ARM: imx: clk-v610: Add clock for I2C2 and I2C3
[linux-2.6/btrfs-unstable.git] / kernel / time / hrtimer.c
blob76d4bd962b19b3bab345460676954ef6f7c14568
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/timer.h>
57 #include "tick-internal.h"
60 * The timer bases:
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 .resolution = KTIME_LOW_RES,
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
83 .resolution = KTIME_LOW_RES,
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
89 .resolution = KTIME_LOW_RES,
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 .resolution = KTIME_LOW_RES,
100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
104 [CLOCK_TAI] = HRTIMER_BASE_TAI,
107 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
109 return hrtimer_clock_to_base_table[clock_id];
114 * Get the coarse grained time at the softirq based on xtime and
115 * wall_to_monotonic.
117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
119 ktime_t xtim, mono, boot, tai;
120 ktime_t off_real, off_boot, off_tai;
122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 boot = ktime_add(mono, off_boot);
124 xtim = ktime_add(mono, off_real);
125 tai = ktime_add(mono, off_tai);
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
137 #ifdef CONFIG_SMP
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 unsigned long *flags)
155 struct hrtimer_clock_base *base;
157 for (;;) {
158 base = timer->base;
159 if (likely(base != NULL)) {
160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 if (likely(base == timer->base))
162 return base;
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
166 cpu_relax();
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
175 * Called with cpu_base->lock of target cpu held.
177 static int
178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 ktime_t expires;
183 if (!new_base->cpu_base->hres_active)
184 return 0;
186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 return 0;
190 #endif
194 * Switch the timer base to the current CPU when possible.
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 int pinned)
200 struct hrtimer_clock_base *new_base;
201 struct hrtimer_cpu_base *new_cpu_base;
202 int this_cpu = smp_processor_id();
203 int cpu = get_nohz_timer_target(pinned);
204 int basenum = base->index;
206 again:
207 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 new_base = &new_cpu_base->clock_base[basenum];
210 if (base != new_base) {
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
220 if (unlikely(hrtimer_callback_running(timer)))
221 return base;
223 /* See the comment in lock_timer_base() */
224 timer->base = NULL;
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 cpu = this_cpu;
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
232 timer->base = base;
233 goto again;
235 timer->base = new_base;
236 } else {
237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 cpu = this_cpu;
239 goto again;
242 return new_base;
245 #else /* CONFIG_SMP */
247 static inline struct hrtimer_clock_base *
248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
250 struct hrtimer_clock_base *base = timer->base;
252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
254 return base;
257 # define switch_hrtimer_base(t, b, p) (b)
259 #endif /* !CONFIG_SMP */
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
265 #if BITS_PER_LONG < 64
267 * Divide a ktime value by a nanosecond value
269 u64 __ktime_divns(const ktime_t kt, s64 div)
271 u64 dclc;
272 int sft = 0;
274 dclc = ktime_to_ns(kt);
275 /* Make sure the divisor is less than 2^32: */
276 while (div >> 32) {
277 sft++;
278 div >>= 1;
280 dclc >>= sft;
281 do_div(dclc, (unsigned long) div);
283 return dclc;
285 EXPORT_SYMBOL_GPL(__ktime_divns);
286 #endif /* BITS_PER_LONG >= 64 */
289 * Add two ktime values and do a safety check for overflow:
291 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
293 ktime_t res = ktime_add(lhs, rhs);
296 * We use KTIME_SEC_MAX here, the maximum timeout which we can
297 * return to user space in a timespec:
299 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
300 res = ktime_set(KTIME_SEC_MAX, 0);
302 return res;
305 EXPORT_SYMBOL_GPL(ktime_add_safe);
307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
309 static struct debug_obj_descr hrtimer_debug_descr;
311 static void *hrtimer_debug_hint(void *addr)
313 return ((struct hrtimer *) addr)->function;
317 * fixup_init is called when:
318 * - an active object is initialized
320 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
322 struct hrtimer *timer = addr;
324 switch (state) {
325 case ODEBUG_STATE_ACTIVE:
326 hrtimer_cancel(timer);
327 debug_object_init(timer, &hrtimer_debug_descr);
328 return 1;
329 default:
330 return 0;
335 * fixup_activate is called when:
336 * - an active object is activated
337 * - an unknown object is activated (might be a statically initialized object)
339 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
341 switch (state) {
343 case ODEBUG_STATE_NOTAVAILABLE:
344 WARN_ON_ONCE(1);
345 return 0;
347 case ODEBUG_STATE_ACTIVE:
348 WARN_ON(1);
350 default:
351 return 0;
356 * fixup_free is called when:
357 * - an active object is freed
359 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
361 struct hrtimer *timer = addr;
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 hrtimer_cancel(timer);
366 debug_object_free(timer, &hrtimer_debug_descr);
367 return 1;
368 default:
369 return 0;
373 static struct debug_obj_descr hrtimer_debug_descr = {
374 .name = "hrtimer",
375 .debug_hint = hrtimer_debug_hint,
376 .fixup_init = hrtimer_fixup_init,
377 .fixup_activate = hrtimer_fixup_activate,
378 .fixup_free = hrtimer_fixup_free,
381 static inline void debug_hrtimer_init(struct hrtimer *timer)
383 debug_object_init(timer, &hrtimer_debug_descr);
386 static inline void debug_hrtimer_activate(struct hrtimer *timer)
388 debug_object_activate(timer, &hrtimer_debug_descr);
391 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
393 debug_object_deactivate(timer, &hrtimer_debug_descr);
396 static inline void debug_hrtimer_free(struct hrtimer *timer)
398 debug_object_free(timer, &hrtimer_debug_descr);
401 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
402 enum hrtimer_mode mode);
404 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
405 enum hrtimer_mode mode)
407 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
408 __hrtimer_init(timer, clock_id, mode);
410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
412 void destroy_hrtimer_on_stack(struct hrtimer *timer)
414 debug_object_free(timer, &hrtimer_debug_descr);
417 #else
418 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421 #endif
423 static inline void
424 debug_init(struct hrtimer *timer, clockid_t clockid,
425 enum hrtimer_mode mode)
427 debug_hrtimer_init(timer);
428 trace_hrtimer_init(timer, clockid, mode);
431 static inline void debug_activate(struct hrtimer *timer)
433 debug_hrtimer_activate(timer);
434 trace_hrtimer_start(timer);
437 static inline void debug_deactivate(struct hrtimer *timer)
439 debug_hrtimer_deactivate(timer);
440 trace_hrtimer_cancel(timer);
443 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
444 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
446 struct hrtimer_clock_base *base = cpu_base->clock_base;
447 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
448 int i;
450 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
451 struct timerqueue_node *next;
452 struct hrtimer *timer;
454 next = timerqueue_getnext(&base->active);
455 if (!next)
456 continue;
458 timer = container_of(next, struct hrtimer, node);
459 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
460 if (expires.tv64 < expires_next.tv64)
461 expires_next = expires;
464 * clock_was_set() might have changed base->offset of any of
465 * the clock bases so the result might be negative. Fix it up
466 * to prevent a false positive in clockevents_program_event().
468 if (expires_next.tv64 < 0)
469 expires_next.tv64 = 0;
470 return expires_next;
472 #endif
474 /* High resolution timer related functions */
475 #ifdef CONFIG_HIGH_RES_TIMERS
478 * High resolution timer enabled ?
480 static int hrtimer_hres_enabled __read_mostly = 1;
483 * Enable / Disable high resolution mode
485 static int __init setup_hrtimer_hres(char *str)
487 if (!strcmp(str, "off"))
488 hrtimer_hres_enabled = 0;
489 else if (!strcmp(str, "on"))
490 hrtimer_hres_enabled = 1;
491 else
492 return 0;
493 return 1;
496 __setup("highres=", setup_hrtimer_hres);
499 * hrtimer_high_res_enabled - query, if the highres mode is enabled
501 static inline int hrtimer_is_hres_enabled(void)
503 return hrtimer_hres_enabled;
507 * Is the high resolution mode active ?
509 static inline int hrtimer_hres_active(void)
511 return __this_cpu_read(hrtimer_bases.hres_active);
515 * Reprogram the event source with checking both queues for the
516 * next event
517 * Called with interrupts disabled and base->lock held
519 static void
520 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
522 ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
524 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
525 return;
527 cpu_base->expires_next.tv64 = expires_next.tv64;
530 * If a hang was detected in the last timer interrupt then we
531 * leave the hang delay active in the hardware. We want the
532 * system to make progress. That also prevents the following
533 * scenario:
534 * T1 expires 50ms from now
535 * T2 expires 5s from now
537 * T1 is removed, so this code is called and would reprogram
538 * the hardware to 5s from now. Any hrtimer_start after that
539 * will not reprogram the hardware due to hang_detected being
540 * set. So we'd effectivly block all timers until the T2 event
541 * fires.
543 if (cpu_base->hang_detected)
544 return;
546 if (cpu_base->expires_next.tv64 != KTIME_MAX)
547 tick_program_event(cpu_base->expires_next, 1);
551 * Shared reprogramming for clock_realtime and clock_monotonic
553 * When a timer is enqueued and expires earlier than the already enqueued
554 * timers, we have to check, whether it expires earlier than the timer for
555 * which the clock event device was armed.
557 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
558 * and no expiry check happens. The timer gets enqueued into the rbtree. The
559 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
560 * softirq.
562 * Called with interrupts disabled and base->cpu_base.lock held
564 static int hrtimer_reprogram(struct hrtimer *timer,
565 struct hrtimer_clock_base *base)
567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569 int res;
571 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
574 * When the callback is running, we do not reprogram the clock event
575 * device. The timer callback is either running on a different CPU or
576 * the callback is executed in the hrtimer_interrupt context. The
577 * reprogramming is handled either by the softirq, which called the
578 * callback or at the end of the hrtimer_interrupt.
580 if (hrtimer_callback_running(timer))
581 return 0;
584 * CLOCK_REALTIME timer might be requested with an absolute
585 * expiry time which is less than base->offset. Nothing wrong
586 * about that, just avoid to call into the tick code, which
587 * has now objections against negative expiry values.
589 if (expires.tv64 < 0)
590 return -ETIME;
592 if (expires.tv64 >= cpu_base->expires_next.tv64)
593 return 0;
596 * When the target cpu of the timer is currently executing
597 * hrtimer_interrupt(), then we do not touch the clock event
598 * device. hrtimer_interrupt() will reevaluate all clock bases
599 * before reprogramming the device.
601 if (cpu_base->in_hrtirq)
602 return 0;
605 * If a hang was detected in the last timer interrupt then we
606 * do not schedule a timer which is earlier than the expiry
607 * which we enforced in the hang detection. We want the system
608 * to make progress.
610 if (cpu_base->hang_detected)
611 return 0;
614 * Clockevents returns -ETIME, when the event was in the past.
616 res = tick_program_event(expires, 0);
617 if (!IS_ERR_VALUE(res))
618 cpu_base->expires_next = expires;
619 return res;
623 * Initialize the high resolution related parts of cpu_base
625 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
627 base->expires_next.tv64 = KTIME_MAX;
628 base->hres_active = 0;
631 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
633 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
634 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
635 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
637 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
641 * Retrigger next event is called after clock was set
643 * Called with interrupts disabled via on_each_cpu()
645 static void retrigger_next_event(void *arg)
647 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
649 if (!hrtimer_hres_active())
650 return;
652 raw_spin_lock(&base->lock);
653 hrtimer_update_base(base);
654 hrtimer_force_reprogram(base, 0);
655 raw_spin_unlock(&base->lock);
659 * Switch to high resolution mode
661 static int hrtimer_switch_to_hres(void)
663 int i, cpu = smp_processor_id();
664 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
665 unsigned long flags;
667 if (base->hres_active)
668 return 1;
670 local_irq_save(flags);
672 if (tick_init_highres()) {
673 local_irq_restore(flags);
674 printk(KERN_WARNING "Could not switch to high resolution "
675 "mode on CPU %d\n", cpu);
676 return 0;
678 base->hres_active = 1;
679 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
680 base->clock_base[i].resolution = KTIME_HIGH_RES;
682 tick_setup_sched_timer();
683 /* "Retrigger" the interrupt to get things going */
684 retrigger_next_event(NULL);
685 local_irq_restore(flags);
686 return 1;
689 static void clock_was_set_work(struct work_struct *work)
691 clock_was_set();
694 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
697 * Called from timekeeping and resume code to reprogramm the hrtimer
698 * interrupt device on all cpus.
700 void clock_was_set_delayed(void)
702 schedule_work(&hrtimer_work);
705 #else
707 static inline int hrtimer_hres_active(void) { return 0; }
708 static inline int hrtimer_is_hres_enabled(void) { return 0; }
709 static inline int hrtimer_switch_to_hres(void) { return 0; }
710 static inline void
711 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
712 static inline int hrtimer_reprogram(struct hrtimer *timer,
713 struct hrtimer_clock_base *base)
715 return 0;
717 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
718 static inline void retrigger_next_event(void *arg) { }
720 #endif /* CONFIG_HIGH_RES_TIMERS */
723 * Clock realtime was set
725 * Change the offset of the realtime clock vs. the monotonic
726 * clock.
728 * We might have to reprogram the high resolution timer interrupt. On
729 * SMP we call the architecture specific code to retrigger _all_ high
730 * resolution timer interrupts. On UP we just disable interrupts and
731 * call the high resolution interrupt code.
733 void clock_was_set(void)
735 #ifdef CONFIG_HIGH_RES_TIMERS
736 /* Retrigger the CPU local events everywhere */
737 on_each_cpu(retrigger_next_event, NULL, 1);
738 #endif
739 timerfd_clock_was_set();
743 * During resume we might have to reprogram the high resolution timer
744 * interrupt on all online CPUs. However, all other CPUs will be
745 * stopped with IRQs interrupts disabled so the clock_was_set() call
746 * must be deferred.
748 void hrtimers_resume(void)
750 WARN_ONCE(!irqs_disabled(),
751 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
753 /* Retrigger on the local CPU */
754 retrigger_next_event(NULL);
755 /* And schedule a retrigger for all others */
756 clock_was_set_delayed();
759 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
761 #ifdef CONFIG_TIMER_STATS
762 if (timer->start_site)
763 return;
764 timer->start_site = __builtin_return_address(0);
765 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
766 timer->start_pid = current->pid;
767 #endif
770 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
772 #ifdef CONFIG_TIMER_STATS
773 timer->start_site = NULL;
774 #endif
777 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
779 #ifdef CONFIG_TIMER_STATS
780 if (likely(!timer_stats_active))
781 return;
782 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
783 timer->function, timer->start_comm, 0);
784 #endif
788 * Counterpart to lock_hrtimer_base above:
790 static inline
791 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
793 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
797 * hrtimer_forward - forward the timer expiry
798 * @timer: hrtimer to forward
799 * @now: forward past this time
800 * @interval: the interval to forward
802 * Forward the timer expiry so it will expire in the future.
803 * Returns the number of overruns.
805 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
807 u64 orun = 1;
808 ktime_t delta;
810 delta = ktime_sub(now, hrtimer_get_expires(timer));
812 if (delta.tv64 < 0)
813 return 0;
815 if (interval.tv64 < timer->base->resolution.tv64)
816 interval.tv64 = timer->base->resolution.tv64;
818 if (unlikely(delta.tv64 >= interval.tv64)) {
819 s64 incr = ktime_to_ns(interval);
821 orun = ktime_divns(delta, incr);
822 hrtimer_add_expires_ns(timer, incr * orun);
823 if (hrtimer_get_expires_tv64(timer) > now.tv64)
824 return orun;
826 * This (and the ktime_add() below) is the
827 * correction for exact:
829 orun++;
831 hrtimer_add_expires(timer, interval);
833 return orun;
835 EXPORT_SYMBOL_GPL(hrtimer_forward);
838 * enqueue_hrtimer - internal function to (re)start a timer
840 * The timer is inserted in expiry order. Insertion into the
841 * red black tree is O(log(n)). Must hold the base lock.
843 * Returns 1 when the new timer is the leftmost timer in the tree.
845 static int enqueue_hrtimer(struct hrtimer *timer,
846 struct hrtimer_clock_base *base)
848 debug_activate(timer);
850 timerqueue_add(&base->active, &timer->node);
851 base->cpu_base->active_bases |= 1 << base->index;
854 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
855 * state of a possibly running callback.
857 timer->state |= HRTIMER_STATE_ENQUEUED;
859 return (&timer->node == base->active.next);
863 * __remove_hrtimer - internal function to remove a timer
865 * Caller must hold the base lock.
867 * High resolution timer mode reprograms the clock event device when the
868 * timer is the one which expires next. The caller can disable this by setting
869 * reprogram to zero. This is useful, when the context does a reprogramming
870 * anyway (e.g. timer interrupt)
872 static void __remove_hrtimer(struct hrtimer *timer,
873 struct hrtimer_clock_base *base,
874 unsigned long newstate, int reprogram)
876 struct timerqueue_node *next_timer;
877 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
878 goto out;
880 next_timer = timerqueue_getnext(&base->active);
881 timerqueue_del(&base->active, &timer->node);
882 if (&timer->node == next_timer) {
883 #ifdef CONFIG_HIGH_RES_TIMERS
884 /* Reprogram the clock event device. if enabled */
885 if (reprogram && hrtimer_hres_active()) {
886 ktime_t expires;
888 expires = ktime_sub(hrtimer_get_expires(timer),
889 base->offset);
890 if (base->cpu_base->expires_next.tv64 == expires.tv64)
891 hrtimer_force_reprogram(base->cpu_base, 1);
893 #endif
895 if (!timerqueue_getnext(&base->active))
896 base->cpu_base->active_bases &= ~(1 << base->index);
897 out:
898 timer->state = newstate;
902 * remove hrtimer, called with base lock held
904 static inline int
905 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
907 if (hrtimer_is_queued(timer)) {
908 unsigned long state;
909 int reprogram;
912 * Remove the timer and force reprogramming when high
913 * resolution mode is active and the timer is on the current
914 * CPU. If we remove a timer on another CPU, reprogramming is
915 * skipped. The interrupt event on this CPU is fired and
916 * reprogramming happens in the interrupt handler. This is a
917 * rare case and less expensive than a smp call.
919 debug_deactivate(timer);
920 timer_stats_hrtimer_clear_start_info(timer);
921 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
923 * We must preserve the CALLBACK state flag here,
924 * otherwise we could move the timer base in
925 * switch_hrtimer_base.
927 state = timer->state & HRTIMER_STATE_CALLBACK;
928 __remove_hrtimer(timer, base, state, reprogram);
929 return 1;
931 return 0;
934 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
935 unsigned long delta_ns, const enum hrtimer_mode mode,
936 int wakeup)
938 struct hrtimer_clock_base *base, *new_base;
939 unsigned long flags;
940 int ret, leftmost;
942 base = lock_hrtimer_base(timer, &flags);
944 /* Remove an active timer from the queue: */
945 ret = remove_hrtimer(timer, base);
947 if (mode & HRTIMER_MODE_REL) {
948 tim = ktime_add_safe(tim, base->get_time());
950 * CONFIG_TIME_LOW_RES is a temporary way for architectures
951 * to signal that they simply return xtime in
952 * do_gettimeoffset(). In this case we want to round up by
953 * resolution when starting a relative timer, to avoid short
954 * timeouts. This will go away with the GTOD framework.
956 #ifdef CONFIG_TIME_LOW_RES
957 tim = ktime_add_safe(tim, base->resolution);
958 #endif
961 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
963 /* Switch the timer base, if necessary: */
964 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
966 timer_stats_hrtimer_set_start_info(timer);
968 leftmost = enqueue_hrtimer(timer, new_base);
970 if (!leftmost) {
971 unlock_hrtimer_base(timer, &flags);
972 return ret;
975 if (!hrtimer_is_hres_active(timer)) {
977 * Kick to reschedule the next tick to handle the new timer
978 * on dynticks target.
980 wake_up_nohz_cpu(new_base->cpu_base->cpu);
981 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
982 hrtimer_reprogram(timer, new_base)) {
984 * Only allow reprogramming if the new base is on this CPU.
985 * (it might still be on another CPU if the timer was pending)
987 * XXX send_remote_softirq() ?
989 if (wakeup) {
991 * We need to drop cpu_base->lock to avoid a
992 * lock ordering issue vs. rq->lock.
994 raw_spin_unlock(&new_base->cpu_base->lock);
995 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
996 local_irq_restore(flags);
997 return ret;
998 } else {
999 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1003 unlock_hrtimer_base(timer, &flags);
1005 return ret;
1007 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1010 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1011 * @timer: the timer to be added
1012 * @tim: expiry time
1013 * @delta_ns: "slack" range for the timer
1014 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1015 * relative (HRTIMER_MODE_REL)
1017 * Returns:
1018 * 0 on success
1019 * 1 when the timer was active
1021 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1022 unsigned long delta_ns, const enum hrtimer_mode mode)
1024 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1026 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1029 * hrtimer_start - (re)start an hrtimer on the current CPU
1030 * @timer: the timer to be added
1031 * @tim: expiry time
1032 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1033 * relative (HRTIMER_MODE_REL)
1035 * Returns:
1036 * 0 on success
1037 * 1 when the timer was active
1040 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1042 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1044 EXPORT_SYMBOL_GPL(hrtimer_start);
1048 * hrtimer_try_to_cancel - try to deactivate a timer
1049 * @timer: hrtimer to stop
1051 * Returns:
1052 * 0 when the timer was not active
1053 * 1 when the timer was active
1054 * -1 when the timer is currently excuting the callback function and
1055 * cannot be stopped
1057 int hrtimer_try_to_cancel(struct hrtimer *timer)
1059 struct hrtimer_clock_base *base;
1060 unsigned long flags;
1061 int ret = -1;
1063 base = lock_hrtimer_base(timer, &flags);
1065 if (!hrtimer_callback_running(timer))
1066 ret = remove_hrtimer(timer, base);
1068 unlock_hrtimer_base(timer, &flags);
1070 return ret;
1073 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1076 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1077 * @timer: the timer to be cancelled
1079 * Returns:
1080 * 0 when the timer was not active
1081 * 1 when the timer was active
1083 int hrtimer_cancel(struct hrtimer *timer)
1085 for (;;) {
1086 int ret = hrtimer_try_to_cancel(timer);
1088 if (ret >= 0)
1089 return ret;
1090 cpu_relax();
1093 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1096 * hrtimer_get_remaining - get remaining time for the timer
1097 * @timer: the timer to read
1099 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1101 unsigned long flags;
1102 ktime_t rem;
1104 lock_hrtimer_base(timer, &flags);
1105 rem = hrtimer_expires_remaining(timer);
1106 unlock_hrtimer_base(timer, &flags);
1108 return rem;
1110 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1112 #ifdef CONFIG_NO_HZ_COMMON
1114 * hrtimer_get_next_event - get the time until next expiry event
1116 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1117 * is pending.
1119 ktime_t hrtimer_get_next_event(void)
1121 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1122 ktime_t mindelta = { .tv64 = KTIME_MAX };
1123 unsigned long flags;
1125 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1127 if (!hrtimer_hres_active())
1128 mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1129 ktime_get());
1131 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1133 if (mindelta.tv64 < 0)
1134 mindelta.tv64 = 0;
1135 return mindelta;
1137 #endif
1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 enum hrtimer_mode mode)
1142 struct hrtimer_cpu_base *cpu_base;
1143 int base;
1145 memset(timer, 0, sizeof(struct hrtimer));
1147 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1149 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 clock_id = CLOCK_MONOTONIC;
1152 base = hrtimer_clockid_to_base(clock_id);
1153 timer->base = &cpu_base->clock_base[base];
1154 timerqueue_init(&timer->node);
1156 #ifdef CONFIG_TIMER_STATS
1157 timer->start_site = NULL;
1158 timer->start_pid = -1;
1159 memset(timer->start_comm, 0, TASK_COMM_LEN);
1160 #endif
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer: the timer to be initialized
1166 * @clock_id: the clock to be used
1167 * @mode: timer mode abs/rel
1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170 enum hrtimer_mode mode)
1172 debug_init(timer, clock_id, mode);
1173 __hrtimer_init(timer, clock_id, mode);
1175 EXPORT_SYMBOL_GPL(hrtimer_init);
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp: pointer to timespec variable to store the resolution
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1187 struct hrtimer_cpu_base *cpu_base;
1188 int base = hrtimer_clockid_to_base(which_clock);
1190 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1191 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1193 return 0;
1195 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1199 struct hrtimer_clock_base *base = timer->base;
1200 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201 enum hrtimer_restart (*fn)(struct hrtimer *);
1202 int restart;
1204 WARN_ON(!irqs_disabled());
1206 debug_deactivate(timer);
1207 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208 timer_stats_account_hrtimer(timer);
1209 fn = timer->function;
1212 * Because we run timers from hardirq context, there is no chance
1213 * they get migrated to another cpu, therefore its safe to unlock
1214 * the timer base.
1216 raw_spin_unlock(&cpu_base->lock);
1217 trace_hrtimer_expire_entry(timer, now);
1218 restart = fn(timer);
1219 trace_hrtimer_expire_exit(timer);
1220 raw_spin_lock(&cpu_base->lock);
1223 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224 * we do not reprogramm the event hardware. Happens either in
1225 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1227 if (restart != HRTIMER_NORESTART) {
1228 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229 enqueue_hrtimer(timer, base);
1232 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1234 timer->state &= ~HRTIMER_STATE_CALLBACK;
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1243 void hrtimer_interrupt(struct clock_event_device *dev)
1245 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1246 ktime_t expires_next, now, entry_time, delta;
1247 int i, retries = 0;
1249 BUG_ON(!cpu_base->hres_active);
1250 cpu_base->nr_events++;
1251 dev->next_event.tv64 = KTIME_MAX;
1253 raw_spin_lock(&cpu_base->lock);
1254 entry_time = now = hrtimer_update_base(cpu_base);
1255 retry:
1256 cpu_base->in_hrtirq = 1;
1258 * We set expires_next to KTIME_MAX here with cpu_base->lock
1259 * held to prevent that a timer is enqueued in our queue via
1260 * the migration code. This does not affect enqueueing of
1261 * timers which run their callback and need to be requeued on
1262 * this CPU.
1264 cpu_base->expires_next.tv64 = KTIME_MAX;
1266 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267 struct hrtimer_clock_base *base;
1268 struct timerqueue_node *node;
1269 ktime_t basenow;
1271 if (!(cpu_base->active_bases & (1 << i)))
1272 continue;
1274 base = cpu_base->clock_base + i;
1275 basenow = ktime_add(now, base->offset);
1277 while ((node = timerqueue_getnext(&base->active))) {
1278 struct hrtimer *timer;
1280 timer = container_of(node, struct hrtimer, node);
1283 * The immediate goal for using the softexpires is
1284 * minimizing wakeups, not running timers at the
1285 * earliest interrupt after their soft expiration.
1286 * This allows us to avoid using a Priority Search
1287 * Tree, which can answer a stabbing querry for
1288 * overlapping intervals and instead use the simple
1289 * BST we already have.
1290 * We don't add extra wakeups by delaying timers that
1291 * are right-of a not yet expired timer, because that
1292 * timer will have to trigger a wakeup anyway.
1294 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1295 break;
1297 __run_hrtimer(timer, &basenow);
1300 /* Reevaluate the clock bases for the next expiry */
1301 expires_next = __hrtimer_get_next_event(cpu_base);
1303 * Store the new expiry value so the migration code can verify
1304 * against it.
1306 cpu_base->expires_next = expires_next;
1307 cpu_base->in_hrtirq = 0;
1308 raw_spin_unlock(&cpu_base->lock);
1310 /* Reprogramming necessary ? */
1311 if (expires_next.tv64 == KTIME_MAX ||
1312 !tick_program_event(expires_next, 0)) {
1313 cpu_base->hang_detected = 0;
1314 return;
1318 * The next timer was already expired due to:
1319 * - tracing
1320 * - long lasting callbacks
1321 * - being scheduled away when running in a VM
1323 * We need to prevent that we loop forever in the hrtimer
1324 * interrupt routine. We give it 3 attempts to avoid
1325 * overreacting on some spurious event.
1327 * Acquire base lock for updating the offsets and retrieving
1328 * the current time.
1330 raw_spin_lock(&cpu_base->lock);
1331 now = hrtimer_update_base(cpu_base);
1332 cpu_base->nr_retries++;
1333 if (++retries < 3)
1334 goto retry;
1336 * Give the system a chance to do something else than looping
1337 * here. We stored the entry time, so we know exactly how long
1338 * we spent here. We schedule the next event this amount of
1339 * time away.
1341 cpu_base->nr_hangs++;
1342 cpu_base->hang_detected = 1;
1343 raw_spin_unlock(&cpu_base->lock);
1344 delta = ktime_sub(now, entry_time);
1345 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1346 cpu_base->max_hang_time = delta;
1348 * Limit it to a sensible value as we enforce a longer
1349 * delay. Give the CPU at least 100ms to catch up.
1351 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1352 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1353 else
1354 expires_next = ktime_add(now, delta);
1355 tick_program_event(expires_next, 1);
1356 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1357 ktime_to_ns(delta));
1361 * local version of hrtimer_peek_ahead_timers() called with interrupts
1362 * disabled.
1364 static void __hrtimer_peek_ahead_timers(void)
1366 struct tick_device *td;
1368 if (!hrtimer_hres_active())
1369 return;
1371 td = this_cpu_ptr(&tick_cpu_device);
1372 if (td && td->evtdev)
1373 hrtimer_interrupt(td->evtdev);
1377 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1379 * hrtimer_peek_ahead_timers will peek at the timer queue of
1380 * the current cpu and check if there are any timers for which
1381 * the soft expires time has passed. If any such timers exist,
1382 * they are run immediately and then removed from the timer queue.
1385 void hrtimer_peek_ahead_timers(void)
1387 unsigned long flags;
1389 local_irq_save(flags);
1390 __hrtimer_peek_ahead_timers();
1391 local_irq_restore(flags);
1394 static void run_hrtimer_softirq(struct softirq_action *h)
1396 hrtimer_peek_ahead_timers();
1399 #else /* CONFIG_HIGH_RES_TIMERS */
1401 static inline void __hrtimer_peek_ahead_timers(void) { }
1403 #endif /* !CONFIG_HIGH_RES_TIMERS */
1406 * Called from timer softirq every jiffy, expire hrtimers:
1408 * For HRT its the fall back code to run the softirq in the timer
1409 * softirq context in case the hrtimer initialization failed or has
1410 * not been done yet.
1412 void hrtimer_run_pending(void)
1414 if (hrtimer_hres_active())
1415 return;
1418 * This _is_ ugly: We have to check in the softirq context,
1419 * whether we can switch to highres and / or nohz mode. The
1420 * clocksource switch happens in the timer interrupt with
1421 * xtime_lock held. Notification from there only sets the
1422 * check bit in the tick_oneshot code, otherwise we might
1423 * deadlock vs. xtime_lock.
1425 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1426 hrtimer_switch_to_hres();
1430 * Called from hardirq context every jiffy
1432 void hrtimer_run_queues(void)
1434 struct timerqueue_node *node;
1435 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1436 struct hrtimer_clock_base *base;
1437 int index, gettime = 1;
1439 if (hrtimer_hres_active())
1440 return;
1442 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1443 base = &cpu_base->clock_base[index];
1444 if (!timerqueue_getnext(&base->active))
1445 continue;
1447 if (gettime) {
1448 hrtimer_get_softirq_time(cpu_base);
1449 gettime = 0;
1452 raw_spin_lock(&cpu_base->lock);
1454 while ((node = timerqueue_getnext(&base->active))) {
1455 struct hrtimer *timer;
1457 timer = container_of(node, struct hrtimer, node);
1458 if (base->softirq_time.tv64 <=
1459 hrtimer_get_expires_tv64(timer))
1460 break;
1462 __run_hrtimer(timer, &base->softirq_time);
1464 raw_spin_unlock(&cpu_base->lock);
1469 * Sleep related functions:
1471 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1473 struct hrtimer_sleeper *t =
1474 container_of(timer, struct hrtimer_sleeper, timer);
1475 struct task_struct *task = t->task;
1477 t->task = NULL;
1478 if (task)
1479 wake_up_process(task);
1481 return HRTIMER_NORESTART;
1484 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1486 sl->timer.function = hrtimer_wakeup;
1487 sl->task = task;
1489 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1491 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1493 hrtimer_init_sleeper(t, current);
1495 do {
1496 set_current_state(TASK_INTERRUPTIBLE);
1497 hrtimer_start_expires(&t->timer, mode);
1498 if (!hrtimer_active(&t->timer))
1499 t->task = NULL;
1501 if (likely(t->task))
1502 freezable_schedule();
1504 hrtimer_cancel(&t->timer);
1505 mode = HRTIMER_MODE_ABS;
1507 } while (t->task && !signal_pending(current));
1509 __set_current_state(TASK_RUNNING);
1511 return t->task == NULL;
1514 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1516 struct timespec rmt;
1517 ktime_t rem;
1519 rem = hrtimer_expires_remaining(timer);
1520 if (rem.tv64 <= 0)
1521 return 0;
1522 rmt = ktime_to_timespec(rem);
1524 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1525 return -EFAULT;
1527 return 1;
1530 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1532 struct hrtimer_sleeper t;
1533 struct timespec __user *rmtp;
1534 int ret = 0;
1536 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1537 HRTIMER_MODE_ABS);
1538 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1540 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1541 goto out;
1543 rmtp = restart->nanosleep.rmtp;
1544 if (rmtp) {
1545 ret = update_rmtp(&t.timer, rmtp);
1546 if (ret <= 0)
1547 goto out;
1550 /* The other values in restart are already filled in */
1551 ret = -ERESTART_RESTARTBLOCK;
1552 out:
1553 destroy_hrtimer_on_stack(&t.timer);
1554 return ret;
1557 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1558 const enum hrtimer_mode mode, const clockid_t clockid)
1560 struct restart_block *restart;
1561 struct hrtimer_sleeper t;
1562 int ret = 0;
1563 unsigned long slack;
1565 slack = current->timer_slack_ns;
1566 if (dl_task(current) || rt_task(current))
1567 slack = 0;
1569 hrtimer_init_on_stack(&t.timer, clockid, mode);
1570 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1571 if (do_nanosleep(&t, mode))
1572 goto out;
1574 /* Absolute timers do not update the rmtp value and restart: */
1575 if (mode == HRTIMER_MODE_ABS) {
1576 ret = -ERESTARTNOHAND;
1577 goto out;
1580 if (rmtp) {
1581 ret = update_rmtp(&t.timer, rmtp);
1582 if (ret <= 0)
1583 goto out;
1586 restart = &current->restart_block;
1587 restart->fn = hrtimer_nanosleep_restart;
1588 restart->nanosleep.clockid = t.timer.base->clockid;
1589 restart->nanosleep.rmtp = rmtp;
1590 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1592 ret = -ERESTART_RESTARTBLOCK;
1593 out:
1594 destroy_hrtimer_on_stack(&t.timer);
1595 return ret;
1598 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1599 struct timespec __user *, rmtp)
1601 struct timespec tu;
1603 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1604 return -EFAULT;
1606 if (!timespec_valid(&tu))
1607 return -EINVAL;
1609 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1613 * Functions related to boot-time initialization:
1615 static void init_hrtimers_cpu(int cpu)
1617 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1618 int i;
1620 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1621 cpu_base->clock_base[i].cpu_base = cpu_base;
1622 timerqueue_init_head(&cpu_base->clock_base[i].active);
1625 cpu_base->cpu = cpu;
1626 hrtimer_init_hres(cpu_base);
1629 #ifdef CONFIG_HOTPLUG_CPU
1631 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1632 struct hrtimer_clock_base *new_base)
1634 struct hrtimer *timer;
1635 struct timerqueue_node *node;
1637 while ((node = timerqueue_getnext(&old_base->active))) {
1638 timer = container_of(node, struct hrtimer, node);
1639 BUG_ON(hrtimer_callback_running(timer));
1640 debug_deactivate(timer);
1643 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1644 * timer could be seen as !active and just vanish away
1645 * under us on another CPU
1647 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1648 timer->base = new_base;
1650 * Enqueue the timers on the new cpu. This does not
1651 * reprogram the event device in case the timer
1652 * expires before the earliest on this CPU, but we run
1653 * hrtimer_interrupt after we migrated everything to
1654 * sort out already expired timers and reprogram the
1655 * event device.
1657 enqueue_hrtimer(timer, new_base);
1659 /* Clear the migration state bit */
1660 timer->state &= ~HRTIMER_STATE_MIGRATE;
1664 static void migrate_hrtimers(int scpu)
1666 struct hrtimer_cpu_base *old_base, *new_base;
1667 int i;
1669 BUG_ON(cpu_online(scpu));
1670 tick_cancel_sched_timer(scpu);
1672 local_irq_disable();
1673 old_base = &per_cpu(hrtimer_bases, scpu);
1674 new_base = this_cpu_ptr(&hrtimer_bases);
1676 * The caller is globally serialized and nobody else
1677 * takes two locks at once, deadlock is not possible.
1679 raw_spin_lock(&new_base->lock);
1680 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1682 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1683 migrate_hrtimer_list(&old_base->clock_base[i],
1684 &new_base->clock_base[i]);
1687 raw_spin_unlock(&old_base->lock);
1688 raw_spin_unlock(&new_base->lock);
1690 /* Check, if we got expired work to do */
1691 __hrtimer_peek_ahead_timers();
1692 local_irq_enable();
1695 #endif /* CONFIG_HOTPLUG_CPU */
1697 static int hrtimer_cpu_notify(struct notifier_block *self,
1698 unsigned long action, void *hcpu)
1700 int scpu = (long)hcpu;
1702 switch (action) {
1704 case CPU_UP_PREPARE:
1705 case CPU_UP_PREPARE_FROZEN:
1706 init_hrtimers_cpu(scpu);
1707 break;
1709 #ifdef CONFIG_HOTPLUG_CPU
1710 case CPU_DEAD:
1711 case CPU_DEAD_FROZEN:
1712 migrate_hrtimers(scpu);
1713 break;
1714 #endif
1716 default:
1717 break;
1720 return NOTIFY_OK;
1723 static struct notifier_block hrtimers_nb = {
1724 .notifier_call = hrtimer_cpu_notify,
1727 void __init hrtimers_init(void)
1729 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1730 (void *)(long)smp_processor_id());
1731 register_cpu_notifier(&hrtimers_nb);
1732 #ifdef CONFIG_HIGH_RES_TIMERS
1733 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1734 #endif
1738 * schedule_hrtimeout_range_clock - sleep until timeout
1739 * @expires: timeout value (ktime_t)
1740 * @delta: slack in expires timeout (ktime_t)
1741 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1742 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1744 int __sched
1745 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1746 const enum hrtimer_mode mode, int clock)
1748 struct hrtimer_sleeper t;
1751 * Optimize when a zero timeout value is given. It does not
1752 * matter whether this is an absolute or a relative time.
1754 if (expires && !expires->tv64) {
1755 __set_current_state(TASK_RUNNING);
1756 return 0;
1760 * A NULL parameter means "infinite"
1762 if (!expires) {
1763 schedule();
1764 return -EINTR;
1767 hrtimer_init_on_stack(&t.timer, clock, mode);
1768 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1770 hrtimer_init_sleeper(&t, current);
1772 hrtimer_start_expires(&t.timer, mode);
1773 if (!hrtimer_active(&t.timer))
1774 t.task = NULL;
1776 if (likely(t.task))
1777 schedule();
1779 hrtimer_cancel(&t.timer);
1780 destroy_hrtimer_on_stack(&t.timer);
1782 __set_current_state(TASK_RUNNING);
1784 return !t.task ? 0 : -EINTR;
1788 * schedule_hrtimeout_range - sleep until timeout
1789 * @expires: timeout value (ktime_t)
1790 * @delta: slack in expires timeout (ktime_t)
1791 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1793 * Make the current task sleep until the given expiry time has
1794 * elapsed. The routine will return immediately unless
1795 * the current task state has been set (see set_current_state()).
1797 * The @delta argument gives the kernel the freedom to schedule the
1798 * actual wakeup to a time that is both power and performance friendly.
1799 * The kernel give the normal best effort behavior for "@expires+@delta",
1800 * but may decide to fire the timer earlier, but no earlier than @expires.
1802 * You can set the task state as follows -
1804 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1805 * pass before the routine returns.
1807 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1808 * delivered to the current task.
1810 * The current task state is guaranteed to be TASK_RUNNING when this
1811 * routine returns.
1813 * Returns 0 when the timer has expired otherwise -EINTR
1815 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1816 const enum hrtimer_mode mode)
1818 return schedule_hrtimeout_range_clock(expires, delta, mode,
1819 CLOCK_MONOTONIC);
1821 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1824 * schedule_hrtimeout - sleep until timeout
1825 * @expires: timeout value (ktime_t)
1826 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1828 * Make the current task sleep until the given expiry time has
1829 * elapsed. The routine will return immediately unless
1830 * the current task state has been set (see set_current_state()).
1832 * You can set the task state as follows -
1834 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1835 * pass before the routine returns.
1837 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1838 * delivered to the current task.
1840 * The current task state is guaranteed to be TASK_RUNNING when this
1841 * routine returns.
1843 * Returns 0 when the timer has expired otherwise -EINTR
1845 int __sched schedule_hrtimeout(ktime_t *expires,
1846 const enum hrtimer_mode mode)
1848 return schedule_hrtimeout_range(expires, 0, mode);
1850 EXPORT_SYMBOL_GPL(schedule_hrtimeout);