i40e: send correct port number to AdminQ when enabling UDP tunnels
[linux-2.6/btrfs-unstable.git] / kernel / bpf / verifier.c
blob90bf46787603a9c30c3dad3a4aa578af2b475c77
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
24 /* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 64k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
137 struct bpf_verifier_state st;
138 int insn_idx;
139 int prev_insn_idx;
140 struct bpf_verifier_stack_elem *next;
143 #define BPF_COMPLEXITY_LIMIT_INSNS 65536
144 #define BPF_COMPLEXITY_LIMIT_STACK 1024
146 struct bpf_call_arg_meta {
147 struct bpf_map *map_ptr;
148 bool raw_mode;
149 bool pkt_access;
150 int regno;
151 int access_size;
154 /* verbose verifier prints what it's seeing
155 * bpf_check() is called under lock, so no race to access these global vars
157 static u32 log_level, log_size, log_len;
158 static char *log_buf;
160 static DEFINE_MUTEX(bpf_verifier_lock);
162 /* log_level controls verbosity level of eBPF verifier.
163 * verbose() is used to dump the verification trace to the log, so the user
164 * can figure out what's wrong with the program
166 static __printf(1, 2) void verbose(const char *fmt, ...)
168 va_list args;
170 if (log_level == 0 || log_len >= log_size - 1)
171 return;
173 va_start(args, fmt);
174 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 va_end(args);
178 /* string representation of 'enum bpf_reg_type' */
179 static const char * const reg_type_str[] = {
180 [NOT_INIT] = "?",
181 [UNKNOWN_VALUE] = "inv",
182 [PTR_TO_CTX] = "ctx",
183 [CONST_PTR_TO_MAP] = "map_ptr",
184 [PTR_TO_MAP_VALUE] = "map_value",
185 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
186 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
187 [FRAME_PTR] = "fp",
188 [PTR_TO_STACK] = "fp",
189 [CONST_IMM] = "imm",
190 [PTR_TO_PACKET] = "pkt",
191 [PTR_TO_PACKET_END] = "pkt_end",
194 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195 static const char * const func_id_str[] = {
196 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
198 #undef __BPF_FUNC_STR_FN
200 static const char *func_id_name(int id)
202 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
204 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 return func_id_str[id];
206 else
207 return "unknown";
210 static void print_verifier_state(struct bpf_verifier_state *state)
212 struct bpf_reg_state *reg;
213 enum bpf_reg_type t;
214 int i;
216 for (i = 0; i < MAX_BPF_REG; i++) {
217 reg = &state->regs[i];
218 t = reg->type;
219 if (t == NOT_INIT)
220 continue;
221 verbose(" R%d=%s", i, reg_type_str[t]);
222 if (t == CONST_IMM || t == PTR_TO_STACK)
223 verbose("%lld", reg->imm);
224 else if (t == PTR_TO_PACKET)
225 verbose("(id=%d,off=%d,r=%d)",
226 reg->id, reg->off, reg->range);
227 else if (t == UNKNOWN_VALUE && reg->imm)
228 verbose("%lld", reg->imm);
229 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
230 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 t == PTR_TO_MAP_VALUE_ADJ)
232 verbose("(ks=%d,vs=%d,id=%u)",
233 reg->map_ptr->key_size,
234 reg->map_ptr->value_size,
235 reg->id);
236 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
237 verbose(",min_value=%lld",
238 (long long)reg->min_value);
239 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 verbose(",max_value=%llu",
241 (unsigned long long)reg->max_value);
243 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
244 if (state->stack_slot_type[i] == STACK_SPILL)
245 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
246 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
248 verbose("\n");
251 static const char *const bpf_class_string[] = {
252 [BPF_LD] = "ld",
253 [BPF_LDX] = "ldx",
254 [BPF_ST] = "st",
255 [BPF_STX] = "stx",
256 [BPF_ALU] = "alu",
257 [BPF_JMP] = "jmp",
258 [BPF_RET] = "BUG",
259 [BPF_ALU64] = "alu64",
262 static const char *const bpf_alu_string[16] = {
263 [BPF_ADD >> 4] = "+=",
264 [BPF_SUB >> 4] = "-=",
265 [BPF_MUL >> 4] = "*=",
266 [BPF_DIV >> 4] = "/=",
267 [BPF_OR >> 4] = "|=",
268 [BPF_AND >> 4] = "&=",
269 [BPF_LSH >> 4] = "<<=",
270 [BPF_RSH >> 4] = ">>=",
271 [BPF_NEG >> 4] = "neg",
272 [BPF_MOD >> 4] = "%=",
273 [BPF_XOR >> 4] = "^=",
274 [BPF_MOV >> 4] = "=",
275 [BPF_ARSH >> 4] = "s>>=",
276 [BPF_END >> 4] = "endian",
279 static const char *const bpf_ldst_string[] = {
280 [BPF_W >> 3] = "u32",
281 [BPF_H >> 3] = "u16",
282 [BPF_B >> 3] = "u8",
283 [BPF_DW >> 3] = "u64",
286 static const char *const bpf_jmp_string[16] = {
287 [BPF_JA >> 4] = "jmp",
288 [BPF_JEQ >> 4] = "==",
289 [BPF_JGT >> 4] = ">",
290 [BPF_JGE >> 4] = ">=",
291 [BPF_JSET >> 4] = "&",
292 [BPF_JNE >> 4] = "!=",
293 [BPF_JSGT >> 4] = "s>",
294 [BPF_JSGE >> 4] = "s>=",
295 [BPF_CALL >> 4] = "call",
296 [BPF_EXIT >> 4] = "exit",
299 static void print_bpf_insn(struct bpf_insn *insn)
301 u8 class = BPF_CLASS(insn->code);
303 if (class == BPF_ALU || class == BPF_ALU64) {
304 if (BPF_SRC(insn->code) == BPF_X)
305 verbose("(%02x) %sr%d %s %sr%d\n",
306 insn->code, class == BPF_ALU ? "(u32) " : "",
307 insn->dst_reg,
308 bpf_alu_string[BPF_OP(insn->code) >> 4],
309 class == BPF_ALU ? "(u32) " : "",
310 insn->src_reg);
311 else
312 verbose("(%02x) %sr%d %s %s%d\n",
313 insn->code, class == BPF_ALU ? "(u32) " : "",
314 insn->dst_reg,
315 bpf_alu_string[BPF_OP(insn->code) >> 4],
316 class == BPF_ALU ? "(u32) " : "",
317 insn->imm);
318 } else if (class == BPF_STX) {
319 if (BPF_MODE(insn->code) == BPF_MEM)
320 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 insn->code,
322 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 insn->dst_reg,
324 insn->off, insn->src_reg);
325 else if (BPF_MODE(insn->code) == BPF_XADD)
326 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 insn->code,
328 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 insn->dst_reg, insn->off,
330 insn->src_reg);
331 else
332 verbose("BUG_%02x\n", insn->code);
333 } else if (class == BPF_ST) {
334 if (BPF_MODE(insn->code) != BPF_MEM) {
335 verbose("BUG_st_%02x\n", insn->code);
336 return;
338 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->dst_reg,
342 insn->off, insn->imm);
343 } else if (class == BPF_LDX) {
344 if (BPF_MODE(insn->code) != BPF_MEM) {
345 verbose("BUG_ldx_%02x\n", insn->code);
346 return;
348 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 insn->code, insn->dst_reg,
350 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 insn->src_reg, insn->off);
352 } else if (class == BPF_LD) {
353 if (BPF_MODE(insn->code) == BPF_ABS) {
354 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 insn->code,
356 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 insn->imm);
358 } else if (BPF_MODE(insn->code) == BPF_IND) {
359 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 insn->code,
361 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 insn->src_reg, insn->imm);
363 } else if (BPF_MODE(insn->code) == BPF_IMM) {
364 verbose("(%02x) r%d = 0x%x\n",
365 insn->code, insn->dst_reg, insn->imm);
366 } else {
367 verbose("BUG_ld_%02x\n", insn->code);
368 return;
370 } else if (class == BPF_JMP) {
371 u8 opcode = BPF_OP(insn->code);
373 if (opcode == BPF_CALL) {
374 verbose("(%02x) call %s#%d\n", insn->code,
375 func_id_name(insn->imm), insn->imm);
376 } else if (insn->code == (BPF_JMP | BPF_JA)) {
377 verbose("(%02x) goto pc%+d\n",
378 insn->code, insn->off);
379 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 verbose("(%02x) exit\n", insn->code);
381 } else if (BPF_SRC(insn->code) == BPF_X) {
382 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 insn->code, insn->dst_reg,
384 bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 insn->src_reg, insn->off);
386 } else {
387 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 insn->code, insn->dst_reg,
389 bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 insn->imm, insn->off);
392 } else {
393 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
397 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
399 struct bpf_verifier_stack_elem *elem;
400 int insn_idx;
402 if (env->head == NULL)
403 return -1;
405 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 insn_idx = env->head->insn_idx;
407 if (prev_insn_idx)
408 *prev_insn_idx = env->head->prev_insn_idx;
409 elem = env->head->next;
410 kfree(env->head);
411 env->head = elem;
412 env->stack_size--;
413 return insn_idx;
416 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 int insn_idx, int prev_insn_idx)
419 struct bpf_verifier_stack_elem *elem;
421 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
422 if (!elem)
423 goto err;
425 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 elem->insn_idx = insn_idx;
427 elem->prev_insn_idx = prev_insn_idx;
428 elem->next = env->head;
429 env->head = elem;
430 env->stack_size++;
431 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
432 verbose("BPF program is too complex\n");
433 goto err;
435 return &elem->st;
436 err:
437 /* pop all elements and return */
438 while (pop_stack(env, NULL) >= 0);
439 return NULL;
442 #define CALLER_SAVED_REGS 6
443 static const int caller_saved[CALLER_SAVED_REGS] = {
444 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
447 static void init_reg_state(struct bpf_reg_state *regs)
449 int i;
451 for (i = 0; i < MAX_BPF_REG; i++) {
452 regs[i].type = NOT_INIT;
453 regs[i].imm = 0;
454 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
458 /* frame pointer */
459 regs[BPF_REG_FP].type = FRAME_PTR;
461 /* 1st arg to a function */
462 regs[BPF_REG_1].type = PTR_TO_CTX;
465 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
467 regs[regno].type = UNKNOWN_VALUE;
468 regs[regno].id = 0;
469 regs[regno].imm = 0;
472 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
474 BUG_ON(regno >= MAX_BPF_REG);
475 __mark_reg_unknown_value(regs, regno);
478 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
480 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
481 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
484 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
485 u32 regno)
487 mark_reg_unknown_value(regs, regno);
488 reset_reg_range_values(regs, regno);
491 enum reg_arg_type {
492 SRC_OP, /* register is used as source operand */
493 DST_OP, /* register is used as destination operand */
494 DST_OP_NO_MARK /* same as above, check only, don't mark */
497 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
498 enum reg_arg_type t)
500 if (regno >= MAX_BPF_REG) {
501 verbose("R%d is invalid\n", regno);
502 return -EINVAL;
505 if (t == SRC_OP) {
506 /* check whether register used as source operand can be read */
507 if (regs[regno].type == NOT_INIT) {
508 verbose("R%d !read_ok\n", regno);
509 return -EACCES;
511 } else {
512 /* check whether register used as dest operand can be written to */
513 if (regno == BPF_REG_FP) {
514 verbose("frame pointer is read only\n");
515 return -EACCES;
517 if (t == DST_OP)
518 mark_reg_unknown_value(regs, regno);
520 return 0;
523 static int bpf_size_to_bytes(int bpf_size)
525 if (bpf_size == BPF_W)
526 return 4;
527 else if (bpf_size == BPF_H)
528 return 2;
529 else if (bpf_size == BPF_B)
530 return 1;
531 else if (bpf_size == BPF_DW)
532 return 8;
533 else
534 return -EINVAL;
537 static bool is_spillable_regtype(enum bpf_reg_type type)
539 switch (type) {
540 case PTR_TO_MAP_VALUE:
541 case PTR_TO_MAP_VALUE_OR_NULL:
542 case PTR_TO_MAP_VALUE_ADJ:
543 case PTR_TO_STACK:
544 case PTR_TO_CTX:
545 case PTR_TO_PACKET:
546 case PTR_TO_PACKET_END:
547 case FRAME_PTR:
548 case CONST_PTR_TO_MAP:
549 return true;
550 default:
551 return false;
555 /* check_stack_read/write functions track spill/fill of registers,
556 * stack boundary and alignment are checked in check_mem_access()
558 static int check_stack_write(struct bpf_verifier_state *state, int off,
559 int size, int value_regno)
561 int i;
562 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
563 * so it's aligned access and [off, off + size) are within stack limits
566 if (value_regno >= 0 &&
567 is_spillable_regtype(state->regs[value_regno].type)) {
569 /* register containing pointer is being spilled into stack */
570 if (size != BPF_REG_SIZE) {
571 verbose("invalid size of register spill\n");
572 return -EACCES;
575 /* save register state */
576 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
577 state->regs[value_regno];
579 for (i = 0; i < BPF_REG_SIZE; i++)
580 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
581 } else {
582 /* regular write of data into stack */
583 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
584 (struct bpf_reg_state) {};
586 for (i = 0; i < size; i++)
587 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
589 return 0;
592 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
593 int value_regno)
595 u8 *slot_type;
596 int i;
598 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
600 if (slot_type[0] == STACK_SPILL) {
601 if (size != BPF_REG_SIZE) {
602 verbose("invalid size of register spill\n");
603 return -EACCES;
605 for (i = 1; i < BPF_REG_SIZE; i++) {
606 if (slot_type[i] != STACK_SPILL) {
607 verbose("corrupted spill memory\n");
608 return -EACCES;
612 if (value_regno >= 0)
613 /* restore register state from stack */
614 state->regs[value_regno] =
615 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
616 return 0;
617 } else {
618 for (i = 0; i < size; i++) {
619 if (slot_type[i] != STACK_MISC) {
620 verbose("invalid read from stack off %d+%d size %d\n",
621 off, i, size);
622 return -EACCES;
625 if (value_regno >= 0)
626 /* have read misc data from the stack */
627 mark_reg_unknown_value_and_range(state->regs,
628 value_regno);
629 return 0;
633 /* check read/write into map element returned by bpf_map_lookup_elem() */
634 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
635 int size)
637 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
639 if (off < 0 || size <= 0 || off + size > map->value_size) {
640 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
641 map->value_size, off, size);
642 return -EACCES;
644 return 0;
647 /* check read/write into an adjusted map element */
648 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
649 int off, int size)
651 struct bpf_verifier_state *state = &env->cur_state;
652 struct bpf_reg_state *reg = &state->regs[regno];
653 int err;
655 /* We adjusted the register to this map value, so we
656 * need to change off and size to min_value and max_value
657 * respectively to make sure our theoretical access will be
658 * safe.
660 if (log_level)
661 print_verifier_state(state);
662 env->varlen_map_value_access = true;
663 /* The minimum value is only important with signed
664 * comparisons where we can't assume the floor of a
665 * value is 0. If we are using signed variables for our
666 * index'es we need to make sure that whatever we use
667 * will have a set floor within our range.
669 if (reg->min_value < 0) {
670 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
671 regno);
672 return -EACCES;
674 err = check_map_access(env, regno, reg->min_value + off, size);
675 if (err) {
676 verbose("R%d min value is outside of the array range\n",
677 regno);
678 return err;
681 /* If we haven't set a max value then we need to bail
682 * since we can't be sure we won't do bad things.
684 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
685 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
686 regno);
687 return -EACCES;
689 return check_map_access(env, regno, reg->max_value + off, size);
692 #define MAX_PACKET_OFF 0xffff
694 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
695 const struct bpf_call_arg_meta *meta,
696 enum bpf_access_type t)
698 switch (env->prog->type) {
699 case BPF_PROG_TYPE_LWT_IN:
700 case BPF_PROG_TYPE_LWT_OUT:
701 /* dst_input() and dst_output() can't write for now */
702 if (t == BPF_WRITE)
703 return false;
704 /* fallthrough */
705 case BPF_PROG_TYPE_SCHED_CLS:
706 case BPF_PROG_TYPE_SCHED_ACT:
707 case BPF_PROG_TYPE_XDP:
708 case BPF_PROG_TYPE_LWT_XMIT:
709 if (meta)
710 return meta->pkt_access;
712 env->seen_direct_write = true;
713 return true;
714 default:
715 return false;
719 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
720 int size)
722 struct bpf_reg_state *regs = env->cur_state.regs;
723 struct bpf_reg_state *reg = &regs[regno];
725 off += reg->off;
726 if (off < 0 || size <= 0 || off + size > reg->range) {
727 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
728 off, size, regno, reg->id, reg->off, reg->range);
729 return -EACCES;
731 return 0;
734 /* check access to 'struct bpf_context' fields */
735 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
736 enum bpf_access_type t, enum bpf_reg_type *reg_type)
738 /* for analyzer ctx accesses are already validated and converted */
739 if (env->analyzer_ops)
740 return 0;
742 if (env->prog->aux->ops->is_valid_access &&
743 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
744 /* remember the offset of last byte accessed in ctx */
745 if (env->prog->aux->max_ctx_offset < off + size)
746 env->prog->aux->max_ctx_offset = off + size;
747 return 0;
750 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
751 return -EACCES;
754 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
756 if (env->allow_ptr_leaks)
757 return false;
759 switch (env->cur_state.regs[regno].type) {
760 case UNKNOWN_VALUE:
761 case CONST_IMM:
762 return false;
763 default:
764 return true;
768 static int check_ptr_alignment(struct bpf_verifier_env *env,
769 struct bpf_reg_state *reg, int off, int size)
771 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
772 if (off % size != 0) {
773 verbose("misaligned access off %d size %d\n",
774 off, size);
775 return -EACCES;
776 } else {
777 return 0;
781 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
782 /* misaligned access to packet is ok on x86,arm,arm64 */
783 return 0;
785 if (reg->id && size != 1) {
786 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
787 return -EACCES;
790 /* skb->data is NET_IP_ALIGN-ed */
791 if (reg->type == PTR_TO_PACKET &&
792 (NET_IP_ALIGN + reg->off + off) % size != 0) {
793 verbose("misaligned packet access off %d+%d+%d size %d\n",
794 NET_IP_ALIGN, reg->off, off, size);
795 return -EACCES;
797 return 0;
800 /* check whether memory at (regno + off) is accessible for t = (read | write)
801 * if t==write, value_regno is a register which value is stored into memory
802 * if t==read, value_regno is a register which will receive the value from memory
803 * if t==write && value_regno==-1, some unknown value is stored into memory
804 * if t==read && value_regno==-1, don't care what we read from memory
806 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
807 int bpf_size, enum bpf_access_type t,
808 int value_regno)
810 struct bpf_verifier_state *state = &env->cur_state;
811 struct bpf_reg_state *reg = &state->regs[regno];
812 int size, err = 0;
814 if (reg->type == PTR_TO_STACK)
815 off += reg->imm;
817 size = bpf_size_to_bytes(bpf_size);
818 if (size < 0)
819 return size;
821 err = check_ptr_alignment(env, reg, off, size);
822 if (err)
823 return err;
825 if (reg->type == PTR_TO_MAP_VALUE ||
826 reg->type == PTR_TO_MAP_VALUE_ADJ) {
827 if (t == BPF_WRITE && value_regno >= 0 &&
828 is_pointer_value(env, value_regno)) {
829 verbose("R%d leaks addr into map\n", value_regno);
830 return -EACCES;
833 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
834 err = check_map_access_adj(env, regno, off, size);
835 else
836 err = check_map_access(env, regno, off, size);
837 if (!err && t == BPF_READ && value_regno >= 0)
838 mark_reg_unknown_value_and_range(state->regs,
839 value_regno);
841 } else if (reg->type == PTR_TO_CTX) {
842 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
844 if (t == BPF_WRITE && value_regno >= 0 &&
845 is_pointer_value(env, value_regno)) {
846 verbose("R%d leaks addr into ctx\n", value_regno);
847 return -EACCES;
849 err = check_ctx_access(env, off, size, t, &reg_type);
850 if (!err && t == BPF_READ && value_regno >= 0) {
851 mark_reg_unknown_value_and_range(state->regs,
852 value_regno);
853 /* note that reg.[id|off|range] == 0 */
854 state->regs[value_regno].type = reg_type;
857 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
858 if (off >= 0 || off < -MAX_BPF_STACK) {
859 verbose("invalid stack off=%d size=%d\n", off, size);
860 return -EACCES;
862 if (t == BPF_WRITE) {
863 if (!env->allow_ptr_leaks &&
864 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
865 size != BPF_REG_SIZE) {
866 verbose("attempt to corrupt spilled pointer on stack\n");
867 return -EACCES;
869 err = check_stack_write(state, off, size, value_regno);
870 } else {
871 err = check_stack_read(state, off, size, value_regno);
873 } else if (state->regs[regno].type == PTR_TO_PACKET) {
874 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
875 verbose("cannot write into packet\n");
876 return -EACCES;
878 if (t == BPF_WRITE && value_regno >= 0 &&
879 is_pointer_value(env, value_regno)) {
880 verbose("R%d leaks addr into packet\n", value_regno);
881 return -EACCES;
883 err = check_packet_access(env, regno, off, size);
884 if (!err && t == BPF_READ && value_regno >= 0)
885 mark_reg_unknown_value_and_range(state->regs,
886 value_regno);
887 } else {
888 verbose("R%d invalid mem access '%s'\n",
889 regno, reg_type_str[reg->type]);
890 return -EACCES;
893 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
894 state->regs[value_regno].type == UNKNOWN_VALUE) {
895 /* 1 or 2 byte load zero-extends, determine the number of
896 * zero upper bits. Not doing it fo 4 byte load, since
897 * such values cannot be added to ptr_to_packet anyway.
899 state->regs[value_regno].imm = 64 - size * 8;
901 return err;
904 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
906 struct bpf_reg_state *regs = env->cur_state.regs;
907 int err;
909 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
910 insn->imm != 0) {
911 verbose("BPF_XADD uses reserved fields\n");
912 return -EINVAL;
915 /* check src1 operand */
916 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
917 if (err)
918 return err;
920 /* check src2 operand */
921 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
922 if (err)
923 return err;
925 /* check whether atomic_add can read the memory */
926 err = check_mem_access(env, insn->dst_reg, insn->off,
927 BPF_SIZE(insn->code), BPF_READ, -1);
928 if (err)
929 return err;
931 /* check whether atomic_add can write into the same memory */
932 return check_mem_access(env, insn->dst_reg, insn->off,
933 BPF_SIZE(insn->code), BPF_WRITE, -1);
936 /* when register 'regno' is passed into function that will read 'access_size'
937 * bytes from that pointer, make sure that it's within stack boundary
938 * and all elements of stack are initialized
940 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
941 int access_size, bool zero_size_allowed,
942 struct bpf_call_arg_meta *meta)
944 struct bpf_verifier_state *state = &env->cur_state;
945 struct bpf_reg_state *regs = state->regs;
946 int off, i;
948 if (regs[regno].type != PTR_TO_STACK) {
949 if (zero_size_allowed && access_size == 0 &&
950 regs[regno].type == CONST_IMM &&
951 regs[regno].imm == 0)
952 return 0;
954 verbose("R%d type=%s expected=%s\n", regno,
955 reg_type_str[regs[regno].type],
956 reg_type_str[PTR_TO_STACK]);
957 return -EACCES;
960 off = regs[regno].imm;
961 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
962 access_size <= 0) {
963 verbose("invalid stack type R%d off=%d access_size=%d\n",
964 regno, off, access_size);
965 return -EACCES;
968 if (meta && meta->raw_mode) {
969 meta->access_size = access_size;
970 meta->regno = regno;
971 return 0;
974 for (i = 0; i < access_size; i++) {
975 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
976 verbose("invalid indirect read from stack off %d+%d size %d\n",
977 off, i, access_size);
978 return -EACCES;
981 return 0;
984 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
985 int access_size, bool zero_size_allowed,
986 struct bpf_call_arg_meta *meta)
988 struct bpf_reg_state *regs = env->cur_state.regs;
990 switch (regs[regno].type) {
991 case PTR_TO_PACKET:
992 return check_packet_access(env, regno, 0, access_size);
993 case PTR_TO_MAP_VALUE:
994 return check_map_access(env, regno, 0, access_size);
995 case PTR_TO_MAP_VALUE_ADJ:
996 return check_map_access_adj(env, regno, 0, access_size);
997 default: /* const_imm|ptr_to_stack or invalid ptr */
998 return check_stack_boundary(env, regno, access_size,
999 zero_size_allowed, meta);
1003 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1004 enum bpf_arg_type arg_type,
1005 struct bpf_call_arg_meta *meta)
1007 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1008 enum bpf_reg_type expected_type, type = reg->type;
1009 int err = 0;
1011 if (arg_type == ARG_DONTCARE)
1012 return 0;
1014 if (type == NOT_INIT) {
1015 verbose("R%d !read_ok\n", regno);
1016 return -EACCES;
1019 if (arg_type == ARG_ANYTHING) {
1020 if (is_pointer_value(env, regno)) {
1021 verbose("R%d leaks addr into helper function\n", regno);
1022 return -EACCES;
1024 return 0;
1027 if (type == PTR_TO_PACKET &&
1028 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1029 verbose("helper access to the packet is not allowed\n");
1030 return -EACCES;
1033 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1034 arg_type == ARG_PTR_TO_MAP_VALUE) {
1035 expected_type = PTR_TO_STACK;
1036 if (type != PTR_TO_PACKET && type != expected_type)
1037 goto err_type;
1038 } else if (arg_type == ARG_CONST_SIZE ||
1039 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1040 expected_type = CONST_IMM;
1041 /* One exception. Allow UNKNOWN_VALUE registers when the
1042 * boundaries are known and don't cause unsafe memory accesses
1044 if (type != UNKNOWN_VALUE && type != expected_type)
1045 goto err_type;
1046 } else if (arg_type == ARG_CONST_MAP_PTR) {
1047 expected_type = CONST_PTR_TO_MAP;
1048 if (type != expected_type)
1049 goto err_type;
1050 } else if (arg_type == ARG_PTR_TO_CTX) {
1051 expected_type = PTR_TO_CTX;
1052 if (type != expected_type)
1053 goto err_type;
1054 } else if (arg_type == ARG_PTR_TO_MEM ||
1055 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1056 expected_type = PTR_TO_STACK;
1057 /* One exception here. In case function allows for NULL to be
1058 * passed in as argument, it's a CONST_IMM type. Final test
1059 * happens during stack boundary checking.
1061 if (type == CONST_IMM && reg->imm == 0)
1062 /* final test in check_stack_boundary() */;
1063 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1064 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1065 goto err_type;
1066 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1067 } else {
1068 verbose("unsupported arg_type %d\n", arg_type);
1069 return -EFAULT;
1072 if (arg_type == ARG_CONST_MAP_PTR) {
1073 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1074 meta->map_ptr = reg->map_ptr;
1075 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1076 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1077 * check that [key, key + map->key_size) are within
1078 * stack limits and initialized
1080 if (!meta->map_ptr) {
1081 /* in function declaration map_ptr must come before
1082 * map_key, so that it's verified and known before
1083 * we have to check map_key here. Otherwise it means
1084 * that kernel subsystem misconfigured verifier
1086 verbose("invalid map_ptr to access map->key\n");
1087 return -EACCES;
1089 if (type == PTR_TO_PACKET)
1090 err = check_packet_access(env, regno, 0,
1091 meta->map_ptr->key_size);
1092 else
1093 err = check_stack_boundary(env, regno,
1094 meta->map_ptr->key_size,
1095 false, NULL);
1096 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1097 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1098 * check [value, value + map->value_size) validity
1100 if (!meta->map_ptr) {
1101 /* kernel subsystem misconfigured verifier */
1102 verbose("invalid map_ptr to access map->value\n");
1103 return -EACCES;
1105 if (type == PTR_TO_PACKET)
1106 err = check_packet_access(env, regno, 0,
1107 meta->map_ptr->value_size);
1108 else
1109 err = check_stack_boundary(env, regno,
1110 meta->map_ptr->value_size,
1111 false, NULL);
1112 } else if (arg_type == ARG_CONST_SIZE ||
1113 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1114 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1116 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1117 * from stack pointer 'buf'. Check it
1118 * note: regno == len, regno - 1 == buf
1120 if (regno == 0) {
1121 /* kernel subsystem misconfigured verifier */
1122 verbose("ARG_CONST_SIZE cannot be first argument\n");
1123 return -EACCES;
1126 /* If the register is UNKNOWN_VALUE, the access check happens
1127 * using its boundaries. Otherwise, just use its imm
1129 if (type == UNKNOWN_VALUE) {
1130 /* For unprivileged variable accesses, disable raw
1131 * mode so that the program is required to
1132 * initialize all the memory that the helper could
1133 * just partially fill up.
1135 meta = NULL;
1137 if (reg->min_value < 0) {
1138 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1139 regno);
1140 return -EACCES;
1143 if (reg->min_value == 0) {
1144 err = check_helper_mem_access(env, regno - 1, 0,
1145 zero_size_allowed,
1146 meta);
1147 if (err)
1148 return err;
1151 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1152 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1153 regno);
1154 return -EACCES;
1156 err = check_helper_mem_access(env, regno - 1,
1157 reg->max_value,
1158 zero_size_allowed, meta);
1159 if (err)
1160 return err;
1161 } else {
1162 /* register is CONST_IMM */
1163 err = check_helper_mem_access(env, regno - 1, reg->imm,
1164 zero_size_allowed, meta);
1168 return err;
1169 err_type:
1170 verbose("R%d type=%s expected=%s\n", regno,
1171 reg_type_str[type], reg_type_str[expected_type]);
1172 return -EACCES;
1175 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1177 if (!map)
1178 return 0;
1180 /* We need a two way check, first is from map perspective ... */
1181 switch (map->map_type) {
1182 case BPF_MAP_TYPE_PROG_ARRAY:
1183 if (func_id != BPF_FUNC_tail_call)
1184 goto error;
1185 break;
1186 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1187 if (func_id != BPF_FUNC_perf_event_read &&
1188 func_id != BPF_FUNC_perf_event_output)
1189 goto error;
1190 break;
1191 case BPF_MAP_TYPE_STACK_TRACE:
1192 if (func_id != BPF_FUNC_get_stackid)
1193 goto error;
1194 break;
1195 case BPF_MAP_TYPE_CGROUP_ARRAY:
1196 if (func_id != BPF_FUNC_skb_under_cgroup &&
1197 func_id != BPF_FUNC_current_task_under_cgroup)
1198 goto error;
1199 break;
1200 default:
1201 break;
1204 /* ... and second from the function itself. */
1205 switch (func_id) {
1206 case BPF_FUNC_tail_call:
1207 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1208 goto error;
1209 break;
1210 case BPF_FUNC_perf_event_read:
1211 case BPF_FUNC_perf_event_output:
1212 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1213 goto error;
1214 break;
1215 case BPF_FUNC_get_stackid:
1216 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1217 goto error;
1218 break;
1219 case BPF_FUNC_current_task_under_cgroup:
1220 case BPF_FUNC_skb_under_cgroup:
1221 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1222 goto error;
1223 break;
1224 default:
1225 break;
1228 return 0;
1229 error:
1230 verbose("cannot pass map_type %d into func %s#%d\n",
1231 map->map_type, func_id_name(func_id), func_id);
1232 return -EINVAL;
1235 static int check_raw_mode(const struct bpf_func_proto *fn)
1237 int count = 0;
1239 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1240 count++;
1241 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1242 count++;
1243 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1244 count++;
1245 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1246 count++;
1247 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1248 count++;
1250 return count > 1 ? -EINVAL : 0;
1253 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1255 struct bpf_verifier_state *state = &env->cur_state;
1256 struct bpf_reg_state *regs = state->regs, *reg;
1257 int i;
1259 for (i = 0; i < MAX_BPF_REG; i++)
1260 if (regs[i].type == PTR_TO_PACKET ||
1261 regs[i].type == PTR_TO_PACKET_END)
1262 mark_reg_unknown_value(regs, i);
1264 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1265 if (state->stack_slot_type[i] != STACK_SPILL)
1266 continue;
1267 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1268 if (reg->type != PTR_TO_PACKET &&
1269 reg->type != PTR_TO_PACKET_END)
1270 continue;
1271 reg->type = UNKNOWN_VALUE;
1272 reg->imm = 0;
1276 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1278 struct bpf_verifier_state *state = &env->cur_state;
1279 const struct bpf_func_proto *fn = NULL;
1280 struct bpf_reg_state *regs = state->regs;
1281 struct bpf_reg_state *reg;
1282 struct bpf_call_arg_meta meta;
1283 bool changes_data;
1284 int i, err;
1286 /* find function prototype */
1287 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1288 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1289 return -EINVAL;
1292 if (env->prog->aux->ops->get_func_proto)
1293 fn = env->prog->aux->ops->get_func_proto(func_id);
1295 if (!fn) {
1296 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1297 return -EINVAL;
1300 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1301 if (!env->prog->gpl_compatible && fn->gpl_only) {
1302 verbose("cannot call GPL only function from proprietary program\n");
1303 return -EINVAL;
1306 changes_data = bpf_helper_changes_pkt_data(fn->func);
1308 memset(&meta, 0, sizeof(meta));
1309 meta.pkt_access = fn->pkt_access;
1311 /* We only support one arg being in raw mode at the moment, which
1312 * is sufficient for the helper functions we have right now.
1314 err = check_raw_mode(fn);
1315 if (err) {
1316 verbose("kernel subsystem misconfigured func %s#%d\n",
1317 func_id_name(func_id), func_id);
1318 return err;
1321 /* check args */
1322 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1323 if (err)
1324 return err;
1325 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1326 if (err)
1327 return err;
1328 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1329 if (err)
1330 return err;
1331 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1332 if (err)
1333 return err;
1334 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1335 if (err)
1336 return err;
1338 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1339 * is inferred from register state.
1341 for (i = 0; i < meta.access_size; i++) {
1342 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1343 if (err)
1344 return err;
1347 /* reset caller saved regs */
1348 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1349 reg = regs + caller_saved[i];
1350 reg->type = NOT_INIT;
1351 reg->imm = 0;
1354 /* update return register */
1355 if (fn->ret_type == RET_INTEGER) {
1356 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1357 } else if (fn->ret_type == RET_VOID) {
1358 regs[BPF_REG_0].type = NOT_INIT;
1359 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1360 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1361 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1362 /* remember map_ptr, so that check_map_access()
1363 * can check 'value_size' boundary of memory access
1364 * to map element returned from bpf_map_lookup_elem()
1366 if (meta.map_ptr == NULL) {
1367 verbose("kernel subsystem misconfigured verifier\n");
1368 return -EINVAL;
1370 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1371 regs[BPF_REG_0].id = ++env->id_gen;
1372 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1373 } else {
1374 verbose("unknown return type %d of func %s#%d\n",
1375 fn->ret_type, func_id_name(func_id), func_id);
1376 return -EINVAL;
1379 err = check_map_func_compatibility(meta.map_ptr, func_id);
1380 if (err)
1381 return err;
1383 if (changes_data)
1384 clear_all_pkt_pointers(env);
1385 return 0;
1388 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1389 struct bpf_insn *insn)
1391 struct bpf_reg_state *regs = env->cur_state.regs;
1392 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1393 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1394 struct bpf_reg_state tmp_reg;
1395 s32 imm;
1397 if (BPF_SRC(insn->code) == BPF_K) {
1398 /* pkt_ptr += imm */
1399 imm = insn->imm;
1401 add_imm:
1402 if (imm < 0) {
1403 verbose("addition of negative constant to packet pointer is not allowed\n");
1404 return -EACCES;
1406 if (imm >= MAX_PACKET_OFF ||
1407 imm + dst_reg->off >= MAX_PACKET_OFF) {
1408 verbose("constant %d is too large to add to packet pointer\n",
1409 imm);
1410 return -EACCES;
1412 /* a constant was added to pkt_ptr.
1413 * Remember it while keeping the same 'id'
1415 dst_reg->off += imm;
1416 } else {
1417 if (src_reg->type == PTR_TO_PACKET) {
1418 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1419 tmp_reg = *dst_reg; /* save r7 state */
1420 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1421 src_reg = &tmp_reg; /* pretend it's src_reg state */
1422 /* if the checks below reject it, the copy won't matter,
1423 * since we're rejecting the whole program. If all ok,
1424 * then imm22 state will be added to r7
1425 * and r7 will be pkt(id=0,off=22,r=62) while
1426 * r6 will stay as pkt(id=0,off=0,r=62)
1430 if (src_reg->type == CONST_IMM) {
1431 /* pkt_ptr += reg where reg is known constant */
1432 imm = src_reg->imm;
1433 goto add_imm;
1435 /* disallow pkt_ptr += reg
1436 * if reg is not uknown_value with guaranteed zero upper bits
1437 * otherwise pkt_ptr may overflow and addition will become
1438 * subtraction which is not allowed
1440 if (src_reg->type != UNKNOWN_VALUE) {
1441 verbose("cannot add '%s' to ptr_to_packet\n",
1442 reg_type_str[src_reg->type]);
1443 return -EACCES;
1445 if (src_reg->imm < 48) {
1446 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1447 src_reg->imm);
1448 return -EACCES;
1450 /* dst_reg stays as pkt_ptr type and since some positive
1451 * integer value was added to the pointer, increment its 'id'
1453 dst_reg->id = ++env->id_gen;
1455 /* something was added to pkt_ptr, set range and off to zero */
1456 dst_reg->off = 0;
1457 dst_reg->range = 0;
1459 return 0;
1462 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1464 struct bpf_reg_state *regs = env->cur_state.regs;
1465 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1466 u8 opcode = BPF_OP(insn->code);
1467 s64 imm_log2;
1469 /* for type == UNKNOWN_VALUE:
1470 * imm > 0 -> number of zero upper bits
1471 * imm == 0 -> don't track which is the same as all bits can be non-zero
1474 if (BPF_SRC(insn->code) == BPF_X) {
1475 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1477 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1478 dst_reg->imm && opcode == BPF_ADD) {
1479 /* dreg += sreg
1480 * where both have zero upper bits. Adding them
1481 * can only result making one more bit non-zero
1482 * in the larger value.
1483 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1484 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1486 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1487 dst_reg->imm--;
1488 return 0;
1490 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1491 dst_reg->imm && opcode == BPF_ADD) {
1492 /* dreg += sreg
1493 * where dreg has zero upper bits and sreg is const.
1494 * Adding them can only result making one more bit
1495 * non-zero in the larger value.
1497 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1498 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1499 dst_reg->imm--;
1500 return 0;
1502 /* all other cases non supported yet, just mark dst_reg */
1503 dst_reg->imm = 0;
1504 return 0;
1507 /* sign extend 32-bit imm into 64-bit to make sure that
1508 * negative values occupy bit 63. Note ilog2() would have
1509 * been incorrect, since sizeof(insn->imm) == 4
1511 imm_log2 = __ilog2_u64((long long)insn->imm);
1513 if (dst_reg->imm && opcode == BPF_LSH) {
1514 /* reg <<= imm
1515 * if reg was a result of 2 byte load, then its imm == 48
1516 * which means that upper 48 bits are zero and shifting this reg
1517 * left by 4 would mean that upper 44 bits are still zero
1519 dst_reg->imm -= insn->imm;
1520 } else if (dst_reg->imm && opcode == BPF_MUL) {
1521 /* reg *= imm
1522 * if multiplying by 14 subtract 4
1523 * This is conservative calculation of upper zero bits.
1524 * It's not trying to special case insn->imm == 1 or 0 cases
1526 dst_reg->imm -= imm_log2 + 1;
1527 } else if (opcode == BPF_AND) {
1528 /* reg &= imm */
1529 dst_reg->imm = 63 - imm_log2;
1530 } else if (dst_reg->imm && opcode == BPF_ADD) {
1531 /* reg += imm */
1532 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1533 dst_reg->imm--;
1534 } else if (opcode == BPF_RSH) {
1535 /* reg >>= imm
1536 * which means that after right shift, upper bits will be zero
1537 * note that verifier already checked that
1538 * 0 <= imm < 64 for shift insn
1540 dst_reg->imm += insn->imm;
1541 if (unlikely(dst_reg->imm > 64))
1542 /* some dumb code did:
1543 * r2 = *(u32 *)mem;
1544 * r2 >>= 32;
1545 * and all bits are zero now */
1546 dst_reg->imm = 64;
1547 } else {
1548 /* all other alu ops, means that we don't know what will
1549 * happen to the value, mark it with unknown number of zero bits
1551 dst_reg->imm = 0;
1554 if (dst_reg->imm < 0) {
1555 /* all 64 bits of the register can contain non-zero bits
1556 * and such value cannot be added to ptr_to_packet, since it
1557 * may overflow, mark it as unknown to avoid further eval
1559 dst_reg->imm = 0;
1561 return 0;
1564 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1565 struct bpf_insn *insn)
1567 struct bpf_reg_state *regs = env->cur_state.regs;
1568 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1569 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1570 u8 opcode = BPF_OP(insn->code);
1571 u64 dst_imm = dst_reg->imm;
1573 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1574 * containing ALU ops. Don't care about overflow or negative
1575 * values, just add/sub/... them; registers are in u64.
1577 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1578 dst_imm += insn->imm;
1579 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1580 src_reg->type == CONST_IMM) {
1581 dst_imm += src_reg->imm;
1582 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1583 dst_imm -= insn->imm;
1584 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1585 src_reg->type == CONST_IMM) {
1586 dst_imm -= src_reg->imm;
1587 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1588 dst_imm *= insn->imm;
1589 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1590 src_reg->type == CONST_IMM) {
1591 dst_imm *= src_reg->imm;
1592 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1593 dst_imm |= insn->imm;
1594 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1595 src_reg->type == CONST_IMM) {
1596 dst_imm |= src_reg->imm;
1597 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1598 dst_imm &= insn->imm;
1599 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1600 src_reg->type == CONST_IMM) {
1601 dst_imm &= src_reg->imm;
1602 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1603 dst_imm >>= insn->imm;
1604 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1605 src_reg->type == CONST_IMM) {
1606 dst_imm >>= src_reg->imm;
1607 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1608 dst_imm <<= insn->imm;
1609 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1610 src_reg->type == CONST_IMM) {
1611 dst_imm <<= src_reg->imm;
1612 } else {
1613 mark_reg_unknown_value(regs, insn->dst_reg);
1614 goto out;
1617 dst_reg->imm = dst_imm;
1618 out:
1619 return 0;
1622 static void check_reg_overflow(struct bpf_reg_state *reg)
1624 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1625 reg->max_value = BPF_REGISTER_MAX_RANGE;
1626 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1627 reg->min_value > BPF_REGISTER_MAX_RANGE)
1628 reg->min_value = BPF_REGISTER_MIN_RANGE;
1631 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1632 struct bpf_insn *insn)
1634 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1635 s64 min_val = BPF_REGISTER_MIN_RANGE;
1636 u64 max_val = BPF_REGISTER_MAX_RANGE;
1637 u8 opcode = BPF_OP(insn->code);
1639 dst_reg = &regs[insn->dst_reg];
1640 if (BPF_SRC(insn->code) == BPF_X) {
1641 check_reg_overflow(&regs[insn->src_reg]);
1642 min_val = regs[insn->src_reg].min_value;
1643 max_val = regs[insn->src_reg].max_value;
1645 /* If the source register is a random pointer then the
1646 * min_value/max_value values represent the range of the known
1647 * accesses into that value, not the actual min/max value of the
1648 * register itself. In this case we have to reset the reg range
1649 * values so we know it is not safe to look at.
1651 if (regs[insn->src_reg].type != CONST_IMM &&
1652 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1653 min_val = BPF_REGISTER_MIN_RANGE;
1654 max_val = BPF_REGISTER_MAX_RANGE;
1656 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1657 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1658 min_val = max_val = insn->imm;
1661 /* We don't know anything about what was done to this register, mark it
1662 * as unknown.
1664 if (min_val == BPF_REGISTER_MIN_RANGE &&
1665 max_val == BPF_REGISTER_MAX_RANGE) {
1666 reset_reg_range_values(regs, insn->dst_reg);
1667 return;
1670 /* If one of our values was at the end of our ranges then we can't just
1671 * do our normal operations to the register, we need to set the values
1672 * to the min/max since they are undefined.
1674 if (min_val == BPF_REGISTER_MIN_RANGE)
1675 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1676 if (max_val == BPF_REGISTER_MAX_RANGE)
1677 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1679 switch (opcode) {
1680 case BPF_ADD:
1681 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1682 dst_reg->min_value += min_val;
1683 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1684 dst_reg->max_value += max_val;
1685 break;
1686 case BPF_SUB:
1687 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1688 dst_reg->min_value -= min_val;
1689 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1690 dst_reg->max_value -= max_val;
1691 break;
1692 case BPF_MUL:
1693 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1694 dst_reg->min_value *= min_val;
1695 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1696 dst_reg->max_value *= max_val;
1697 break;
1698 case BPF_AND:
1699 /* Disallow AND'ing of negative numbers, ain't nobody got time
1700 * for that. Otherwise the minimum is 0 and the max is the max
1701 * value we could AND against.
1703 if (min_val < 0)
1704 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1705 else
1706 dst_reg->min_value = 0;
1707 dst_reg->max_value = max_val;
1708 break;
1709 case BPF_LSH:
1710 /* Gotta have special overflow logic here, if we're shifting
1711 * more than MAX_RANGE then just assume we have an invalid
1712 * range.
1714 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1715 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1716 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1717 dst_reg->min_value <<= min_val;
1719 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1720 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1721 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1722 dst_reg->max_value <<= max_val;
1723 break;
1724 case BPF_RSH:
1725 /* RSH by a negative number is undefined, and the BPF_RSH is an
1726 * unsigned shift, so make the appropriate casts.
1728 if (min_val < 0 || dst_reg->min_value < 0)
1729 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1730 else
1731 dst_reg->min_value =
1732 (u64)(dst_reg->min_value) >> min_val;
1733 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1734 dst_reg->max_value >>= max_val;
1735 break;
1736 default:
1737 reset_reg_range_values(regs, insn->dst_reg);
1738 break;
1741 check_reg_overflow(dst_reg);
1744 /* check validity of 32-bit and 64-bit arithmetic operations */
1745 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1747 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1748 u8 opcode = BPF_OP(insn->code);
1749 int err;
1751 if (opcode == BPF_END || opcode == BPF_NEG) {
1752 if (opcode == BPF_NEG) {
1753 if (BPF_SRC(insn->code) != 0 ||
1754 insn->src_reg != BPF_REG_0 ||
1755 insn->off != 0 || insn->imm != 0) {
1756 verbose("BPF_NEG uses reserved fields\n");
1757 return -EINVAL;
1759 } else {
1760 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1761 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1762 verbose("BPF_END uses reserved fields\n");
1763 return -EINVAL;
1767 /* check src operand */
1768 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1769 if (err)
1770 return err;
1772 if (is_pointer_value(env, insn->dst_reg)) {
1773 verbose("R%d pointer arithmetic prohibited\n",
1774 insn->dst_reg);
1775 return -EACCES;
1778 /* check dest operand */
1779 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1780 if (err)
1781 return err;
1783 } else if (opcode == BPF_MOV) {
1785 if (BPF_SRC(insn->code) == BPF_X) {
1786 if (insn->imm != 0 || insn->off != 0) {
1787 verbose("BPF_MOV uses reserved fields\n");
1788 return -EINVAL;
1791 /* check src operand */
1792 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1793 if (err)
1794 return err;
1795 } else {
1796 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1797 verbose("BPF_MOV uses reserved fields\n");
1798 return -EINVAL;
1802 /* check dest operand */
1803 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1804 if (err)
1805 return err;
1807 /* we are setting our register to something new, we need to
1808 * reset its range values.
1810 reset_reg_range_values(regs, insn->dst_reg);
1812 if (BPF_SRC(insn->code) == BPF_X) {
1813 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1814 /* case: R1 = R2
1815 * copy register state to dest reg
1817 regs[insn->dst_reg] = regs[insn->src_reg];
1818 } else {
1819 if (is_pointer_value(env, insn->src_reg)) {
1820 verbose("R%d partial copy of pointer\n",
1821 insn->src_reg);
1822 return -EACCES;
1824 mark_reg_unknown_value(regs, insn->dst_reg);
1826 } else {
1827 /* case: R = imm
1828 * remember the value we stored into this reg
1830 regs[insn->dst_reg].type = CONST_IMM;
1831 regs[insn->dst_reg].imm = insn->imm;
1832 regs[insn->dst_reg].max_value = insn->imm;
1833 regs[insn->dst_reg].min_value = insn->imm;
1836 } else if (opcode > BPF_END) {
1837 verbose("invalid BPF_ALU opcode %x\n", opcode);
1838 return -EINVAL;
1840 } else { /* all other ALU ops: and, sub, xor, add, ... */
1842 if (BPF_SRC(insn->code) == BPF_X) {
1843 if (insn->imm != 0 || insn->off != 0) {
1844 verbose("BPF_ALU uses reserved fields\n");
1845 return -EINVAL;
1847 /* check src1 operand */
1848 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1849 if (err)
1850 return err;
1851 } else {
1852 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1853 verbose("BPF_ALU uses reserved fields\n");
1854 return -EINVAL;
1858 /* check src2 operand */
1859 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1860 if (err)
1861 return err;
1863 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1864 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1865 verbose("div by zero\n");
1866 return -EINVAL;
1869 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1870 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1871 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1873 if (insn->imm < 0 || insn->imm >= size) {
1874 verbose("invalid shift %d\n", insn->imm);
1875 return -EINVAL;
1879 /* check dest operand */
1880 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1881 if (err)
1882 return err;
1884 dst_reg = &regs[insn->dst_reg];
1886 /* first we want to adjust our ranges. */
1887 adjust_reg_min_max_vals(env, insn);
1889 /* pattern match 'bpf_add Rx, imm' instruction */
1890 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1891 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1892 dst_reg->type = PTR_TO_STACK;
1893 dst_reg->imm = insn->imm;
1894 return 0;
1895 } else if (opcode == BPF_ADD &&
1896 BPF_CLASS(insn->code) == BPF_ALU64 &&
1897 (dst_reg->type == PTR_TO_PACKET ||
1898 (BPF_SRC(insn->code) == BPF_X &&
1899 regs[insn->src_reg].type == PTR_TO_PACKET))) {
1900 /* ptr_to_packet += K|X */
1901 return check_packet_ptr_add(env, insn);
1902 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1903 dst_reg->type == UNKNOWN_VALUE &&
1904 env->allow_ptr_leaks) {
1905 /* unknown += K|X */
1906 return evaluate_reg_alu(env, insn);
1907 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1908 dst_reg->type == CONST_IMM &&
1909 env->allow_ptr_leaks) {
1910 /* reg_imm += K|X */
1911 return evaluate_reg_imm_alu(env, insn);
1912 } else if (is_pointer_value(env, insn->dst_reg)) {
1913 verbose("R%d pointer arithmetic prohibited\n",
1914 insn->dst_reg);
1915 return -EACCES;
1916 } else if (BPF_SRC(insn->code) == BPF_X &&
1917 is_pointer_value(env, insn->src_reg)) {
1918 verbose("R%d pointer arithmetic prohibited\n",
1919 insn->src_reg);
1920 return -EACCES;
1923 /* If we did pointer math on a map value then just set it to our
1924 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1925 * loads to this register appropriately, otherwise just mark the
1926 * register as unknown.
1928 if (env->allow_ptr_leaks &&
1929 (dst_reg->type == PTR_TO_MAP_VALUE ||
1930 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1931 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1932 else
1933 mark_reg_unknown_value(regs, insn->dst_reg);
1936 return 0;
1939 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1940 struct bpf_reg_state *dst_reg)
1942 struct bpf_reg_state *regs = state->regs, *reg;
1943 int i;
1945 /* LLVM can generate two kind of checks:
1947 * Type 1:
1949 * r2 = r3;
1950 * r2 += 8;
1951 * if (r2 > pkt_end) goto <handle exception>
1952 * <access okay>
1954 * Where:
1955 * r2 == dst_reg, pkt_end == src_reg
1956 * r2=pkt(id=n,off=8,r=0)
1957 * r3=pkt(id=n,off=0,r=0)
1959 * Type 2:
1961 * r2 = r3;
1962 * r2 += 8;
1963 * if (pkt_end >= r2) goto <access okay>
1964 * <handle exception>
1966 * Where:
1967 * pkt_end == dst_reg, r2 == src_reg
1968 * r2=pkt(id=n,off=8,r=0)
1969 * r3=pkt(id=n,off=0,r=0)
1971 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1972 * so that range of bytes [r3, r3 + 8) is safe to access.
1975 for (i = 0; i < MAX_BPF_REG; i++)
1976 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1977 regs[i].range = dst_reg->off;
1979 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1980 if (state->stack_slot_type[i] != STACK_SPILL)
1981 continue;
1982 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1983 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1984 reg->range = dst_reg->off;
1988 /* Adjusts the register min/max values in the case that the dst_reg is the
1989 * variable register that we are working on, and src_reg is a constant or we're
1990 * simply doing a BPF_K check.
1992 static void reg_set_min_max(struct bpf_reg_state *true_reg,
1993 struct bpf_reg_state *false_reg, u64 val,
1994 u8 opcode)
1996 switch (opcode) {
1997 case BPF_JEQ:
1998 /* If this is false then we know nothing Jon Snow, but if it is
1999 * true then we know for sure.
2001 true_reg->max_value = true_reg->min_value = val;
2002 break;
2003 case BPF_JNE:
2004 /* If this is true we know nothing Jon Snow, but if it is false
2005 * we know the value for sure;
2007 false_reg->max_value = false_reg->min_value = val;
2008 break;
2009 case BPF_JGT:
2010 /* Unsigned comparison, the minimum value is 0. */
2011 false_reg->min_value = 0;
2012 /* fallthrough */
2013 case BPF_JSGT:
2014 /* If this is false then we know the maximum val is val,
2015 * otherwise we know the min val is val+1.
2017 false_reg->max_value = val;
2018 true_reg->min_value = val + 1;
2019 break;
2020 case BPF_JGE:
2021 /* Unsigned comparison, the minimum value is 0. */
2022 false_reg->min_value = 0;
2023 /* fallthrough */
2024 case BPF_JSGE:
2025 /* If this is false then we know the maximum value is val - 1,
2026 * otherwise we know the mimimum value is val.
2028 false_reg->max_value = val - 1;
2029 true_reg->min_value = val;
2030 break;
2031 default:
2032 break;
2035 check_reg_overflow(false_reg);
2036 check_reg_overflow(true_reg);
2039 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2040 * is the variable reg.
2042 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2043 struct bpf_reg_state *false_reg, u64 val,
2044 u8 opcode)
2046 switch (opcode) {
2047 case BPF_JEQ:
2048 /* If this is false then we know nothing Jon Snow, but if it is
2049 * true then we know for sure.
2051 true_reg->max_value = true_reg->min_value = val;
2052 break;
2053 case BPF_JNE:
2054 /* If this is true we know nothing Jon Snow, but if it is false
2055 * we know the value for sure;
2057 false_reg->max_value = false_reg->min_value = val;
2058 break;
2059 case BPF_JGT:
2060 /* Unsigned comparison, the minimum value is 0. */
2061 true_reg->min_value = 0;
2062 /* fallthrough */
2063 case BPF_JSGT:
2065 * If this is false, then the val is <= the register, if it is
2066 * true the register <= to the val.
2068 false_reg->min_value = val;
2069 true_reg->max_value = val - 1;
2070 break;
2071 case BPF_JGE:
2072 /* Unsigned comparison, the minimum value is 0. */
2073 true_reg->min_value = 0;
2074 /* fallthrough */
2075 case BPF_JSGE:
2076 /* If this is false then constant < register, if it is true then
2077 * the register < constant.
2079 false_reg->min_value = val + 1;
2080 true_reg->max_value = val;
2081 break;
2082 default:
2083 break;
2086 check_reg_overflow(false_reg);
2087 check_reg_overflow(true_reg);
2090 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2091 enum bpf_reg_type type)
2093 struct bpf_reg_state *reg = &regs[regno];
2095 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2096 reg->type = type;
2097 /* We don't need id from this point onwards anymore, thus we
2098 * should better reset it, so that state pruning has chances
2099 * to take effect.
2101 reg->id = 0;
2102 if (type == UNKNOWN_VALUE)
2103 __mark_reg_unknown_value(regs, regno);
2107 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2108 * be folded together at some point.
2110 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2111 enum bpf_reg_type type)
2113 struct bpf_reg_state *regs = state->regs;
2114 u32 id = regs[regno].id;
2115 int i;
2117 for (i = 0; i < MAX_BPF_REG; i++)
2118 mark_map_reg(regs, i, id, type);
2120 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2121 if (state->stack_slot_type[i] != STACK_SPILL)
2122 continue;
2123 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2127 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2128 struct bpf_insn *insn, int *insn_idx)
2130 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2131 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2132 u8 opcode = BPF_OP(insn->code);
2133 int err;
2135 if (opcode > BPF_EXIT) {
2136 verbose("invalid BPF_JMP opcode %x\n", opcode);
2137 return -EINVAL;
2140 if (BPF_SRC(insn->code) == BPF_X) {
2141 if (insn->imm != 0) {
2142 verbose("BPF_JMP uses reserved fields\n");
2143 return -EINVAL;
2146 /* check src1 operand */
2147 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2148 if (err)
2149 return err;
2151 if (is_pointer_value(env, insn->src_reg)) {
2152 verbose("R%d pointer comparison prohibited\n",
2153 insn->src_reg);
2154 return -EACCES;
2156 } else {
2157 if (insn->src_reg != BPF_REG_0) {
2158 verbose("BPF_JMP uses reserved fields\n");
2159 return -EINVAL;
2163 /* check src2 operand */
2164 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2165 if (err)
2166 return err;
2168 dst_reg = &regs[insn->dst_reg];
2170 /* detect if R == 0 where R was initialized to zero earlier */
2171 if (BPF_SRC(insn->code) == BPF_K &&
2172 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2173 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2174 if (opcode == BPF_JEQ) {
2175 /* if (imm == imm) goto pc+off;
2176 * only follow the goto, ignore fall-through
2178 *insn_idx += insn->off;
2179 return 0;
2180 } else {
2181 /* if (imm != imm) goto pc+off;
2182 * only follow fall-through branch, since
2183 * that's where the program will go
2185 return 0;
2189 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2190 if (!other_branch)
2191 return -EFAULT;
2193 /* detect if we are comparing against a constant value so we can adjust
2194 * our min/max values for our dst register.
2196 if (BPF_SRC(insn->code) == BPF_X) {
2197 if (regs[insn->src_reg].type == CONST_IMM)
2198 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2199 dst_reg, regs[insn->src_reg].imm,
2200 opcode);
2201 else if (dst_reg->type == CONST_IMM)
2202 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2203 &regs[insn->src_reg], dst_reg->imm,
2204 opcode);
2205 } else {
2206 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2207 dst_reg, insn->imm, opcode);
2210 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2211 if (BPF_SRC(insn->code) == BPF_K &&
2212 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2213 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2214 /* Mark all identical map registers in each branch as either
2215 * safe or unknown depending R == 0 or R != 0 conditional.
2217 mark_map_regs(this_branch, insn->dst_reg,
2218 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2219 mark_map_regs(other_branch, insn->dst_reg,
2220 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2221 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2222 dst_reg->type == PTR_TO_PACKET &&
2223 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2224 find_good_pkt_pointers(this_branch, dst_reg);
2225 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2226 dst_reg->type == PTR_TO_PACKET_END &&
2227 regs[insn->src_reg].type == PTR_TO_PACKET) {
2228 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2229 } else if (is_pointer_value(env, insn->dst_reg)) {
2230 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2231 return -EACCES;
2233 if (log_level)
2234 print_verifier_state(this_branch);
2235 return 0;
2238 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2239 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2241 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2243 return (struct bpf_map *) (unsigned long) imm64;
2246 /* verify BPF_LD_IMM64 instruction */
2247 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2249 struct bpf_reg_state *regs = env->cur_state.regs;
2250 int err;
2252 if (BPF_SIZE(insn->code) != BPF_DW) {
2253 verbose("invalid BPF_LD_IMM insn\n");
2254 return -EINVAL;
2256 if (insn->off != 0) {
2257 verbose("BPF_LD_IMM64 uses reserved fields\n");
2258 return -EINVAL;
2261 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2262 if (err)
2263 return err;
2265 if (insn->src_reg == 0) {
2266 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2268 regs[insn->dst_reg].type = CONST_IMM;
2269 regs[insn->dst_reg].imm = imm;
2270 return 0;
2273 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2274 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2276 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2277 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2278 return 0;
2281 static bool may_access_skb(enum bpf_prog_type type)
2283 switch (type) {
2284 case BPF_PROG_TYPE_SOCKET_FILTER:
2285 case BPF_PROG_TYPE_SCHED_CLS:
2286 case BPF_PROG_TYPE_SCHED_ACT:
2287 return true;
2288 default:
2289 return false;
2293 /* verify safety of LD_ABS|LD_IND instructions:
2294 * - they can only appear in the programs where ctx == skb
2295 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2296 * preserve R6-R9, and store return value into R0
2298 * Implicit input:
2299 * ctx == skb == R6 == CTX
2301 * Explicit input:
2302 * SRC == any register
2303 * IMM == 32-bit immediate
2305 * Output:
2306 * R0 - 8/16/32-bit skb data converted to cpu endianness
2308 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2310 struct bpf_reg_state *regs = env->cur_state.regs;
2311 u8 mode = BPF_MODE(insn->code);
2312 struct bpf_reg_state *reg;
2313 int i, err;
2315 if (!may_access_skb(env->prog->type)) {
2316 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2317 return -EINVAL;
2320 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2321 BPF_SIZE(insn->code) == BPF_DW ||
2322 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2323 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2324 return -EINVAL;
2327 /* check whether implicit source operand (register R6) is readable */
2328 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2329 if (err)
2330 return err;
2332 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2333 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2334 return -EINVAL;
2337 if (mode == BPF_IND) {
2338 /* check explicit source operand */
2339 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2340 if (err)
2341 return err;
2344 /* reset caller saved regs to unreadable */
2345 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2346 reg = regs + caller_saved[i];
2347 reg->type = NOT_INIT;
2348 reg->imm = 0;
2351 /* mark destination R0 register as readable, since it contains
2352 * the value fetched from the packet
2354 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2355 return 0;
2358 /* non-recursive DFS pseudo code
2359 * 1 procedure DFS-iterative(G,v):
2360 * 2 label v as discovered
2361 * 3 let S be a stack
2362 * 4 S.push(v)
2363 * 5 while S is not empty
2364 * 6 t <- S.pop()
2365 * 7 if t is what we're looking for:
2366 * 8 return t
2367 * 9 for all edges e in G.adjacentEdges(t) do
2368 * 10 if edge e is already labelled
2369 * 11 continue with the next edge
2370 * 12 w <- G.adjacentVertex(t,e)
2371 * 13 if vertex w is not discovered and not explored
2372 * 14 label e as tree-edge
2373 * 15 label w as discovered
2374 * 16 S.push(w)
2375 * 17 continue at 5
2376 * 18 else if vertex w is discovered
2377 * 19 label e as back-edge
2378 * 20 else
2379 * 21 // vertex w is explored
2380 * 22 label e as forward- or cross-edge
2381 * 23 label t as explored
2382 * 24 S.pop()
2384 * convention:
2385 * 0x10 - discovered
2386 * 0x11 - discovered and fall-through edge labelled
2387 * 0x12 - discovered and fall-through and branch edges labelled
2388 * 0x20 - explored
2391 enum {
2392 DISCOVERED = 0x10,
2393 EXPLORED = 0x20,
2394 FALLTHROUGH = 1,
2395 BRANCH = 2,
2398 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2400 static int *insn_stack; /* stack of insns to process */
2401 static int cur_stack; /* current stack index */
2402 static int *insn_state;
2404 /* t, w, e - match pseudo-code above:
2405 * t - index of current instruction
2406 * w - next instruction
2407 * e - edge
2409 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2411 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2412 return 0;
2414 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2415 return 0;
2417 if (w < 0 || w >= env->prog->len) {
2418 verbose("jump out of range from insn %d to %d\n", t, w);
2419 return -EINVAL;
2422 if (e == BRANCH)
2423 /* mark branch target for state pruning */
2424 env->explored_states[w] = STATE_LIST_MARK;
2426 if (insn_state[w] == 0) {
2427 /* tree-edge */
2428 insn_state[t] = DISCOVERED | e;
2429 insn_state[w] = DISCOVERED;
2430 if (cur_stack >= env->prog->len)
2431 return -E2BIG;
2432 insn_stack[cur_stack++] = w;
2433 return 1;
2434 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2435 verbose("back-edge from insn %d to %d\n", t, w);
2436 return -EINVAL;
2437 } else if (insn_state[w] == EXPLORED) {
2438 /* forward- or cross-edge */
2439 insn_state[t] = DISCOVERED | e;
2440 } else {
2441 verbose("insn state internal bug\n");
2442 return -EFAULT;
2444 return 0;
2447 /* non-recursive depth-first-search to detect loops in BPF program
2448 * loop == back-edge in directed graph
2450 static int check_cfg(struct bpf_verifier_env *env)
2452 struct bpf_insn *insns = env->prog->insnsi;
2453 int insn_cnt = env->prog->len;
2454 int ret = 0;
2455 int i, t;
2457 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2458 if (!insn_state)
2459 return -ENOMEM;
2461 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2462 if (!insn_stack) {
2463 kfree(insn_state);
2464 return -ENOMEM;
2467 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2468 insn_stack[0] = 0; /* 0 is the first instruction */
2469 cur_stack = 1;
2471 peek_stack:
2472 if (cur_stack == 0)
2473 goto check_state;
2474 t = insn_stack[cur_stack - 1];
2476 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2477 u8 opcode = BPF_OP(insns[t].code);
2479 if (opcode == BPF_EXIT) {
2480 goto mark_explored;
2481 } else if (opcode == BPF_CALL) {
2482 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2483 if (ret == 1)
2484 goto peek_stack;
2485 else if (ret < 0)
2486 goto err_free;
2487 if (t + 1 < insn_cnt)
2488 env->explored_states[t + 1] = STATE_LIST_MARK;
2489 } else if (opcode == BPF_JA) {
2490 if (BPF_SRC(insns[t].code) != BPF_K) {
2491 ret = -EINVAL;
2492 goto err_free;
2494 /* unconditional jump with single edge */
2495 ret = push_insn(t, t + insns[t].off + 1,
2496 FALLTHROUGH, env);
2497 if (ret == 1)
2498 goto peek_stack;
2499 else if (ret < 0)
2500 goto err_free;
2501 /* tell verifier to check for equivalent states
2502 * after every call and jump
2504 if (t + 1 < insn_cnt)
2505 env->explored_states[t + 1] = STATE_LIST_MARK;
2506 } else {
2507 /* conditional jump with two edges */
2508 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2509 if (ret == 1)
2510 goto peek_stack;
2511 else if (ret < 0)
2512 goto err_free;
2514 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2515 if (ret == 1)
2516 goto peek_stack;
2517 else if (ret < 0)
2518 goto err_free;
2520 } else {
2521 /* all other non-branch instructions with single
2522 * fall-through edge
2524 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2525 if (ret == 1)
2526 goto peek_stack;
2527 else if (ret < 0)
2528 goto err_free;
2531 mark_explored:
2532 insn_state[t] = EXPLORED;
2533 if (cur_stack-- <= 0) {
2534 verbose("pop stack internal bug\n");
2535 ret = -EFAULT;
2536 goto err_free;
2538 goto peek_stack;
2540 check_state:
2541 for (i = 0; i < insn_cnt; i++) {
2542 if (insn_state[i] != EXPLORED) {
2543 verbose("unreachable insn %d\n", i);
2544 ret = -EINVAL;
2545 goto err_free;
2548 ret = 0; /* cfg looks good */
2550 err_free:
2551 kfree(insn_state);
2552 kfree(insn_stack);
2553 return ret;
2556 /* the following conditions reduce the number of explored insns
2557 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2559 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2560 struct bpf_reg_state *cur)
2562 if (old->id != cur->id)
2563 return false;
2565 /* old ptr_to_packet is more conservative, since it allows smaller
2566 * range. Ex:
2567 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2568 * old(off=0,r=10) means that with range=10 the verifier proceeded
2569 * further and found no issues with the program. Now we're in the same
2570 * spot with cur(off=0,r=20), so we're safe too, since anything further
2571 * will only be looking at most 10 bytes after this pointer.
2573 if (old->off == cur->off && old->range < cur->range)
2574 return true;
2576 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2577 * since both cannot be used for packet access and safe(old)
2578 * pointer has smaller off that could be used for further
2579 * 'if (ptr > data_end)' check
2580 * Ex:
2581 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2582 * that we cannot access the packet.
2583 * The safe range is:
2584 * [ptr, ptr + range - off)
2585 * so whenever off >=range, it means no safe bytes from this pointer.
2586 * When comparing old->off <= cur->off, it means that older code
2587 * went with smaller offset and that offset was later
2588 * used to figure out the safe range after 'if (ptr > data_end)' check
2589 * Say, 'old' state was explored like:
2590 * ... R3(off=0, r=0)
2591 * R4 = R3 + 20
2592 * ... now R4(off=20,r=0) <-- here
2593 * if (R4 > data_end)
2594 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2595 * ... the code further went all the way to bpf_exit.
2596 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2597 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2598 * goes further, such cur_R4 will give larger safe packet range after
2599 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2600 * so they will be good with r=30 and we can prune the search.
2602 if (old->off <= cur->off &&
2603 old->off >= old->range && cur->off >= cur->range)
2604 return true;
2606 return false;
2609 /* compare two verifier states
2611 * all states stored in state_list are known to be valid, since
2612 * verifier reached 'bpf_exit' instruction through them
2614 * this function is called when verifier exploring different branches of
2615 * execution popped from the state stack. If it sees an old state that has
2616 * more strict register state and more strict stack state then this execution
2617 * branch doesn't need to be explored further, since verifier already
2618 * concluded that more strict state leads to valid finish.
2620 * Therefore two states are equivalent if register state is more conservative
2621 * and explored stack state is more conservative than the current one.
2622 * Example:
2623 * explored current
2624 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2625 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2627 * In other words if current stack state (one being explored) has more
2628 * valid slots than old one that already passed validation, it means
2629 * the verifier can stop exploring and conclude that current state is valid too
2631 * Similarly with registers. If explored state has register type as invalid
2632 * whereas register type in current state is meaningful, it means that
2633 * the current state will reach 'bpf_exit' instruction safely
2635 static bool states_equal(struct bpf_verifier_env *env,
2636 struct bpf_verifier_state *old,
2637 struct bpf_verifier_state *cur)
2639 bool varlen_map_access = env->varlen_map_value_access;
2640 struct bpf_reg_state *rold, *rcur;
2641 int i;
2643 for (i = 0; i < MAX_BPF_REG; i++) {
2644 rold = &old->regs[i];
2645 rcur = &cur->regs[i];
2647 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2648 continue;
2650 /* If the ranges were not the same, but everything else was and
2651 * we didn't do a variable access into a map then we are a-ok.
2653 if (!varlen_map_access &&
2654 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2655 continue;
2657 /* If we didn't map access then again we don't care about the
2658 * mismatched range values and it's ok if our old type was
2659 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2661 if (rold->type == NOT_INIT ||
2662 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2663 rcur->type != NOT_INIT))
2664 continue;
2666 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2667 compare_ptrs_to_packet(rold, rcur))
2668 continue;
2670 return false;
2673 for (i = 0; i < MAX_BPF_STACK; i++) {
2674 if (old->stack_slot_type[i] == STACK_INVALID)
2675 continue;
2676 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2677 /* Ex: old explored (safe) state has STACK_SPILL in
2678 * this stack slot, but current has has STACK_MISC ->
2679 * this verifier states are not equivalent,
2680 * return false to continue verification of this path
2682 return false;
2683 if (i % BPF_REG_SIZE)
2684 continue;
2685 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2686 &cur->spilled_regs[i / BPF_REG_SIZE],
2687 sizeof(old->spilled_regs[0])))
2688 /* when explored and current stack slot types are
2689 * the same, check that stored pointers types
2690 * are the same as well.
2691 * Ex: explored safe path could have stored
2692 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2693 * but current path has stored:
2694 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2695 * such verifier states are not equivalent.
2696 * return false to continue verification of this path
2698 return false;
2699 else
2700 continue;
2702 return true;
2705 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2707 struct bpf_verifier_state_list *new_sl;
2708 struct bpf_verifier_state_list *sl;
2710 sl = env->explored_states[insn_idx];
2711 if (!sl)
2712 /* this 'insn_idx' instruction wasn't marked, so we will not
2713 * be doing state search here
2715 return 0;
2717 while (sl != STATE_LIST_MARK) {
2718 if (states_equal(env, &sl->state, &env->cur_state))
2719 /* reached equivalent register/stack state,
2720 * prune the search
2722 return 1;
2723 sl = sl->next;
2726 /* there were no equivalent states, remember current one.
2727 * technically the current state is not proven to be safe yet,
2728 * but it will either reach bpf_exit (which means it's safe) or
2729 * it will be rejected. Since there are no loops, we won't be
2730 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2732 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2733 if (!new_sl)
2734 return -ENOMEM;
2736 /* add new state to the head of linked list */
2737 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2738 new_sl->next = env->explored_states[insn_idx];
2739 env->explored_states[insn_idx] = new_sl;
2740 return 0;
2743 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2744 int insn_idx, int prev_insn_idx)
2746 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2747 return 0;
2749 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2752 static int do_check(struct bpf_verifier_env *env)
2754 struct bpf_verifier_state *state = &env->cur_state;
2755 struct bpf_insn *insns = env->prog->insnsi;
2756 struct bpf_reg_state *regs = state->regs;
2757 int insn_cnt = env->prog->len;
2758 int insn_idx, prev_insn_idx = 0;
2759 int insn_processed = 0;
2760 bool do_print_state = false;
2762 init_reg_state(regs);
2763 insn_idx = 0;
2764 env->varlen_map_value_access = false;
2765 for (;;) {
2766 struct bpf_insn *insn;
2767 u8 class;
2768 int err;
2770 if (insn_idx >= insn_cnt) {
2771 verbose("invalid insn idx %d insn_cnt %d\n",
2772 insn_idx, insn_cnt);
2773 return -EFAULT;
2776 insn = &insns[insn_idx];
2777 class = BPF_CLASS(insn->code);
2779 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2780 verbose("BPF program is too large. Processed %d insn\n",
2781 insn_processed);
2782 return -E2BIG;
2785 err = is_state_visited(env, insn_idx);
2786 if (err < 0)
2787 return err;
2788 if (err == 1) {
2789 /* found equivalent state, can prune the search */
2790 if (log_level) {
2791 if (do_print_state)
2792 verbose("\nfrom %d to %d: safe\n",
2793 prev_insn_idx, insn_idx);
2794 else
2795 verbose("%d: safe\n", insn_idx);
2797 goto process_bpf_exit;
2800 if (log_level && do_print_state) {
2801 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2802 print_verifier_state(&env->cur_state);
2803 do_print_state = false;
2806 if (log_level) {
2807 verbose("%d: ", insn_idx);
2808 print_bpf_insn(insn);
2811 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2812 if (err)
2813 return err;
2815 if (class == BPF_ALU || class == BPF_ALU64) {
2816 err = check_alu_op(env, insn);
2817 if (err)
2818 return err;
2820 } else if (class == BPF_LDX) {
2821 enum bpf_reg_type *prev_src_type, src_reg_type;
2823 /* check for reserved fields is already done */
2825 /* check src operand */
2826 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2827 if (err)
2828 return err;
2830 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2831 if (err)
2832 return err;
2834 src_reg_type = regs[insn->src_reg].type;
2836 /* check that memory (src_reg + off) is readable,
2837 * the state of dst_reg will be updated by this func
2839 err = check_mem_access(env, insn->src_reg, insn->off,
2840 BPF_SIZE(insn->code), BPF_READ,
2841 insn->dst_reg);
2842 if (err)
2843 return err;
2845 if (BPF_SIZE(insn->code) != BPF_W &&
2846 BPF_SIZE(insn->code) != BPF_DW) {
2847 insn_idx++;
2848 continue;
2851 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2853 if (*prev_src_type == NOT_INIT) {
2854 /* saw a valid insn
2855 * dst_reg = *(u32 *)(src_reg + off)
2856 * save type to validate intersecting paths
2858 *prev_src_type = src_reg_type;
2860 } else if (src_reg_type != *prev_src_type &&
2861 (src_reg_type == PTR_TO_CTX ||
2862 *prev_src_type == PTR_TO_CTX)) {
2863 /* ABuser program is trying to use the same insn
2864 * dst_reg = *(u32*) (src_reg + off)
2865 * with different pointer types:
2866 * src_reg == ctx in one branch and
2867 * src_reg == stack|map in some other branch.
2868 * Reject it.
2870 verbose("same insn cannot be used with different pointers\n");
2871 return -EINVAL;
2874 } else if (class == BPF_STX) {
2875 enum bpf_reg_type *prev_dst_type, dst_reg_type;
2877 if (BPF_MODE(insn->code) == BPF_XADD) {
2878 err = check_xadd(env, insn);
2879 if (err)
2880 return err;
2881 insn_idx++;
2882 continue;
2885 /* check src1 operand */
2886 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2887 if (err)
2888 return err;
2889 /* check src2 operand */
2890 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2891 if (err)
2892 return err;
2894 dst_reg_type = regs[insn->dst_reg].type;
2896 /* check that memory (dst_reg + off) is writeable */
2897 err = check_mem_access(env, insn->dst_reg, insn->off,
2898 BPF_SIZE(insn->code), BPF_WRITE,
2899 insn->src_reg);
2900 if (err)
2901 return err;
2903 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2905 if (*prev_dst_type == NOT_INIT) {
2906 *prev_dst_type = dst_reg_type;
2907 } else if (dst_reg_type != *prev_dst_type &&
2908 (dst_reg_type == PTR_TO_CTX ||
2909 *prev_dst_type == PTR_TO_CTX)) {
2910 verbose("same insn cannot be used with different pointers\n");
2911 return -EINVAL;
2914 } else if (class == BPF_ST) {
2915 if (BPF_MODE(insn->code) != BPF_MEM ||
2916 insn->src_reg != BPF_REG_0) {
2917 verbose("BPF_ST uses reserved fields\n");
2918 return -EINVAL;
2920 /* check src operand */
2921 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2922 if (err)
2923 return err;
2925 /* check that memory (dst_reg + off) is writeable */
2926 err = check_mem_access(env, insn->dst_reg, insn->off,
2927 BPF_SIZE(insn->code), BPF_WRITE,
2928 -1);
2929 if (err)
2930 return err;
2932 } else if (class == BPF_JMP) {
2933 u8 opcode = BPF_OP(insn->code);
2935 if (opcode == BPF_CALL) {
2936 if (BPF_SRC(insn->code) != BPF_K ||
2937 insn->off != 0 ||
2938 insn->src_reg != BPF_REG_0 ||
2939 insn->dst_reg != BPF_REG_0) {
2940 verbose("BPF_CALL uses reserved fields\n");
2941 return -EINVAL;
2944 err = check_call(env, insn->imm, insn_idx);
2945 if (err)
2946 return err;
2948 } else if (opcode == BPF_JA) {
2949 if (BPF_SRC(insn->code) != BPF_K ||
2950 insn->imm != 0 ||
2951 insn->src_reg != BPF_REG_0 ||
2952 insn->dst_reg != BPF_REG_0) {
2953 verbose("BPF_JA uses reserved fields\n");
2954 return -EINVAL;
2957 insn_idx += insn->off + 1;
2958 continue;
2960 } else if (opcode == BPF_EXIT) {
2961 if (BPF_SRC(insn->code) != BPF_K ||
2962 insn->imm != 0 ||
2963 insn->src_reg != BPF_REG_0 ||
2964 insn->dst_reg != BPF_REG_0) {
2965 verbose("BPF_EXIT uses reserved fields\n");
2966 return -EINVAL;
2969 /* eBPF calling convetion is such that R0 is used
2970 * to return the value from eBPF program.
2971 * Make sure that it's readable at this time
2972 * of bpf_exit, which means that program wrote
2973 * something into it earlier
2975 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2976 if (err)
2977 return err;
2979 if (is_pointer_value(env, BPF_REG_0)) {
2980 verbose("R0 leaks addr as return value\n");
2981 return -EACCES;
2984 process_bpf_exit:
2985 insn_idx = pop_stack(env, &prev_insn_idx);
2986 if (insn_idx < 0) {
2987 break;
2988 } else {
2989 do_print_state = true;
2990 continue;
2992 } else {
2993 err = check_cond_jmp_op(env, insn, &insn_idx);
2994 if (err)
2995 return err;
2997 } else if (class == BPF_LD) {
2998 u8 mode = BPF_MODE(insn->code);
3000 if (mode == BPF_ABS || mode == BPF_IND) {
3001 err = check_ld_abs(env, insn);
3002 if (err)
3003 return err;
3005 } else if (mode == BPF_IMM) {
3006 err = check_ld_imm(env, insn);
3007 if (err)
3008 return err;
3010 insn_idx++;
3011 } else {
3012 verbose("invalid BPF_LD mode\n");
3013 return -EINVAL;
3015 reset_reg_range_values(regs, insn->dst_reg);
3016 } else {
3017 verbose("unknown insn class %d\n", class);
3018 return -EINVAL;
3021 insn_idx++;
3024 verbose("processed %d insns\n", insn_processed);
3025 return 0;
3028 static int check_map_prog_compatibility(struct bpf_map *map,
3029 struct bpf_prog *prog)
3032 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
3033 (map->map_type == BPF_MAP_TYPE_HASH ||
3034 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
3035 (map->map_flags & BPF_F_NO_PREALLOC)) {
3036 verbose("perf_event programs can only use preallocated hash map\n");
3037 return -EINVAL;
3039 return 0;
3042 /* look for pseudo eBPF instructions that access map FDs and
3043 * replace them with actual map pointers
3045 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3047 struct bpf_insn *insn = env->prog->insnsi;
3048 int insn_cnt = env->prog->len;
3049 int i, j, err;
3051 err = bpf_prog_calc_tag(env->prog);
3052 if (err)
3053 return err;
3055 for (i = 0; i < insn_cnt; i++, insn++) {
3056 if (BPF_CLASS(insn->code) == BPF_LDX &&
3057 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3058 verbose("BPF_LDX uses reserved fields\n");
3059 return -EINVAL;
3062 if (BPF_CLASS(insn->code) == BPF_STX &&
3063 ((BPF_MODE(insn->code) != BPF_MEM &&
3064 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3065 verbose("BPF_STX uses reserved fields\n");
3066 return -EINVAL;
3069 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3070 struct bpf_map *map;
3071 struct fd f;
3073 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3074 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3075 insn[1].off != 0) {
3076 verbose("invalid bpf_ld_imm64 insn\n");
3077 return -EINVAL;
3080 if (insn->src_reg == 0)
3081 /* valid generic load 64-bit imm */
3082 goto next_insn;
3084 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3085 verbose("unrecognized bpf_ld_imm64 insn\n");
3086 return -EINVAL;
3089 f = fdget(insn->imm);
3090 map = __bpf_map_get(f);
3091 if (IS_ERR(map)) {
3092 verbose("fd %d is not pointing to valid bpf_map\n",
3093 insn->imm);
3094 return PTR_ERR(map);
3097 err = check_map_prog_compatibility(map, env->prog);
3098 if (err) {
3099 fdput(f);
3100 return err;
3103 /* store map pointer inside BPF_LD_IMM64 instruction */
3104 insn[0].imm = (u32) (unsigned long) map;
3105 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3107 /* check whether we recorded this map already */
3108 for (j = 0; j < env->used_map_cnt; j++)
3109 if (env->used_maps[j] == map) {
3110 fdput(f);
3111 goto next_insn;
3114 if (env->used_map_cnt >= MAX_USED_MAPS) {
3115 fdput(f);
3116 return -E2BIG;
3119 /* hold the map. If the program is rejected by verifier,
3120 * the map will be released by release_maps() or it
3121 * will be used by the valid program until it's unloaded
3122 * and all maps are released in free_bpf_prog_info()
3124 map = bpf_map_inc(map, false);
3125 if (IS_ERR(map)) {
3126 fdput(f);
3127 return PTR_ERR(map);
3129 env->used_maps[env->used_map_cnt++] = map;
3131 fdput(f);
3132 next_insn:
3133 insn++;
3134 i++;
3138 /* now all pseudo BPF_LD_IMM64 instructions load valid
3139 * 'struct bpf_map *' into a register instead of user map_fd.
3140 * These pointers will be used later by verifier to validate map access.
3142 return 0;
3145 /* drop refcnt of maps used by the rejected program */
3146 static void release_maps(struct bpf_verifier_env *env)
3148 int i;
3150 for (i = 0; i < env->used_map_cnt; i++)
3151 bpf_map_put(env->used_maps[i]);
3154 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3155 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3157 struct bpf_insn *insn = env->prog->insnsi;
3158 int insn_cnt = env->prog->len;
3159 int i;
3161 for (i = 0; i < insn_cnt; i++, insn++)
3162 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3163 insn->src_reg = 0;
3166 /* single env->prog->insni[off] instruction was replaced with the range
3167 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3168 * [0, off) and [off, end) to new locations, so the patched range stays zero
3170 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3171 u32 off, u32 cnt)
3173 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3175 if (cnt == 1)
3176 return 0;
3177 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3178 if (!new_data)
3179 return -ENOMEM;
3180 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3181 memcpy(new_data + off + cnt - 1, old_data + off,
3182 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3183 env->insn_aux_data = new_data;
3184 vfree(old_data);
3185 return 0;
3188 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3189 const struct bpf_insn *patch, u32 len)
3191 struct bpf_prog *new_prog;
3193 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3194 if (!new_prog)
3195 return NULL;
3196 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3197 return NULL;
3198 return new_prog;
3201 /* convert load instructions that access fields of 'struct __sk_buff'
3202 * into sequence of instructions that access fields of 'struct sk_buff'
3204 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3206 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3207 const int insn_cnt = env->prog->len;
3208 struct bpf_insn insn_buf[16], *insn;
3209 struct bpf_prog *new_prog;
3210 enum bpf_access_type type;
3211 int i, cnt, delta = 0;
3213 if (ops->gen_prologue) {
3214 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3215 env->prog);
3216 if (cnt >= ARRAY_SIZE(insn_buf)) {
3217 verbose("bpf verifier is misconfigured\n");
3218 return -EINVAL;
3219 } else if (cnt) {
3220 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3221 if (!new_prog)
3222 return -ENOMEM;
3224 env->prog = new_prog;
3225 delta += cnt - 1;
3229 if (!ops->convert_ctx_access)
3230 return 0;
3232 insn = env->prog->insnsi + delta;
3234 for (i = 0; i < insn_cnt; i++, insn++) {
3235 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3236 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3237 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3238 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3239 type = BPF_READ;
3240 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3241 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3242 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3243 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3244 type = BPF_WRITE;
3245 else
3246 continue;
3248 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3249 continue;
3251 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3252 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3253 verbose("bpf verifier is misconfigured\n");
3254 return -EINVAL;
3257 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3258 if (!new_prog)
3259 return -ENOMEM;
3261 delta += cnt - 1;
3263 /* keep walking new program and skip insns we just inserted */
3264 env->prog = new_prog;
3265 insn = new_prog->insnsi + i + delta;
3268 return 0;
3271 /* fixup insn->imm field of bpf_call instructions
3272 * and inline eligible helpers as explicit sequence of BPF instructions
3274 * this function is called after eBPF program passed verification
3276 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3278 struct bpf_prog *prog = env->prog;
3279 struct bpf_insn *insn = prog->insnsi;
3280 const struct bpf_func_proto *fn;
3281 const int insn_cnt = prog->len;
3282 struct bpf_insn insn_buf[16];
3283 struct bpf_prog *new_prog;
3284 struct bpf_map *map_ptr;
3285 int i, cnt, delta = 0;
3287 for (i = 0; i < insn_cnt; i++, insn++) {
3288 if (insn->code != (BPF_JMP | BPF_CALL))
3289 continue;
3291 if (insn->imm == BPF_FUNC_get_route_realm)
3292 prog->dst_needed = 1;
3293 if (insn->imm == BPF_FUNC_get_prandom_u32)
3294 bpf_user_rnd_init_once();
3295 if (insn->imm == BPF_FUNC_xdp_adjust_head)
3296 prog->xdp_adjust_head = 1;
3297 if (insn->imm == BPF_FUNC_tail_call) {
3298 /* mark bpf_tail_call as different opcode to avoid
3299 * conditional branch in the interpeter for every normal
3300 * call and to prevent accidental JITing by JIT compiler
3301 * that doesn't support bpf_tail_call yet
3303 insn->imm = 0;
3304 insn->code |= BPF_X;
3305 continue;
3308 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3309 map_ptr = env->insn_aux_data[i + delta].map_ptr;
3310 if (!map_ptr->ops->map_gen_lookup)
3311 goto patch_call_imm;
3313 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3314 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3315 verbose("bpf verifier is misconfigured\n");
3316 return -EINVAL;
3319 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3320 cnt);
3321 if (!new_prog)
3322 return -ENOMEM;
3324 delta += cnt - 1;
3326 /* keep walking new program and skip insns we just inserted */
3327 env->prog = prog = new_prog;
3328 insn = new_prog->insnsi + i + delta;
3329 continue;
3332 patch_call_imm:
3333 fn = prog->aux->ops->get_func_proto(insn->imm);
3334 /* all functions that have prototype and verifier allowed
3335 * programs to call them, must be real in-kernel functions
3337 if (!fn->func) {
3338 verbose("kernel subsystem misconfigured func %s#%d\n",
3339 func_id_name(insn->imm), insn->imm);
3340 return -EFAULT;
3342 insn->imm = fn->func - __bpf_call_base;
3345 return 0;
3348 static void free_states(struct bpf_verifier_env *env)
3350 struct bpf_verifier_state_list *sl, *sln;
3351 int i;
3353 if (!env->explored_states)
3354 return;
3356 for (i = 0; i < env->prog->len; i++) {
3357 sl = env->explored_states[i];
3359 if (sl)
3360 while (sl != STATE_LIST_MARK) {
3361 sln = sl->next;
3362 kfree(sl);
3363 sl = sln;
3367 kfree(env->explored_states);
3370 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3372 char __user *log_ubuf = NULL;
3373 struct bpf_verifier_env *env;
3374 int ret = -EINVAL;
3376 /* 'struct bpf_verifier_env' can be global, but since it's not small,
3377 * allocate/free it every time bpf_check() is called
3379 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3380 if (!env)
3381 return -ENOMEM;
3383 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3384 (*prog)->len);
3385 ret = -ENOMEM;
3386 if (!env->insn_aux_data)
3387 goto err_free_env;
3388 env->prog = *prog;
3390 /* grab the mutex to protect few globals used by verifier */
3391 mutex_lock(&bpf_verifier_lock);
3393 if (attr->log_level || attr->log_buf || attr->log_size) {
3394 /* user requested verbose verifier output
3395 * and supplied buffer to store the verification trace
3397 log_level = attr->log_level;
3398 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3399 log_size = attr->log_size;
3400 log_len = 0;
3402 ret = -EINVAL;
3403 /* log_* values have to be sane */
3404 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3405 log_level == 0 || log_ubuf == NULL)
3406 goto err_unlock;
3408 ret = -ENOMEM;
3409 log_buf = vmalloc(log_size);
3410 if (!log_buf)
3411 goto err_unlock;
3412 } else {
3413 log_level = 0;
3416 ret = replace_map_fd_with_map_ptr(env);
3417 if (ret < 0)
3418 goto skip_full_check;
3420 env->explored_states = kcalloc(env->prog->len,
3421 sizeof(struct bpf_verifier_state_list *),
3422 GFP_USER);
3423 ret = -ENOMEM;
3424 if (!env->explored_states)
3425 goto skip_full_check;
3427 ret = check_cfg(env);
3428 if (ret < 0)
3429 goto skip_full_check;
3431 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3433 ret = do_check(env);
3435 skip_full_check:
3436 while (pop_stack(env, NULL) >= 0);
3437 free_states(env);
3439 if (ret == 0)
3440 /* program is valid, convert *(u32*)(ctx + off) accesses */
3441 ret = convert_ctx_accesses(env);
3443 if (ret == 0)
3444 ret = fixup_bpf_calls(env);
3446 if (log_level && log_len >= log_size - 1) {
3447 BUG_ON(log_len >= log_size);
3448 /* verifier log exceeded user supplied buffer */
3449 ret = -ENOSPC;
3450 /* fall through to return what was recorded */
3453 /* copy verifier log back to user space including trailing zero */
3454 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3455 ret = -EFAULT;
3456 goto free_log_buf;
3459 if (ret == 0 && env->used_map_cnt) {
3460 /* if program passed verifier, update used_maps in bpf_prog_info */
3461 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3462 sizeof(env->used_maps[0]),
3463 GFP_KERNEL);
3465 if (!env->prog->aux->used_maps) {
3466 ret = -ENOMEM;
3467 goto free_log_buf;
3470 memcpy(env->prog->aux->used_maps, env->used_maps,
3471 sizeof(env->used_maps[0]) * env->used_map_cnt);
3472 env->prog->aux->used_map_cnt = env->used_map_cnt;
3474 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3475 * bpf_ld_imm64 instructions
3477 convert_pseudo_ld_imm64(env);
3480 free_log_buf:
3481 if (log_level)
3482 vfree(log_buf);
3483 if (!env->prog->aux->used_maps)
3484 /* if we didn't copy map pointers into bpf_prog_info, release
3485 * them now. Otherwise free_bpf_prog_info() will release them.
3487 release_maps(env);
3488 *prog = env->prog;
3489 err_unlock:
3490 mutex_unlock(&bpf_verifier_lock);
3491 vfree(env->insn_aux_data);
3492 err_free_env:
3493 kfree(env);
3494 return ret;
3497 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3498 void *priv)
3500 struct bpf_verifier_env *env;
3501 int ret;
3503 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3504 if (!env)
3505 return -ENOMEM;
3507 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3508 prog->len);
3509 ret = -ENOMEM;
3510 if (!env->insn_aux_data)
3511 goto err_free_env;
3512 env->prog = prog;
3513 env->analyzer_ops = ops;
3514 env->analyzer_priv = priv;
3516 /* grab the mutex to protect few globals used by verifier */
3517 mutex_lock(&bpf_verifier_lock);
3519 log_level = 0;
3521 env->explored_states = kcalloc(env->prog->len,
3522 sizeof(struct bpf_verifier_state_list *),
3523 GFP_KERNEL);
3524 ret = -ENOMEM;
3525 if (!env->explored_states)
3526 goto skip_full_check;
3528 ret = check_cfg(env);
3529 if (ret < 0)
3530 goto skip_full_check;
3532 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3534 ret = do_check(env);
3536 skip_full_check:
3537 while (pop_stack(env, NULL) >= 0);
3538 free_states(env);
3540 mutex_unlock(&bpf_verifier_lock);
3541 vfree(env->insn_aux_data);
3542 err_free_env:
3543 kfree(env);
3544 return ret;
3546 EXPORT_SYMBOL_GPL(bpf_analyzer);