensure we have at some amount of bandwidth every period. This is
8154 * to prevent reaching a state of large arrears when throttled via
8155 * entity_tick() resulting in prolonged exit starvation.
8157 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8158 return -EINVAL;
8161 * Likewise, bound things on the otherside by preventing insane quota
8162 * periods. This also allows us to normalize in computing quota
8163 * feasibility.
8165 if (period > max_cfs_quota_period)
8166 return -EINVAL;
8169 * Prevent race between setting of cfs_rq->runtime_enabled and
8170 * unthrottle_offline_cfs_rqs().
8172 get_online_cpus();
8173 mutex_lock(&cfs_constraints_mutex);
8174 ret = __cfs_schedulable(tg, period, quota);
8175 if (ret)
8176 goto out_unlock;
8178 runtime_enabled = quota != RUNTIME_INF;
8179 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8181 * If we need to toggle cfs_bandwidth_used, off->on must occur
8182 * before making related changes, and on->off must occur afterwards
8184 if (runtime_enabled && !runtime_was_enabled)
8185 cfs_bandwidth_usage_inc();
8186 raw_spin_lock_irq(&cfs_b->lock);
8187 cfs_b->period = ns_to_ktime(period);
8188 cfs_b->quota = quota;
8190 __refill_cfs_bandwidth_runtime(cfs_b);
8191 /* restart the period timer (if active) to handle new period expiry */
8192 if (runtime_enabled)
8193 start_cfs_bandwidth(cfs_b);
8194 raw_spin_unlock_irq(&cfs_b->lock);
8196 for_each_online_cpu(i) {
8197 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8198 struct rq *rq = cfs_rq->rq;
8200 raw_spin_lock_irq(&rq->lock);
8201 cfs_rq->runtime_enabled = runtime_enabled;
8202 cfs_rq->runtime_remaining = 0;
8204 if (cfs_rq->throttled)
8205 unthrottle_cfs_rq(cfs_rq);
8206 raw_spin_unlock_irq(&rq->lock);
8208 if (runtime_was_enabled && !runtime_enabled)
8209 cfs_bandwidth_usage_dec();
8210 out_unlock:
8211 mutex_unlock(&cfs_constraints_mutex);
8212 put_online_cpus();
8214 return ret;
8217 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8219 u64 quota, period;
8221 period = ktime_to_ns(tg->cfs_bandwidth.period);
8222 if (cfs_quota_us < 0)
8223 quota = RUNTIME_INF;
8224 else
8225 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8227 return tg_set_cfs_bandwidth(tg, period, quota);
8230 long tg_get_cfs_quota(struct task_group *tg)
8232 u64 quota_us;
8234 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8235 return -1;
8237 quota_us = tg->cfs_bandwidth.quota;
8238 do_div(quota_us, NSEC_PER_USEC);
8240 return quota_us;
8243 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8245 u64 quota, period;
8247 period = (u64)cfs_period_us * NSEC_PER_USEC;
8248 quota = tg->cfs_bandwidth.quota;
8250 return tg_set_cfs_bandwidth(tg, period, quota);
8253 long tg_get_cfs_period(struct task_group *tg)
8255 u64 cfs_period_us;
8257 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8258 do_div(cfs_period_us, NSEC_PER_USEC);
8260 return cfs_period_us;
8263 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8264 struct cftype *cft)
8266 return tg_get_cfs_quota(css_tg(css));
8269 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8270 struct cftype *cftype, s64 cfs_quota_us)
8272 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8275 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8276 struct cftype *cft)
8278 return tg_get_cfs_period(css_tg(css));
8281 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8282 struct cftype *cftype, u64 cfs_period_us)
8284 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8287 struct cfs_schedulable_data {
8288 struct task_group *tg;
8289 u64 period, quota;
8293 * normalize group quota/period to be quota/max_period
8294 * note: units are usecs
8296 static u64 normalize_cfs_quota(struct task_group *tg,
8297 struct cfs_schedulable_data *d)
8299 u64 quota, period;
8301 if (tg == d->tg) {
8302 period = d->period;
8303 quota = d->quota;
8304 } else {
8305 period = tg_get_cfs_period(tg);
8306 quota = tg_get_cfs_quota(tg);
8309 /* note: these should typically be equivalent */
8310 if (quota == RUNTIME_INF || quota == -1)
8311 return RUNTIME_INF;
8313 return to_ratio(period, quota);
8316 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8318 struct cfs_schedulable_data *d = data;
8319 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8320 s64 quota = 0, parent_quota = -1;
8322 if (!tg->parent) {
8323 quota = RUNTIME_INF;
8324 } else {
8325 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8327 quota = normalize_cfs_quota(tg, d);
8328 parent_quota = parent_b->hierarchical_quota;
8331 * ensure max(child_quota) <= parent_quota, inherit when no
8332 * limit is set
8334 if (quota == RUNTIME_INF)
8335 quota = parent_quota;
8336 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8337 return -EINVAL;
8339 cfs_b->hierarchical_quota = quota;
8341 return 0;
8344 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8346 int ret;
8347 struct cfs_schedulable_data data = {
8348 .tg = tg,
8349 .period = period,
8350 .quota = quota,
8353 if (quota != RUNTIME_INF) {
8354 do_div(data.period, NSEC_PER_USEC);
8355 do_div(data.quota, NSEC_PER_USEC);
8358 rcu_read_lock();
8359 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8360 rcu_read_unlock();
8362 return ret;
8365 static int cpu_stats_show(struct seq_file *sf, void *v)
8367 struct task_group *tg = css_tg(seq_css(sf));
8368 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8370 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8371 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8372 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8374 return 0;
8376 #endif /* CONFIG_CFS_BANDWIDTH */
8377 #endif /* CONFIG_FAIR_GROUP_SCHED */
8379 #ifdef CONFIG_RT_GROUP_SCHED
8380 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8381 struct cftype *cft, s64 val)
8383 return sched_group_set_rt_runtime(css_tg(css), val);
8386 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8387 struct cftype *cft)
8389 return sched_group_rt_runtime(css_tg(css));
8392 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8393 struct cftype *cftype, u64 rt_period_us)
8395 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8398 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8399 struct cftype *cft)
8401 return sched_group_rt_period(css_tg(css));
8403 #endif /* CONFIG_RT_GROUP_SCHED */
8405 static struct cftype cpu_files[] = {
8406 #ifdef CONFIG_FAIR_GROUP_SCHED
8408 .name = "shares",
8409 .read_u64 = cpu_shares_read_u64,
8410 .write_u64 = cpu_shares_write_u64,
8412 #endif
8413 #ifdef CONFIG_CFS_BANDWIDTH
8415 .name = "cfs_quota_us",
8416 .read_s64 = cpu_cfs_quota_read_s64,
8417 .write_s64 = cpu_cfs_quota_write_s64,
8420 .name = "cfs_period_us",
8421 .read_u64 = cpu_cfs_period_read_u64,
8422 .write_u64 = cpu_cfs_period_write_u64,
8425 .name = "stat",
8426 .seq_show = cpu_stats_show,
8428 #endif
8429 #ifdef CONFIG_RT_GROUP_SCHED
8431 .name = "rt_runtime_us",
8432 .read_s64 = cpu_rt_runtime_read,
8433 .write_s64 = cpu_rt_runtime_write,
8436 .name = "rt_period_us",
8437 .read_u64 = cpu_rt_period_read_uint,
8438 .write_u64 = cpu_rt_period_write_uint,
8440 #endif
8441 { } /* terminate */
8444 struct cgroup_subsys cpu_cgrp_subsys = {
8445 .css_alloc = cpu_cgroup_css_alloc,
8446 .css_free = cpu_cgroup_css_free,
8447 .css_online = cpu_cgroup_css_online,
8448 .css_offline = cpu_cgroup_css_offline,
8449 .fork = cpu_cgroup_fork,
8450 .can_attach = cpu_cgroup_can_attach,
8451 .attach = cpu_cgroup_attach,
8452 .exit = cpu_cgroup_exit,
8453 .legacy_cftypes = cpu_files,
8454 .early_init = 1,
8457 #endif /* CONFIG_CGROUP_SCHED */
8459 void dump_cpu_task(int cpu)
8461 pr_info("Task dump for CPU %d:\n", cpu);
8462 sched_show_task(cpu_curr(cpu));