Input: pcap_ts - use to_delayed_work
[linux-2.6/btrfs-unstable.git] / drivers / hwspinlock / hwspinlock_core.c
blob52f708bcf77f397952ea0f278ce5b161780e076a
1 /*
2 * Hardware spinlock framework
4 * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com
6 * Contact: Ohad Ben-Cohen <ohad@wizery.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published
10 * by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #define pr_fmt(fmt) "%s: " fmt, __func__
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/types.h>
24 #include <linux/err.h>
25 #include <linux/jiffies.h>
26 #include <linux/radix-tree.h>
27 #include <linux/hwspinlock.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/mutex.h>
30 #include <linux/of.h>
32 #include "hwspinlock_internal.h"
34 /* radix tree tags */
35 #define HWSPINLOCK_UNUSED (0) /* tags an hwspinlock as unused */
38 * A radix tree is used to maintain the available hwspinlock instances.
39 * The tree associates hwspinlock pointers with their integer key id,
40 * and provides easy-to-use API which makes the hwspinlock core code simple
41 * and easy to read.
43 * Radix trees are quick on lookups, and reasonably efficient in terms of
44 * storage, especially with high density usages such as this framework
45 * requires (a continuous range of integer keys, beginning with zero, is
46 * used as the ID's of the hwspinlock instances).
48 * The radix tree API supports tagging items in the tree, which this
49 * framework uses to mark unused hwspinlock instances (see the
50 * HWSPINLOCK_UNUSED tag above). As a result, the process of querying the
51 * tree, looking for an unused hwspinlock instance, is now reduced to a
52 * single radix tree API call.
54 static RADIX_TREE(hwspinlock_tree, GFP_KERNEL);
57 * Synchronization of access to the tree is achieved using this mutex,
58 * as the radix-tree API requires that users provide all synchronisation.
59 * A mutex is needed because we're using non-atomic radix tree allocations.
61 static DEFINE_MUTEX(hwspinlock_tree_lock);
64 /**
65 * __hwspin_trylock() - attempt to lock a specific hwspinlock
66 * @hwlock: an hwspinlock which we want to trylock
67 * @mode: controls whether local interrupts are disabled or not
68 * @flags: a pointer where the caller's interrupt state will be saved at (if
69 * requested)
71 * This function attempts to lock an hwspinlock, and will immediately
72 * fail if the hwspinlock is already taken.
74 * Upon a successful return from this function, preemption (and possibly
75 * interrupts) is disabled, so the caller must not sleep, and is advised to
76 * release the hwspinlock as soon as possible. This is required in order to
77 * minimize remote cores polling on the hardware interconnect.
79 * The user decides whether local interrupts are disabled or not, and if yes,
80 * whether he wants their previous state to be saved. It is up to the user
81 * to choose the appropriate @mode of operation, exactly the same way users
82 * should decide between spin_trylock, spin_trylock_irq and
83 * spin_trylock_irqsave.
85 * Returns 0 if we successfully locked the hwspinlock or -EBUSY if
86 * the hwspinlock was already taken.
87 * This function will never sleep.
89 int __hwspin_trylock(struct hwspinlock *hwlock, int mode, unsigned long *flags)
91 int ret;
93 BUG_ON(!hwlock);
94 BUG_ON(!flags && mode == HWLOCK_IRQSTATE);
97 * This spin_lock{_irq, _irqsave} serves three purposes:
99 * 1. Disable preemption, in order to minimize the period of time
100 * in which the hwspinlock is taken. This is important in order
101 * to minimize the possible polling on the hardware interconnect
102 * by a remote user of this lock.
103 * 2. Make the hwspinlock SMP-safe (so we can take it from
104 * additional contexts on the local host).
105 * 3. Ensure that in_atomic/might_sleep checks catch potential
106 * problems with hwspinlock usage (e.g. scheduler checks like
107 * 'scheduling while atomic' etc.)
109 if (mode == HWLOCK_IRQSTATE)
110 ret = spin_trylock_irqsave(&hwlock->lock, *flags);
111 else if (mode == HWLOCK_IRQ)
112 ret = spin_trylock_irq(&hwlock->lock);
113 else
114 ret = spin_trylock(&hwlock->lock);
116 /* is lock already taken by another context on the local cpu ? */
117 if (!ret)
118 return -EBUSY;
120 /* try to take the hwspinlock device */
121 ret = hwlock->bank->ops->trylock(hwlock);
123 /* if hwlock is already taken, undo spin_trylock_* and exit */
124 if (!ret) {
125 if (mode == HWLOCK_IRQSTATE)
126 spin_unlock_irqrestore(&hwlock->lock, *flags);
127 else if (mode == HWLOCK_IRQ)
128 spin_unlock_irq(&hwlock->lock);
129 else
130 spin_unlock(&hwlock->lock);
132 return -EBUSY;
136 * We can be sure the other core's memory operations
137 * are observable to us only _after_ we successfully take
138 * the hwspinlock, and we must make sure that subsequent memory
139 * operations (both reads and writes) will not be reordered before
140 * we actually took the hwspinlock.
142 * Note: the implicit memory barrier of the spinlock above is too
143 * early, so we need this additional explicit memory barrier.
145 mb();
147 return 0;
149 EXPORT_SYMBOL_GPL(__hwspin_trylock);
152 * __hwspin_lock_timeout() - lock an hwspinlock with timeout limit
153 * @hwlock: the hwspinlock to be locked
154 * @timeout: timeout value in msecs
155 * @mode: mode which controls whether local interrupts are disabled or not
156 * @flags: a pointer to where the caller's interrupt state will be saved at (if
157 * requested)
159 * This function locks the given @hwlock. If the @hwlock
160 * is already taken, the function will busy loop waiting for it to
161 * be released, but give up after @timeout msecs have elapsed.
163 * Upon a successful return from this function, preemption is disabled
164 * (and possibly local interrupts, too), so the caller must not sleep,
165 * and is advised to release the hwspinlock as soon as possible.
166 * This is required in order to minimize remote cores polling on the
167 * hardware interconnect.
169 * The user decides whether local interrupts are disabled or not, and if yes,
170 * whether he wants their previous state to be saved. It is up to the user
171 * to choose the appropriate @mode of operation, exactly the same way users
172 * should decide between spin_lock, spin_lock_irq and spin_lock_irqsave.
174 * Returns 0 when the @hwlock was successfully taken, and an appropriate
175 * error code otherwise (most notably -ETIMEDOUT if the @hwlock is still
176 * busy after @timeout msecs). The function will never sleep.
178 int __hwspin_lock_timeout(struct hwspinlock *hwlock, unsigned int to,
179 int mode, unsigned long *flags)
181 int ret;
182 unsigned long expire;
184 expire = msecs_to_jiffies(to) + jiffies;
186 for (;;) {
187 /* Try to take the hwspinlock */
188 ret = __hwspin_trylock(hwlock, mode, flags);
189 if (ret != -EBUSY)
190 break;
193 * The lock is already taken, let's check if the user wants
194 * us to try again
196 if (time_is_before_eq_jiffies(expire))
197 return -ETIMEDOUT;
200 * Allow platform-specific relax handlers to prevent
201 * hogging the interconnect (no sleeping, though)
203 if (hwlock->bank->ops->relax)
204 hwlock->bank->ops->relax(hwlock);
207 return ret;
209 EXPORT_SYMBOL_GPL(__hwspin_lock_timeout);
212 * __hwspin_unlock() - unlock a specific hwspinlock
213 * @hwlock: a previously-acquired hwspinlock which we want to unlock
214 * @mode: controls whether local interrupts needs to be restored or not
215 * @flags: previous caller's interrupt state to restore (if requested)
217 * This function will unlock a specific hwspinlock, enable preemption and
218 * (possibly) enable interrupts or restore their previous state.
219 * @hwlock must be already locked before calling this function: it is a bug
220 * to call unlock on a @hwlock that is already unlocked.
222 * The user decides whether local interrupts should be enabled or not, and
223 * if yes, whether he wants their previous state to be restored. It is up
224 * to the user to choose the appropriate @mode of operation, exactly the
225 * same way users decide between spin_unlock, spin_unlock_irq and
226 * spin_unlock_irqrestore.
228 * The function will never sleep.
230 void __hwspin_unlock(struct hwspinlock *hwlock, int mode, unsigned long *flags)
232 BUG_ON(!hwlock);
233 BUG_ON(!flags && mode == HWLOCK_IRQSTATE);
236 * We must make sure that memory operations (both reads and writes),
237 * done before unlocking the hwspinlock, will not be reordered
238 * after the lock is released.
240 * That's the purpose of this explicit memory barrier.
242 * Note: the memory barrier induced by the spin_unlock below is too
243 * late; the other core is going to access memory soon after it will
244 * take the hwspinlock, and by then we want to be sure our memory
245 * operations are already observable.
247 mb();
249 hwlock->bank->ops->unlock(hwlock);
251 /* Undo the spin_trylock{_irq, _irqsave} called while locking */
252 if (mode == HWLOCK_IRQSTATE)
253 spin_unlock_irqrestore(&hwlock->lock, *flags);
254 else if (mode == HWLOCK_IRQ)
255 spin_unlock_irq(&hwlock->lock);
256 else
257 spin_unlock(&hwlock->lock);
259 EXPORT_SYMBOL_GPL(__hwspin_unlock);
262 * of_hwspin_lock_simple_xlate - translate hwlock_spec to return a lock id
263 * @bank: the hwspinlock device bank
264 * @hwlock_spec: hwlock specifier as found in the device tree
266 * This is a simple translation function, suitable for hwspinlock platform
267 * drivers that only has a lock specifier length of 1.
269 * Returns a relative index of the lock within a specified bank on success,
270 * or -EINVAL on invalid specifier cell count.
272 static inline int
273 of_hwspin_lock_simple_xlate(const struct of_phandle_args *hwlock_spec)
275 if (WARN_ON(hwlock_spec->args_count != 1))
276 return -EINVAL;
278 return hwlock_spec->args[0];
282 * of_hwspin_lock_get_id() - get lock id for an OF phandle-based specific lock
283 * @np: device node from which to request the specific hwlock
284 * @index: index of the hwlock in the list of values
286 * This function provides a means for DT users of the hwspinlock module to
287 * get the global lock id of a specific hwspinlock using the phandle of the
288 * hwspinlock device, so that it can be requested using the normal
289 * hwspin_lock_request_specific() API.
291 * Returns the global lock id number on success, -EPROBE_DEFER if the hwspinlock
292 * device is not yet registered, -EINVAL on invalid args specifier value or an
293 * appropriate error as returned from the OF parsing of the DT client node.
295 int of_hwspin_lock_get_id(struct device_node *np, int index)
297 struct of_phandle_args args;
298 struct hwspinlock *hwlock;
299 struct radix_tree_iter iter;
300 void **slot;
301 int id;
302 int ret;
304 ret = of_parse_phandle_with_args(np, "hwlocks", "#hwlock-cells", index,
305 &args);
306 if (ret)
307 return ret;
309 /* Find the hwspinlock device: we need its base_id */
310 ret = -EPROBE_DEFER;
311 rcu_read_lock();
312 radix_tree_for_each_slot(slot, &hwspinlock_tree, &iter, 0) {
313 hwlock = radix_tree_deref_slot(slot);
314 if (unlikely(!hwlock))
315 continue;
317 if (hwlock->bank->dev->of_node == args.np) {
318 ret = 0;
319 break;
322 rcu_read_unlock();
323 if (ret < 0)
324 goto out;
326 id = of_hwspin_lock_simple_xlate(&args);
327 if (id < 0 || id >= hwlock->bank->num_locks) {
328 ret = -EINVAL;
329 goto out;
331 id += hwlock->bank->base_id;
333 out:
334 of_node_put(args.np);
335 return ret ? ret : id;
337 EXPORT_SYMBOL_GPL(of_hwspin_lock_get_id);
339 static int hwspin_lock_register_single(struct hwspinlock *hwlock, int id)
341 struct hwspinlock *tmp;
342 int ret;
344 mutex_lock(&hwspinlock_tree_lock);
346 ret = radix_tree_insert(&hwspinlock_tree, id, hwlock);
347 if (ret) {
348 if (ret == -EEXIST)
349 pr_err("hwspinlock id %d already exists!\n", id);
350 goto out;
353 /* mark this hwspinlock as available */
354 tmp = radix_tree_tag_set(&hwspinlock_tree, id, HWSPINLOCK_UNUSED);
356 /* self-sanity check which should never fail */
357 WARN_ON(tmp != hwlock);
359 out:
360 mutex_unlock(&hwspinlock_tree_lock);
361 return 0;
364 static struct hwspinlock *hwspin_lock_unregister_single(unsigned int id)
366 struct hwspinlock *hwlock = NULL;
367 int ret;
369 mutex_lock(&hwspinlock_tree_lock);
371 /* make sure the hwspinlock is not in use (tag is set) */
372 ret = radix_tree_tag_get(&hwspinlock_tree, id, HWSPINLOCK_UNUSED);
373 if (ret == 0) {
374 pr_err("hwspinlock %d still in use (or not present)\n", id);
375 goto out;
378 hwlock = radix_tree_delete(&hwspinlock_tree, id);
379 if (!hwlock) {
380 pr_err("failed to delete hwspinlock %d\n", id);
381 goto out;
384 out:
385 mutex_unlock(&hwspinlock_tree_lock);
386 return hwlock;
390 * hwspin_lock_register() - register a new hw spinlock device
391 * @bank: the hwspinlock device, which usually provides numerous hw locks
392 * @dev: the backing device
393 * @ops: hwspinlock handlers for this device
394 * @base_id: id of the first hardware spinlock in this bank
395 * @num_locks: number of hwspinlocks provided by this device
397 * This function should be called from the underlying platform-specific
398 * implementation, to register a new hwspinlock device instance.
400 * Should be called from a process context (might sleep)
402 * Returns 0 on success, or an appropriate error code on failure
404 int hwspin_lock_register(struct hwspinlock_device *bank, struct device *dev,
405 const struct hwspinlock_ops *ops, int base_id, int num_locks)
407 struct hwspinlock *hwlock;
408 int ret = 0, i;
410 if (!bank || !ops || !dev || !num_locks || !ops->trylock ||
411 !ops->unlock) {
412 pr_err("invalid parameters\n");
413 return -EINVAL;
416 bank->dev = dev;
417 bank->ops = ops;
418 bank->base_id = base_id;
419 bank->num_locks = num_locks;
421 for (i = 0; i < num_locks; i++) {
422 hwlock = &bank->lock[i];
424 spin_lock_init(&hwlock->lock);
425 hwlock->bank = bank;
427 ret = hwspin_lock_register_single(hwlock, base_id + i);
428 if (ret)
429 goto reg_failed;
432 return 0;
434 reg_failed:
435 while (--i >= 0)
436 hwspin_lock_unregister_single(base_id + i);
437 return ret;
439 EXPORT_SYMBOL_GPL(hwspin_lock_register);
442 * hwspin_lock_unregister() - unregister an hw spinlock device
443 * @bank: the hwspinlock device, which usually provides numerous hw locks
445 * This function should be called from the underlying platform-specific
446 * implementation, to unregister an existing (and unused) hwspinlock.
448 * Should be called from a process context (might sleep)
450 * Returns 0 on success, or an appropriate error code on failure
452 int hwspin_lock_unregister(struct hwspinlock_device *bank)
454 struct hwspinlock *hwlock, *tmp;
455 int i;
457 for (i = 0; i < bank->num_locks; i++) {
458 hwlock = &bank->lock[i];
460 tmp = hwspin_lock_unregister_single(bank->base_id + i);
461 if (!tmp)
462 return -EBUSY;
464 /* self-sanity check that should never fail */
465 WARN_ON(tmp != hwlock);
468 return 0;
470 EXPORT_SYMBOL_GPL(hwspin_lock_unregister);
473 * __hwspin_lock_request() - tag an hwspinlock as used and power it up
475 * This is an internal function that prepares an hwspinlock instance
476 * before it is given to the user. The function assumes that
477 * hwspinlock_tree_lock is taken.
479 * Returns 0 or positive to indicate success, and a negative value to
480 * indicate an error (with the appropriate error code)
482 static int __hwspin_lock_request(struct hwspinlock *hwlock)
484 struct device *dev = hwlock->bank->dev;
485 struct hwspinlock *tmp;
486 int ret;
488 /* prevent underlying implementation from being removed */
489 if (!try_module_get(dev->driver->owner)) {
490 dev_err(dev, "%s: can't get owner\n", __func__);
491 return -EINVAL;
494 /* notify PM core that power is now needed */
495 ret = pm_runtime_get_sync(dev);
496 if (ret < 0) {
497 dev_err(dev, "%s: can't power on device\n", __func__);
498 pm_runtime_put_noidle(dev);
499 module_put(dev->driver->owner);
500 return ret;
503 /* mark hwspinlock as used, should not fail */
504 tmp = radix_tree_tag_clear(&hwspinlock_tree, hwlock_to_id(hwlock),
505 HWSPINLOCK_UNUSED);
507 /* self-sanity check that should never fail */
508 WARN_ON(tmp != hwlock);
510 return ret;
514 * hwspin_lock_get_id() - retrieve id number of a given hwspinlock
515 * @hwlock: a valid hwspinlock instance
517 * Returns the id number of a given @hwlock, or -EINVAL if @hwlock is invalid.
519 int hwspin_lock_get_id(struct hwspinlock *hwlock)
521 if (!hwlock) {
522 pr_err("invalid hwlock\n");
523 return -EINVAL;
526 return hwlock_to_id(hwlock);
528 EXPORT_SYMBOL_GPL(hwspin_lock_get_id);
531 * hwspin_lock_request() - request an hwspinlock
533 * This function should be called by users of the hwspinlock device,
534 * in order to dynamically assign them an unused hwspinlock.
535 * Usually the user of this lock will then have to communicate the lock's id
536 * to the remote core before it can be used for synchronization (to get the
537 * id of a given hwlock, use hwspin_lock_get_id()).
539 * Should be called from a process context (might sleep)
541 * Returns the address of the assigned hwspinlock, or NULL on error
543 struct hwspinlock *hwspin_lock_request(void)
545 struct hwspinlock *hwlock;
546 int ret;
548 mutex_lock(&hwspinlock_tree_lock);
550 /* look for an unused lock */
551 ret = radix_tree_gang_lookup_tag(&hwspinlock_tree, (void **)&hwlock,
552 0, 1, HWSPINLOCK_UNUSED);
553 if (ret == 0) {
554 pr_warn("a free hwspinlock is not available\n");
555 hwlock = NULL;
556 goto out;
559 /* sanity check that should never fail */
560 WARN_ON(ret > 1);
562 /* mark as used and power up */
563 ret = __hwspin_lock_request(hwlock);
564 if (ret < 0)
565 hwlock = NULL;
567 out:
568 mutex_unlock(&hwspinlock_tree_lock);
569 return hwlock;
571 EXPORT_SYMBOL_GPL(hwspin_lock_request);
574 * hwspin_lock_request_specific() - request for a specific hwspinlock
575 * @id: index of the specific hwspinlock that is requested
577 * This function should be called by users of the hwspinlock module,
578 * in order to assign them a specific hwspinlock.
579 * Usually early board code will be calling this function in order to
580 * reserve specific hwspinlock ids for predefined purposes.
582 * Should be called from a process context (might sleep)
584 * Returns the address of the assigned hwspinlock, or NULL on error
586 struct hwspinlock *hwspin_lock_request_specific(unsigned int id)
588 struct hwspinlock *hwlock;
589 int ret;
591 mutex_lock(&hwspinlock_tree_lock);
593 /* make sure this hwspinlock exists */
594 hwlock = radix_tree_lookup(&hwspinlock_tree, id);
595 if (!hwlock) {
596 pr_warn("hwspinlock %u does not exist\n", id);
597 goto out;
600 /* sanity check (this shouldn't happen) */
601 WARN_ON(hwlock_to_id(hwlock) != id);
603 /* make sure this hwspinlock is unused */
604 ret = radix_tree_tag_get(&hwspinlock_tree, id, HWSPINLOCK_UNUSED);
605 if (ret == 0) {
606 pr_warn("hwspinlock %u is already in use\n", id);
607 hwlock = NULL;
608 goto out;
611 /* mark as used and power up */
612 ret = __hwspin_lock_request(hwlock);
613 if (ret < 0)
614 hwlock = NULL;
616 out:
617 mutex_unlock(&hwspinlock_tree_lock);
618 return hwlock;
620 EXPORT_SYMBOL_GPL(hwspin_lock_request_specific);
623 * hwspin_lock_free() - free a specific hwspinlock
624 * @hwlock: the specific hwspinlock to free
626 * This function mark @hwlock as free again.
627 * Should only be called with an @hwlock that was retrieved from
628 * an earlier call to omap_hwspin_lock_request{_specific}.
630 * Should be called from a process context (might sleep)
632 * Returns 0 on success, or an appropriate error code on failure
634 int hwspin_lock_free(struct hwspinlock *hwlock)
636 struct device *dev;
637 struct hwspinlock *tmp;
638 int ret;
640 if (!hwlock) {
641 pr_err("invalid hwlock\n");
642 return -EINVAL;
645 dev = hwlock->bank->dev;
646 mutex_lock(&hwspinlock_tree_lock);
648 /* make sure the hwspinlock is used */
649 ret = radix_tree_tag_get(&hwspinlock_tree, hwlock_to_id(hwlock),
650 HWSPINLOCK_UNUSED);
651 if (ret == 1) {
652 dev_err(dev, "%s: hwlock is already free\n", __func__);
653 dump_stack();
654 ret = -EINVAL;
655 goto out;
658 /* notify the underlying device that power is not needed */
659 ret = pm_runtime_put(dev);
660 if (ret < 0)
661 goto out;
663 /* mark this hwspinlock as available */
664 tmp = radix_tree_tag_set(&hwspinlock_tree, hwlock_to_id(hwlock),
665 HWSPINLOCK_UNUSED);
667 /* sanity check (this shouldn't happen) */
668 WARN_ON(tmp != hwlock);
670 module_put(dev->driver->owner);
672 out:
673 mutex_unlock(&hwspinlock_tree_lock);
674 return ret;
676 EXPORT_SYMBOL_GPL(hwspin_lock_free);
678 MODULE_LICENSE("GPL v2");
679 MODULE_DESCRIPTION("Hardware spinlock interface");
680 MODULE_AUTHOR("Ohad Ben-Cohen <ohad@wizery.com>");