2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
18 unsigned long blk_max_low_pfn
;
19 EXPORT_SYMBOL(blk_max_low_pfn
);
21 unsigned long blk_max_pfn
;
24 * blk_queue_prep_rq - set a prepare_request function for queue
26 * @pfn: prepare_request function
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
34 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
38 EXPORT_SYMBOL(blk_queue_prep_rq
);
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
43 * @ufn: unprepare_request function
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
51 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
53 q
->unprep_rq_fn
= ufn
;
55 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
59 q
->softirq_done_fn
= fn
;
61 EXPORT_SYMBOL(blk_queue_softirq_done
);
63 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
65 q
->rq_timeout
= timeout
;
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
69 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
71 q
->rq_timed_out_fn
= fn
;
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
75 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
86 * Returns a queue_limit struct to its default state.
88 void blk_set_default_limits(struct queue_limits
*lim
)
90 lim
->max_segments
= BLK_MAX_SEGMENTS
;
91 lim
->max_discard_segments
= 1;
92 lim
->max_integrity_segments
= 0;
93 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
94 lim
->virt_boundary_mask
= 0;
95 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
96 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
97 lim
->max_dev_sectors
= 0;
98 lim
->chunk_sectors
= 0;
99 lim
->max_write_same_sectors
= 0;
100 lim
->max_write_zeroes_sectors
= 0;
101 lim
->max_discard_sectors
= 0;
102 lim
->max_hw_discard_sectors
= 0;
103 lim
->discard_granularity
= 0;
104 lim
->discard_alignment
= 0;
105 lim
->discard_misaligned
= 0;
106 lim
->discard_zeroes_data
= 0;
107 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
108 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
109 lim
->alignment_offset
= 0;
113 lim
->zoned
= BLK_ZONED_NONE
;
115 EXPORT_SYMBOL(blk_set_default_limits
);
118 * blk_set_stacking_limits - set default limits for stacking devices
119 * @lim: the queue_limits structure to reset
122 * Returns a queue_limit struct to its default state. Should be used
123 * by stacking drivers like DM that have no internal limits.
125 void blk_set_stacking_limits(struct queue_limits
*lim
)
127 blk_set_default_limits(lim
);
129 /* Inherit limits from component devices */
130 lim
->discard_zeroes_data
= 1;
131 lim
->max_segments
= USHRT_MAX
;
132 lim
->max_discard_segments
= 1;
133 lim
->max_hw_sectors
= UINT_MAX
;
134 lim
->max_segment_size
= UINT_MAX
;
135 lim
->max_sectors
= UINT_MAX
;
136 lim
->max_dev_sectors
= UINT_MAX
;
137 lim
->max_write_same_sectors
= UINT_MAX
;
138 lim
->max_write_zeroes_sectors
= UINT_MAX
;
140 EXPORT_SYMBOL(blk_set_stacking_limits
);
143 * blk_queue_make_request - define an alternate make_request function for a device
144 * @q: the request queue for the device to be affected
145 * @mfn: the alternate make_request function
148 * The normal way for &struct bios to be passed to a device
149 * driver is for them to be collected into requests on a request
150 * queue, and then to allow the device driver to select requests
151 * off that queue when it is ready. This works well for many block
152 * devices. However some block devices (typically virtual devices
153 * such as md or lvm) do not benefit from the processing on the
154 * request queue, and are served best by having the requests passed
155 * directly to them. This can be achieved by providing a function
156 * to blk_queue_make_request().
159 * The driver that does this *must* be able to deal appropriately
160 * with buffers in "highmemory". This can be accomplished by either calling
161 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
162 * blk_queue_bounce() to create a buffer in normal memory.
164 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
169 q
->nr_requests
= BLKDEV_MAX_RQ
;
171 q
->make_request_fn
= mfn
;
172 blk_queue_dma_alignment(q
, 511);
173 blk_queue_congestion_threshold(q
);
174 q
->nr_batching
= BLK_BATCH_REQ
;
176 blk_set_default_limits(&q
->limits
);
179 * by default assume old behaviour and bounce for any highmem page
181 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
183 EXPORT_SYMBOL(blk_queue_make_request
);
186 * blk_queue_bounce_limit - set bounce buffer limit for queue
187 * @q: the request queue for the device
188 * @max_addr: the maximum address the device can handle
191 * Different hardware can have different requirements as to what pages
192 * it can do I/O directly to. A low level driver can call
193 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
194 * buffers for doing I/O to pages residing above @max_addr.
196 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
198 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
201 q
->bounce_gfp
= GFP_NOIO
;
202 #if BITS_PER_LONG == 64
204 * Assume anything <= 4GB can be handled by IOMMU. Actually
205 * some IOMMUs can handle everything, but I don't know of a
206 * way to test this here.
208 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
210 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
212 if (b_pfn
< blk_max_low_pfn
)
214 q
->limits
.bounce_pfn
= b_pfn
;
217 init_emergency_isa_pool();
218 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
219 q
->limits
.bounce_pfn
= b_pfn
;
222 EXPORT_SYMBOL(blk_queue_bounce_limit
);
225 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
226 * @q: the request queue for the device
227 * @max_hw_sectors: max hardware sectors in the usual 512b unit
230 * Enables a low level driver to set a hard upper limit,
231 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
232 * the device driver based upon the capabilities of the I/O
235 * max_dev_sectors is a hard limit imposed by the storage device for
236 * READ/WRITE requests. It is set by the disk driver.
238 * max_sectors is a soft limit imposed by the block layer for
239 * filesystem type requests. This value can be overridden on a
240 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
241 * The soft limit can not exceed max_hw_sectors.
243 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
245 struct queue_limits
*limits
= &q
->limits
;
246 unsigned int max_sectors
;
248 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
249 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
250 printk(KERN_INFO
"%s: set to minimum %d\n",
251 __func__
, max_hw_sectors
);
254 limits
->max_hw_sectors
= max_hw_sectors
;
255 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
256 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
257 limits
->max_sectors
= max_sectors
;
258 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
260 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
263 * blk_queue_chunk_sectors - set size of the chunk for this queue
264 * @q: the request queue for the device
265 * @chunk_sectors: chunk sectors in the usual 512b unit
268 * If a driver doesn't want IOs to cross a given chunk size, it can set
269 * this limit and prevent merging across chunks. Note that the chunk size
270 * must currently be a power-of-2 in sectors. Also note that the block
271 * layer must accept a page worth of data at any offset. So if the
272 * crossing of chunks is a hard limitation in the driver, it must still be
273 * prepared to split single page bios.
275 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
277 BUG_ON(!is_power_of_2(chunk_sectors
));
278 q
->limits
.chunk_sectors
= chunk_sectors
;
280 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
283 * blk_queue_max_discard_sectors - set max sectors for a single discard
284 * @q: the request queue for the device
285 * @max_discard_sectors: maximum number of sectors to discard
287 void blk_queue_max_discard_sectors(struct request_queue
*q
,
288 unsigned int max_discard_sectors
)
290 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
291 q
->limits
.max_discard_sectors
= max_discard_sectors
;
293 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
296 * blk_queue_max_write_same_sectors - set max sectors for a single write same
297 * @q: the request queue for the device
298 * @max_write_same_sectors: maximum number of sectors to write per command
300 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
301 unsigned int max_write_same_sectors
)
303 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
305 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
308 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
310 * @q: the request queue for the device
311 * @max_write_zeroes_sectors: maximum number of sectors to write per command
313 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
314 unsigned int max_write_zeroes_sectors
)
316 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
318 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
321 * blk_queue_max_segments - set max hw segments for a request for this queue
322 * @q: the request queue for the device
323 * @max_segments: max number of segments
326 * Enables a low level driver to set an upper limit on the number of
327 * hw data segments in a request.
329 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
333 printk(KERN_INFO
"%s: set to minimum %d\n",
334 __func__
, max_segments
);
337 q
->limits
.max_segments
= max_segments
;
339 EXPORT_SYMBOL(blk_queue_max_segments
);
342 * blk_queue_max_discard_segments - set max segments for discard requests
343 * @q: the request queue for the device
344 * @max_segments: max number of segments
347 * Enables a low level driver to set an upper limit on the number of
348 * segments in a discard request.
350 void blk_queue_max_discard_segments(struct request_queue
*q
,
351 unsigned short max_segments
)
353 q
->limits
.max_discard_segments
= max_segments
;
355 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
358 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
359 * @q: the request queue for the device
360 * @max_size: max size of segment in bytes
363 * Enables a low level driver to set an upper limit on the size of a
366 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
368 if (max_size
< PAGE_SIZE
) {
369 max_size
= PAGE_SIZE
;
370 printk(KERN_INFO
"%s: set to minimum %d\n",
374 q
->limits
.max_segment_size
= max_size
;
376 EXPORT_SYMBOL(blk_queue_max_segment_size
);
379 * blk_queue_logical_block_size - set logical block size for the queue
380 * @q: the request queue for the device
381 * @size: the logical block size, in bytes
384 * This should be set to the lowest possible block size that the
385 * storage device can address. The default of 512 covers most
388 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
390 q
->limits
.logical_block_size
= size
;
392 if (q
->limits
.physical_block_size
< size
)
393 q
->limits
.physical_block_size
= size
;
395 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
396 q
->limits
.io_min
= q
->limits
.physical_block_size
;
398 EXPORT_SYMBOL(blk_queue_logical_block_size
);
401 * blk_queue_physical_block_size - set physical block size for the queue
402 * @q: the request queue for the device
403 * @size: the physical block size, in bytes
406 * This should be set to the lowest possible sector size that the
407 * hardware can operate on without reverting to read-modify-write
410 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
412 q
->limits
.physical_block_size
= size
;
414 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
415 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
417 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
418 q
->limits
.io_min
= q
->limits
.physical_block_size
;
420 EXPORT_SYMBOL(blk_queue_physical_block_size
);
423 * blk_queue_alignment_offset - set physical block alignment offset
424 * @q: the request queue for the device
425 * @offset: alignment offset in bytes
428 * Some devices are naturally misaligned to compensate for things like
429 * the legacy DOS partition table 63-sector offset. Low-level drivers
430 * should call this function for devices whose first sector is not
433 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
435 q
->limits
.alignment_offset
=
436 offset
& (q
->limits
.physical_block_size
- 1);
437 q
->limits
.misaligned
= 0;
439 EXPORT_SYMBOL(blk_queue_alignment_offset
);
442 * blk_limits_io_min - set minimum request size for a device
443 * @limits: the queue limits
444 * @min: smallest I/O size in bytes
447 * Some devices have an internal block size bigger than the reported
448 * hardware sector size. This function can be used to signal the
449 * smallest I/O the device can perform without incurring a performance
452 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
454 limits
->io_min
= min
;
456 if (limits
->io_min
< limits
->logical_block_size
)
457 limits
->io_min
= limits
->logical_block_size
;
459 if (limits
->io_min
< limits
->physical_block_size
)
460 limits
->io_min
= limits
->physical_block_size
;
462 EXPORT_SYMBOL(blk_limits_io_min
);
465 * blk_queue_io_min - set minimum request size for the queue
466 * @q: the request queue for the device
467 * @min: smallest I/O size in bytes
470 * Storage devices may report a granularity or preferred minimum I/O
471 * size which is the smallest request the device can perform without
472 * incurring a performance penalty. For disk drives this is often the
473 * physical block size. For RAID arrays it is often the stripe chunk
474 * size. A properly aligned multiple of minimum_io_size is the
475 * preferred request size for workloads where a high number of I/O
476 * operations is desired.
478 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
480 blk_limits_io_min(&q
->limits
, min
);
482 EXPORT_SYMBOL(blk_queue_io_min
);
485 * blk_limits_io_opt - set optimal request size for a device
486 * @limits: the queue limits
487 * @opt: smallest I/O size in bytes
490 * Storage devices may report an optimal I/O size, which is the
491 * device's preferred unit for sustained I/O. This is rarely reported
492 * for disk drives. For RAID arrays it is usually the stripe width or
493 * the internal track size. A properly aligned multiple of
494 * optimal_io_size is the preferred request size for workloads where
495 * sustained throughput is desired.
497 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
499 limits
->io_opt
= opt
;
501 EXPORT_SYMBOL(blk_limits_io_opt
);
504 * blk_queue_io_opt - set optimal request size for the queue
505 * @q: the request queue for the device
506 * @opt: optimal request size in bytes
509 * Storage devices may report an optimal I/O size, which is the
510 * device's preferred unit for sustained I/O. This is rarely reported
511 * for disk drives. For RAID arrays it is usually the stripe width or
512 * the internal track size. A properly aligned multiple of
513 * optimal_io_size is the preferred request size for workloads where
514 * sustained throughput is desired.
516 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
518 blk_limits_io_opt(&q
->limits
, opt
);
520 EXPORT_SYMBOL(blk_queue_io_opt
);
523 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
524 * @t: the stacking driver (top)
525 * @b: the underlying device (bottom)
527 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
529 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
531 EXPORT_SYMBOL(blk_queue_stack_limits
);
534 * blk_stack_limits - adjust queue_limits for stacked devices
535 * @t: the stacking driver limits (top device)
536 * @b: the underlying queue limits (bottom, component device)
537 * @start: first data sector within component device
540 * This function is used by stacking drivers like MD and DM to ensure
541 * that all component devices have compatible block sizes and
542 * alignments. The stacking driver must provide a queue_limits
543 * struct (top) and then iteratively call the stacking function for
544 * all component (bottom) devices. The stacking function will
545 * attempt to combine the values and ensure proper alignment.
547 * Returns 0 if the top and bottom queue_limits are compatible. The
548 * top device's block sizes and alignment offsets may be adjusted to
549 * ensure alignment with the bottom device. If no compatible sizes
550 * and alignments exist, -1 is returned and the resulting top
551 * queue_limits will have the misaligned flag set to indicate that
552 * the alignment_offset is undefined.
554 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
557 unsigned int top
, bottom
, alignment
, ret
= 0;
559 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
560 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
561 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
562 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
563 b
->max_write_same_sectors
);
564 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
565 b
->max_write_zeroes_sectors
);
566 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
568 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
569 b
->seg_boundary_mask
);
570 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
571 b
->virt_boundary_mask
);
573 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
574 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
575 b
->max_discard_segments
);
576 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
577 b
->max_integrity_segments
);
579 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
580 b
->max_segment_size
);
582 t
->misaligned
|= b
->misaligned
;
584 alignment
= queue_limit_alignment_offset(b
, start
);
586 /* Bottom device has different alignment. Check that it is
587 * compatible with the current top alignment.
589 if (t
->alignment_offset
!= alignment
) {
591 top
= max(t
->physical_block_size
, t
->io_min
)
592 + t
->alignment_offset
;
593 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
595 /* Verify that top and bottom intervals line up */
596 if (max(top
, bottom
) % min(top
, bottom
)) {
602 t
->logical_block_size
= max(t
->logical_block_size
,
603 b
->logical_block_size
);
605 t
->physical_block_size
= max(t
->physical_block_size
,
606 b
->physical_block_size
);
608 t
->io_min
= max(t
->io_min
, b
->io_min
);
609 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
611 t
->cluster
&= b
->cluster
;
612 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
614 /* Physical block size a multiple of the logical block size? */
615 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
616 t
->physical_block_size
= t
->logical_block_size
;
621 /* Minimum I/O a multiple of the physical block size? */
622 if (t
->io_min
& (t
->physical_block_size
- 1)) {
623 t
->io_min
= t
->physical_block_size
;
628 /* Optimal I/O a multiple of the physical block size? */
629 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
635 t
->raid_partial_stripes_expensive
=
636 max(t
->raid_partial_stripes_expensive
,
637 b
->raid_partial_stripes_expensive
);
639 /* Find lowest common alignment_offset */
640 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
641 % max(t
->physical_block_size
, t
->io_min
);
643 /* Verify that new alignment_offset is on a logical block boundary */
644 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
649 /* Discard alignment and granularity */
650 if (b
->discard_granularity
) {
651 alignment
= queue_limit_discard_alignment(b
, start
);
653 if (t
->discard_granularity
!= 0 &&
654 t
->discard_alignment
!= alignment
) {
655 top
= t
->discard_granularity
+ t
->discard_alignment
;
656 bottom
= b
->discard_granularity
+ alignment
;
658 /* Verify that top and bottom intervals line up */
659 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
660 t
->discard_misaligned
= 1;
663 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
664 b
->max_discard_sectors
);
665 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
666 b
->max_hw_discard_sectors
);
667 t
->discard_granularity
= max(t
->discard_granularity
,
668 b
->discard_granularity
);
669 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
670 t
->discard_granularity
;
673 if (b
->chunk_sectors
)
674 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
679 EXPORT_SYMBOL(blk_stack_limits
);
682 * bdev_stack_limits - adjust queue limits for stacked drivers
683 * @t: the stacking driver limits (top device)
684 * @bdev: the component block_device (bottom)
685 * @start: first data sector within component device
688 * Merges queue limits for a top device and a block_device. Returns
689 * 0 if alignment didn't change. Returns -1 if adding the bottom
690 * device caused misalignment.
692 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
695 struct request_queue
*bq
= bdev_get_queue(bdev
);
697 start
+= get_start_sect(bdev
);
699 return blk_stack_limits(t
, &bq
->limits
, start
);
701 EXPORT_SYMBOL(bdev_stack_limits
);
704 * disk_stack_limits - adjust queue limits for stacked drivers
705 * @disk: MD/DM gendisk (top)
706 * @bdev: the underlying block device (bottom)
707 * @offset: offset to beginning of data within component device
710 * Merges the limits for a top level gendisk and a bottom level
713 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
716 struct request_queue
*t
= disk
->queue
;
718 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
719 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
721 disk_name(disk
, 0, top
);
722 bdevname(bdev
, bottom
);
724 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
728 EXPORT_SYMBOL(disk_stack_limits
);
731 * blk_queue_dma_pad - set pad mask
732 * @q: the request queue for the device
737 * Appending pad buffer to a request modifies the last entry of a
738 * scatter list such that it includes the pad buffer.
740 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
742 q
->dma_pad_mask
= mask
;
744 EXPORT_SYMBOL(blk_queue_dma_pad
);
747 * blk_queue_update_dma_pad - update pad mask
748 * @q: the request queue for the device
751 * Update dma pad mask.
753 * Appending pad buffer to a request modifies the last entry of a
754 * scatter list such that it includes the pad buffer.
756 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
758 if (mask
> q
->dma_pad_mask
)
759 q
->dma_pad_mask
= mask
;
761 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
764 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
765 * @q: the request queue for the device
766 * @dma_drain_needed: fn which returns non-zero if drain is necessary
767 * @buf: physically contiguous buffer
768 * @size: size of the buffer in bytes
770 * Some devices have excess DMA problems and can't simply discard (or
771 * zero fill) the unwanted piece of the transfer. They have to have a
772 * real area of memory to transfer it into. The use case for this is
773 * ATAPI devices in DMA mode. If the packet command causes a transfer
774 * bigger than the transfer size some HBAs will lock up if there
775 * aren't DMA elements to contain the excess transfer. What this API
776 * does is adjust the queue so that the buf is always appended
777 * silently to the scatterlist.
779 * Note: This routine adjusts max_hw_segments to make room for appending
780 * the drain buffer. If you call blk_queue_max_segments() after calling
781 * this routine, you must set the limit to one fewer than your device
782 * can support otherwise there won't be room for the drain buffer.
784 int blk_queue_dma_drain(struct request_queue
*q
,
785 dma_drain_needed_fn
*dma_drain_needed
,
786 void *buf
, unsigned int size
)
788 if (queue_max_segments(q
) < 2)
790 /* make room for appending the drain */
791 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
792 q
->dma_drain_needed
= dma_drain_needed
;
793 q
->dma_drain_buffer
= buf
;
794 q
->dma_drain_size
= size
;
798 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
801 * blk_queue_segment_boundary - set boundary rules for segment merging
802 * @q: the request queue for the device
803 * @mask: the memory boundary mask
805 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
807 if (mask
< PAGE_SIZE
- 1) {
808 mask
= PAGE_SIZE
- 1;
809 printk(KERN_INFO
"%s: set to minimum %lx\n",
813 q
->limits
.seg_boundary_mask
= mask
;
815 EXPORT_SYMBOL(blk_queue_segment_boundary
);
818 * blk_queue_virt_boundary - set boundary rules for bio merging
819 * @q: the request queue for the device
820 * @mask: the memory boundary mask
822 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
824 q
->limits
.virt_boundary_mask
= mask
;
826 EXPORT_SYMBOL(blk_queue_virt_boundary
);
829 * blk_queue_dma_alignment - set dma length and memory alignment
830 * @q: the request queue for the device
831 * @mask: alignment mask
834 * set required memory and length alignment for direct dma transactions.
835 * this is used when building direct io requests for the queue.
838 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
840 q
->dma_alignment
= mask
;
842 EXPORT_SYMBOL(blk_queue_dma_alignment
);
845 * blk_queue_update_dma_alignment - update dma length and memory alignment
846 * @q: the request queue for the device
847 * @mask: alignment mask
850 * update required memory and length alignment for direct dma transactions.
851 * If the requested alignment is larger than the current alignment, then
852 * the current queue alignment is updated to the new value, otherwise it
853 * is left alone. The design of this is to allow multiple objects
854 * (driver, device, transport etc) to set their respective
855 * alignments without having them interfere.
858 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
860 BUG_ON(mask
> PAGE_SIZE
);
862 if (mask
> q
->dma_alignment
)
863 q
->dma_alignment
= mask
;
865 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
867 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
869 spin_lock_irq(q
->queue_lock
);
871 clear_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
873 set_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
874 spin_unlock_irq(q
->queue_lock
);
876 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
879 * blk_set_queue_depth - tell the block layer about the device queue depth
880 * @q: the request queue for the device
881 * @depth: queue depth
884 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
886 q
->queue_depth
= depth
;
887 wbt_set_queue_depth(q
->rq_wb
, depth
);
889 EXPORT_SYMBOL(blk_set_queue_depth
);
892 * blk_queue_write_cache - configure queue's write cache
893 * @q: the request queue for the device
894 * @wc: write back cache on or off
895 * @fua: device supports FUA writes, if true
897 * Tell the block layer about the write cache of @q.
899 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
901 spin_lock_irq(q
->queue_lock
);
903 queue_flag_set(QUEUE_FLAG_WC
, q
);
905 queue_flag_clear(QUEUE_FLAG_WC
, q
);
907 queue_flag_set(QUEUE_FLAG_FUA
, q
);
909 queue_flag_clear(QUEUE_FLAG_FUA
, q
);
910 spin_unlock_irq(q
->queue_lock
);
912 wbt_set_write_cache(q
->rq_wb
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
914 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
916 static int __init
blk_settings_init(void)
918 blk_max_low_pfn
= max_low_pfn
- 1;
919 blk_max_pfn
= max_pfn
- 1;
922 subsys_initcall(blk_settings_init
);