bridge: use spin_lock_bh() in br_multicast_set_hash_max
[linux-2.6/btrfs-unstable.git] / kernel / cgroup.c
blobbc1dcabe92176636baf79c7ef52e597422aeaf75
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63 #include <linux/file.h>
65 #include <linux/atomic.h>
68 * cgroup_mutex is the master lock. Any modification to cgroup or its
69 * hierarchy must be performed while holding it.
71 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
72 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
73 * release_agent_path and so on. Modifying requires both cgroup_mutex and
74 * cgroup_root_mutex. Readers can acquire either of the two. This is to
75 * break the following locking order cycle.
77 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
78 * B. namespace_sem -> cgroup_mutex
80 * B happens only through cgroup_show_options() and using cgroup_root_mutex
81 * breaks it.
83 #ifdef CONFIG_PROVE_RCU
84 DEFINE_MUTEX(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
86 #else
87 static DEFINE_MUTEX(cgroup_mutex);
88 #endif
90 static DEFINE_MUTEX(cgroup_root_mutex);
93 * cgroup destruction makes heavy use of work items and there can be a lot
94 * of concurrent destructions. Use a separate workqueue so that cgroup
95 * destruction work items don't end up filling up max_active of system_wq
96 * which may lead to deadlock.
98 static struct workqueue_struct *cgroup_destroy_wq;
101 * Generate an array of cgroup subsystem pointers. At boot time, this is
102 * populated with the built in subsystems, and modular subsystems are
103 * registered after that. The mutable section of this array is protected by
104 * cgroup_mutex.
106 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
107 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
108 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
109 #include <linux/cgroup_subsys.h>
113 * The dummy hierarchy, reserved for the subsystems that are otherwise
114 * unattached - it never has more than a single cgroup, and all tasks are
115 * part of that cgroup.
117 static struct cgroupfs_root cgroup_dummy_root;
119 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
120 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
123 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
125 struct cfent {
126 struct list_head node;
127 struct dentry *dentry;
128 struct cftype *type;
129 struct cgroup_subsys_state *css;
131 /* file xattrs */
132 struct simple_xattrs xattrs;
136 * cgroup_event represents events which userspace want to receive.
138 struct cgroup_event {
140 * css which the event belongs to.
142 struct cgroup_subsys_state *css;
144 * Control file which the event associated.
146 struct cftype *cft;
148 * eventfd to signal userspace about the event.
150 struct eventfd_ctx *eventfd;
152 * Each of these stored in a list by the cgroup.
154 struct list_head list;
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
159 poll_table pt;
160 wait_queue_head_t *wqh;
161 wait_queue_t wait;
162 struct work_struct remove;
165 /* The list of hierarchy roots */
167 static LIST_HEAD(cgroup_roots);
168 static int cgroup_root_count;
171 * Hierarchy ID allocation and mapping. It follows the same exclusion
172 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
173 * writes, either for reads.
175 static DEFINE_IDR(cgroup_hierarchy_idr);
177 static struct cgroup_name root_cgroup_name = { .name = "/" };
180 * Assign a monotonically increasing serial number to cgroups. It
181 * guarantees cgroups with bigger numbers are newer than those with smaller
182 * numbers. Also, as cgroups are always appended to the parent's
183 * ->children list, it guarantees that sibling cgroups are always sorted in
184 * the ascending serial number order on the list. Protected by
185 * cgroup_mutex.
187 static u64 cgroup_serial_nr_next = 1;
189 /* This flag indicates whether tasks in the fork and exit paths should
190 * check for fork/exit handlers to call. This avoids us having to do
191 * extra work in the fork/exit path if none of the subsystems need to
192 * be called.
194 static int need_forkexit_callback __read_mostly;
196 static struct cftype cgroup_base_files[];
198 static void cgroup_destroy_css_killed(struct cgroup *cgrp);
199 static int cgroup_destroy_locked(struct cgroup *cgrp);
200 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
201 bool is_add);
202 static int cgroup_file_release(struct inode *inode, struct file *file);
205 * cgroup_css - obtain a cgroup's css for the specified subsystem
206 * @cgrp: the cgroup of interest
207 * @ss: the subsystem of interest (%NULL returns the dummy_css)
209 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
210 * function must be called either under cgroup_mutex or rcu_read_lock() and
211 * the caller is responsible for pinning the returned css if it wants to
212 * keep accessing it outside the said locks. This function may return
213 * %NULL if @cgrp doesn't have @subsys_id enabled.
215 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
216 struct cgroup_subsys *ss)
218 if (ss)
219 return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
220 lockdep_is_held(&cgroup_mutex));
221 else
222 return &cgrp->dummy_css;
225 /* convenient tests for these bits */
226 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
228 return test_bit(CGRP_DEAD, &cgrp->flags);
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
240 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
247 return false;
249 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
251 static int cgroup_is_releasable(const struct cgroup *cgrp)
253 const int bits =
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
259 static int notify_on_release(const struct cgroup *cgrp)
261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
269 * Should be called under cgroup_mutex.
271 #define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
285 #define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
289 /* iterate each subsystem attached to a hierarchy */
290 #define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
293 /* iterate across the active hierarchies */
294 #define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
297 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
299 return dentry->d_fsdata;
302 static inline struct cfent *__d_cfe(struct dentry *dentry)
304 return dentry->d_fsdata;
307 static inline struct cftype *__d_cft(struct dentry *dentry)
309 return __d_cfe(dentry)->type;
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
319 static bool cgroup_lock_live_group(struct cgroup *cgrp)
321 mutex_lock(&cgroup_mutex);
322 if (cgroup_is_dead(cgrp)) {
323 mutex_unlock(&cgroup_mutex);
324 return false;
326 return true;
329 /* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331 static LIST_HEAD(release_list);
332 static DEFINE_RAW_SPINLOCK(release_list_lock);
333 static void cgroup_release_agent(struct work_struct *work);
334 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
335 static void check_for_release(struct cgroup *cgrp);
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
345 struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
357 /* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
364 static struct css_set init_css_set;
365 static struct cgrp_cset_link init_cgrp_cset_link;
368 * css_set_lock protects the list of css_set objects, and the chain of
369 * tasks off each css_set. Nests outside task->alloc_lock due to
370 * css_task_iter_start().
372 static DEFINE_RWLOCK(css_set_lock);
373 static int css_set_count;
376 * hash table for cgroup groups. This improves the performance to find
377 * an existing css_set. This hash doesn't (currently) take into
378 * account cgroups in empty hierarchies.
380 #define CSS_SET_HASH_BITS 7
381 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
383 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
385 unsigned long key = 0UL;
386 struct cgroup_subsys *ss;
387 int i;
389 for_each_subsys(ss, i)
390 key += (unsigned long)css[i];
391 key = (key >> 16) ^ key;
393 return key;
397 * We don't maintain the lists running through each css_set to its task
398 * until after the first call to css_task_iter_start(). This reduces the
399 * fork()/exit() overhead for people who have cgroups compiled into their
400 * kernel but not actually in use.
402 static int use_task_css_set_links __read_mostly;
404 static void __put_css_set(struct css_set *cset, int taskexit)
406 struct cgrp_cset_link *link, *tmp_link;
409 * Ensure that the refcount doesn't hit zero while any readers
410 * can see it. Similar to atomic_dec_and_lock(), but for an
411 * rwlock
413 if (atomic_add_unless(&cset->refcount, -1, 1))
414 return;
415 write_lock(&css_set_lock);
416 if (!atomic_dec_and_test(&cset->refcount)) {
417 write_unlock(&css_set_lock);
418 return;
421 /* This css_set is dead. unlink it and release cgroup refcounts */
422 hash_del(&cset->hlist);
423 css_set_count--;
425 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
426 struct cgroup *cgrp = link->cgrp;
428 list_del(&link->cset_link);
429 list_del(&link->cgrp_link);
431 /* @cgrp can't go away while we're holding css_set_lock */
432 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
433 if (taskexit)
434 set_bit(CGRP_RELEASABLE, &cgrp->flags);
435 check_for_release(cgrp);
438 kfree(link);
441 write_unlock(&css_set_lock);
442 kfree_rcu(cset, rcu_head);
446 * refcounted get/put for css_set objects
448 static inline void get_css_set(struct css_set *cset)
450 atomic_inc(&cset->refcount);
453 static inline void put_css_set(struct css_set *cset)
455 __put_css_set(cset, 0);
458 static inline void put_css_set_taskexit(struct css_set *cset)
460 __put_css_set(cset, 1);
464 * compare_css_sets - helper function for find_existing_css_set().
465 * @cset: candidate css_set being tested
466 * @old_cset: existing css_set for a task
467 * @new_cgrp: cgroup that's being entered by the task
468 * @template: desired set of css pointers in css_set (pre-calculated)
470 * Returns true if "cset" matches "old_cset" except for the hierarchy
471 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
473 static bool compare_css_sets(struct css_set *cset,
474 struct css_set *old_cset,
475 struct cgroup *new_cgrp,
476 struct cgroup_subsys_state *template[])
478 struct list_head *l1, *l2;
480 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
481 /* Not all subsystems matched */
482 return false;
486 * Compare cgroup pointers in order to distinguish between
487 * different cgroups in heirarchies with no subsystems. We
488 * could get by with just this check alone (and skip the
489 * memcmp above) but on most setups the memcmp check will
490 * avoid the need for this more expensive check on almost all
491 * candidates.
494 l1 = &cset->cgrp_links;
495 l2 = &old_cset->cgrp_links;
496 while (1) {
497 struct cgrp_cset_link *link1, *link2;
498 struct cgroup *cgrp1, *cgrp2;
500 l1 = l1->next;
501 l2 = l2->next;
502 /* See if we reached the end - both lists are equal length. */
503 if (l1 == &cset->cgrp_links) {
504 BUG_ON(l2 != &old_cset->cgrp_links);
505 break;
506 } else {
507 BUG_ON(l2 == &old_cset->cgrp_links);
509 /* Locate the cgroups associated with these links. */
510 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
511 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
512 cgrp1 = link1->cgrp;
513 cgrp2 = link2->cgrp;
514 /* Hierarchies should be linked in the same order. */
515 BUG_ON(cgrp1->root != cgrp2->root);
518 * If this hierarchy is the hierarchy of the cgroup
519 * that's changing, then we need to check that this
520 * css_set points to the new cgroup; if it's any other
521 * hierarchy, then this css_set should point to the
522 * same cgroup as the old css_set.
524 if (cgrp1->root == new_cgrp->root) {
525 if (cgrp1 != new_cgrp)
526 return false;
527 } else {
528 if (cgrp1 != cgrp2)
529 return false;
532 return true;
536 * find_existing_css_set - init css array and find the matching css_set
537 * @old_cset: the css_set that we're using before the cgroup transition
538 * @cgrp: the cgroup that we're moving into
539 * @template: out param for the new set of csses, should be clear on entry
541 static struct css_set *find_existing_css_set(struct css_set *old_cset,
542 struct cgroup *cgrp,
543 struct cgroup_subsys_state *template[])
545 struct cgroupfs_root *root = cgrp->root;
546 struct cgroup_subsys *ss;
547 struct css_set *cset;
548 unsigned long key;
549 int i;
552 * Build the set of subsystem state objects that we want to see in the
553 * new css_set. while subsystems can change globally, the entries here
554 * won't change, so no need for locking.
556 for_each_subsys(ss, i) {
557 if (root->subsys_mask & (1UL << i)) {
558 /* Subsystem is in this hierarchy. So we want
559 * the subsystem state from the new
560 * cgroup */
561 template[i] = cgroup_css(cgrp, ss);
562 } else {
563 /* Subsystem is not in this hierarchy, so we
564 * don't want to change the subsystem state */
565 template[i] = old_cset->subsys[i];
569 key = css_set_hash(template);
570 hash_for_each_possible(css_set_table, cset, hlist, key) {
571 if (!compare_css_sets(cset, old_cset, cgrp, template))
572 continue;
574 /* This css_set matches what we need */
575 return cset;
578 /* No existing cgroup group matched */
579 return NULL;
582 static void free_cgrp_cset_links(struct list_head *links_to_free)
584 struct cgrp_cset_link *link, *tmp_link;
586 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
587 list_del(&link->cset_link);
588 kfree(link);
593 * allocate_cgrp_cset_links - allocate cgrp_cset_links
594 * @count: the number of links to allocate
595 * @tmp_links: list_head the allocated links are put on
597 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
598 * through ->cset_link. Returns 0 on success or -errno.
600 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
602 struct cgrp_cset_link *link;
603 int i;
605 INIT_LIST_HEAD(tmp_links);
607 for (i = 0; i < count; i++) {
608 link = kzalloc(sizeof(*link), GFP_KERNEL);
609 if (!link) {
610 free_cgrp_cset_links(tmp_links);
611 return -ENOMEM;
613 list_add(&link->cset_link, tmp_links);
615 return 0;
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
621 * @cset: the css_set to be linked
622 * @cgrp: the destination cgroup
624 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
625 struct cgroup *cgrp)
627 struct cgrp_cset_link *link;
629 BUG_ON(list_empty(tmp_links));
630 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
631 link->cset = cset;
632 link->cgrp = cgrp;
633 list_move(&link->cset_link, &cgrp->cset_links);
635 * Always add links to the tail of the list so that the list
636 * is sorted by order of hierarchy creation
638 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
642 * find_css_set - return a new css_set with one cgroup updated
643 * @old_cset: the baseline css_set
644 * @cgrp: the cgroup to be updated
646 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
647 * substituted into the appropriate hierarchy.
649 static struct css_set *find_css_set(struct css_set *old_cset,
650 struct cgroup *cgrp)
652 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
653 struct css_set *cset;
654 struct list_head tmp_links;
655 struct cgrp_cset_link *link;
656 unsigned long key;
658 lockdep_assert_held(&cgroup_mutex);
660 /* First see if we already have a cgroup group that matches
661 * the desired set */
662 read_lock(&css_set_lock);
663 cset = find_existing_css_set(old_cset, cgrp, template);
664 if (cset)
665 get_css_set(cset);
666 read_unlock(&css_set_lock);
668 if (cset)
669 return cset;
671 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
672 if (!cset)
673 return NULL;
675 /* Allocate all the cgrp_cset_link objects that we'll need */
676 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
677 kfree(cset);
678 return NULL;
681 atomic_set(&cset->refcount, 1);
682 INIT_LIST_HEAD(&cset->cgrp_links);
683 INIT_LIST_HEAD(&cset->tasks);
684 INIT_HLIST_NODE(&cset->hlist);
686 /* Copy the set of subsystem state objects generated in
687 * find_existing_css_set() */
688 memcpy(cset->subsys, template, sizeof(cset->subsys));
690 write_lock(&css_set_lock);
691 /* Add reference counts and links from the new css_set. */
692 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
693 struct cgroup *c = link->cgrp;
695 if (c->root == cgrp->root)
696 c = cgrp;
697 link_css_set(&tmp_links, cset, c);
700 BUG_ON(!list_empty(&tmp_links));
702 css_set_count++;
704 /* Add this cgroup group to the hash table */
705 key = css_set_hash(cset->subsys);
706 hash_add(css_set_table, &cset->hlist, key);
708 write_unlock(&css_set_lock);
710 return cset;
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
717 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
718 struct cgroupfs_root *root)
720 struct css_set *cset;
721 struct cgroup *res = NULL;
723 BUG_ON(!mutex_is_locked(&cgroup_mutex));
724 read_lock(&css_set_lock);
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
730 cset = task_css_set(task);
731 if (cset == &init_css_set) {
732 res = &root->top_cgroup;
733 } else {
734 struct cgrp_cset_link *link;
736 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
737 struct cgroup *c = link->cgrp;
739 if (c->root == root) {
740 res = c;
741 break;
745 read_unlock(&css_set_lock);
746 BUG_ON(!res);
747 return res;
751 * There is one global cgroup mutex. We also require taking
752 * task_lock() when dereferencing a task's cgroup subsys pointers.
753 * See "The task_lock() exception", at the end of this comment.
755 * A task must hold cgroup_mutex to modify cgroups.
757 * Any task can increment and decrement the count field without lock.
758 * So in general, code holding cgroup_mutex can't rely on the count
759 * field not changing. However, if the count goes to zero, then only
760 * cgroup_attach_task() can increment it again. Because a count of zero
761 * means that no tasks are currently attached, therefore there is no
762 * way a task attached to that cgroup can fork (the other way to
763 * increment the count). So code holding cgroup_mutex can safely
764 * assume that if the count is zero, it will stay zero. Similarly, if
765 * a task holds cgroup_mutex on a cgroup with zero count, it
766 * knows that the cgroup won't be removed, as cgroup_rmdir()
767 * needs that mutex.
769 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
770 * (usually) take cgroup_mutex. These are the two most performance
771 * critical pieces of code here. The exception occurs on cgroup_exit(),
772 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
773 * is taken, and if the cgroup count is zero, a usermode call made
774 * to the release agent with the name of the cgroup (path relative to
775 * the root of cgroup file system) as the argument.
777 * A cgroup can only be deleted if both its 'count' of using tasks
778 * is zero, and its list of 'children' cgroups is empty. Since all
779 * tasks in the system use _some_ cgroup, and since there is always at
780 * least one task in the system (init, pid == 1), therefore, top_cgroup
781 * always has either children cgroups and/or using tasks. So we don't
782 * need a special hack to ensure that top_cgroup cannot be deleted.
784 * The task_lock() exception
786 * The need for this exception arises from the action of
787 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
788 * another. It does so using cgroup_mutex, however there are
789 * several performance critical places that need to reference
790 * task->cgroup without the expense of grabbing a system global
791 * mutex. Therefore except as noted below, when dereferencing or, as
792 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
793 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
794 * the task_struct routinely used for such matters.
796 * P.S. One more locking exception. RCU is used to guard the
797 * update of a tasks cgroup pointer by cgroup_attach_task()
801 * A couple of forward declarations required, due to cyclic reference loop:
802 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
803 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
804 * -> cgroup_mkdir.
807 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
808 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
809 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
810 static const struct inode_operations cgroup_dir_inode_operations;
811 static const struct file_operations proc_cgroupstats_operations;
813 static struct backing_dev_info cgroup_backing_dev_info = {
814 .name = "cgroup",
815 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
818 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
820 struct inode *inode = new_inode(sb);
822 if (inode) {
823 inode->i_ino = get_next_ino();
824 inode->i_mode = mode;
825 inode->i_uid = current_fsuid();
826 inode->i_gid = current_fsgid();
827 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
828 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
830 return inode;
833 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
835 struct cgroup_name *name;
837 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
838 if (!name)
839 return NULL;
840 strcpy(name->name, dentry->d_name.name);
841 return name;
844 static void cgroup_free_fn(struct work_struct *work)
846 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
848 mutex_lock(&cgroup_mutex);
849 cgrp->root->number_of_cgroups--;
850 mutex_unlock(&cgroup_mutex);
853 * We get a ref to the parent's dentry, and put the ref when
854 * this cgroup is being freed, so it's guaranteed that the
855 * parent won't be destroyed before its children.
857 dput(cgrp->parent->dentry);
860 * Drop the active superblock reference that we took when we
861 * created the cgroup. This will free cgrp->root, if we are
862 * holding the last reference to @sb.
864 deactivate_super(cgrp->root->sb);
867 * if we're getting rid of the cgroup, refcount should ensure
868 * that there are no pidlists left.
870 BUG_ON(!list_empty(&cgrp->pidlists));
872 simple_xattrs_free(&cgrp->xattrs);
874 kfree(rcu_dereference_raw(cgrp->name));
875 kfree(cgrp);
878 static void cgroup_free_rcu(struct rcu_head *head)
880 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
882 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
883 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
886 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
888 /* is dentry a directory ? if so, kfree() associated cgroup */
889 if (S_ISDIR(inode->i_mode)) {
890 struct cgroup *cgrp = dentry->d_fsdata;
892 BUG_ON(!(cgroup_is_dead(cgrp)));
895 * XXX: cgrp->id is only used to look up css's. As cgroup
896 * and css's lifetimes will be decoupled, it should be made
897 * per-subsystem and moved to css->id so that lookups are
898 * successful until the target css is released.
900 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
901 cgrp->id = -1;
903 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
904 } else {
905 struct cfent *cfe = __d_cfe(dentry);
906 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
908 WARN_ONCE(!list_empty(&cfe->node) &&
909 cgrp != &cgrp->root->top_cgroup,
910 "cfe still linked for %s\n", cfe->type->name);
911 simple_xattrs_free(&cfe->xattrs);
912 kfree(cfe);
914 iput(inode);
917 static void remove_dir(struct dentry *d)
919 struct dentry *parent = dget(d->d_parent);
921 d_delete(d);
922 simple_rmdir(parent->d_inode, d);
923 dput(parent);
926 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
928 struct cfent *cfe;
930 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
931 lockdep_assert_held(&cgroup_mutex);
934 * If we're doing cleanup due to failure of cgroup_create(),
935 * the corresponding @cfe may not exist.
937 list_for_each_entry(cfe, &cgrp->files, node) {
938 struct dentry *d = cfe->dentry;
940 if (cft && cfe->type != cft)
941 continue;
943 dget(d);
944 d_delete(d);
945 simple_unlink(cgrp->dentry->d_inode, d);
946 list_del_init(&cfe->node);
947 dput(d);
949 break;
954 * cgroup_clear_dir - remove subsys files in a cgroup directory
955 * @cgrp: target cgroup
956 * @subsys_mask: mask of the subsystem ids whose files should be removed
958 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
960 struct cgroup_subsys *ss;
961 int i;
963 for_each_subsys(ss, i) {
964 struct cftype_set *set;
966 if (!test_bit(i, &subsys_mask))
967 continue;
968 list_for_each_entry(set, &ss->cftsets, node)
969 cgroup_addrm_files(cgrp, set->cfts, false);
974 * NOTE : the dentry must have been dget()'ed
976 static void cgroup_d_remove_dir(struct dentry *dentry)
978 struct dentry *parent;
980 parent = dentry->d_parent;
981 spin_lock(&parent->d_lock);
982 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
983 list_del_init(&dentry->d_u.d_child);
984 spin_unlock(&dentry->d_lock);
985 spin_unlock(&parent->d_lock);
986 remove_dir(dentry);
990 * Call with cgroup_mutex held. Drops reference counts on modules, including
991 * any duplicate ones that parse_cgroupfs_options took. If this function
992 * returns an error, no reference counts are touched.
994 static int rebind_subsystems(struct cgroupfs_root *root,
995 unsigned long added_mask, unsigned removed_mask)
997 struct cgroup *cgrp = &root->top_cgroup;
998 struct cgroup_subsys *ss;
999 unsigned long pinned = 0;
1000 int i, ret;
1002 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1003 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1005 /* Check that any added subsystems are currently free */
1006 for_each_subsys(ss, i) {
1007 if (!(added_mask & (1 << i)))
1008 continue;
1010 /* is the subsystem mounted elsewhere? */
1011 if (ss->root != &cgroup_dummy_root) {
1012 ret = -EBUSY;
1013 goto out_put;
1016 /* pin the module */
1017 if (!try_module_get(ss->module)) {
1018 ret = -ENOENT;
1019 goto out_put;
1021 pinned |= 1 << i;
1024 /* subsys could be missing if unloaded between parsing and here */
1025 if (added_mask != pinned) {
1026 ret = -ENOENT;
1027 goto out_put;
1030 ret = cgroup_populate_dir(cgrp, added_mask);
1031 if (ret)
1032 goto out_put;
1035 * Nothing can fail from this point on. Remove files for the
1036 * removed subsystems and rebind each subsystem.
1038 cgroup_clear_dir(cgrp, removed_mask);
1040 for_each_subsys(ss, i) {
1041 unsigned long bit = 1UL << i;
1043 if (bit & added_mask) {
1044 /* We're binding this subsystem to this hierarchy */
1045 BUG_ON(cgroup_css(cgrp, ss));
1046 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1047 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
1049 rcu_assign_pointer(cgrp->subsys[i],
1050 cgroup_css(cgroup_dummy_top, ss));
1051 cgroup_css(cgrp, ss)->cgroup = cgrp;
1053 list_move(&ss->sibling, &root->subsys_list);
1054 ss->root = root;
1055 if (ss->bind)
1056 ss->bind(cgroup_css(cgrp, ss));
1058 /* refcount was already taken, and we're keeping it */
1059 root->subsys_mask |= bit;
1060 } else if (bit & removed_mask) {
1061 /* We're removing this subsystem */
1062 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1063 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
1065 if (ss->bind)
1066 ss->bind(cgroup_css(cgroup_dummy_top, ss));
1068 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
1069 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1071 cgroup_subsys[i]->root = &cgroup_dummy_root;
1072 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1074 /* subsystem is now free - drop reference on module */
1075 module_put(ss->module);
1076 root->subsys_mask &= ~bit;
1081 * Mark @root has finished binding subsystems. @root->subsys_mask
1082 * now matches the bound subsystems.
1084 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1086 return 0;
1088 out_put:
1089 for_each_subsys(ss, i)
1090 if (pinned & (1 << i))
1091 module_put(ss->module);
1092 return ret;
1095 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1097 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1098 struct cgroup_subsys *ss;
1100 mutex_lock(&cgroup_root_mutex);
1101 for_each_root_subsys(root, ss)
1102 seq_printf(seq, ",%s", ss->name);
1103 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1104 seq_puts(seq, ",sane_behavior");
1105 if (root->flags & CGRP_ROOT_NOPREFIX)
1106 seq_puts(seq, ",noprefix");
1107 if (root->flags & CGRP_ROOT_XATTR)
1108 seq_puts(seq, ",xattr");
1109 if (strlen(root->release_agent_path))
1110 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1111 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1112 seq_puts(seq, ",clone_children");
1113 if (strlen(root->name))
1114 seq_printf(seq, ",name=%s", root->name);
1115 mutex_unlock(&cgroup_root_mutex);
1116 return 0;
1119 struct cgroup_sb_opts {
1120 unsigned long subsys_mask;
1121 unsigned long flags;
1122 char *release_agent;
1123 bool cpuset_clone_children;
1124 char *name;
1125 /* User explicitly requested empty subsystem */
1126 bool none;
1128 struct cgroupfs_root *new_root;
1133 * Convert a hierarchy specifier into a bitmask of subsystems and
1134 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1135 * array. This function takes refcounts on subsystems to be used, unless it
1136 * returns error, in which case no refcounts are taken.
1138 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1140 char *token, *o = data;
1141 bool all_ss = false, one_ss = false;
1142 unsigned long mask = (unsigned long)-1;
1143 struct cgroup_subsys *ss;
1144 int i;
1146 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1148 #ifdef CONFIG_CPUSETS
1149 mask = ~(1UL << cpuset_subsys_id);
1150 #endif
1152 memset(opts, 0, sizeof(*opts));
1154 while ((token = strsep(&o, ",")) != NULL) {
1155 if (!*token)
1156 return -EINVAL;
1157 if (!strcmp(token, "none")) {
1158 /* Explicitly have no subsystems */
1159 opts->none = true;
1160 continue;
1162 if (!strcmp(token, "all")) {
1163 /* Mutually exclusive option 'all' + subsystem name */
1164 if (one_ss)
1165 return -EINVAL;
1166 all_ss = true;
1167 continue;
1169 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1170 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1171 continue;
1173 if (!strcmp(token, "noprefix")) {
1174 opts->flags |= CGRP_ROOT_NOPREFIX;
1175 continue;
1177 if (!strcmp(token, "clone_children")) {
1178 opts->cpuset_clone_children = true;
1179 continue;
1181 if (!strcmp(token, "xattr")) {
1182 opts->flags |= CGRP_ROOT_XATTR;
1183 continue;
1185 if (!strncmp(token, "release_agent=", 14)) {
1186 /* Specifying two release agents is forbidden */
1187 if (opts->release_agent)
1188 return -EINVAL;
1189 opts->release_agent =
1190 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1191 if (!opts->release_agent)
1192 return -ENOMEM;
1193 continue;
1195 if (!strncmp(token, "name=", 5)) {
1196 const char *name = token + 5;
1197 /* Can't specify an empty name */
1198 if (!strlen(name))
1199 return -EINVAL;
1200 /* Must match [\w.-]+ */
1201 for (i = 0; i < strlen(name); i++) {
1202 char c = name[i];
1203 if (isalnum(c))
1204 continue;
1205 if ((c == '.') || (c == '-') || (c == '_'))
1206 continue;
1207 return -EINVAL;
1209 /* Specifying two names is forbidden */
1210 if (opts->name)
1211 return -EINVAL;
1212 opts->name = kstrndup(name,
1213 MAX_CGROUP_ROOT_NAMELEN - 1,
1214 GFP_KERNEL);
1215 if (!opts->name)
1216 return -ENOMEM;
1218 continue;
1221 for_each_subsys(ss, i) {
1222 if (strcmp(token, ss->name))
1223 continue;
1224 if (ss->disabled)
1225 continue;
1227 /* Mutually exclusive option 'all' + subsystem name */
1228 if (all_ss)
1229 return -EINVAL;
1230 set_bit(i, &opts->subsys_mask);
1231 one_ss = true;
1233 break;
1235 if (i == CGROUP_SUBSYS_COUNT)
1236 return -ENOENT;
1240 * If the 'all' option was specified select all the subsystems,
1241 * otherwise if 'none', 'name=' and a subsystem name options
1242 * were not specified, let's default to 'all'
1244 if (all_ss || (!one_ss && !opts->none && !opts->name))
1245 for_each_subsys(ss, i)
1246 if (!ss->disabled)
1247 set_bit(i, &opts->subsys_mask);
1249 /* Consistency checks */
1251 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1252 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1254 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1255 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1256 return -EINVAL;
1259 if (opts->cpuset_clone_children) {
1260 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1261 return -EINVAL;
1266 * Option noprefix was introduced just for backward compatibility
1267 * with the old cpuset, so we allow noprefix only if mounting just
1268 * the cpuset subsystem.
1270 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1271 return -EINVAL;
1274 /* Can't specify "none" and some subsystems */
1275 if (opts->subsys_mask && opts->none)
1276 return -EINVAL;
1279 * We either have to specify by name or by subsystems. (So all
1280 * empty hierarchies must have a name).
1282 if (!opts->subsys_mask && !opts->name)
1283 return -EINVAL;
1285 return 0;
1288 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1290 int ret = 0;
1291 struct cgroupfs_root *root = sb->s_fs_info;
1292 struct cgroup *cgrp = &root->top_cgroup;
1293 struct cgroup_sb_opts opts;
1294 unsigned long added_mask, removed_mask;
1296 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1297 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1298 return -EINVAL;
1301 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1302 mutex_lock(&cgroup_mutex);
1303 mutex_lock(&cgroup_root_mutex);
1305 /* See what subsystems are wanted */
1306 ret = parse_cgroupfs_options(data, &opts);
1307 if (ret)
1308 goto out_unlock;
1310 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1311 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1312 task_tgid_nr(current), current->comm);
1314 added_mask = opts.subsys_mask & ~root->subsys_mask;
1315 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1317 /* Don't allow flags or name to change at remount */
1318 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1319 (opts.name && strcmp(opts.name, root->name))) {
1320 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1321 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1322 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1323 ret = -EINVAL;
1324 goto out_unlock;
1327 /* remounting is not allowed for populated hierarchies */
1328 if (root->number_of_cgroups > 1) {
1329 ret = -EBUSY;
1330 goto out_unlock;
1333 ret = rebind_subsystems(root, added_mask, removed_mask);
1334 if (ret)
1335 goto out_unlock;
1337 if (opts.release_agent)
1338 strcpy(root->release_agent_path, opts.release_agent);
1339 out_unlock:
1340 kfree(opts.release_agent);
1341 kfree(opts.name);
1342 mutex_unlock(&cgroup_root_mutex);
1343 mutex_unlock(&cgroup_mutex);
1344 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1345 return ret;
1348 static const struct super_operations cgroup_ops = {
1349 .statfs = simple_statfs,
1350 .drop_inode = generic_delete_inode,
1351 .show_options = cgroup_show_options,
1352 .remount_fs = cgroup_remount,
1355 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1357 INIT_LIST_HEAD(&cgrp->sibling);
1358 INIT_LIST_HEAD(&cgrp->children);
1359 INIT_LIST_HEAD(&cgrp->files);
1360 INIT_LIST_HEAD(&cgrp->cset_links);
1361 INIT_LIST_HEAD(&cgrp->release_list);
1362 INIT_LIST_HEAD(&cgrp->pidlists);
1363 mutex_init(&cgrp->pidlist_mutex);
1364 cgrp->dummy_css.cgroup = cgrp;
1365 INIT_LIST_HEAD(&cgrp->event_list);
1366 spin_lock_init(&cgrp->event_list_lock);
1367 simple_xattrs_init(&cgrp->xattrs);
1370 static void init_cgroup_root(struct cgroupfs_root *root)
1372 struct cgroup *cgrp = &root->top_cgroup;
1374 INIT_LIST_HEAD(&root->subsys_list);
1375 INIT_LIST_HEAD(&root->root_list);
1376 root->number_of_cgroups = 1;
1377 cgrp->root = root;
1378 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1379 init_cgroup_housekeeping(cgrp);
1380 idr_init(&root->cgroup_idr);
1383 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1385 int id;
1387 lockdep_assert_held(&cgroup_mutex);
1388 lockdep_assert_held(&cgroup_root_mutex);
1390 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1391 GFP_KERNEL);
1392 if (id < 0)
1393 return id;
1395 root->hierarchy_id = id;
1396 return 0;
1399 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1401 lockdep_assert_held(&cgroup_mutex);
1402 lockdep_assert_held(&cgroup_root_mutex);
1404 if (root->hierarchy_id) {
1405 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1406 root->hierarchy_id = 0;
1410 static int cgroup_test_super(struct super_block *sb, void *data)
1412 struct cgroup_sb_opts *opts = data;
1413 struct cgroupfs_root *root = sb->s_fs_info;
1415 /* If we asked for a name then it must match */
1416 if (opts->name && strcmp(opts->name, root->name))
1417 return 0;
1420 * If we asked for subsystems (or explicitly for no
1421 * subsystems) then they must match
1423 if ((opts->subsys_mask || opts->none)
1424 && (opts->subsys_mask != root->subsys_mask))
1425 return 0;
1427 return 1;
1430 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1432 struct cgroupfs_root *root;
1434 if (!opts->subsys_mask && !opts->none)
1435 return NULL;
1437 root = kzalloc(sizeof(*root), GFP_KERNEL);
1438 if (!root)
1439 return ERR_PTR(-ENOMEM);
1441 init_cgroup_root(root);
1444 * We need to set @root->subsys_mask now so that @root can be
1445 * matched by cgroup_test_super() before it finishes
1446 * initialization; otherwise, competing mounts with the same
1447 * options may try to bind the same subsystems instead of waiting
1448 * for the first one leading to unexpected mount errors.
1449 * SUBSYS_BOUND will be set once actual binding is complete.
1451 root->subsys_mask = opts->subsys_mask;
1452 root->flags = opts->flags;
1453 if (opts->release_agent)
1454 strcpy(root->release_agent_path, opts->release_agent);
1455 if (opts->name)
1456 strcpy(root->name, opts->name);
1457 if (opts->cpuset_clone_children)
1458 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1459 return root;
1462 static void cgroup_free_root(struct cgroupfs_root *root)
1464 if (root) {
1465 /* hierarhcy ID shoulid already have been released */
1466 WARN_ON_ONCE(root->hierarchy_id);
1468 idr_destroy(&root->cgroup_idr);
1469 kfree(root);
1473 static int cgroup_set_super(struct super_block *sb, void *data)
1475 int ret;
1476 struct cgroup_sb_opts *opts = data;
1478 /* If we don't have a new root, we can't set up a new sb */
1479 if (!opts->new_root)
1480 return -EINVAL;
1482 BUG_ON(!opts->subsys_mask && !opts->none);
1484 ret = set_anon_super(sb, NULL);
1485 if (ret)
1486 return ret;
1488 sb->s_fs_info = opts->new_root;
1489 opts->new_root->sb = sb;
1491 sb->s_blocksize = PAGE_CACHE_SIZE;
1492 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1493 sb->s_magic = CGROUP_SUPER_MAGIC;
1494 sb->s_op = &cgroup_ops;
1496 return 0;
1499 static int cgroup_get_rootdir(struct super_block *sb)
1501 static const struct dentry_operations cgroup_dops = {
1502 .d_iput = cgroup_diput,
1503 .d_delete = always_delete_dentry,
1506 struct inode *inode =
1507 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1509 if (!inode)
1510 return -ENOMEM;
1512 inode->i_fop = &simple_dir_operations;
1513 inode->i_op = &cgroup_dir_inode_operations;
1514 /* directories start off with i_nlink == 2 (for "." entry) */
1515 inc_nlink(inode);
1516 sb->s_root = d_make_root(inode);
1517 if (!sb->s_root)
1518 return -ENOMEM;
1519 /* for everything else we want ->d_op set */
1520 sb->s_d_op = &cgroup_dops;
1521 return 0;
1524 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1525 int flags, const char *unused_dev_name,
1526 void *data)
1528 struct cgroup_sb_opts opts;
1529 struct cgroupfs_root *root;
1530 int ret = 0;
1531 struct super_block *sb;
1532 struct cgroupfs_root *new_root;
1533 struct list_head tmp_links;
1534 struct inode *inode;
1535 const struct cred *cred;
1537 /* First find the desired set of subsystems */
1538 mutex_lock(&cgroup_mutex);
1539 ret = parse_cgroupfs_options(data, &opts);
1540 mutex_unlock(&cgroup_mutex);
1541 if (ret)
1542 goto out_err;
1545 * Allocate a new cgroup root. We may not need it if we're
1546 * reusing an existing hierarchy.
1548 new_root = cgroup_root_from_opts(&opts);
1549 if (IS_ERR(new_root)) {
1550 ret = PTR_ERR(new_root);
1551 goto out_err;
1553 opts.new_root = new_root;
1555 /* Locate an existing or new sb for this hierarchy */
1556 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1557 if (IS_ERR(sb)) {
1558 ret = PTR_ERR(sb);
1559 cgroup_free_root(opts.new_root);
1560 goto out_err;
1563 root = sb->s_fs_info;
1564 BUG_ON(!root);
1565 if (root == opts.new_root) {
1566 /* We used the new root structure, so this is a new hierarchy */
1567 struct cgroup *root_cgrp = &root->top_cgroup;
1568 struct cgroupfs_root *existing_root;
1569 int i;
1570 struct css_set *cset;
1572 BUG_ON(sb->s_root != NULL);
1574 ret = cgroup_get_rootdir(sb);
1575 if (ret)
1576 goto drop_new_super;
1577 inode = sb->s_root->d_inode;
1579 mutex_lock(&inode->i_mutex);
1580 mutex_lock(&cgroup_mutex);
1581 mutex_lock(&cgroup_root_mutex);
1583 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1584 0, 1, GFP_KERNEL);
1585 if (root_cgrp->id < 0)
1586 goto unlock_drop;
1588 /* Check for name clashes with existing mounts */
1589 ret = -EBUSY;
1590 if (strlen(root->name))
1591 for_each_active_root(existing_root)
1592 if (!strcmp(existing_root->name, root->name))
1593 goto unlock_drop;
1596 * We're accessing css_set_count without locking
1597 * css_set_lock here, but that's OK - it can only be
1598 * increased by someone holding cgroup_lock, and
1599 * that's us. The worst that can happen is that we
1600 * have some link structures left over
1602 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1603 if (ret)
1604 goto unlock_drop;
1606 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1607 ret = cgroup_init_root_id(root, 2, 0);
1608 if (ret)
1609 goto unlock_drop;
1611 sb->s_root->d_fsdata = root_cgrp;
1612 root_cgrp->dentry = sb->s_root;
1615 * We're inside get_sb() and will call lookup_one_len() to
1616 * create the root files, which doesn't work if SELinux is
1617 * in use. The following cred dancing somehow works around
1618 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1619 * populating new cgroupfs mount") for more details.
1621 cred = override_creds(&init_cred);
1623 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1624 if (ret)
1625 goto rm_base_files;
1627 ret = rebind_subsystems(root, root->subsys_mask, 0);
1628 if (ret)
1629 goto rm_base_files;
1631 revert_creds(cred);
1634 * There must be no failure case after here, since rebinding
1635 * takes care of subsystems' refcounts, which are explicitly
1636 * dropped in the failure exit path.
1639 list_add(&root->root_list, &cgroup_roots);
1640 cgroup_root_count++;
1642 /* Link the top cgroup in this hierarchy into all
1643 * the css_set objects */
1644 write_lock(&css_set_lock);
1645 hash_for_each(css_set_table, i, cset, hlist)
1646 link_css_set(&tmp_links, cset, root_cgrp);
1647 write_unlock(&css_set_lock);
1649 free_cgrp_cset_links(&tmp_links);
1651 BUG_ON(!list_empty(&root_cgrp->children));
1652 BUG_ON(root->number_of_cgroups != 1);
1654 mutex_unlock(&cgroup_root_mutex);
1655 mutex_unlock(&cgroup_mutex);
1656 mutex_unlock(&inode->i_mutex);
1657 } else {
1659 * We re-used an existing hierarchy - the new root (if
1660 * any) is not needed
1662 cgroup_free_root(opts.new_root);
1664 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1665 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1666 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1667 ret = -EINVAL;
1668 goto drop_new_super;
1669 } else {
1670 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1675 kfree(opts.release_agent);
1676 kfree(opts.name);
1677 return dget(sb->s_root);
1679 rm_base_files:
1680 free_cgrp_cset_links(&tmp_links);
1681 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
1682 revert_creds(cred);
1683 unlock_drop:
1684 cgroup_exit_root_id(root);
1685 mutex_unlock(&cgroup_root_mutex);
1686 mutex_unlock(&cgroup_mutex);
1687 mutex_unlock(&inode->i_mutex);
1688 drop_new_super:
1689 deactivate_locked_super(sb);
1690 out_err:
1691 kfree(opts.release_agent);
1692 kfree(opts.name);
1693 return ERR_PTR(ret);
1696 static void cgroup_kill_sb(struct super_block *sb) {
1697 struct cgroupfs_root *root = sb->s_fs_info;
1698 struct cgroup *cgrp = &root->top_cgroup;
1699 struct cgrp_cset_link *link, *tmp_link;
1700 int ret;
1702 BUG_ON(!root);
1704 BUG_ON(root->number_of_cgroups != 1);
1705 BUG_ON(!list_empty(&cgrp->children));
1707 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1708 mutex_lock(&cgroup_mutex);
1709 mutex_lock(&cgroup_root_mutex);
1711 /* Rebind all subsystems back to the default hierarchy */
1712 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1713 ret = rebind_subsystems(root, 0, root->subsys_mask);
1714 /* Shouldn't be able to fail ... */
1715 BUG_ON(ret);
1719 * Release all the links from cset_links to this hierarchy's
1720 * root cgroup
1722 write_lock(&css_set_lock);
1724 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1725 list_del(&link->cset_link);
1726 list_del(&link->cgrp_link);
1727 kfree(link);
1729 write_unlock(&css_set_lock);
1731 if (!list_empty(&root->root_list)) {
1732 list_del(&root->root_list);
1733 cgroup_root_count--;
1736 cgroup_exit_root_id(root);
1738 mutex_unlock(&cgroup_root_mutex);
1739 mutex_unlock(&cgroup_mutex);
1740 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1742 simple_xattrs_free(&cgrp->xattrs);
1744 kill_litter_super(sb);
1745 cgroup_free_root(root);
1748 static struct file_system_type cgroup_fs_type = {
1749 .name = "cgroup",
1750 .mount = cgroup_mount,
1751 .kill_sb = cgroup_kill_sb,
1754 static struct kobject *cgroup_kobj;
1757 * cgroup_path - generate the path of a cgroup
1758 * @cgrp: the cgroup in question
1759 * @buf: the buffer to write the path into
1760 * @buflen: the length of the buffer
1762 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1764 * We can't generate cgroup path using dentry->d_name, as accessing
1765 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1766 * inode's i_mutex, while on the other hand cgroup_path() can be called
1767 * with some irq-safe spinlocks held.
1769 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1771 int ret = -ENAMETOOLONG;
1772 char *start;
1774 if (!cgrp->parent) {
1775 if (strlcpy(buf, "/", buflen) >= buflen)
1776 return -ENAMETOOLONG;
1777 return 0;
1780 start = buf + buflen - 1;
1781 *start = '\0';
1783 rcu_read_lock();
1784 do {
1785 const char *name = cgroup_name(cgrp);
1786 int len;
1788 len = strlen(name);
1789 if ((start -= len) < buf)
1790 goto out;
1791 memcpy(start, name, len);
1793 if (--start < buf)
1794 goto out;
1795 *start = '/';
1797 cgrp = cgrp->parent;
1798 } while (cgrp->parent);
1799 ret = 0;
1800 memmove(buf, start, buf + buflen - start);
1801 out:
1802 rcu_read_unlock();
1803 return ret;
1805 EXPORT_SYMBOL_GPL(cgroup_path);
1808 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1809 * @task: target task
1810 * @buf: the buffer to write the path into
1811 * @buflen: the length of the buffer
1813 * Determine @task's cgroup on the first (the one with the lowest non-zero
1814 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1815 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1816 * cgroup controller callbacks.
1818 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1820 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1822 struct cgroupfs_root *root;
1823 struct cgroup *cgrp;
1824 int hierarchy_id = 1, ret = 0;
1826 if (buflen < 2)
1827 return -ENAMETOOLONG;
1829 mutex_lock(&cgroup_mutex);
1831 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1833 if (root) {
1834 cgrp = task_cgroup_from_root(task, root);
1835 ret = cgroup_path(cgrp, buf, buflen);
1836 } else {
1837 /* if no hierarchy exists, everyone is in "/" */
1838 memcpy(buf, "/", 2);
1841 mutex_unlock(&cgroup_mutex);
1842 return ret;
1844 EXPORT_SYMBOL_GPL(task_cgroup_path);
1847 * Control Group taskset
1849 struct task_and_cgroup {
1850 struct task_struct *task;
1851 struct cgroup *cgrp;
1852 struct css_set *cset;
1855 struct cgroup_taskset {
1856 struct task_and_cgroup single;
1857 struct flex_array *tc_array;
1858 int tc_array_len;
1859 int idx;
1860 struct cgroup *cur_cgrp;
1864 * cgroup_taskset_first - reset taskset and return the first task
1865 * @tset: taskset of interest
1867 * @tset iteration is initialized and the first task is returned.
1869 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1871 if (tset->tc_array) {
1872 tset->idx = 0;
1873 return cgroup_taskset_next(tset);
1874 } else {
1875 tset->cur_cgrp = tset->single.cgrp;
1876 return tset->single.task;
1879 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1882 * cgroup_taskset_next - iterate to the next task in taskset
1883 * @tset: taskset of interest
1885 * Return the next task in @tset. Iteration must have been initialized
1886 * with cgroup_taskset_first().
1888 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1890 struct task_and_cgroup *tc;
1892 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1893 return NULL;
1895 tc = flex_array_get(tset->tc_array, tset->idx++);
1896 tset->cur_cgrp = tc->cgrp;
1897 return tc->task;
1899 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1902 * cgroup_taskset_cur_css - return the matching css for the current task
1903 * @tset: taskset of interest
1904 * @subsys_id: the ID of the target subsystem
1906 * Return the css for the current (last returned) task of @tset for
1907 * subsystem specified by @subsys_id. This function must be preceded by
1908 * either cgroup_taskset_first() or cgroup_taskset_next().
1910 struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1911 int subsys_id)
1913 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
1915 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
1918 * cgroup_taskset_size - return the number of tasks in taskset
1919 * @tset: taskset of interest
1921 int cgroup_taskset_size(struct cgroup_taskset *tset)
1923 return tset->tc_array ? tset->tc_array_len : 1;
1925 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1929 * cgroup_task_migrate - move a task from one cgroup to another.
1931 * Must be called with cgroup_mutex and threadgroup locked.
1933 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1934 struct task_struct *tsk,
1935 struct css_set *new_cset)
1937 struct css_set *old_cset;
1940 * We are synchronized through threadgroup_lock() against PF_EXITING
1941 * setting such that we can't race against cgroup_exit() changing the
1942 * css_set to init_css_set and dropping the old one.
1944 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1945 old_cset = task_css_set(tsk);
1947 task_lock(tsk);
1948 rcu_assign_pointer(tsk->cgroups, new_cset);
1949 task_unlock(tsk);
1951 /* Update the css_set linked lists if we're using them */
1952 write_lock(&css_set_lock);
1953 if (!list_empty(&tsk->cg_list))
1954 list_move(&tsk->cg_list, &new_cset->tasks);
1955 write_unlock(&css_set_lock);
1958 * We just gained a reference on old_cset by taking it from the
1959 * task. As trading it for new_cset is protected by cgroup_mutex,
1960 * we're safe to drop it here; it will be freed under RCU.
1962 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1963 put_css_set(old_cset);
1967 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1968 * @cgrp: the cgroup to attach to
1969 * @tsk: the task or the leader of the threadgroup to be attached
1970 * @threadgroup: attach the whole threadgroup?
1972 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1973 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1975 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1976 bool threadgroup)
1978 int retval, i, group_size;
1979 struct cgroup_subsys *ss, *failed_ss = NULL;
1980 struct cgroupfs_root *root = cgrp->root;
1981 /* threadgroup list cursor and array */
1982 struct task_struct *leader = tsk;
1983 struct task_and_cgroup *tc;
1984 struct flex_array *group;
1985 struct cgroup_taskset tset = { };
1988 * step 0: in order to do expensive, possibly blocking operations for
1989 * every thread, we cannot iterate the thread group list, since it needs
1990 * rcu or tasklist locked. instead, build an array of all threads in the
1991 * group - group_rwsem prevents new threads from appearing, and if
1992 * threads exit, this will just be an over-estimate.
1994 if (threadgroup)
1995 group_size = get_nr_threads(tsk);
1996 else
1997 group_size = 1;
1998 /* flex_array supports very large thread-groups better than kmalloc. */
1999 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2000 if (!group)
2001 return -ENOMEM;
2002 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2003 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2004 if (retval)
2005 goto out_free_group_list;
2007 i = 0;
2009 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2010 * already PF_EXITING could be freed from underneath us unless we
2011 * take an rcu_read_lock.
2013 rcu_read_lock();
2014 do {
2015 struct task_and_cgroup ent;
2017 /* @tsk either already exited or can't exit until the end */
2018 if (tsk->flags & PF_EXITING)
2019 goto next;
2021 /* as per above, nr_threads may decrease, but not increase. */
2022 BUG_ON(i >= group_size);
2023 ent.task = tsk;
2024 ent.cgrp = task_cgroup_from_root(tsk, root);
2025 /* nothing to do if this task is already in the cgroup */
2026 if (ent.cgrp == cgrp)
2027 goto next;
2029 * saying GFP_ATOMIC has no effect here because we did prealloc
2030 * earlier, but it's good form to communicate our expectations.
2032 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2033 BUG_ON(retval != 0);
2034 i++;
2035 next:
2036 if (!threadgroup)
2037 break;
2038 } while_each_thread(leader, tsk);
2039 rcu_read_unlock();
2040 /* remember the number of threads in the array for later. */
2041 group_size = i;
2042 tset.tc_array = group;
2043 tset.tc_array_len = group_size;
2045 /* methods shouldn't be called if no task is actually migrating */
2046 retval = 0;
2047 if (!group_size)
2048 goto out_free_group_list;
2051 * step 1: check that we can legitimately attach to the cgroup.
2053 for_each_root_subsys(root, ss) {
2054 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2056 if (ss->can_attach) {
2057 retval = ss->can_attach(css, &tset);
2058 if (retval) {
2059 failed_ss = ss;
2060 goto out_cancel_attach;
2066 * step 2: make sure css_sets exist for all threads to be migrated.
2067 * we use find_css_set, which allocates a new one if necessary.
2069 for (i = 0; i < group_size; i++) {
2070 struct css_set *old_cset;
2072 tc = flex_array_get(group, i);
2073 old_cset = task_css_set(tc->task);
2074 tc->cset = find_css_set(old_cset, cgrp);
2075 if (!tc->cset) {
2076 retval = -ENOMEM;
2077 goto out_put_css_set_refs;
2082 * step 3: now that we're guaranteed success wrt the css_sets,
2083 * proceed to move all tasks to the new cgroup. There are no
2084 * failure cases after here, so this is the commit point.
2086 for (i = 0; i < group_size; i++) {
2087 tc = flex_array_get(group, i);
2088 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
2090 /* nothing is sensitive to fork() after this point. */
2093 * step 4: do subsystem attach callbacks.
2095 for_each_root_subsys(root, ss) {
2096 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2098 if (ss->attach)
2099 ss->attach(css, &tset);
2103 * step 5: success! and cleanup
2105 retval = 0;
2106 out_put_css_set_refs:
2107 if (retval) {
2108 for (i = 0; i < group_size; i++) {
2109 tc = flex_array_get(group, i);
2110 if (!tc->cset)
2111 break;
2112 put_css_set(tc->cset);
2115 out_cancel_attach:
2116 if (retval) {
2117 for_each_root_subsys(root, ss) {
2118 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
2120 if (ss == failed_ss)
2121 break;
2122 if (ss->cancel_attach)
2123 ss->cancel_attach(css, &tset);
2126 out_free_group_list:
2127 flex_array_free(group);
2128 return retval;
2132 * Find the task_struct of the task to attach by vpid and pass it along to the
2133 * function to attach either it or all tasks in its threadgroup. Will lock
2134 * cgroup_mutex and threadgroup; may take task_lock of task.
2136 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2138 struct task_struct *tsk;
2139 const struct cred *cred = current_cred(), *tcred;
2140 int ret;
2142 if (!cgroup_lock_live_group(cgrp))
2143 return -ENODEV;
2145 retry_find_task:
2146 rcu_read_lock();
2147 if (pid) {
2148 tsk = find_task_by_vpid(pid);
2149 if (!tsk) {
2150 rcu_read_unlock();
2151 ret= -ESRCH;
2152 goto out_unlock_cgroup;
2155 * even if we're attaching all tasks in the thread group, we
2156 * only need to check permissions on one of them.
2158 tcred = __task_cred(tsk);
2159 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2160 !uid_eq(cred->euid, tcred->uid) &&
2161 !uid_eq(cred->euid, tcred->suid)) {
2162 rcu_read_unlock();
2163 ret = -EACCES;
2164 goto out_unlock_cgroup;
2166 } else
2167 tsk = current;
2169 if (threadgroup)
2170 tsk = tsk->group_leader;
2173 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2174 * trapped in a cpuset, or RT worker may be born in a cgroup
2175 * with no rt_runtime allocated. Just say no.
2177 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2178 ret = -EINVAL;
2179 rcu_read_unlock();
2180 goto out_unlock_cgroup;
2183 get_task_struct(tsk);
2184 rcu_read_unlock();
2186 threadgroup_lock(tsk);
2187 if (threadgroup) {
2188 if (!thread_group_leader(tsk)) {
2190 * a race with de_thread from another thread's exec()
2191 * may strip us of our leadership, if this happens,
2192 * there is no choice but to throw this task away and
2193 * try again; this is
2194 * "double-double-toil-and-trouble-check locking".
2196 threadgroup_unlock(tsk);
2197 put_task_struct(tsk);
2198 goto retry_find_task;
2202 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2204 threadgroup_unlock(tsk);
2206 put_task_struct(tsk);
2207 out_unlock_cgroup:
2208 mutex_unlock(&cgroup_mutex);
2209 return ret;
2213 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2214 * @from: attach to all cgroups of a given task
2215 * @tsk: the task to be attached
2217 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2219 struct cgroupfs_root *root;
2220 int retval = 0;
2222 mutex_lock(&cgroup_mutex);
2223 for_each_active_root(root) {
2224 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
2226 retval = cgroup_attach_task(from_cgrp, tsk, false);
2227 if (retval)
2228 break;
2230 mutex_unlock(&cgroup_mutex);
2232 return retval;
2234 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2236 static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2237 struct cftype *cft, u64 pid)
2239 return attach_task_by_pid(css->cgroup, pid, false);
2242 static int cgroup_procs_write(struct cgroup_subsys_state *css,
2243 struct cftype *cft, u64 tgid)
2245 return attach_task_by_pid(css->cgroup, tgid, true);
2248 static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2249 struct cftype *cft, const char *buffer)
2251 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
2252 if (strlen(buffer) >= PATH_MAX)
2253 return -EINVAL;
2254 if (!cgroup_lock_live_group(css->cgroup))
2255 return -ENODEV;
2256 mutex_lock(&cgroup_root_mutex);
2257 strcpy(css->cgroup->root->release_agent_path, buffer);
2258 mutex_unlock(&cgroup_root_mutex);
2259 mutex_unlock(&cgroup_mutex);
2260 return 0;
2263 static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2264 struct cftype *cft, struct seq_file *seq)
2266 struct cgroup *cgrp = css->cgroup;
2268 if (!cgroup_lock_live_group(cgrp))
2269 return -ENODEV;
2270 seq_puts(seq, cgrp->root->release_agent_path);
2271 seq_putc(seq, '\n');
2272 mutex_unlock(&cgroup_mutex);
2273 return 0;
2276 static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2277 struct cftype *cft, struct seq_file *seq)
2279 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
2280 return 0;
2283 /* A buffer size big enough for numbers or short strings */
2284 #define CGROUP_LOCAL_BUFFER_SIZE 64
2286 static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2287 struct cftype *cft, struct file *file,
2288 const char __user *userbuf, size_t nbytes,
2289 loff_t *unused_ppos)
2291 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2292 int retval = 0;
2293 char *end;
2295 if (!nbytes)
2296 return -EINVAL;
2297 if (nbytes >= sizeof(buffer))
2298 return -E2BIG;
2299 if (copy_from_user(buffer, userbuf, nbytes))
2300 return -EFAULT;
2302 buffer[nbytes] = 0; /* nul-terminate */
2303 if (cft->write_u64) {
2304 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2305 if (*end)
2306 return -EINVAL;
2307 retval = cft->write_u64(css, cft, val);
2308 } else {
2309 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2310 if (*end)
2311 return -EINVAL;
2312 retval = cft->write_s64(css, cft, val);
2314 if (!retval)
2315 retval = nbytes;
2316 return retval;
2319 static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2320 struct cftype *cft, struct file *file,
2321 const char __user *userbuf, size_t nbytes,
2322 loff_t *unused_ppos)
2324 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2325 int retval = 0;
2326 size_t max_bytes = cft->max_write_len;
2327 char *buffer = local_buffer;
2329 if (!max_bytes)
2330 max_bytes = sizeof(local_buffer) - 1;
2331 if (nbytes >= max_bytes)
2332 return -E2BIG;
2333 /* Allocate a dynamic buffer if we need one */
2334 if (nbytes >= sizeof(local_buffer)) {
2335 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2336 if (buffer == NULL)
2337 return -ENOMEM;
2339 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2340 retval = -EFAULT;
2341 goto out;
2344 buffer[nbytes] = 0; /* nul-terminate */
2345 retval = cft->write_string(css, cft, strstrip(buffer));
2346 if (!retval)
2347 retval = nbytes;
2348 out:
2349 if (buffer != local_buffer)
2350 kfree(buffer);
2351 return retval;
2354 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2355 size_t nbytes, loff_t *ppos)
2357 struct cfent *cfe = __d_cfe(file->f_dentry);
2358 struct cftype *cft = __d_cft(file->f_dentry);
2359 struct cgroup_subsys_state *css = cfe->css;
2361 if (cft->write)
2362 return cft->write(css, cft, file, buf, nbytes, ppos);
2363 if (cft->write_u64 || cft->write_s64)
2364 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
2365 if (cft->write_string)
2366 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
2367 if (cft->trigger) {
2368 int ret = cft->trigger(css, (unsigned int)cft->private);
2369 return ret ? ret : nbytes;
2371 return -EINVAL;
2374 static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2375 struct cftype *cft, struct file *file,
2376 char __user *buf, size_t nbytes, loff_t *ppos)
2378 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2379 u64 val = cft->read_u64(css, cft);
2380 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2382 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2385 static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2386 struct cftype *cft, struct file *file,
2387 char __user *buf, size_t nbytes, loff_t *ppos)
2389 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2390 s64 val = cft->read_s64(css, cft);
2391 int len = sprintf(tmp, "%lld\n", (long long) val);
2393 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2396 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2397 size_t nbytes, loff_t *ppos)
2399 struct cfent *cfe = __d_cfe(file->f_dentry);
2400 struct cftype *cft = __d_cft(file->f_dentry);
2401 struct cgroup_subsys_state *css = cfe->css;
2403 if (cft->read)
2404 return cft->read(css, cft, file, buf, nbytes, ppos);
2405 if (cft->read_u64)
2406 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
2407 if (cft->read_s64)
2408 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
2409 return -EINVAL;
2413 * seqfile ops/methods for returning structured data. Currently just
2414 * supports string->u64 maps, but can be extended in future.
2417 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2419 struct seq_file *sf = cb->state;
2420 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2423 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2425 struct cfent *cfe = m->private;
2426 struct cftype *cft = cfe->type;
2427 struct cgroup_subsys_state *css = cfe->css;
2429 if (cft->read_map) {
2430 struct cgroup_map_cb cb = {
2431 .fill = cgroup_map_add,
2432 .state = m,
2434 return cft->read_map(css, cft, &cb);
2436 return cft->read_seq_string(css, cft, m);
2439 static const struct file_operations cgroup_seqfile_operations = {
2440 .read = seq_read,
2441 .write = cgroup_file_write,
2442 .llseek = seq_lseek,
2443 .release = cgroup_file_release,
2446 static int cgroup_file_open(struct inode *inode, struct file *file)
2448 struct cfent *cfe = __d_cfe(file->f_dentry);
2449 struct cftype *cft = __d_cft(file->f_dentry);
2450 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2451 struct cgroup_subsys_state *css;
2452 int err;
2454 err = generic_file_open(inode, file);
2455 if (err)
2456 return err;
2459 * If the file belongs to a subsystem, pin the css. Will be
2460 * unpinned either on open failure or release. This ensures that
2461 * @css stays alive for all file operations.
2463 rcu_read_lock();
2464 css = cgroup_css(cgrp, cft->ss);
2465 if (cft->ss && !css_tryget(css))
2466 css = NULL;
2467 rcu_read_unlock();
2469 if (!css)
2470 return -ENODEV;
2473 * @cfe->css is used by read/write/close to determine the
2474 * associated css. @file->private_data would be a better place but
2475 * that's already used by seqfile. Multiple accessors may use it
2476 * simultaneously which is okay as the association never changes.
2478 WARN_ON_ONCE(cfe->css && cfe->css != css);
2479 cfe->css = css;
2481 if (cft->read_map || cft->read_seq_string) {
2482 file->f_op = &cgroup_seqfile_operations;
2483 err = single_open(file, cgroup_seqfile_show, cfe);
2484 } else if (cft->open) {
2485 err = cft->open(inode, file);
2488 if (css->ss && err)
2489 css_put(css);
2490 return err;
2493 static int cgroup_file_release(struct inode *inode, struct file *file)
2495 struct cfent *cfe = __d_cfe(file->f_dentry);
2496 struct cftype *cft = __d_cft(file->f_dentry);
2497 struct cgroup_subsys_state *css = cfe->css;
2498 int ret = 0;
2500 if (cft->release)
2501 ret = cft->release(inode, file);
2502 if (css->ss)
2503 css_put(css);
2504 if (file->f_op == &cgroup_seqfile_operations)
2505 single_release(inode, file);
2506 return ret;
2510 * cgroup_rename - Only allow simple rename of directories in place.
2512 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2513 struct inode *new_dir, struct dentry *new_dentry)
2515 int ret;
2516 struct cgroup_name *name, *old_name;
2517 struct cgroup *cgrp;
2520 * It's convinient to use parent dir's i_mutex to protected
2521 * cgrp->name.
2523 lockdep_assert_held(&old_dir->i_mutex);
2525 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2526 return -ENOTDIR;
2527 if (new_dentry->d_inode)
2528 return -EEXIST;
2529 if (old_dir != new_dir)
2530 return -EIO;
2532 cgrp = __d_cgrp(old_dentry);
2535 * This isn't a proper migration and its usefulness is very
2536 * limited. Disallow if sane_behavior.
2538 if (cgroup_sane_behavior(cgrp))
2539 return -EPERM;
2541 name = cgroup_alloc_name(new_dentry);
2542 if (!name)
2543 return -ENOMEM;
2545 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2546 if (ret) {
2547 kfree(name);
2548 return ret;
2551 old_name = rcu_dereference_protected(cgrp->name, true);
2552 rcu_assign_pointer(cgrp->name, name);
2554 kfree_rcu(old_name, rcu_head);
2555 return 0;
2558 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2560 if (S_ISDIR(dentry->d_inode->i_mode))
2561 return &__d_cgrp(dentry)->xattrs;
2562 else
2563 return &__d_cfe(dentry)->xattrs;
2566 static inline int xattr_enabled(struct dentry *dentry)
2568 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2569 return root->flags & CGRP_ROOT_XATTR;
2572 static bool is_valid_xattr(const char *name)
2574 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2575 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2576 return true;
2577 return false;
2580 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2581 const void *val, size_t size, int flags)
2583 if (!xattr_enabled(dentry))
2584 return -EOPNOTSUPP;
2585 if (!is_valid_xattr(name))
2586 return -EINVAL;
2587 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2590 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2592 if (!xattr_enabled(dentry))
2593 return -EOPNOTSUPP;
2594 if (!is_valid_xattr(name))
2595 return -EINVAL;
2596 return simple_xattr_remove(__d_xattrs(dentry), name);
2599 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2600 void *buf, size_t size)
2602 if (!xattr_enabled(dentry))
2603 return -EOPNOTSUPP;
2604 if (!is_valid_xattr(name))
2605 return -EINVAL;
2606 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2609 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2611 if (!xattr_enabled(dentry))
2612 return -EOPNOTSUPP;
2613 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2616 static const struct file_operations cgroup_file_operations = {
2617 .read = cgroup_file_read,
2618 .write = cgroup_file_write,
2619 .llseek = generic_file_llseek,
2620 .open = cgroup_file_open,
2621 .release = cgroup_file_release,
2624 static const struct inode_operations cgroup_file_inode_operations = {
2625 .setxattr = cgroup_setxattr,
2626 .getxattr = cgroup_getxattr,
2627 .listxattr = cgroup_listxattr,
2628 .removexattr = cgroup_removexattr,
2631 static const struct inode_operations cgroup_dir_inode_operations = {
2632 .lookup = simple_lookup,
2633 .mkdir = cgroup_mkdir,
2634 .rmdir = cgroup_rmdir,
2635 .rename = cgroup_rename,
2636 .setxattr = cgroup_setxattr,
2637 .getxattr = cgroup_getxattr,
2638 .listxattr = cgroup_listxattr,
2639 .removexattr = cgroup_removexattr,
2643 * Check if a file is a control file
2645 static inline struct cftype *__file_cft(struct file *file)
2647 if (file_inode(file)->i_fop != &cgroup_file_operations)
2648 return ERR_PTR(-EINVAL);
2649 return __d_cft(file->f_dentry);
2652 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2653 struct super_block *sb)
2655 struct inode *inode;
2657 if (!dentry)
2658 return -ENOENT;
2659 if (dentry->d_inode)
2660 return -EEXIST;
2662 inode = cgroup_new_inode(mode, sb);
2663 if (!inode)
2664 return -ENOMEM;
2666 if (S_ISDIR(mode)) {
2667 inode->i_op = &cgroup_dir_inode_operations;
2668 inode->i_fop = &simple_dir_operations;
2670 /* start off with i_nlink == 2 (for "." entry) */
2671 inc_nlink(inode);
2672 inc_nlink(dentry->d_parent->d_inode);
2675 * Control reaches here with cgroup_mutex held.
2676 * @inode->i_mutex should nest outside cgroup_mutex but we
2677 * want to populate it immediately without releasing
2678 * cgroup_mutex. As @inode isn't visible to anyone else
2679 * yet, trylock will always succeed without affecting
2680 * lockdep checks.
2682 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2683 } else if (S_ISREG(mode)) {
2684 inode->i_size = 0;
2685 inode->i_fop = &cgroup_file_operations;
2686 inode->i_op = &cgroup_file_inode_operations;
2688 d_instantiate(dentry, inode);
2689 dget(dentry); /* Extra count - pin the dentry in core */
2690 return 0;
2694 * cgroup_file_mode - deduce file mode of a control file
2695 * @cft: the control file in question
2697 * returns cft->mode if ->mode is not 0
2698 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2699 * returns S_IRUGO if it has only a read handler
2700 * returns S_IWUSR if it has only a write hander
2702 static umode_t cgroup_file_mode(const struct cftype *cft)
2704 umode_t mode = 0;
2706 if (cft->mode)
2707 return cft->mode;
2709 if (cft->read || cft->read_u64 || cft->read_s64 ||
2710 cft->read_map || cft->read_seq_string)
2711 mode |= S_IRUGO;
2713 if (cft->write || cft->write_u64 || cft->write_s64 ||
2714 cft->write_string || cft->trigger)
2715 mode |= S_IWUSR;
2717 return mode;
2720 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2722 struct dentry *dir = cgrp->dentry;
2723 struct cgroup *parent = __d_cgrp(dir);
2724 struct dentry *dentry;
2725 struct cfent *cfe;
2726 int error;
2727 umode_t mode;
2728 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2730 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2731 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2732 strcpy(name, cft->ss->name);
2733 strcat(name, ".");
2735 strcat(name, cft->name);
2737 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2739 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2740 if (!cfe)
2741 return -ENOMEM;
2743 dentry = lookup_one_len(name, dir, strlen(name));
2744 if (IS_ERR(dentry)) {
2745 error = PTR_ERR(dentry);
2746 goto out;
2749 cfe->type = (void *)cft;
2750 cfe->dentry = dentry;
2751 dentry->d_fsdata = cfe;
2752 simple_xattrs_init(&cfe->xattrs);
2754 mode = cgroup_file_mode(cft);
2755 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2756 if (!error) {
2757 list_add_tail(&cfe->node, &parent->files);
2758 cfe = NULL;
2760 dput(dentry);
2761 out:
2762 kfree(cfe);
2763 return error;
2767 * cgroup_addrm_files - add or remove files to a cgroup directory
2768 * @cgrp: the target cgroup
2769 * @cfts: array of cftypes to be added
2770 * @is_add: whether to add or remove
2772 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2773 * For removals, this function never fails. If addition fails, this
2774 * function doesn't remove files already added. The caller is responsible
2775 * for cleaning up.
2777 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2778 bool is_add)
2780 struct cftype *cft;
2781 int ret;
2783 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2784 lockdep_assert_held(&cgroup_mutex);
2786 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2787 /* does cft->flags tell us to skip this file on @cgrp? */
2788 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2789 continue;
2790 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2791 continue;
2792 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2793 continue;
2795 if (is_add) {
2796 ret = cgroup_add_file(cgrp, cft);
2797 if (ret) {
2798 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2799 cft->name, ret);
2800 return ret;
2802 } else {
2803 cgroup_rm_file(cgrp, cft);
2806 return 0;
2809 static void cgroup_cfts_prepare(void)
2810 __acquires(&cgroup_mutex)
2813 * Thanks to the entanglement with vfs inode locking, we can't walk
2814 * the existing cgroups under cgroup_mutex and create files.
2815 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2816 * lock before calling cgroup_addrm_files().
2818 mutex_lock(&cgroup_mutex);
2821 static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
2822 __releases(&cgroup_mutex)
2824 LIST_HEAD(pending);
2825 struct cgroup_subsys *ss = cfts[0].ss;
2826 struct cgroup *root = &ss->root->top_cgroup;
2827 struct super_block *sb = ss->root->sb;
2828 struct dentry *prev = NULL;
2829 struct inode *inode;
2830 struct cgroup_subsys_state *css;
2831 u64 update_before;
2832 int ret = 0;
2834 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2835 if (!cfts || ss->root == &cgroup_dummy_root ||
2836 !atomic_inc_not_zero(&sb->s_active)) {
2837 mutex_unlock(&cgroup_mutex);
2838 return 0;
2842 * All cgroups which are created after we drop cgroup_mutex will
2843 * have the updated set of files, so we only need to update the
2844 * cgroups created before the current @cgroup_serial_nr_next.
2846 update_before = cgroup_serial_nr_next;
2848 mutex_unlock(&cgroup_mutex);
2850 /* add/rm files for all cgroups created before */
2851 rcu_read_lock();
2852 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2853 struct cgroup *cgrp = css->cgroup;
2855 if (cgroup_is_dead(cgrp))
2856 continue;
2858 inode = cgrp->dentry->d_inode;
2859 dget(cgrp->dentry);
2860 rcu_read_unlock();
2862 dput(prev);
2863 prev = cgrp->dentry;
2865 mutex_lock(&inode->i_mutex);
2866 mutex_lock(&cgroup_mutex);
2867 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2868 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2869 mutex_unlock(&cgroup_mutex);
2870 mutex_unlock(&inode->i_mutex);
2872 rcu_read_lock();
2873 if (ret)
2874 break;
2876 rcu_read_unlock();
2877 dput(prev);
2878 deactivate_super(sb);
2879 return ret;
2883 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2884 * @ss: target cgroup subsystem
2885 * @cfts: zero-length name terminated array of cftypes
2887 * Register @cfts to @ss. Files described by @cfts are created for all
2888 * existing cgroups to which @ss is attached and all future cgroups will
2889 * have them too. This function can be called anytime whether @ss is
2890 * attached or not.
2892 * Returns 0 on successful registration, -errno on failure. Note that this
2893 * function currently returns 0 as long as @cfts registration is successful
2894 * even if some file creation attempts on existing cgroups fail.
2896 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2898 struct cftype_set *set;
2899 struct cftype *cft;
2900 int ret;
2902 set = kzalloc(sizeof(*set), GFP_KERNEL);
2903 if (!set)
2904 return -ENOMEM;
2906 for (cft = cfts; cft->name[0] != '\0'; cft++)
2907 cft->ss = ss;
2909 cgroup_cfts_prepare();
2910 set->cfts = cfts;
2911 list_add_tail(&set->node, &ss->cftsets);
2912 ret = cgroup_cfts_commit(cfts, true);
2913 if (ret)
2914 cgroup_rm_cftypes(cfts);
2915 return ret;
2917 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2920 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2921 * @cfts: zero-length name terminated array of cftypes
2923 * Unregister @cfts. Files described by @cfts are removed from all
2924 * existing cgroups and all future cgroups won't have them either. This
2925 * function can be called anytime whether @cfts' subsys is attached or not.
2927 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2928 * registered.
2930 int cgroup_rm_cftypes(struct cftype *cfts)
2932 struct cftype_set *set;
2934 if (!cfts || !cfts[0].ss)
2935 return -ENOENT;
2937 cgroup_cfts_prepare();
2939 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
2940 if (set->cfts == cfts) {
2941 list_del(&set->node);
2942 kfree(set);
2943 cgroup_cfts_commit(cfts, false);
2944 return 0;
2948 cgroup_cfts_commit(NULL, false);
2949 return -ENOENT;
2953 * cgroup_task_count - count the number of tasks in a cgroup.
2954 * @cgrp: the cgroup in question
2956 * Return the number of tasks in the cgroup.
2958 int cgroup_task_count(const struct cgroup *cgrp)
2960 int count = 0;
2961 struct cgrp_cset_link *link;
2963 read_lock(&css_set_lock);
2964 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2965 count += atomic_read(&link->cset->refcount);
2966 read_unlock(&css_set_lock);
2967 return count;
2971 * To reduce the fork() overhead for systems that are not actually using
2972 * their cgroups capability, we don't maintain the lists running through
2973 * each css_set to its tasks until we see the list actually used - in other
2974 * words after the first call to css_task_iter_start().
2976 static void cgroup_enable_task_cg_lists(void)
2978 struct task_struct *p, *g;
2979 write_lock(&css_set_lock);
2980 use_task_css_set_links = 1;
2982 * We need tasklist_lock because RCU is not safe against
2983 * while_each_thread(). Besides, a forking task that has passed
2984 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2985 * is not guaranteed to have its child immediately visible in the
2986 * tasklist if we walk through it with RCU.
2988 read_lock(&tasklist_lock);
2989 do_each_thread(g, p) {
2990 task_lock(p);
2992 * We should check if the process is exiting, otherwise
2993 * it will race with cgroup_exit() in that the list
2994 * entry won't be deleted though the process has exited.
2996 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2997 list_add(&p->cg_list, &task_css_set(p)->tasks);
2998 task_unlock(p);
2999 } while_each_thread(g, p);
3000 read_unlock(&tasklist_lock);
3001 write_unlock(&css_set_lock);
3005 * css_next_child - find the next child of a given css
3006 * @pos_css: the current position (%NULL to initiate traversal)
3007 * @parent_css: css whose children to walk
3009 * This function returns the next child of @parent_css and should be called
3010 * under RCU read lock. The only requirement is that @parent_css and
3011 * @pos_css are accessible. The next sibling is guaranteed to be returned
3012 * regardless of their states.
3014 struct cgroup_subsys_state *
3015 css_next_child(struct cgroup_subsys_state *pos_css,
3016 struct cgroup_subsys_state *parent_css)
3018 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3019 struct cgroup *cgrp = parent_css->cgroup;
3020 struct cgroup *next;
3022 WARN_ON_ONCE(!rcu_read_lock_held());
3025 * @pos could already have been removed. Once a cgroup is removed,
3026 * its ->sibling.next is no longer updated when its next sibling
3027 * changes. As CGRP_DEAD assertion is serialized and happens
3028 * before the cgroup is taken off the ->sibling list, if we see it
3029 * unasserted, it's guaranteed that the next sibling hasn't
3030 * finished its grace period even if it's already removed, and thus
3031 * safe to dereference from this RCU critical section. If
3032 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3033 * to be visible as %true here.
3035 * If @pos is dead, its next pointer can't be dereferenced;
3036 * however, as each cgroup is given a monotonically increasing
3037 * unique serial number and always appended to the sibling list,
3038 * the next one can be found by walking the parent's children until
3039 * we see a cgroup with higher serial number than @pos's. While
3040 * this path can be slower, it's taken only when either the current
3041 * cgroup is removed or iteration and removal race.
3043 if (!pos) {
3044 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3045 } else if (likely(!cgroup_is_dead(pos))) {
3046 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3047 } else {
3048 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3049 if (next->serial_nr > pos->serial_nr)
3050 break;
3053 if (&next->sibling == &cgrp->children)
3054 return NULL;
3056 return cgroup_css(next, parent_css->ss);
3058 EXPORT_SYMBOL_GPL(css_next_child);
3061 * css_next_descendant_pre - find the next descendant for pre-order walk
3062 * @pos: the current position (%NULL to initiate traversal)
3063 * @root: css whose descendants to walk
3065 * To be used by css_for_each_descendant_pre(). Find the next descendant
3066 * to visit for pre-order traversal of @root's descendants. @root is
3067 * included in the iteration and the first node to be visited.
3069 * While this function requires RCU read locking, it doesn't require the
3070 * whole traversal to be contained in a single RCU critical section. This
3071 * function will return the correct next descendant as long as both @pos
3072 * and @root are accessible and @pos is a descendant of @root.
3074 struct cgroup_subsys_state *
3075 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3076 struct cgroup_subsys_state *root)
3078 struct cgroup_subsys_state *next;
3080 WARN_ON_ONCE(!rcu_read_lock_held());
3082 /* if first iteration, visit @root */
3083 if (!pos)
3084 return root;
3086 /* visit the first child if exists */
3087 next = css_next_child(NULL, pos);
3088 if (next)
3089 return next;
3091 /* no child, visit my or the closest ancestor's next sibling */
3092 while (pos != root) {
3093 next = css_next_child(pos, css_parent(pos));
3094 if (next)
3095 return next;
3096 pos = css_parent(pos);
3099 return NULL;
3101 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
3104 * css_rightmost_descendant - return the rightmost descendant of a css
3105 * @pos: css of interest
3107 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3108 * is returned. This can be used during pre-order traversal to skip
3109 * subtree of @pos.
3111 * While this function requires RCU read locking, it doesn't require the
3112 * whole traversal to be contained in a single RCU critical section. This
3113 * function will return the correct rightmost descendant as long as @pos is
3114 * accessible.
3116 struct cgroup_subsys_state *
3117 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3119 struct cgroup_subsys_state *last, *tmp;
3121 WARN_ON_ONCE(!rcu_read_lock_held());
3123 do {
3124 last = pos;
3125 /* ->prev isn't RCU safe, walk ->next till the end */
3126 pos = NULL;
3127 css_for_each_child(tmp, last)
3128 pos = tmp;
3129 } while (pos);
3131 return last;
3133 EXPORT_SYMBOL_GPL(css_rightmost_descendant);
3135 static struct cgroup_subsys_state *
3136 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3138 struct cgroup_subsys_state *last;
3140 do {
3141 last = pos;
3142 pos = css_next_child(NULL, pos);
3143 } while (pos);
3145 return last;
3149 * css_next_descendant_post - find the next descendant for post-order walk
3150 * @pos: the current position (%NULL to initiate traversal)
3151 * @root: css whose descendants to walk
3153 * To be used by css_for_each_descendant_post(). Find the next descendant
3154 * to visit for post-order traversal of @root's descendants. @root is
3155 * included in the iteration and the last node to be visited.
3157 * While this function requires RCU read locking, it doesn't require the
3158 * whole traversal to be contained in a single RCU critical section. This
3159 * function will return the correct next descendant as long as both @pos
3160 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3162 struct cgroup_subsys_state *
3163 css_next_descendant_post(struct cgroup_subsys_state *pos,
3164 struct cgroup_subsys_state *root)
3166 struct cgroup_subsys_state *next;
3168 WARN_ON_ONCE(!rcu_read_lock_held());
3170 /* if first iteration, visit leftmost descendant which may be @root */
3171 if (!pos)
3172 return css_leftmost_descendant(root);
3174 /* if we visited @root, we're done */
3175 if (pos == root)
3176 return NULL;
3178 /* if there's an unvisited sibling, visit its leftmost descendant */
3179 next = css_next_child(pos, css_parent(pos));
3180 if (next)
3181 return css_leftmost_descendant(next);
3183 /* no sibling left, visit parent */
3184 return css_parent(pos);
3186 EXPORT_SYMBOL_GPL(css_next_descendant_post);
3189 * css_advance_task_iter - advance a task itererator to the next css_set
3190 * @it: the iterator to advance
3192 * Advance @it to the next css_set to walk.
3194 static void css_advance_task_iter(struct css_task_iter *it)
3196 struct list_head *l = it->cset_link;
3197 struct cgrp_cset_link *link;
3198 struct css_set *cset;
3200 /* Advance to the next non-empty css_set */
3201 do {
3202 l = l->next;
3203 if (l == &it->origin_css->cgroup->cset_links) {
3204 it->cset_link = NULL;
3205 return;
3207 link = list_entry(l, struct cgrp_cset_link, cset_link);
3208 cset = link->cset;
3209 } while (list_empty(&cset->tasks));
3210 it->cset_link = l;
3211 it->task = cset->tasks.next;
3215 * css_task_iter_start - initiate task iteration
3216 * @css: the css to walk tasks of
3217 * @it: the task iterator to use
3219 * Initiate iteration through the tasks of @css. The caller can call
3220 * css_task_iter_next() to walk through the tasks until the function
3221 * returns NULL. On completion of iteration, css_task_iter_end() must be
3222 * called.
3224 * Note that this function acquires a lock which is released when the
3225 * iteration finishes. The caller can't sleep while iteration is in
3226 * progress.
3228 void css_task_iter_start(struct cgroup_subsys_state *css,
3229 struct css_task_iter *it)
3230 __acquires(css_set_lock)
3233 * The first time anyone tries to iterate across a css, we need to
3234 * enable the list linking each css_set to its tasks, and fix up
3235 * all existing tasks.
3237 if (!use_task_css_set_links)
3238 cgroup_enable_task_cg_lists();
3240 read_lock(&css_set_lock);
3242 it->origin_css = css;
3243 it->cset_link = &css->cgroup->cset_links;
3245 css_advance_task_iter(it);
3249 * css_task_iter_next - return the next task for the iterator
3250 * @it: the task iterator being iterated
3252 * The "next" function for task iteration. @it should have been
3253 * initialized via css_task_iter_start(). Returns NULL when the iteration
3254 * reaches the end.
3256 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3258 struct task_struct *res;
3259 struct list_head *l = it->task;
3260 struct cgrp_cset_link *link;
3262 /* If the iterator cg is NULL, we have no tasks */
3263 if (!it->cset_link)
3264 return NULL;
3265 res = list_entry(l, struct task_struct, cg_list);
3266 /* Advance iterator to find next entry */
3267 l = l->next;
3268 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3269 if (l == &link->cset->tasks) {
3271 * We reached the end of this task list - move on to the
3272 * next cgrp_cset_link.
3274 css_advance_task_iter(it);
3275 } else {
3276 it->task = l;
3278 return res;
3282 * css_task_iter_end - finish task iteration
3283 * @it: the task iterator to finish
3285 * Finish task iteration started by css_task_iter_start().
3287 void css_task_iter_end(struct css_task_iter *it)
3288 __releases(css_set_lock)
3290 read_unlock(&css_set_lock);
3293 static inline int started_after_time(struct task_struct *t1,
3294 struct timespec *time,
3295 struct task_struct *t2)
3297 int start_diff = timespec_compare(&t1->start_time, time);
3298 if (start_diff > 0) {
3299 return 1;
3300 } else if (start_diff < 0) {
3301 return 0;
3302 } else {
3304 * Arbitrarily, if two processes started at the same
3305 * time, we'll say that the lower pointer value
3306 * started first. Note that t2 may have exited by now
3307 * so this may not be a valid pointer any longer, but
3308 * that's fine - it still serves to distinguish
3309 * between two tasks started (effectively) simultaneously.
3311 return t1 > t2;
3316 * This function is a callback from heap_insert() and is used to order
3317 * the heap.
3318 * In this case we order the heap in descending task start time.
3320 static inline int started_after(void *p1, void *p2)
3322 struct task_struct *t1 = p1;
3323 struct task_struct *t2 = p2;
3324 return started_after_time(t1, &t2->start_time, t2);
3328 * css_scan_tasks - iterate though all the tasks in a css
3329 * @css: the css to iterate tasks of
3330 * @test: optional test callback
3331 * @process: process callback
3332 * @data: data passed to @test and @process
3333 * @heap: optional pre-allocated heap used for task iteration
3335 * Iterate through all the tasks in @css, calling @test for each, and if it
3336 * returns %true, call @process for it also.
3338 * @test may be NULL, meaning always true (select all tasks), which
3339 * effectively duplicates css_task_iter_{start,next,end}() but does not
3340 * lock css_set_lock for the call to @process.
3342 * It is guaranteed that @process will act on every task that is a member
3343 * of @css for the duration of this call. This function may or may not
3344 * call @process for tasks that exit or move to a different css during the
3345 * call, or are forked or move into the css during the call.
3347 * Note that @test may be called with locks held, and may in some
3348 * situations be called multiple times for the same task, so it should be
3349 * cheap.
3351 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3352 * heap operations (and its "gt" member will be overwritten), else a
3353 * temporary heap will be used (allocation of which may cause this function
3354 * to fail).
3356 int css_scan_tasks(struct cgroup_subsys_state *css,
3357 bool (*test)(struct task_struct *, void *),
3358 void (*process)(struct task_struct *, void *),
3359 void *data, struct ptr_heap *heap)
3361 int retval, i;
3362 struct css_task_iter it;
3363 struct task_struct *p, *dropped;
3364 /* Never dereference latest_task, since it's not refcounted */
3365 struct task_struct *latest_task = NULL;
3366 struct ptr_heap tmp_heap;
3367 struct timespec latest_time = { 0, 0 };
3369 if (heap) {
3370 /* The caller supplied our heap and pre-allocated its memory */
3371 heap->gt = &started_after;
3372 } else {
3373 /* We need to allocate our own heap memory */
3374 heap = &tmp_heap;
3375 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3376 if (retval)
3377 /* cannot allocate the heap */
3378 return retval;
3381 again:
3383 * Scan tasks in the css, using the @test callback to determine
3384 * which are of interest, and invoking @process callback on the
3385 * ones which need an update. Since we don't want to hold any
3386 * locks during the task updates, gather tasks to be processed in a
3387 * heap structure. The heap is sorted by descending task start
3388 * time. If the statically-sized heap fills up, we overflow tasks
3389 * that started later, and in future iterations only consider tasks
3390 * that started after the latest task in the previous pass. This
3391 * guarantees forward progress and that we don't miss any tasks.
3393 heap->size = 0;
3394 css_task_iter_start(css, &it);
3395 while ((p = css_task_iter_next(&it))) {
3397 * Only affect tasks that qualify per the caller's callback,
3398 * if he provided one
3400 if (test && !test(p, data))
3401 continue;
3403 * Only process tasks that started after the last task
3404 * we processed
3406 if (!started_after_time(p, &latest_time, latest_task))
3407 continue;
3408 dropped = heap_insert(heap, p);
3409 if (dropped == NULL) {
3411 * The new task was inserted; the heap wasn't
3412 * previously full
3414 get_task_struct(p);
3415 } else if (dropped != p) {
3417 * The new task was inserted, and pushed out a
3418 * different task
3420 get_task_struct(p);
3421 put_task_struct(dropped);
3424 * Else the new task was newer than anything already in
3425 * the heap and wasn't inserted
3428 css_task_iter_end(&it);
3430 if (heap->size) {
3431 for (i = 0; i < heap->size; i++) {
3432 struct task_struct *q = heap->ptrs[i];
3433 if (i == 0) {
3434 latest_time = q->start_time;
3435 latest_task = q;
3437 /* Process the task per the caller's callback */
3438 process(q, data);
3439 put_task_struct(q);
3442 * If we had to process any tasks at all, scan again
3443 * in case some of them were in the middle of forking
3444 * children that didn't get processed.
3445 * Not the most efficient way to do it, but it avoids
3446 * having to take callback_mutex in the fork path
3448 goto again;
3450 if (heap == &tmp_heap)
3451 heap_free(&tmp_heap);
3452 return 0;
3455 static void cgroup_transfer_one_task(struct task_struct *task, void *data)
3457 struct cgroup *new_cgroup = data;
3459 mutex_lock(&cgroup_mutex);
3460 cgroup_attach_task(new_cgroup, task, false);
3461 mutex_unlock(&cgroup_mutex);
3465 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3466 * @to: cgroup to which the tasks will be moved
3467 * @from: cgroup in which the tasks currently reside
3469 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3471 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3472 to, NULL);
3476 * Stuff for reading the 'tasks'/'procs' files.
3478 * Reading this file can return large amounts of data if a cgroup has
3479 * *lots* of attached tasks. So it may need several calls to read(),
3480 * but we cannot guarantee that the information we produce is correct
3481 * unless we produce it entirely atomically.
3485 /* which pidlist file are we talking about? */
3486 enum cgroup_filetype {
3487 CGROUP_FILE_PROCS,
3488 CGROUP_FILE_TASKS,
3492 * A pidlist is a list of pids that virtually represents the contents of one
3493 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3494 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3495 * to the cgroup.
3497 struct cgroup_pidlist {
3499 * used to find which pidlist is wanted. doesn't change as long as
3500 * this particular list stays in the list.
3502 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3503 /* array of xids */
3504 pid_t *list;
3505 /* how many elements the above list has */
3506 int length;
3507 /* how many files are using the current array */
3508 int use_count;
3509 /* each of these stored in a list by its cgroup */
3510 struct list_head links;
3511 /* pointer to the cgroup we belong to, for list removal purposes */
3512 struct cgroup *owner;
3513 /* protects the other fields */
3514 struct rw_semaphore rwsem;
3518 * The following two functions "fix" the issue where there are more pids
3519 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3520 * TODO: replace with a kernel-wide solution to this problem
3522 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3523 static void *pidlist_allocate(int count)
3525 if (PIDLIST_TOO_LARGE(count))
3526 return vmalloc(count * sizeof(pid_t));
3527 else
3528 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3530 static void pidlist_free(void *p)
3532 if (is_vmalloc_addr(p))
3533 vfree(p);
3534 else
3535 kfree(p);
3539 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3540 * Returns the number of unique elements.
3542 static int pidlist_uniq(pid_t *list, int length)
3544 int src, dest = 1;
3547 * we presume the 0th element is unique, so i starts at 1. trivial
3548 * edge cases first; no work needs to be done for either
3550 if (length == 0 || length == 1)
3551 return length;
3552 /* src and dest walk down the list; dest counts unique elements */
3553 for (src = 1; src < length; src++) {
3554 /* find next unique element */
3555 while (list[src] == list[src-1]) {
3556 src++;
3557 if (src == length)
3558 goto after;
3560 /* dest always points to where the next unique element goes */
3561 list[dest] = list[src];
3562 dest++;
3564 after:
3565 return dest;
3568 static int cmppid(const void *a, const void *b)
3570 return *(pid_t *)a - *(pid_t *)b;
3574 * find the appropriate pidlist for our purpose (given procs vs tasks)
3575 * returns with the lock on that pidlist already held, and takes care
3576 * of the use count, or returns NULL with no locks held if we're out of
3577 * memory.
3579 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3580 enum cgroup_filetype type)
3582 struct cgroup_pidlist *l;
3583 /* don't need task_nsproxy() if we're looking at ourself */
3584 struct pid_namespace *ns = task_active_pid_ns(current);
3587 * We can't drop the pidlist_mutex before taking the l->rwsem in case
3588 * the last ref-holder is trying to remove l from the list at the same
3589 * time. Holding the pidlist_mutex precludes somebody taking whichever
3590 * list we find out from under us - compare release_pid_array().
3592 mutex_lock(&cgrp->pidlist_mutex);
3593 list_for_each_entry(l, &cgrp->pidlists, links) {
3594 if (l->key.type == type && l->key.ns == ns) {
3595 /* make sure l doesn't vanish out from under us */
3596 down_write(&l->rwsem);
3597 mutex_unlock(&cgrp->pidlist_mutex);
3598 return l;
3601 /* entry not found; create a new one */
3602 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3603 if (!l) {
3604 mutex_unlock(&cgrp->pidlist_mutex);
3605 return l;
3607 init_rwsem(&l->rwsem);
3608 down_write(&l->rwsem);
3609 l->key.type = type;
3610 l->key.ns = get_pid_ns(ns);
3611 l->owner = cgrp;
3612 list_add(&l->links, &cgrp->pidlists);
3613 mutex_unlock(&cgrp->pidlist_mutex);
3614 return l;
3618 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3620 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3621 struct cgroup_pidlist **lp)
3623 pid_t *array;
3624 int length;
3625 int pid, n = 0; /* used for populating the array */
3626 struct css_task_iter it;
3627 struct task_struct *tsk;
3628 struct cgroup_pidlist *l;
3631 * If cgroup gets more users after we read count, we won't have
3632 * enough space - tough. This race is indistinguishable to the
3633 * caller from the case that the additional cgroup users didn't
3634 * show up until sometime later on.
3636 length = cgroup_task_count(cgrp);
3637 array = pidlist_allocate(length);
3638 if (!array)
3639 return -ENOMEM;
3640 /* now, populate the array */
3641 css_task_iter_start(&cgrp->dummy_css, &it);
3642 while ((tsk = css_task_iter_next(&it))) {
3643 if (unlikely(n == length))
3644 break;
3645 /* get tgid or pid for procs or tasks file respectively */
3646 if (type == CGROUP_FILE_PROCS)
3647 pid = task_tgid_vnr(tsk);
3648 else
3649 pid = task_pid_vnr(tsk);
3650 if (pid > 0) /* make sure to only use valid results */
3651 array[n++] = pid;
3653 css_task_iter_end(&it);
3654 length = n;
3655 /* now sort & (if procs) strip out duplicates */
3656 sort(array, length, sizeof(pid_t), cmppid, NULL);
3657 if (type == CGROUP_FILE_PROCS)
3658 length = pidlist_uniq(array, length);
3659 l = cgroup_pidlist_find(cgrp, type);
3660 if (!l) {
3661 pidlist_free(array);
3662 return -ENOMEM;
3664 /* store array, freeing old if necessary - lock already held */
3665 pidlist_free(l->list);
3666 l->list = array;
3667 l->length = length;
3668 l->use_count++;
3669 up_write(&l->rwsem);
3670 *lp = l;
3671 return 0;
3675 * cgroupstats_build - build and fill cgroupstats
3676 * @stats: cgroupstats to fill information into
3677 * @dentry: A dentry entry belonging to the cgroup for which stats have
3678 * been requested.
3680 * Build and fill cgroupstats so that taskstats can export it to user
3681 * space.
3683 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3685 int ret = -EINVAL;
3686 struct cgroup *cgrp;
3687 struct css_task_iter it;
3688 struct task_struct *tsk;
3691 * Validate dentry by checking the superblock operations,
3692 * and make sure it's a directory.
3694 if (dentry->d_sb->s_op != &cgroup_ops ||
3695 !S_ISDIR(dentry->d_inode->i_mode))
3696 goto err;
3698 ret = 0;
3699 cgrp = dentry->d_fsdata;
3701 css_task_iter_start(&cgrp->dummy_css, &it);
3702 while ((tsk = css_task_iter_next(&it))) {
3703 switch (tsk->state) {
3704 case TASK_RUNNING:
3705 stats->nr_running++;
3706 break;
3707 case TASK_INTERRUPTIBLE:
3708 stats->nr_sleeping++;
3709 break;
3710 case TASK_UNINTERRUPTIBLE:
3711 stats->nr_uninterruptible++;
3712 break;
3713 case TASK_STOPPED:
3714 stats->nr_stopped++;
3715 break;
3716 default:
3717 if (delayacct_is_task_waiting_on_io(tsk))
3718 stats->nr_io_wait++;
3719 break;
3722 css_task_iter_end(&it);
3724 err:
3725 return ret;
3730 * seq_file methods for the tasks/procs files. The seq_file position is the
3731 * next pid to display; the seq_file iterator is a pointer to the pid
3732 * in the cgroup->l->list array.
3735 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3738 * Initially we receive a position value that corresponds to
3739 * one more than the last pid shown (or 0 on the first call or
3740 * after a seek to the start). Use a binary-search to find the
3741 * next pid to display, if any
3743 struct cgroup_pidlist *l = s->private;
3744 int index = 0, pid = *pos;
3745 int *iter;
3747 down_read(&l->rwsem);
3748 if (pid) {
3749 int end = l->length;
3751 while (index < end) {
3752 int mid = (index + end) / 2;
3753 if (l->list[mid] == pid) {
3754 index = mid;
3755 break;
3756 } else if (l->list[mid] <= pid)
3757 index = mid + 1;
3758 else
3759 end = mid;
3762 /* If we're off the end of the array, we're done */
3763 if (index >= l->length)
3764 return NULL;
3765 /* Update the abstract position to be the actual pid that we found */
3766 iter = l->list + index;
3767 *pos = *iter;
3768 return iter;
3771 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3773 struct cgroup_pidlist *l = s->private;
3774 up_read(&l->rwsem);
3777 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3779 struct cgroup_pidlist *l = s->private;
3780 pid_t *p = v;
3781 pid_t *end = l->list + l->length;
3783 * Advance to the next pid in the array. If this goes off the
3784 * end, we're done
3786 p++;
3787 if (p >= end) {
3788 return NULL;
3789 } else {
3790 *pos = *p;
3791 return p;
3795 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3797 return seq_printf(s, "%d\n", *(int *)v);
3801 * seq_operations functions for iterating on pidlists through seq_file -
3802 * independent of whether it's tasks or procs
3804 static const struct seq_operations cgroup_pidlist_seq_operations = {
3805 .start = cgroup_pidlist_start,
3806 .stop = cgroup_pidlist_stop,
3807 .next = cgroup_pidlist_next,
3808 .show = cgroup_pidlist_show,
3811 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3814 * the case where we're the last user of this particular pidlist will
3815 * have us remove it from the cgroup's list, which entails taking the
3816 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3817 * pidlist_mutex, we have to take pidlist_mutex first.
3819 mutex_lock(&l->owner->pidlist_mutex);
3820 down_write(&l->rwsem);
3821 BUG_ON(!l->use_count);
3822 if (!--l->use_count) {
3823 /* we're the last user if refcount is 0; remove and free */
3824 list_del(&l->links);
3825 mutex_unlock(&l->owner->pidlist_mutex);
3826 pidlist_free(l->list);
3827 put_pid_ns(l->key.ns);
3828 up_write(&l->rwsem);
3829 kfree(l);
3830 return;
3832 mutex_unlock(&l->owner->pidlist_mutex);
3833 up_write(&l->rwsem);
3836 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3838 struct cgroup_pidlist *l;
3839 if (!(file->f_mode & FMODE_READ))
3840 return 0;
3842 * the seq_file will only be initialized if the file was opened for
3843 * reading; hence we check if it's not null only in that case.
3845 l = ((struct seq_file *)file->private_data)->private;
3846 cgroup_release_pid_array(l);
3847 return seq_release(inode, file);
3850 static const struct file_operations cgroup_pidlist_operations = {
3851 .read = seq_read,
3852 .llseek = seq_lseek,
3853 .write = cgroup_file_write,
3854 .release = cgroup_pidlist_release,
3858 * The following functions handle opens on a file that displays a pidlist
3859 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3860 * in the cgroup.
3862 /* helper function for the two below it */
3863 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3865 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3866 struct cgroup_pidlist *l;
3867 int retval;
3869 /* Nothing to do for write-only files */
3870 if (!(file->f_mode & FMODE_READ))
3871 return 0;
3873 /* have the array populated */
3874 retval = pidlist_array_load(cgrp, type, &l);
3875 if (retval)
3876 return retval;
3877 /* configure file information */
3878 file->f_op = &cgroup_pidlist_operations;
3880 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3881 if (retval) {
3882 cgroup_release_pid_array(l);
3883 return retval;
3885 ((struct seq_file *)file->private_data)->private = l;
3886 return 0;
3888 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3890 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3892 static int cgroup_procs_open(struct inode *unused, struct file *file)
3894 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3897 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3898 struct cftype *cft)
3900 return notify_on_release(css->cgroup);
3903 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3904 struct cftype *cft, u64 val)
3906 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3907 if (val)
3908 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3909 else
3910 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3911 return 0;
3915 * When dput() is called asynchronously, if umount has been done and
3916 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3917 * there's a small window that vfs will see the root dentry with non-zero
3918 * refcnt and trigger BUG().
3920 * That's why we hold a reference before dput() and drop it right after.
3922 static void cgroup_dput(struct cgroup *cgrp)
3924 struct super_block *sb = cgrp->root->sb;
3926 atomic_inc(&sb->s_active);
3927 dput(cgrp->dentry);
3928 deactivate_super(sb);
3932 * Unregister event and free resources.
3934 * Gets called from workqueue.
3936 static void cgroup_event_remove(struct work_struct *work)
3938 struct cgroup_event *event = container_of(work, struct cgroup_event,
3939 remove);
3940 struct cgroup_subsys_state *css = event->css;
3942 remove_wait_queue(event->wqh, &event->wait);
3944 event->cft->unregister_event(css, event->cft, event->eventfd);
3946 /* Notify userspace the event is going away. */
3947 eventfd_signal(event->eventfd, 1);
3949 eventfd_ctx_put(event->eventfd);
3950 kfree(event);
3951 css_put(css);
3955 * Gets called on POLLHUP on eventfd when user closes it.
3957 * Called with wqh->lock held and interrupts disabled.
3959 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3960 int sync, void *key)
3962 struct cgroup_event *event = container_of(wait,
3963 struct cgroup_event, wait);
3964 struct cgroup *cgrp = event->css->cgroup;
3965 unsigned long flags = (unsigned long)key;
3967 if (flags & POLLHUP) {
3969 * If the event has been detached at cgroup removal, we
3970 * can simply return knowing the other side will cleanup
3971 * for us.
3973 * We can't race against event freeing since the other
3974 * side will require wqh->lock via remove_wait_queue(),
3975 * which we hold.
3977 spin_lock(&cgrp->event_list_lock);
3978 if (!list_empty(&event->list)) {
3979 list_del_init(&event->list);
3981 * We are in atomic context, but cgroup_event_remove()
3982 * may sleep, so we have to call it in workqueue.
3984 schedule_work(&event->remove);
3986 spin_unlock(&cgrp->event_list_lock);
3989 return 0;
3992 static void cgroup_event_ptable_queue_proc(struct file *file,
3993 wait_queue_head_t *wqh, poll_table *pt)
3995 struct cgroup_event *event = container_of(pt,
3996 struct cgroup_event, pt);
3998 event->wqh = wqh;
3999 add_wait_queue(wqh, &event->wait);
4003 * Parse input and register new cgroup event handler.
4005 * Input must be in format '<event_fd> <control_fd> <args>'.
4006 * Interpretation of args is defined by control file implementation.
4008 static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
4009 struct cftype *cft, const char *buffer)
4011 struct cgroup *cgrp = dummy_css->cgroup;
4012 struct cgroup_event *event;
4013 struct cgroup_subsys_state *cfile_css;
4014 unsigned int efd, cfd;
4015 struct fd efile;
4016 struct fd cfile;
4017 char *endp;
4018 int ret;
4020 efd = simple_strtoul(buffer, &endp, 10);
4021 if (*endp != ' ')
4022 return -EINVAL;
4023 buffer = endp + 1;
4025 cfd = simple_strtoul(buffer, &endp, 10);
4026 if ((*endp != ' ') && (*endp != '\0'))
4027 return -EINVAL;
4028 buffer = endp + 1;
4030 event = kzalloc(sizeof(*event), GFP_KERNEL);
4031 if (!event)
4032 return -ENOMEM;
4034 INIT_LIST_HEAD(&event->list);
4035 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4036 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4037 INIT_WORK(&event->remove, cgroup_event_remove);
4039 efile = fdget(efd);
4040 if (!efile.file) {
4041 ret = -EBADF;
4042 goto out_kfree;
4045 event->eventfd = eventfd_ctx_fileget(efile.file);
4046 if (IS_ERR(event->eventfd)) {
4047 ret = PTR_ERR(event->eventfd);
4048 goto out_put_efile;
4051 cfile = fdget(cfd);
4052 if (!cfile.file) {
4053 ret = -EBADF;
4054 goto out_put_eventfd;
4057 /* the process need read permission on control file */
4058 /* AV: shouldn't we check that it's been opened for read instead? */
4059 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4060 if (ret < 0)
4061 goto out_put_cfile;
4063 event->cft = __file_cft(cfile.file);
4064 if (IS_ERR(event->cft)) {
4065 ret = PTR_ERR(event->cft);
4066 goto out_put_cfile;
4069 if (!event->cft->ss) {
4070 ret = -EBADF;
4071 goto out_put_cfile;
4075 * Determine the css of @cfile, verify it belongs to the same
4076 * cgroup as cgroup.event_control, and associate @event with it.
4077 * Remaining events are automatically removed on cgroup destruction
4078 * but the removal is asynchronous, so take an extra ref.
4080 rcu_read_lock();
4082 ret = -EINVAL;
4083 event->css = cgroup_css(cgrp, event->cft->ss);
4084 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, event->cft->ss);
4085 if (event->css && event->css == cfile_css && css_tryget(event->css))
4086 ret = 0;
4088 rcu_read_unlock();
4089 if (ret)
4090 goto out_put_cfile;
4092 if (!event->cft->register_event || !event->cft->unregister_event) {
4093 ret = -EINVAL;
4094 goto out_put_css;
4097 ret = event->cft->register_event(event->css, event->cft,
4098 event->eventfd, buffer);
4099 if (ret)
4100 goto out_put_css;
4102 efile.file->f_op->poll(efile.file, &event->pt);
4104 spin_lock(&cgrp->event_list_lock);
4105 list_add(&event->list, &cgrp->event_list);
4106 spin_unlock(&cgrp->event_list_lock);
4108 fdput(cfile);
4109 fdput(efile);
4111 return 0;
4113 out_put_css:
4114 css_put(event->css);
4115 out_put_cfile:
4116 fdput(cfile);
4117 out_put_eventfd:
4118 eventfd_ctx_put(event->eventfd);
4119 out_put_efile:
4120 fdput(efile);
4121 out_kfree:
4122 kfree(event);
4124 return ret;
4127 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4128 struct cftype *cft)
4130 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4133 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4134 struct cftype *cft, u64 val)
4136 if (val)
4137 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4138 else
4139 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4140 return 0;
4143 static struct cftype cgroup_base_files[] = {
4145 .name = "cgroup.procs",
4146 .open = cgroup_procs_open,
4147 .write_u64 = cgroup_procs_write,
4148 .release = cgroup_pidlist_release,
4149 .mode = S_IRUGO | S_IWUSR,
4152 .name = "cgroup.event_control",
4153 .write_string = cgroup_write_event_control,
4154 .mode = S_IWUGO,
4157 .name = "cgroup.clone_children",
4158 .flags = CFTYPE_INSANE,
4159 .read_u64 = cgroup_clone_children_read,
4160 .write_u64 = cgroup_clone_children_write,
4163 .name = "cgroup.sane_behavior",
4164 .flags = CFTYPE_ONLY_ON_ROOT,
4165 .read_seq_string = cgroup_sane_behavior_show,
4169 * Historical crazy stuff. These don't have "cgroup." prefix and
4170 * don't exist if sane_behavior. If you're depending on these, be
4171 * prepared to be burned.
4174 .name = "tasks",
4175 .flags = CFTYPE_INSANE, /* use "procs" instead */
4176 .open = cgroup_tasks_open,
4177 .write_u64 = cgroup_tasks_write,
4178 .release = cgroup_pidlist_release,
4179 .mode = S_IRUGO | S_IWUSR,
4182 .name = "notify_on_release",
4183 .flags = CFTYPE_INSANE,
4184 .read_u64 = cgroup_read_notify_on_release,
4185 .write_u64 = cgroup_write_notify_on_release,
4188 .name = "release_agent",
4189 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4190 .read_seq_string = cgroup_release_agent_show,
4191 .write_string = cgroup_release_agent_write,
4192 .max_write_len = PATH_MAX,
4194 { } /* terminate */
4198 * cgroup_populate_dir - create subsys files in a cgroup directory
4199 * @cgrp: target cgroup
4200 * @subsys_mask: mask of the subsystem ids whose files should be added
4202 * On failure, no file is added.
4204 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4206 struct cgroup_subsys *ss;
4207 int i, ret = 0;
4209 /* process cftsets of each subsystem */
4210 for_each_subsys(ss, i) {
4211 struct cftype_set *set;
4213 if (!test_bit(i, &subsys_mask))
4214 continue;
4216 list_for_each_entry(set, &ss->cftsets, node) {
4217 ret = cgroup_addrm_files(cgrp, set->cfts, true);
4218 if (ret < 0)
4219 goto err;
4222 return 0;
4223 err:
4224 cgroup_clear_dir(cgrp, subsys_mask);
4225 return ret;
4229 * css destruction is four-stage process.
4231 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4232 * Implemented in kill_css().
4234 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4235 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4236 * by invoking offline_css(). After offlining, the base ref is put.
4237 * Implemented in css_killed_work_fn().
4239 * 3. When the percpu_ref reaches zero, the only possible remaining
4240 * accessors are inside RCU read sections. css_release() schedules the
4241 * RCU callback.
4243 * 4. After the grace period, the css can be freed. Implemented in
4244 * css_free_work_fn().
4246 * It is actually hairier because both step 2 and 4 require process context
4247 * and thus involve punting to css->destroy_work adding two additional
4248 * steps to the already complex sequence.
4250 static void css_free_work_fn(struct work_struct *work)
4252 struct cgroup_subsys_state *css =
4253 container_of(work, struct cgroup_subsys_state, destroy_work);
4254 struct cgroup *cgrp = css->cgroup;
4256 if (css->parent)
4257 css_put(css->parent);
4259 css->ss->css_free(css);
4260 cgroup_dput(cgrp);
4263 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4265 struct cgroup_subsys_state *css =
4266 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4269 * css holds an extra ref to @cgrp->dentry which is put on the last
4270 * css_put(). dput() requires process context which we don't have.
4272 INIT_WORK(&css->destroy_work, css_free_work_fn);
4273 queue_work(cgroup_destroy_wq, &css->destroy_work);
4276 static void css_release(struct percpu_ref *ref)
4278 struct cgroup_subsys_state *css =
4279 container_of(ref, struct cgroup_subsys_state, refcnt);
4281 rcu_assign_pointer(css->cgroup->subsys[css->ss->subsys_id], NULL);
4282 call_rcu(&css->rcu_head, css_free_rcu_fn);
4285 static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4286 struct cgroup *cgrp)
4288 css->cgroup = cgrp;
4289 css->ss = ss;
4290 css->flags = 0;
4292 if (cgrp->parent)
4293 css->parent = cgroup_css(cgrp->parent, ss);
4294 else
4295 css->flags |= CSS_ROOT;
4297 BUG_ON(cgroup_css(cgrp, ss));
4300 /* invoke ->css_online() on a new CSS and mark it online if successful */
4301 static int online_css(struct cgroup_subsys_state *css)
4303 struct cgroup_subsys *ss = css->ss;
4304 int ret = 0;
4306 lockdep_assert_held(&cgroup_mutex);
4308 if (ss->css_online)
4309 ret = ss->css_online(css);
4310 if (!ret) {
4311 css->flags |= CSS_ONLINE;
4312 css->cgroup->nr_css++;
4313 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4315 return ret;
4318 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4319 static void offline_css(struct cgroup_subsys_state *css)
4321 struct cgroup_subsys *ss = css->ss;
4323 lockdep_assert_held(&cgroup_mutex);
4325 if (!(css->flags & CSS_ONLINE))
4326 return;
4328 if (ss->css_offline)
4329 ss->css_offline(css);
4331 css->flags &= ~CSS_ONLINE;
4332 css->cgroup->nr_css--;
4333 RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
4337 * cgroup_create - create a cgroup
4338 * @parent: cgroup that will be parent of the new cgroup
4339 * @dentry: dentry of the new cgroup
4340 * @mode: mode to set on new inode
4342 * Must be called with the mutex on the parent inode held
4344 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4345 umode_t mode)
4347 struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
4348 struct cgroup *cgrp;
4349 struct cgroup_name *name;
4350 struct cgroupfs_root *root = parent->root;
4351 int err = 0;
4352 struct cgroup_subsys *ss;
4353 struct super_block *sb = root->sb;
4355 /* allocate the cgroup and its ID, 0 is reserved for the root */
4356 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4357 if (!cgrp)
4358 return -ENOMEM;
4360 name = cgroup_alloc_name(dentry);
4361 if (!name)
4362 goto err_free_cgrp;
4363 rcu_assign_pointer(cgrp->name, name);
4366 * Temporarily set the pointer to NULL, so idr_find() won't return
4367 * a half-baked cgroup.
4369 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
4370 if (cgrp->id < 0)
4371 goto err_free_name;
4374 * Only live parents can have children. Note that the liveliness
4375 * check isn't strictly necessary because cgroup_mkdir() and
4376 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4377 * anyway so that locking is contained inside cgroup proper and we
4378 * don't get nasty surprises if we ever grow another caller.
4380 if (!cgroup_lock_live_group(parent)) {
4381 err = -ENODEV;
4382 goto err_free_id;
4385 /* Grab a reference on the superblock so the hierarchy doesn't
4386 * get deleted on unmount if there are child cgroups. This
4387 * can be done outside cgroup_mutex, since the sb can't
4388 * disappear while someone has an open control file on the
4389 * fs */
4390 atomic_inc(&sb->s_active);
4392 init_cgroup_housekeeping(cgrp);
4394 dentry->d_fsdata = cgrp;
4395 cgrp->dentry = dentry;
4397 cgrp->parent = parent;
4398 cgrp->dummy_css.parent = &parent->dummy_css;
4399 cgrp->root = parent->root;
4401 if (notify_on_release(parent))
4402 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4404 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4405 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4407 for_each_root_subsys(root, ss) {
4408 struct cgroup_subsys_state *css;
4410 css = ss->css_alloc(cgroup_css(parent, ss));
4411 if (IS_ERR(css)) {
4412 err = PTR_ERR(css);
4413 goto err_free_all;
4415 css_ar[ss->subsys_id] = css;
4417 err = percpu_ref_init(&css->refcnt, css_release);
4418 if (err)
4419 goto err_free_all;
4421 init_css(css, ss, cgrp);
4425 * Create directory. cgroup_create_file() returns with the new
4426 * directory locked on success so that it can be populated without
4427 * dropping cgroup_mutex.
4429 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4430 if (err < 0)
4431 goto err_free_all;
4432 lockdep_assert_held(&dentry->d_inode->i_mutex);
4434 cgrp->serial_nr = cgroup_serial_nr_next++;
4436 /* allocation complete, commit to creation */
4437 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4438 root->number_of_cgroups++;
4440 /* hold a ref to the parent's dentry */
4441 dget(parent->dentry);
4443 /* creation succeeded, notify subsystems */
4444 for_each_root_subsys(root, ss) {
4445 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4447 err = online_css(css);
4448 if (err)
4449 goto err_destroy;
4451 /* each css holds a ref to the cgroup's dentry and parent css */
4452 dget(dentry);
4453 css_get(css->parent);
4455 /* mark it consumed for error path */
4456 css_ar[ss->subsys_id] = NULL;
4458 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4459 parent->parent) {
4460 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4461 current->comm, current->pid, ss->name);
4462 if (!strcmp(ss->name, "memory"))
4463 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4464 ss->warned_broken_hierarchy = true;
4468 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4470 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4471 if (err)
4472 goto err_destroy;
4474 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4475 if (err)
4476 goto err_destroy;
4478 mutex_unlock(&cgroup_mutex);
4479 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4481 return 0;
4483 err_free_all:
4484 for_each_root_subsys(root, ss) {
4485 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4487 if (css) {
4488 percpu_ref_cancel_init(&css->refcnt);
4489 ss->css_free(css);
4492 mutex_unlock(&cgroup_mutex);
4493 /* Release the reference count that we took on the superblock */
4494 deactivate_super(sb);
4495 err_free_id:
4496 idr_remove(&root->cgroup_idr, cgrp->id);
4497 err_free_name:
4498 kfree(rcu_dereference_raw(cgrp->name));
4499 err_free_cgrp:
4500 kfree(cgrp);
4501 return err;
4503 err_destroy:
4504 for_each_root_subsys(root, ss) {
4505 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
4507 if (css) {
4508 percpu_ref_cancel_init(&css->refcnt);
4509 ss->css_free(css);
4512 cgroup_destroy_locked(cgrp);
4513 mutex_unlock(&cgroup_mutex);
4514 mutex_unlock(&dentry->d_inode->i_mutex);
4515 return err;
4518 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4520 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4522 /* the vfs holds inode->i_mutex already */
4523 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4527 * This is called when the refcnt of a css is confirmed to be killed.
4528 * css_tryget() is now guaranteed to fail.
4530 static void css_killed_work_fn(struct work_struct *work)
4532 struct cgroup_subsys_state *css =
4533 container_of(work, struct cgroup_subsys_state, destroy_work);
4534 struct cgroup *cgrp = css->cgroup;
4536 mutex_lock(&cgroup_mutex);
4539 * css_tryget() is guaranteed to fail now. Tell subsystems to
4540 * initate destruction.
4542 offline_css(css);
4545 * If @cgrp is marked dead, it's waiting for refs of all css's to
4546 * be disabled before proceeding to the second phase of cgroup
4547 * destruction. If we are the last one, kick it off.
4549 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
4550 cgroup_destroy_css_killed(cgrp);
4552 mutex_unlock(&cgroup_mutex);
4555 * Put the css refs from kill_css(). Each css holds an extra
4556 * reference to the cgroup's dentry and cgroup removal proceeds
4557 * regardless of css refs. On the last put of each css, whenever
4558 * that may be, the extra dentry ref is put so that dentry
4559 * destruction happens only after all css's are released.
4561 css_put(css);
4564 /* css kill confirmation processing requires process context, bounce */
4565 static void css_killed_ref_fn(struct percpu_ref *ref)
4567 struct cgroup_subsys_state *css =
4568 container_of(ref, struct cgroup_subsys_state, refcnt);
4570 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4571 queue_work(cgroup_destroy_wq, &css->destroy_work);
4575 * kill_css - destroy a css
4576 * @css: css to destroy
4578 * This function initiates destruction of @css by removing cgroup interface
4579 * files and putting its base reference. ->css_offline() will be invoked
4580 * asynchronously once css_tryget() is guaranteed to fail and when the
4581 * reference count reaches zero, @css will be released.
4583 static void kill_css(struct cgroup_subsys_state *css)
4585 cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
4588 * Killing would put the base ref, but we need to keep it alive
4589 * until after ->css_offline().
4591 css_get(css);
4594 * cgroup core guarantees that, by the time ->css_offline() is
4595 * invoked, no new css reference will be given out via
4596 * css_tryget(). We can't simply call percpu_ref_kill() and
4597 * proceed to offlining css's because percpu_ref_kill() doesn't
4598 * guarantee that the ref is seen as killed on all CPUs on return.
4600 * Use percpu_ref_kill_and_confirm() to get notifications as each
4601 * css is confirmed to be seen as killed on all CPUs.
4603 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4607 * cgroup_destroy_locked - the first stage of cgroup destruction
4608 * @cgrp: cgroup to be destroyed
4610 * css's make use of percpu refcnts whose killing latency shouldn't be
4611 * exposed to userland and are RCU protected. Also, cgroup core needs to
4612 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4613 * invoked. To satisfy all the requirements, destruction is implemented in
4614 * the following two steps.
4616 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4617 * userland visible parts and start killing the percpu refcnts of
4618 * css's. Set up so that the next stage will be kicked off once all
4619 * the percpu refcnts are confirmed to be killed.
4621 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4622 * rest of destruction. Once all cgroup references are gone, the
4623 * cgroup is RCU-freed.
4625 * This function implements s1. After this step, @cgrp is gone as far as
4626 * the userland is concerned and a new cgroup with the same name may be
4627 * created. As cgroup doesn't care about the names internally, this
4628 * doesn't cause any problem.
4630 static int cgroup_destroy_locked(struct cgroup *cgrp)
4631 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4633 struct dentry *d = cgrp->dentry;
4634 struct cgroup_event *event, *tmp;
4635 struct cgroup_subsys *ss;
4636 struct cgroup *child;
4637 bool empty;
4639 lockdep_assert_held(&d->d_inode->i_mutex);
4640 lockdep_assert_held(&cgroup_mutex);
4643 * css_set_lock synchronizes access to ->cset_links and prevents
4644 * @cgrp from being removed while __put_css_set() is in progress.
4646 read_lock(&css_set_lock);
4647 empty = list_empty(&cgrp->cset_links);
4648 read_unlock(&css_set_lock);
4649 if (!empty)
4650 return -EBUSY;
4653 * Make sure there's no live children. We can't test ->children
4654 * emptiness as dead children linger on it while being destroyed;
4655 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4657 empty = true;
4658 rcu_read_lock();
4659 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4660 empty = cgroup_is_dead(child);
4661 if (!empty)
4662 break;
4664 rcu_read_unlock();
4665 if (!empty)
4666 return -EBUSY;
4669 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4670 * will be invoked to perform the rest of destruction once the
4671 * percpu refs of all css's are confirmed to be killed.
4673 for_each_root_subsys(cgrp->root, ss) {
4674 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
4676 if (css)
4677 kill_css(css);
4681 * Mark @cgrp dead. This prevents further task migration and child
4682 * creation by disabling cgroup_lock_live_group(). Note that
4683 * CGRP_DEAD assertion is depended upon by css_next_child() to
4684 * resume iteration after dropping RCU read lock. See
4685 * css_next_child() for details.
4687 set_bit(CGRP_DEAD, &cgrp->flags);
4689 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4690 raw_spin_lock(&release_list_lock);
4691 if (!list_empty(&cgrp->release_list))
4692 list_del_init(&cgrp->release_list);
4693 raw_spin_unlock(&release_list_lock);
4696 * If @cgrp has css's attached, the second stage of cgroup
4697 * destruction is kicked off from css_killed_work_fn() after the
4698 * refs of all attached css's are killed. If @cgrp doesn't have
4699 * any css, we kick it off here.
4701 if (!cgrp->nr_css)
4702 cgroup_destroy_css_killed(cgrp);
4705 * Clear the base files and remove @cgrp directory. The removal
4706 * puts the base ref but we aren't quite done with @cgrp yet, so
4707 * hold onto it.
4709 cgroup_addrm_files(cgrp, cgroup_base_files, false);
4710 dget(d);
4711 cgroup_d_remove_dir(d);
4714 * Unregister events and notify userspace.
4715 * Notify userspace about cgroup removing only after rmdir of cgroup
4716 * directory to avoid race between userspace and kernelspace.
4718 spin_lock(&cgrp->event_list_lock);
4719 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4720 list_del_init(&event->list);
4721 schedule_work(&event->remove);
4723 spin_unlock(&cgrp->event_list_lock);
4725 return 0;
4729 * cgroup_destroy_css_killed - the second step of cgroup destruction
4730 * @work: cgroup->destroy_free_work
4732 * This function is invoked from a work item for a cgroup which is being
4733 * destroyed after all css's are offlined and performs the rest of
4734 * destruction. This is the second step of destruction described in the
4735 * comment above cgroup_destroy_locked().
4737 static void cgroup_destroy_css_killed(struct cgroup *cgrp)
4739 struct cgroup *parent = cgrp->parent;
4740 struct dentry *d = cgrp->dentry;
4742 lockdep_assert_held(&cgroup_mutex);
4744 /* delete this cgroup from parent->children */
4745 list_del_rcu(&cgrp->sibling);
4747 dput(d);
4749 set_bit(CGRP_RELEASABLE, &parent->flags);
4750 check_for_release(parent);
4753 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4755 int ret;
4757 mutex_lock(&cgroup_mutex);
4758 ret = cgroup_destroy_locked(dentry->d_fsdata);
4759 mutex_unlock(&cgroup_mutex);
4761 return ret;
4764 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4766 INIT_LIST_HEAD(&ss->cftsets);
4769 * base_cftset is embedded in subsys itself, no need to worry about
4770 * deregistration.
4772 if (ss->base_cftypes) {
4773 struct cftype *cft;
4775 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4776 cft->ss = ss;
4778 ss->base_cftset.cfts = ss->base_cftypes;
4779 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4783 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4785 struct cgroup_subsys_state *css;
4787 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4789 mutex_lock(&cgroup_mutex);
4791 /* init base cftset */
4792 cgroup_init_cftsets(ss);
4794 /* Create the top cgroup state for this subsystem */
4795 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4796 ss->root = &cgroup_dummy_root;
4797 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4798 /* We don't handle early failures gracefully */
4799 BUG_ON(IS_ERR(css));
4800 init_css(css, ss, cgroup_dummy_top);
4802 /* Update the init_css_set to contain a subsys
4803 * pointer to this state - since the subsystem is
4804 * newly registered, all tasks and hence the
4805 * init_css_set is in the subsystem's top cgroup. */
4806 init_css_set.subsys[ss->subsys_id] = css;
4808 need_forkexit_callback |= ss->fork || ss->exit;
4810 /* At system boot, before all subsystems have been
4811 * registered, no tasks have been forked, so we don't
4812 * need to invoke fork callbacks here. */
4813 BUG_ON(!list_empty(&init_task.tasks));
4815 BUG_ON(online_css(css));
4817 mutex_unlock(&cgroup_mutex);
4819 /* this function shouldn't be used with modular subsystems, since they
4820 * need to register a subsys_id, among other things */
4821 BUG_ON(ss->module);
4825 * cgroup_load_subsys: load and register a modular subsystem at runtime
4826 * @ss: the subsystem to load
4828 * This function should be called in a modular subsystem's initcall. If the
4829 * subsystem is built as a module, it will be assigned a new subsys_id and set
4830 * up for use. If the subsystem is built-in anyway, work is delegated to the
4831 * simpler cgroup_init_subsys.
4833 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4835 struct cgroup_subsys_state *css;
4836 int i, ret;
4837 struct hlist_node *tmp;
4838 struct css_set *cset;
4839 unsigned long key;
4841 /* check name and function validity */
4842 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4843 ss->css_alloc == NULL || ss->css_free == NULL)
4844 return -EINVAL;
4847 * we don't support callbacks in modular subsystems. this check is
4848 * before the ss->module check for consistency; a subsystem that could
4849 * be a module should still have no callbacks even if the user isn't
4850 * compiling it as one.
4852 if (ss->fork || ss->exit)
4853 return -EINVAL;
4856 * an optionally modular subsystem is built-in: we want to do nothing,
4857 * since cgroup_init_subsys will have already taken care of it.
4859 if (ss->module == NULL) {
4860 /* a sanity check */
4861 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4862 return 0;
4865 /* init base cftset */
4866 cgroup_init_cftsets(ss);
4868 mutex_lock(&cgroup_mutex);
4869 cgroup_subsys[ss->subsys_id] = ss;
4872 * no ss->css_alloc seems to need anything important in the ss
4873 * struct, so this can happen first (i.e. before the dummy root
4874 * attachment).
4876 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
4877 if (IS_ERR(css)) {
4878 /* failure case - need to deassign the cgroup_subsys[] slot. */
4879 cgroup_subsys[ss->subsys_id] = NULL;
4880 mutex_unlock(&cgroup_mutex);
4881 return PTR_ERR(css);
4884 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4885 ss->root = &cgroup_dummy_root;
4887 /* our new subsystem will be attached to the dummy hierarchy. */
4888 init_css(css, ss, cgroup_dummy_top);
4891 * Now we need to entangle the css into the existing css_sets. unlike
4892 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4893 * will need a new pointer to it; done by iterating the css_set_table.
4894 * furthermore, modifying the existing css_sets will corrupt the hash
4895 * table state, so each changed css_set will need its hash recomputed.
4896 * this is all done under the css_set_lock.
4898 write_lock(&css_set_lock);
4899 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4900 /* skip entries that we already rehashed */
4901 if (cset->subsys[ss->subsys_id])
4902 continue;
4903 /* remove existing entry */
4904 hash_del(&cset->hlist);
4905 /* set new value */
4906 cset->subsys[ss->subsys_id] = css;
4907 /* recompute hash and restore entry */
4908 key = css_set_hash(cset->subsys);
4909 hash_add(css_set_table, &cset->hlist, key);
4911 write_unlock(&css_set_lock);
4913 ret = online_css(css);
4914 if (ret)
4915 goto err_unload;
4917 /* success! */
4918 mutex_unlock(&cgroup_mutex);
4919 return 0;
4921 err_unload:
4922 mutex_unlock(&cgroup_mutex);
4923 /* @ss can't be mounted here as try_module_get() would fail */
4924 cgroup_unload_subsys(ss);
4925 return ret;
4927 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4930 * cgroup_unload_subsys: unload a modular subsystem
4931 * @ss: the subsystem to unload
4933 * This function should be called in a modular subsystem's exitcall. When this
4934 * function is invoked, the refcount on the subsystem's module will be 0, so
4935 * the subsystem will not be attached to any hierarchy.
4937 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4939 struct cgrp_cset_link *link;
4941 BUG_ON(ss->module == NULL);
4944 * we shouldn't be called if the subsystem is in use, and the use of
4945 * try_module_get() in rebind_subsystems() should ensure that it
4946 * doesn't start being used while we're killing it off.
4948 BUG_ON(ss->root != &cgroup_dummy_root);
4950 mutex_lock(&cgroup_mutex);
4952 offline_css(cgroup_css(cgroup_dummy_top, ss));
4954 /* deassign the subsys_id */
4955 cgroup_subsys[ss->subsys_id] = NULL;
4957 /* remove subsystem from the dummy root's list of subsystems */
4958 list_del_init(&ss->sibling);
4961 * disentangle the css from all css_sets attached to the dummy
4962 * top. as in loading, we need to pay our respects to the hashtable
4963 * gods.
4965 write_lock(&css_set_lock);
4966 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4967 struct css_set *cset = link->cset;
4968 unsigned long key;
4970 hash_del(&cset->hlist);
4971 cset->subsys[ss->subsys_id] = NULL;
4972 key = css_set_hash(cset->subsys);
4973 hash_add(css_set_table, &cset->hlist, key);
4975 write_unlock(&css_set_lock);
4978 * remove subsystem's css from the cgroup_dummy_top and free it -
4979 * need to free before marking as null because ss->css_free needs
4980 * the cgrp->subsys pointer to find their state.
4982 ss->css_free(cgroup_css(cgroup_dummy_top, ss));
4983 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
4985 mutex_unlock(&cgroup_mutex);
4987 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4990 * cgroup_init_early - cgroup initialization at system boot
4992 * Initialize cgroups at system boot, and initialize any
4993 * subsystems that request early init.
4995 int __init cgroup_init_early(void)
4997 struct cgroup_subsys *ss;
4998 int i;
5000 atomic_set(&init_css_set.refcount, 1);
5001 INIT_LIST_HEAD(&init_css_set.cgrp_links);
5002 INIT_LIST_HEAD(&init_css_set.tasks);
5003 INIT_HLIST_NODE(&init_css_set.hlist);
5004 css_set_count = 1;
5005 init_cgroup_root(&cgroup_dummy_root);
5006 cgroup_root_count = 1;
5007 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5009 init_cgrp_cset_link.cset = &init_css_set;
5010 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
5011 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
5012 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
5014 /* at bootup time, we don't worry about modular subsystems */
5015 for_each_builtin_subsys(ss, i) {
5016 BUG_ON(!ss->name);
5017 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
5018 BUG_ON(!ss->css_alloc);
5019 BUG_ON(!ss->css_free);
5020 if (ss->subsys_id != i) {
5021 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
5022 ss->name, ss->subsys_id);
5023 BUG();
5026 if (ss->early_init)
5027 cgroup_init_subsys(ss);
5029 return 0;
5033 * cgroup_init - cgroup initialization
5035 * Register cgroup filesystem and /proc file, and initialize
5036 * any subsystems that didn't request early init.
5038 int __init cgroup_init(void)
5040 struct cgroup_subsys *ss;
5041 unsigned long key;
5042 int i, err;
5044 err = bdi_init(&cgroup_backing_dev_info);
5045 if (err)
5046 return err;
5048 for_each_builtin_subsys(ss, i) {
5049 if (!ss->early_init)
5050 cgroup_init_subsys(ss);
5053 /* allocate id for the dummy hierarchy */
5054 mutex_lock(&cgroup_mutex);
5055 mutex_lock(&cgroup_root_mutex);
5057 /* Add init_css_set to the hash table */
5058 key = css_set_hash(init_css_set.subsys);
5059 hash_add(css_set_table, &init_css_set.hlist, key);
5061 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
5063 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5064 0, 1, GFP_KERNEL);
5065 BUG_ON(err < 0);
5067 mutex_unlock(&cgroup_root_mutex);
5068 mutex_unlock(&cgroup_mutex);
5070 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5071 if (!cgroup_kobj) {
5072 err = -ENOMEM;
5073 goto out;
5076 err = register_filesystem(&cgroup_fs_type);
5077 if (err < 0) {
5078 kobject_put(cgroup_kobj);
5079 goto out;
5082 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5084 out:
5085 if (err)
5086 bdi_destroy(&cgroup_backing_dev_info);
5088 return err;
5091 static int __init cgroup_wq_init(void)
5094 * There isn't much point in executing destruction path in
5095 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5096 * Use 1 for @max_active.
5098 * We would prefer to do this in cgroup_init() above, but that
5099 * is called before init_workqueues(): so leave this until after.
5101 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5102 BUG_ON(!cgroup_destroy_wq);
5103 return 0;
5105 core_initcall(cgroup_wq_init);
5108 * proc_cgroup_show()
5109 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5110 * - Used for /proc/<pid>/cgroup.
5111 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5112 * doesn't really matter if tsk->cgroup changes after we read it,
5113 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
5114 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5115 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5116 * cgroup to top_cgroup.
5119 /* TODO: Use a proper seq_file iterator */
5120 int proc_cgroup_show(struct seq_file *m, void *v)
5122 struct pid *pid;
5123 struct task_struct *tsk;
5124 char *buf;
5125 int retval;
5126 struct cgroupfs_root *root;
5128 retval = -ENOMEM;
5129 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5130 if (!buf)
5131 goto out;
5133 retval = -ESRCH;
5134 pid = m->private;
5135 tsk = get_pid_task(pid, PIDTYPE_PID);
5136 if (!tsk)
5137 goto out_free;
5139 retval = 0;
5141 mutex_lock(&cgroup_mutex);
5143 for_each_active_root(root) {
5144 struct cgroup_subsys *ss;
5145 struct cgroup *cgrp;
5146 int count = 0;
5148 seq_printf(m, "%d:", root->hierarchy_id);
5149 for_each_root_subsys(root, ss)
5150 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5151 if (strlen(root->name))
5152 seq_printf(m, "%sname=%s", count ? "," : "",
5153 root->name);
5154 seq_putc(m, ':');
5155 cgrp = task_cgroup_from_root(tsk, root);
5156 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5157 if (retval < 0)
5158 goto out_unlock;
5159 seq_puts(m, buf);
5160 seq_putc(m, '\n');
5163 out_unlock:
5164 mutex_unlock(&cgroup_mutex);
5165 put_task_struct(tsk);
5166 out_free:
5167 kfree(buf);
5168 out:
5169 return retval;
5172 /* Display information about each subsystem and each hierarchy */
5173 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5175 struct cgroup_subsys *ss;
5176 int i;
5178 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5180 * ideally we don't want subsystems moving around while we do this.
5181 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5182 * subsys/hierarchy state.
5184 mutex_lock(&cgroup_mutex);
5186 for_each_subsys(ss, i)
5187 seq_printf(m, "%s\t%d\t%d\t%d\n",
5188 ss->name, ss->root->hierarchy_id,
5189 ss->root->number_of_cgroups, !ss->disabled);
5191 mutex_unlock(&cgroup_mutex);
5192 return 0;
5195 static int cgroupstats_open(struct inode *inode, struct file *file)
5197 return single_open(file, proc_cgroupstats_show, NULL);
5200 static const struct file_operations proc_cgroupstats_operations = {
5201 .open = cgroupstats_open,
5202 .read = seq_read,
5203 .llseek = seq_lseek,
5204 .release = single_release,
5208 * cgroup_fork - attach newly forked task to its parents cgroup.
5209 * @child: pointer to task_struct of forking parent process.
5211 * Description: A task inherits its parent's cgroup at fork().
5213 * A pointer to the shared css_set was automatically copied in
5214 * fork.c by dup_task_struct(). However, we ignore that copy, since
5215 * it was not made under the protection of RCU or cgroup_mutex, so
5216 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5217 * have already changed current->cgroups, allowing the previously
5218 * referenced cgroup group to be removed and freed.
5220 * At the point that cgroup_fork() is called, 'current' is the parent
5221 * task, and the passed argument 'child' points to the child task.
5223 void cgroup_fork(struct task_struct *child)
5225 task_lock(current);
5226 get_css_set(task_css_set(current));
5227 child->cgroups = current->cgroups;
5228 task_unlock(current);
5229 INIT_LIST_HEAD(&child->cg_list);
5233 * cgroup_post_fork - called on a new task after adding it to the task list
5234 * @child: the task in question
5236 * Adds the task to the list running through its css_set if necessary and
5237 * call the subsystem fork() callbacks. Has to be after the task is
5238 * visible on the task list in case we race with the first call to
5239 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5240 * list.
5242 void cgroup_post_fork(struct task_struct *child)
5244 struct cgroup_subsys *ss;
5245 int i;
5248 * use_task_css_set_links is set to 1 before we walk the tasklist
5249 * under the tasklist_lock and we read it here after we added the child
5250 * to the tasklist under the tasklist_lock as well. If the child wasn't
5251 * yet in the tasklist when we walked through it from
5252 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5253 * should be visible now due to the paired locking and barriers implied
5254 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5255 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5256 * lock on fork.
5258 if (use_task_css_set_links) {
5259 write_lock(&css_set_lock);
5260 task_lock(child);
5261 if (list_empty(&child->cg_list))
5262 list_add(&child->cg_list, &task_css_set(child)->tasks);
5263 task_unlock(child);
5264 write_unlock(&css_set_lock);
5268 * Call ss->fork(). This must happen after @child is linked on
5269 * css_set; otherwise, @child might change state between ->fork()
5270 * and addition to css_set.
5272 if (need_forkexit_callback) {
5274 * fork/exit callbacks are supported only for builtin
5275 * subsystems, and the builtin section of the subsys
5276 * array is immutable, so we don't need to lock the
5277 * subsys array here. On the other hand, modular section
5278 * of the array can be freed at module unload, so we
5279 * can't touch that.
5281 for_each_builtin_subsys(ss, i)
5282 if (ss->fork)
5283 ss->fork(child);
5288 * cgroup_exit - detach cgroup from exiting task
5289 * @tsk: pointer to task_struct of exiting process
5290 * @run_callback: run exit callbacks?
5292 * Description: Detach cgroup from @tsk and release it.
5294 * Note that cgroups marked notify_on_release force every task in
5295 * them to take the global cgroup_mutex mutex when exiting.
5296 * This could impact scaling on very large systems. Be reluctant to
5297 * use notify_on_release cgroups where very high task exit scaling
5298 * is required on large systems.
5300 * the_top_cgroup_hack:
5302 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5304 * We call cgroup_exit() while the task is still competent to
5305 * handle notify_on_release(), then leave the task attached to the
5306 * root cgroup in each hierarchy for the remainder of its exit.
5308 * To do this properly, we would increment the reference count on
5309 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5310 * code we would add a second cgroup function call, to drop that
5311 * reference. This would just create an unnecessary hot spot on
5312 * the top_cgroup reference count, to no avail.
5314 * Normally, holding a reference to a cgroup without bumping its
5315 * count is unsafe. The cgroup could go away, or someone could
5316 * attach us to a different cgroup, decrementing the count on
5317 * the first cgroup that we never incremented. But in this case,
5318 * top_cgroup isn't going away, and either task has PF_EXITING set,
5319 * which wards off any cgroup_attach_task() attempts, or task is a failed
5320 * fork, never visible to cgroup_attach_task.
5322 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5324 struct cgroup_subsys *ss;
5325 struct css_set *cset;
5326 int i;
5329 * Unlink from the css_set task list if necessary.
5330 * Optimistically check cg_list before taking
5331 * css_set_lock
5333 if (!list_empty(&tsk->cg_list)) {
5334 write_lock(&css_set_lock);
5335 if (!list_empty(&tsk->cg_list))
5336 list_del_init(&tsk->cg_list);
5337 write_unlock(&css_set_lock);
5340 /* Reassign the task to the init_css_set. */
5341 task_lock(tsk);
5342 cset = task_css_set(tsk);
5343 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5345 if (run_callbacks && need_forkexit_callback) {
5347 * fork/exit callbacks are supported only for builtin
5348 * subsystems, see cgroup_post_fork() for details.
5350 for_each_builtin_subsys(ss, i) {
5351 if (ss->exit) {
5352 struct cgroup_subsys_state *old_css = cset->subsys[i];
5353 struct cgroup_subsys_state *css = task_css(tsk, i);
5355 ss->exit(css, old_css, tsk);
5359 task_unlock(tsk);
5361 put_css_set_taskexit(cset);
5364 static void check_for_release(struct cgroup *cgrp)
5366 if (cgroup_is_releasable(cgrp) &&
5367 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5369 * Control Group is currently removeable. If it's not
5370 * already queued for a userspace notification, queue
5371 * it now
5373 int need_schedule_work = 0;
5375 raw_spin_lock(&release_list_lock);
5376 if (!cgroup_is_dead(cgrp) &&
5377 list_empty(&cgrp->release_list)) {
5378 list_add(&cgrp->release_list, &release_list);
5379 need_schedule_work = 1;
5381 raw_spin_unlock(&release_list_lock);
5382 if (need_schedule_work)
5383 schedule_work(&release_agent_work);
5388 * Notify userspace when a cgroup is released, by running the
5389 * configured release agent with the name of the cgroup (path
5390 * relative to the root of cgroup file system) as the argument.
5392 * Most likely, this user command will try to rmdir this cgroup.
5394 * This races with the possibility that some other task will be
5395 * attached to this cgroup before it is removed, or that some other
5396 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5397 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5398 * unused, and this cgroup will be reprieved from its death sentence,
5399 * to continue to serve a useful existence. Next time it's released,
5400 * we will get notified again, if it still has 'notify_on_release' set.
5402 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5403 * means only wait until the task is successfully execve()'d. The
5404 * separate release agent task is forked by call_usermodehelper(),
5405 * then control in this thread returns here, without waiting for the
5406 * release agent task. We don't bother to wait because the caller of
5407 * this routine has no use for the exit status of the release agent
5408 * task, so no sense holding our caller up for that.
5410 static void cgroup_release_agent(struct work_struct *work)
5412 BUG_ON(work != &release_agent_work);
5413 mutex_lock(&cgroup_mutex);
5414 raw_spin_lock(&release_list_lock);
5415 while (!list_empty(&release_list)) {
5416 char *argv[3], *envp[3];
5417 int i;
5418 char *pathbuf = NULL, *agentbuf = NULL;
5419 struct cgroup *cgrp = list_entry(release_list.next,
5420 struct cgroup,
5421 release_list);
5422 list_del_init(&cgrp->release_list);
5423 raw_spin_unlock(&release_list_lock);
5424 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5425 if (!pathbuf)
5426 goto continue_free;
5427 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5428 goto continue_free;
5429 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5430 if (!agentbuf)
5431 goto continue_free;
5433 i = 0;
5434 argv[i++] = agentbuf;
5435 argv[i++] = pathbuf;
5436 argv[i] = NULL;
5438 i = 0;
5439 /* minimal command environment */
5440 envp[i++] = "HOME=/";
5441 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5442 envp[i] = NULL;
5444 /* Drop the lock while we invoke the usermode helper,
5445 * since the exec could involve hitting disk and hence
5446 * be a slow process */
5447 mutex_unlock(&cgroup_mutex);
5448 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5449 mutex_lock(&cgroup_mutex);
5450 continue_free:
5451 kfree(pathbuf);
5452 kfree(agentbuf);
5453 raw_spin_lock(&release_list_lock);
5455 raw_spin_unlock(&release_list_lock);
5456 mutex_unlock(&cgroup_mutex);
5459 static int __init cgroup_disable(char *str)
5461 struct cgroup_subsys *ss;
5462 char *token;
5463 int i;
5465 while ((token = strsep(&str, ",")) != NULL) {
5466 if (!*token)
5467 continue;
5470 * cgroup_disable, being at boot time, can't know about
5471 * module subsystems, so we don't worry about them.
5473 for_each_builtin_subsys(ss, i) {
5474 if (!strcmp(token, ss->name)) {
5475 ss->disabled = 1;
5476 printk(KERN_INFO "Disabling %s control group"
5477 " subsystem\n", ss->name);
5478 break;
5482 return 1;
5484 __setup("cgroup_disable=", cgroup_disable);
5487 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5488 * @dentry: directory dentry of interest
5489 * @ss: subsystem of interest
5491 * Must be called under RCU read lock. The caller is responsible for
5492 * pinning the returned css if it needs to be accessed outside the RCU
5493 * critical section.
5495 struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
5496 struct cgroup_subsys *ss)
5498 struct cgroup *cgrp;
5500 WARN_ON_ONCE(!rcu_read_lock_held());
5502 /* is @dentry a cgroup dir? */
5503 if (!dentry->d_inode ||
5504 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
5505 return ERR_PTR(-EBADF);
5507 cgrp = __d_cgrp(dentry);
5508 return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
5512 * css_from_id - lookup css by id
5513 * @id: the cgroup id
5514 * @ss: cgroup subsys to be looked into
5516 * Returns the css if there's valid one with @id, otherwise returns NULL.
5517 * Should be called under rcu_read_lock().
5519 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5521 struct cgroup *cgrp;
5523 rcu_lockdep_assert(rcu_read_lock_held() ||
5524 lockdep_is_held(&cgroup_mutex),
5525 "css_from_id() needs proper protection");
5527 cgrp = idr_find(&ss->root->cgroup_idr, id);
5528 if (cgrp)
5529 return cgroup_css(cgrp, ss);
5530 return NULL;
5533 #ifdef CONFIG_CGROUP_DEBUG
5534 static struct cgroup_subsys_state *
5535 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5537 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5539 if (!css)
5540 return ERR_PTR(-ENOMEM);
5542 return css;
5545 static void debug_css_free(struct cgroup_subsys_state *css)
5547 kfree(css);
5550 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5551 struct cftype *cft)
5553 return cgroup_task_count(css->cgroup);
5556 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5557 struct cftype *cft)
5559 return (u64)(unsigned long)current->cgroups;
5562 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5563 struct cftype *cft)
5565 u64 count;
5567 rcu_read_lock();
5568 count = atomic_read(&task_css_set(current)->refcount);
5569 rcu_read_unlock();
5570 return count;
5573 static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
5574 struct cftype *cft,
5575 struct seq_file *seq)
5577 struct cgrp_cset_link *link;
5578 struct css_set *cset;
5580 read_lock(&css_set_lock);
5581 rcu_read_lock();
5582 cset = rcu_dereference(current->cgroups);
5583 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5584 struct cgroup *c = link->cgrp;
5585 const char *name;
5587 if (c->dentry)
5588 name = c->dentry->d_name.name;
5589 else
5590 name = "?";
5591 seq_printf(seq, "Root %d group %s\n",
5592 c->root->hierarchy_id, name);
5594 rcu_read_unlock();
5595 read_unlock(&css_set_lock);
5596 return 0;
5599 #define MAX_TASKS_SHOWN_PER_CSS 25
5600 static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5601 struct cftype *cft, struct seq_file *seq)
5603 struct cgrp_cset_link *link;
5605 read_lock(&css_set_lock);
5606 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5607 struct css_set *cset = link->cset;
5608 struct task_struct *task;
5609 int count = 0;
5610 seq_printf(seq, "css_set %p\n", cset);
5611 list_for_each_entry(task, &cset->tasks, cg_list) {
5612 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5613 seq_puts(seq, " ...\n");
5614 break;
5615 } else {
5616 seq_printf(seq, " task %d\n",
5617 task_pid_vnr(task));
5621 read_unlock(&css_set_lock);
5622 return 0;
5625 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5627 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5630 static struct cftype debug_files[] = {
5632 .name = "taskcount",
5633 .read_u64 = debug_taskcount_read,
5637 .name = "current_css_set",
5638 .read_u64 = current_css_set_read,
5642 .name = "current_css_set_refcount",
5643 .read_u64 = current_css_set_refcount_read,
5647 .name = "current_css_set_cg_links",
5648 .read_seq_string = current_css_set_cg_links_read,
5652 .name = "cgroup_css_links",
5653 .read_seq_string = cgroup_css_links_read,
5657 .name = "releasable",
5658 .read_u64 = releasable_read,
5661 { } /* terminate */
5664 struct cgroup_subsys debug_subsys = {
5665 .name = "debug",
5666 .css_alloc = debug_css_alloc,
5667 .css_free = debug_css_free,
5668 .subsys_id = debug_subsys_id,
5669 .base_cftypes = debug_files,
5671 #endif /* CONFIG_CGROUP_DEBUG */