mac80211: release multiple ACs in uAPSD, fix more-data bug
[linux-2.6/btrfs-unstable.git] / net / mac80211 / sta_info.c
blob93e2157a5b7b8bde9b49a894e8e784235301292d
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
21 #include <net/mac80211.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "rate.h"
25 #include "sta_info.h"
26 #include "debugfs_sta.h"
27 #include "mesh.h"
28 #include "wme.h"
30 /**
31 * DOC: STA information lifetime rules
33 * STA info structures (&struct sta_info) are managed in a hash table
34 * for faster lookup and a list for iteration. They are managed using
35 * RCU, i.e. access to the list and hash table is protected by RCU.
37 * Upon allocating a STA info structure with sta_info_alloc(), the caller
38 * owns that structure. It must then insert it into the hash table using
39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
40 * case (which acquires an rcu read section but must not be called from
41 * within one) will the pointer still be valid after the call. Note that
42 * the caller may not do much with the STA info before inserting it, in
43 * particular, it may not start any mesh peer link management or add
44 * encryption keys.
46 * When the insertion fails (sta_info_insert()) returns non-zero), the
47 * structure will have been freed by sta_info_insert()!
49 * Station entries are added by mac80211 when you establish a link with a
50 * peer. This means different things for the different type of interfaces
51 * we support. For a regular station this mean we add the AP sta when we
52 * receive an association response from the AP. For IBSS this occurs when
53 * get to know about a peer on the same IBSS. For WDS we add the sta for
54 * the peer immediately upon device open. When using AP mode we add stations
55 * for each respective station upon request from userspace through nl80211.
57 * In order to remove a STA info structure, various sta_info_destroy_*()
58 * calls are available.
60 * There is no concept of ownership on a STA entry, each structure is
61 * owned by the global hash table/list until it is removed. All users of
62 * the structure need to be RCU protected so that the structure won't be
63 * freed before they are done using it.
66 /* Caller must hold local->sta_mtx */
67 static int sta_info_hash_del(struct ieee80211_local *local,
68 struct sta_info *sta)
70 struct sta_info *s;
72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)],
73 lockdep_is_held(&local->sta_mtx));
74 if (!s)
75 return -ENOENT;
76 if (s == sta) {
77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)],
78 s->hnext);
79 return 0;
82 while (rcu_access_pointer(s->hnext) &&
83 rcu_access_pointer(s->hnext) != sta)
84 s = rcu_dereference_protected(s->hnext,
85 lockdep_is_held(&local->sta_mtx));
86 if (rcu_access_pointer(s->hnext)) {
87 rcu_assign_pointer(s->hnext, sta->hnext);
88 return 0;
91 return -ENOENT;
94 static void cleanup_single_sta(struct sta_info *sta)
96 int ac, i;
97 struct tid_ampdu_tx *tid_tx;
98 struct ieee80211_sub_if_data *sdata = sta->sdata;
99 struct ieee80211_local *local = sdata->local;
100 struct ps_data *ps;
102 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
103 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
104 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
105 ps = &sdata->bss->ps;
106 else if (ieee80211_vif_is_mesh(&sdata->vif))
107 ps = &sdata->u.mesh.ps;
108 else
109 return;
111 clear_sta_flag(sta, WLAN_STA_PS_STA);
113 atomic_dec(&ps->num_sta_ps);
114 sta_info_recalc_tim(sta);
117 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
118 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
119 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
120 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
123 if (ieee80211_vif_is_mesh(&sdata->vif))
124 mesh_sta_cleanup(sta);
126 cancel_work_sync(&sta->drv_unblock_wk);
129 * Destroy aggregation state here. It would be nice to wait for the
130 * driver to finish aggregation stop and then clean up, but for now
131 * drivers have to handle aggregation stop being requested, followed
132 * directly by station destruction.
134 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
135 kfree(sta->ampdu_mlme.tid_start_tx[i]);
136 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
137 if (!tid_tx)
138 continue;
139 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
140 kfree(tid_tx);
143 sta_info_free(local, sta);
146 /* protected by RCU */
147 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
148 const u8 *addr)
150 struct ieee80211_local *local = sdata->local;
151 struct sta_info *sta;
153 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
154 lockdep_is_held(&local->sta_mtx));
155 while (sta) {
156 if (sta->sdata == sdata &&
157 ether_addr_equal(sta->sta.addr, addr))
158 break;
159 sta = rcu_dereference_check(sta->hnext,
160 lockdep_is_held(&local->sta_mtx));
162 return sta;
166 * Get sta info either from the specified interface
167 * or from one of its vlans
169 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
170 const u8 *addr)
172 struct ieee80211_local *local = sdata->local;
173 struct sta_info *sta;
175 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
176 lockdep_is_held(&local->sta_mtx));
177 while (sta) {
178 if ((sta->sdata == sdata ||
179 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) &&
180 ether_addr_equal(sta->sta.addr, addr))
181 break;
182 sta = rcu_dereference_check(sta->hnext,
183 lockdep_is_held(&local->sta_mtx));
185 return sta;
188 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
189 int idx)
191 struct ieee80211_local *local = sdata->local;
192 struct sta_info *sta;
193 int i = 0;
195 list_for_each_entry_rcu(sta, &local->sta_list, list) {
196 if (sdata != sta->sdata)
197 continue;
198 if (i < idx) {
199 ++i;
200 continue;
202 return sta;
205 return NULL;
209 * sta_info_free - free STA
211 * @local: pointer to the global information
212 * @sta: STA info to free
214 * This function must undo everything done by sta_info_alloc()
215 * that may happen before sta_info_insert(). It may only be
216 * called when sta_info_insert() has not been attempted (and
217 * if that fails, the station is freed anyway.)
219 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
221 int i;
223 if (sta->rate_ctrl)
224 rate_control_free_sta(sta);
226 if (sta->tx_lat) {
227 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
228 kfree(sta->tx_lat[i].bins);
229 kfree(sta->tx_lat);
232 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
234 kfree(sta);
237 /* Caller must hold local->sta_mtx */
238 static void sta_info_hash_add(struct ieee80211_local *local,
239 struct sta_info *sta)
241 lockdep_assert_held(&local->sta_mtx);
242 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)];
243 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta);
246 static void sta_unblock(struct work_struct *wk)
248 struct sta_info *sta;
250 sta = container_of(wk, struct sta_info, drv_unblock_wk);
252 if (sta->dead)
253 return;
255 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
256 local_bh_disable();
257 ieee80211_sta_ps_deliver_wakeup(sta);
258 local_bh_enable();
259 } else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) {
260 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
262 local_bh_disable();
263 ieee80211_sta_ps_deliver_poll_response(sta);
264 local_bh_enable();
265 } else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) {
266 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
268 local_bh_disable();
269 ieee80211_sta_ps_deliver_uapsd(sta);
270 local_bh_enable();
271 } else
272 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
275 static int sta_prepare_rate_control(struct ieee80211_local *local,
276 struct sta_info *sta, gfp_t gfp)
278 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
279 return 0;
281 sta->rate_ctrl = local->rate_ctrl;
282 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
283 &sta->sta, gfp);
284 if (!sta->rate_ctrl_priv)
285 return -ENOMEM;
287 return 0;
290 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
291 const u8 *addr, gfp_t gfp)
293 struct ieee80211_local *local = sdata->local;
294 struct sta_info *sta;
295 struct timespec uptime;
296 struct ieee80211_tx_latency_bin_ranges *tx_latency;
297 int i;
299 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
300 if (!sta)
301 return NULL;
303 rcu_read_lock();
304 tx_latency = rcu_dereference(local->tx_latency);
305 /* init stations Tx latency statistics && TID bins */
306 if (tx_latency) {
307 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS *
308 sizeof(struct ieee80211_tx_latency_stat),
309 GFP_ATOMIC);
310 if (!sta->tx_lat) {
311 rcu_read_unlock();
312 goto free;
315 if (tx_latency->n_ranges) {
316 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
317 /* size of bins is size of the ranges +1 */
318 sta->tx_lat[i].bin_count =
319 tx_latency->n_ranges + 1;
320 sta->tx_lat[i].bins =
321 kcalloc(sta->tx_lat[i].bin_count,
322 sizeof(u32), GFP_ATOMIC);
323 if (!sta->tx_lat[i].bins) {
324 rcu_read_unlock();
325 goto free;
330 rcu_read_unlock();
332 spin_lock_init(&sta->lock);
333 INIT_WORK(&sta->drv_unblock_wk, sta_unblock);
334 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
335 mutex_init(&sta->ampdu_mlme.mtx);
336 #ifdef CONFIG_MAC80211_MESH
337 if (ieee80211_vif_is_mesh(&sdata->vif) &&
338 !sdata->u.mesh.user_mpm)
339 init_timer(&sta->plink_timer);
340 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
341 #endif
343 memcpy(sta->sta.addr, addr, ETH_ALEN);
344 sta->local = local;
345 sta->sdata = sdata;
346 sta->last_rx = jiffies;
348 sta->sta_state = IEEE80211_STA_NONE;
350 do_posix_clock_monotonic_gettime(&uptime);
351 sta->last_connected = uptime.tv_sec;
352 ewma_init(&sta->avg_signal, 1024, 8);
353 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++)
354 ewma_init(&sta->chain_signal_avg[i], 1024, 8);
356 if (sta_prepare_rate_control(local, sta, gfp))
357 goto free;
359 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
361 * timer_to_tid must be initialized with identity mapping
362 * to enable session_timer's data differentiation. See
363 * sta_rx_agg_session_timer_expired for usage.
365 sta->timer_to_tid[i] = i;
367 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
368 skb_queue_head_init(&sta->ps_tx_buf[i]);
369 skb_queue_head_init(&sta->tx_filtered[i]);
372 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
373 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
375 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
376 if (sdata->vif.type == NL80211_IFTYPE_AP ||
377 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
378 struct ieee80211_supported_band *sband =
379 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)];
380 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
381 IEEE80211_HT_CAP_SM_PS_SHIFT;
383 * Assume that hostapd advertises our caps in the beacon and
384 * this is the known_smps_mode for a station that just assciated
386 switch (smps) {
387 case WLAN_HT_SMPS_CONTROL_DISABLED:
388 sta->known_smps_mode = IEEE80211_SMPS_OFF;
389 break;
390 case WLAN_HT_SMPS_CONTROL_STATIC:
391 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
392 break;
393 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
394 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
395 break;
396 default:
397 WARN_ON(1);
401 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
402 return sta;
404 free:
405 if (sta->tx_lat) {
406 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
407 kfree(sta->tx_lat[i].bins);
408 kfree(sta->tx_lat);
410 kfree(sta);
411 return NULL;
414 static int sta_info_insert_check(struct sta_info *sta)
416 struct ieee80211_sub_if_data *sdata = sta->sdata;
419 * Can't be a WARN_ON because it can be triggered through a race:
420 * something inserts a STA (on one CPU) without holding the RTNL
421 * and another CPU turns off the net device.
423 if (unlikely(!ieee80211_sdata_running(sdata)))
424 return -ENETDOWN;
426 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
427 is_multicast_ether_addr(sta->sta.addr)))
428 return -EINVAL;
430 return 0;
433 static int sta_info_insert_drv_state(struct ieee80211_local *local,
434 struct ieee80211_sub_if_data *sdata,
435 struct sta_info *sta)
437 enum ieee80211_sta_state state;
438 int err = 0;
440 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
441 err = drv_sta_state(local, sdata, sta, state, state + 1);
442 if (err)
443 break;
446 if (!err) {
448 * Drivers using legacy sta_add/sta_remove callbacks only
449 * get uploaded set to true after sta_add is called.
451 if (!local->ops->sta_add)
452 sta->uploaded = true;
453 return 0;
456 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
457 sdata_info(sdata,
458 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
459 sta->sta.addr, state + 1, err);
460 err = 0;
463 /* unwind on error */
464 for (; state > IEEE80211_STA_NOTEXIST; state--)
465 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
467 return err;
471 * should be called with sta_mtx locked
472 * this function replaces the mutex lock
473 * with a RCU lock
475 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
477 struct ieee80211_local *local = sta->local;
478 struct ieee80211_sub_if_data *sdata = sta->sdata;
479 struct station_info sinfo;
480 int err = 0;
482 lockdep_assert_held(&local->sta_mtx);
484 /* check if STA exists already */
485 if (sta_info_get_bss(sdata, sta->sta.addr)) {
486 err = -EEXIST;
487 goto out_err;
490 /* notify driver */
491 err = sta_info_insert_drv_state(local, sdata, sta);
492 if (err)
493 goto out_err;
495 local->num_sta++;
496 local->sta_generation++;
497 smp_mb();
499 /* make the station visible */
500 sta_info_hash_add(local, sta);
502 list_add_rcu(&sta->list, &local->sta_list);
504 set_sta_flag(sta, WLAN_STA_INSERTED);
506 ieee80211_recalc_min_chandef(sdata);
507 ieee80211_sta_debugfs_add(sta);
508 rate_control_add_sta_debugfs(sta);
510 memset(&sinfo, 0, sizeof(sinfo));
511 sinfo.filled = 0;
512 sinfo.generation = local->sta_generation;
513 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
515 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
517 /* move reference to rcu-protected */
518 rcu_read_lock();
519 mutex_unlock(&local->sta_mtx);
521 if (ieee80211_vif_is_mesh(&sdata->vif))
522 mesh_accept_plinks_update(sdata);
524 return 0;
525 out_err:
526 mutex_unlock(&local->sta_mtx);
527 rcu_read_lock();
528 return err;
531 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
533 struct ieee80211_local *local = sta->local;
534 int err = 0;
536 might_sleep();
538 err = sta_info_insert_check(sta);
539 if (err) {
540 rcu_read_lock();
541 goto out_free;
544 mutex_lock(&local->sta_mtx);
546 err = sta_info_insert_finish(sta);
547 if (err)
548 goto out_free;
550 return 0;
551 out_free:
552 BUG_ON(!err);
553 sta_info_free(local, sta);
554 return err;
557 int sta_info_insert(struct sta_info *sta)
559 int err = sta_info_insert_rcu(sta);
561 rcu_read_unlock();
563 return err;
566 static inline void __bss_tim_set(u8 *tim, u16 id)
569 * This format has been mandated by the IEEE specifications,
570 * so this line may not be changed to use the __set_bit() format.
572 tim[id / 8] |= (1 << (id % 8));
575 static inline void __bss_tim_clear(u8 *tim, u16 id)
578 * This format has been mandated by the IEEE specifications,
579 * so this line may not be changed to use the __clear_bit() format.
581 tim[id / 8] &= ~(1 << (id % 8));
584 static inline bool __bss_tim_get(u8 *tim, u16 id)
587 * This format has been mandated by the IEEE specifications,
588 * so this line may not be changed to use the test_bit() format.
590 return tim[id / 8] & (1 << (id % 8));
593 static unsigned long ieee80211_tids_for_ac(int ac)
595 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
596 switch (ac) {
597 case IEEE80211_AC_VO:
598 return BIT(6) | BIT(7);
599 case IEEE80211_AC_VI:
600 return BIT(4) | BIT(5);
601 case IEEE80211_AC_BE:
602 return BIT(0) | BIT(3);
603 case IEEE80211_AC_BK:
604 return BIT(1) | BIT(2);
605 default:
606 WARN_ON(1);
607 return 0;
611 void sta_info_recalc_tim(struct sta_info *sta)
613 struct ieee80211_local *local = sta->local;
614 struct ps_data *ps;
615 bool indicate_tim = false;
616 u8 ignore_for_tim = sta->sta.uapsd_queues;
617 int ac;
618 u16 id;
620 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
621 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
622 if (WARN_ON_ONCE(!sta->sdata->bss))
623 return;
625 ps = &sta->sdata->bss->ps;
626 id = sta->sta.aid;
627 #ifdef CONFIG_MAC80211_MESH
628 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
629 ps = &sta->sdata->u.mesh.ps;
630 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */
631 id = sta->plid % (IEEE80211_MAX_AID + 1);
632 #endif
633 } else {
634 return;
637 /* No need to do anything if the driver does all */
638 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
639 return;
641 if (sta->dead)
642 goto done;
645 * If all ACs are delivery-enabled then we should build
646 * the TIM bit for all ACs anyway; if only some are then
647 * we ignore those and build the TIM bit using only the
648 * non-enabled ones.
650 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
651 ignore_for_tim = 0;
653 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
654 unsigned long tids;
656 if (ignore_for_tim & BIT(ac))
657 continue;
659 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
660 !skb_queue_empty(&sta->ps_tx_buf[ac]);
661 if (indicate_tim)
662 break;
664 tids = ieee80211_tids_for_ac(ac);
666 indicate_tim |=
667 sta->driver_buffered_tids & tids;
670 done:
671 spin_lock_bh(&local->tim_lock);
673 if (indicate_tim == __bss_tim_get(ps->tim, id))
674 goto out_unlock;
676 if (indicate_tim)
677 __bss_tim_set(ps->tim, id);
678 else
679 __bss_tim_clear(ps->tim, id);
681 if (local->ops->set_tim) {
682 local->tim_in_locked_section = true;
683 drv_set_tim(local, &sta->sta, indicate_tim);
684 local->tim_in_locked_section = false;
687 out_unlock:
688 spin_unlock_bh(&local->tim_lock);
691 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
693 struct ieee80211_tx_info *info;
694 int timeout;
696 if (!skb)
697 return false;
699 info = IEEE80211_SKB_CB(skb);
701 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
702 timeout = (sta->listen_interval *
703 sta->sdata->vif.bss_conf.beacon_int *
704 32 / 15625) * HZ;
705 if (timeout < STA_TX_BUFFER_EXPIRE)
706 timeout = STA_TX_BUFFER_EXPIRE;
707 return time_after(jiffies, info->control.jiffies + timeout);
711 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
712 struct sta_info *sta, int ac)
714 unsigned long flags;
715 struct sk_buff *skb;
718 * First check for frames that should expire on the filtered
719 * queue. Frames here were rejected by the driver and are on
720 * a separate queue to avoid reordering with normal PS-buffered
721 * frames. They also aren't accounted for right now in the
722 * total_ps_buffered counter.
724 for (;;) {
725 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
726 skb = skb_peek(&sta->tx_filtered[ac]);
727 if (sta_info_buffer_expired(sta, skb))
728 skb = __skb_dequeue(&sta->tx_filtered[ac]);
729 else
730 skb = NULL;
731 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
734 * Frames are queued in order, so if this one
735 * hasn't expired yet we can stop testing. If
736 * we actually reached the end of the queue we
737 * also need to stop, of course.
739 if (!skb)
740 break;
741 ieee80211_free_txskb(&local->hw, skb);
745 * Now also check the normal PS-buffered queue, this will
746 * only find something if the filtered queue was emptied
747 * since the filtered frames are all before the normal PS
748 * buffered frames.
750 for (;;) {
751 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
752 skb = skb_peek(&sta->ps_tx_buf[ac]);
753 if (sta_info_buffer_expired(sta, skb))
754 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
755 else
756 skb = NULL;
757 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
760 * frames are queued in order, so if this one
761 * hasn't expired yet (or we reached the end of
762 * the queue) we can stop testing
764 if (!skb)
765 break;
767 local->total_ps_buffered--;
768 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
769 sta->sta.addr);
770 ieee80211_free_txskb(&local->hw, skb);
774 * Finally, recalculate the TIM bit for this station -- it might
775 * now be clear because the station was too slow to retrieve its
776 * frames.
778 sta_info_recalc_tim(sta);
781 * Return whether there are any frames still buffered, this is
782 * used to check whether the cleanup timer still needs to run,
783 * if there are no frames we don't need to rearm the timer.
785 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
786 skb_queue_empty(&sta->tx_filtered[ac]));
789 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
790 struct sta_info *sta)
792 bool have_buffered = false;
793 int ac;
795 /* This is only necessary for stations on BSS/MBSS interfaces */
796 if (!sta->sdata->bss &&
797 !ieee80211_vif_is_mesh(&sta->sdata->vif))
798 return false;
800 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
801 have_buffered |=
802 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
804 return have_buffered;
807 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
809 struct ieee80211_local *local;
810 struct ieee80211_sub_if_data *sdata;
811 int ret;
813 might_sleep();
815 if (!sta)
816 return -ENOENT;
818 local = sta->local;
819 sdata = sta->sdata;
821 lockdep_assert_held(&local->sta_mtx);
824 * Before removing the station from the driver and
825 * rate control, it might still start new aggregation
826 * sessions -- block that to make sure the tear-down
827 * will be sufficient.
829 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
830 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
832 ret = sta_info_hash_del(local, sta);
833 if (WARN_ON(ret))
834 return ret;
836 list_del_rcu(&sta->list);
838 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
840 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
841 rcu_access_pointer(sdata->u.vlan.sta) == sta)
842 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
844 return 0;
847 static void __sta_info_destroy_part2(struct sta_info *sta)
849 struct ieee80211_local *local = sta->local;
850 struct ieee80211_sub_if_data *sdata = sta->sdata;
851 int ret;
854 * NOTE: This assumes at least synchronize_net() was done
855 * after _part1 and before _part2!
858 might_sleep();
859 lockdep_assert_held(&local->sta_mtx);
861 /* now keys can no longer be reached */
862 ieee80211_free_sta_keys(local, sta);
864 sta->dead = true;
866 local->num_sta--;
867 local->sta_generation++;
869 while (sta->sta_state > IEEE80211_STA_NONE) {
870 ret = sta_info_move_state(sta, sta->sta_state - 1);
871 if (ret) {
872 WARN_ON_ONCE(1);
873 break;
877 if (sta->uploaded) {
878 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
879 IEEE80211_STA_NOTEXIST);
880 WARN_ON_ONCE(ret != 0);
883 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
885 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL);
887 rate_control_remove_sta_debugfs(sta);
888 ieee80211_sta_debugfs_remove(sta);
889 ieee80211_recalc_min_chandef(sdata);
891 cleanup_single_sta(sta);
894 int __must_check __sta_info_destroy(struct sta_info *sta)
896 int err = __sta_info_destroy_part1(sta);
898 if (err)
899 return err;
901 synchronize_net();
903 __sta_info_destroy_part2(sta);
905 return 0;
908 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
910 struct sta_info *sta;
911 int ret;
913 mutex_lock(&sdata->local->sta_mtx);
914 sta = sta_info_get(sdata, addr);
915 ret = __sta_info_destroy(sta);
916 mutex_unlock(&sdata->local->sta_mtx);
918 return ret;
921 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
922 const u8 *addr)
924 struct sta_info *sta;
925 int ret;
927 mutex_lock(&sdata->local->sta_mtx);
928 sta = sta_info_get_bss(sdata, addr);
929 ret = __sta_info_destroy(sta);
930 mutex_unlock(&sdata->local->sta_mtx);
932 return ret;
935 static void sta_info_cleanup(unsigned long data)
937 struct ieee80211_local *local = (struct ieee80211_local *) data;
938 struct sta_info *sta;
939 bool timer_needed = false;
941 rcu_read_lock();
942 list_for_each_entry_rcu(sta, &local->sta_list, list)
943 if (sta_info_cleanup_expire_buffered(local, sta))
944 timer_needed = true;
945 rcu_read_unlock();
947 if (local->quiescing)
948 return;
950 if (!timer_needed)
951 return;
953 mod_timer(&local->sta_cleanup,
954 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
957 void sta_info_init(struct ieee80211_local *local)
959 spin_lock_init(&local->tim_lock);
960 mutex_init(&local->sta_mtx);
961 INIT_LIST_HEAD(&local->sta_list);
963 setup_timer(&local->sta_cleanup, sta_info_cleanup,
964 (unsigned long)local);
967 void sta_info_stop(struct ieee80211_local *local)
969 del_timer_sync(&local->sta_cleanup);
973 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
975 struct ieee80211_local *local = sdata->local;
976 struct sta_info *sta, *tmp;
977 LIST_HEAD(free_list);
978 int ret = 0;
980 might_sleep();
982 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
983 WARN_ON(vlans && !sdata->bss);
985 mutex_lock(&local->sta_mtx);
986 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
987 if (sdata == sta->sdata ||
988 (vlans && sdata->bss == sta->sdata->bss)) {
989 if (!WARN_ON(__sta_info_destroy_part1(sta)))
990 list_add(&sta->free_list, &free_list);
991 ret++;
995 if (!list_empty(&free_list)) {
996 synchronize_net();
997 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
998 __sta_info_destroy_part2(sta);
1000 mutex_unlock(&local->sta_mtx);
1002 return ret;
1005 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1006 unsigned long exp_time)
1008 struct ieee80211_local *local = sdata->local;
1009 struct sta_info *sta, *tmp;
1011 mutex_lock(&local->sta_mtx);
1013 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1014 if (sdata != sta->sdata)
1015 continue;
1017 if (time_after(jiffies, sta->last_rx + exp_time)) {
1018 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1019 sta->sta.addr);
1021 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1022 test_sta_flag(sta, WLAN_STA_PS_STA))
1023 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1025 WARN_ON(__sta_info_destroy(sta));
1029 mutex_unlock(&local->sta_mtx);
1032 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1033 const u8 *addr,
1034 const u8 *localaddr)
1036 struct sta_info *sta, *nxt;
1039 * Just return a random station if localaddr is NULL
1040 * ... first in list.
1042 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) {
1043 if (localaddr &&
1044 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1045 continue;
1046 if (!sta->uploaded)
1047 return NULL;
1048 return &sta->sta;
1051 return NULL;
1053 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1055 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1056 const u8 *addr)
1058 struct sta_info *sta;
1060 if (!vif)
1061 return NULL;
1063 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1064 if (!sta)
1065 return NULL;
1067 if (!sta->uploaded)
1068 return NULL;
1070 return &sta->sta;
1072 EXPORT_SYMBOL(ieee80211_find_sta);
1074 static void clear_sta_ps_flags(void *_sta)
1076 struct sta_info *sta = _sta;
1077 struct ieee80211_sub_if_data *sdata = sta->sdata;
1078 struct ps_data *ps;
1080 if (sdata->vif.type == NL80211_IFTYPE_AP ||
1081 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1082 ps = &sdata->bss->ps;
1083 else if (ieee80211_vif_is_mesh(&sdata->vif))
1084 ps = &sdata->u.mesh.ps;
1085 else
1086 return;
1088 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1089 if (test_and_clear_sta_flag(sta, WLAN_STA_PS_STA))
1090 atomic_dec(&ps->num_sta_ps);
1093 /* powersave support code */
1094 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1096 struct ieee80211_sub_if_data *sdata = sta->sdata;
1097 struct ieee80211_local *local = sdata->local;
1098 struct sk_buff_head pending;
1099 int filtered = 0, buffered = 0, ac;
1100 unsigned long flags;
1102 clear_sta_flag(sta, WLAN_STA_SP);
1104 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1105 sta->driver_buffered_tids = 0;
1107 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1108 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1110 skb_queue_head_init(&pending);
1112 /* Send all buffered frames to the station */
1113 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1114 int count = skb_queue_len(&pending), tmp;
1116 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1117 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1118 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1119 tmp = skb_queue_len(&pending);
1120 filtered += tmp - count;
1121 count = tmp;
1123 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1124 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1125 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1126 tmp = skb_queue_len(&pending);
1127 buffered += tmp - count;
1130 ieee80211_add_pending_skbs_fn(local, &pending, clear_sta_ps_flags, sta);
1132 /* This station just woke up and isn't aware of our SMPS state */
1133 if (!ieee80211_smps_is_restrictive(sta->known_smps_mode,
1134 sdata->smps_mode) &&
1135 sta->known_smps_mode != sdata->bss->req_smps &&
1136 sta_info_tx_streams(sta) != 1) {
1137 ht_dbg(sdata,
1138 "%pM just woke up and MIMO capable - update SMPS\n",
1139 sta->sta.addr);
1140 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1141 sta->sta.addr,
1142 sdata->vif.bss_conf.bssid);
1145 local->total_ps_buffered -= buffered;
1147 sta_info_recalc_tim(sta);
1149 ps_dbg(sdata,
1150 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1151 sta->sta.addr, sta->sta.aid, filtered, buffered);
1154 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1155 struct sta_info *sta, int tid,
1156 enum ieee80211_frame_release_type reason)
1158 struct ieee80211_local *local = sdata->local;
1159 struct ieee80211_qos_hdr *nullfunc;
1160 struct sk_buff *skb;
1161 int size = sizeof(*nullfunc);
1162 __le16 fc;
1163 bool qos = test_sta_flag(sta, WLAN_STA_WME);
1164 struct ieee80211_tx_info *info;
1165 struct ieee80211_chanctx_conf *chanctx_conf;
1167 if (qos) {
1168 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1169 IEEE80211_STYPE_QOS_NULLFUNC |
1170 IEEE80211_FCTL_FROMDS);
1171 } else {
1172 size -= 2;
1173 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1174 IEEE80211_STYPE_NULLFUNC |
1175 IEEE80211_FCTL_FROMDS);
1178 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1179 if (!skb)
1180 return;
1182 skb_reserve(skb, local->hw.extra_tx_headroom);
1184 nullfunc = (void *) skb_put(skb, size);
1185 nullfunc->frame_control = fc;
1186 nullfunc->duration_id = 0;
1187 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1188 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1189 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1191 skb->priority = tid;
1192 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1193 if (qos) {
1194 nullfunc->qos_ctrl = cpu_to_le16(tid);
1196 if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1197 nullfunc->qos_ctrl |=
1198 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1201 info = IEEE80211_SKB_CB(skb);
1204 * Tell TX path to send this frame even though the
1205 * STA may still remain is PS mode after this frame
1206 * exchange. Also set EOSP to indicate this packet
1207 * ends the poll/service period.
1209 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1210 IEEE80211_TX_CTL_PS_RESPONSE |
1211 IEEE80211_TX_STATUS_EOSP |
1212 IEEE80211_TX_CTL_REQ_TX_STATUS;
1214 drv_allow_buffered_frames(local, sta, BIT(tid), 1, reason, false);
1216 skb->dev = sdata->dev;
1218 rcu_read_lock();
1219 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1220 if (WARN_ON(!chanctx_conf)) {
1221 rcu_read_unlock();
1222 kfree_skb(skb);
1223 return;
1226 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band);
1227 rcu_read_unlock();
1230 static int find_highest_prio_tid(unsigned long tids)
1232 /* lower 3 TIDs aren't ordered perfectly */
1233 if (tids & 0xF8)
1234 return fls(tids) - 1;
1235 /* TID 0 is BE just like TID 3 */
1236 if (tids & BIT(0))
1237 return 0;
1238 return fls(tids) - 1;
1241 static void
1242 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1243 int n_frames, u8 ignored_acs,
1244 enum ieee80211_frame_release_type reason)
1246 struct ieee80211_sub_if_data *sdata = sta->sdata;
1247 struct ieee80211_local *local = sdata->local;
1248 bool more_data = false;
1249 int ac;
1250 unsigned long driver_release_tids = 0;
1251 struct sk_buff_head frames;
1253 /* Service or PS-Poll period starts */
1254 set_sta_flag(sta, WLAN_STA_SP);
1256 __skb_queue_head_init(&frames);
1258 /* Get response frame(s) and more data bit for the last one. */
1259 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1260 unsigned long tids;
1262 if (ignored_acs & BIT(ac))
1263 continue;
1265 tids = ieee80211_tids_for_ac(ac);
1267 /* if we already have frames from software, then we can't also
1268 * release from hardware queues
1270 if (skb_queue_empty(&frames))
1271 driver_release_tids |= sta->driver_buffered_tids & tids;
1273 if (driver_release_tids) {
1274 /* If the driver has data on more than one TID then
1275 * certainly there's more data if we release just a
1276 * single frame now (from a single TID). This will
1277 * only happen for PS-Poll.
1279 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1280 hweight16(driver_release_tids) > 1) {
1281 more_data = true;
1282 driver_release_tids =
1283 BIT(find_highest_prio_tid(
1284 driver_release_tids));
1285 break;
1287 } else {
1288 struct sk_buff *skb;
1290 while (n_frames > 0) {
1291 skb = skb_dequeue(&sta->tx_filtered[ac]);
1292 if (!skb) {
1293 skb = skb_dequeue(
1294 &sta->ps_tx_buf[ac]);
1295 if (skb)
1296 local->total_ps_buffered--;
1298 if (!skb)
1299 break;
1300 n_frames--;
1301 __skb_queue_tail(&frames, skb);
1305 /* If we have more frames buffered on this AC, then set the
1306 * more-data bit and abort the loop since we can't send more
1307 * data from other ACs before the buffered frames from this.
1309 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1310 !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1311 more_data = true;
1312 break;
1316 if (skb_queue_empty(&frames) && !driver_release_tids) {
1317 int tid;
1320 * For PS-Poll, this can only happen due to a race condition
1321 * when we set the TIM bit and the station notices it, but
1322 * before it can poll for the frame we expire it.
1324 * For uAPSD, this is said in the standard (11.2.1.5 h):
1325 * At each unscheduled SP for a non-AP STA, the AP shall
1326 * attempt to transmit at least one MSDU or MMPDU, but no
1327 * more than the value specified in the Max SP Length field
1328 * in the QoS Capability element from delivery-enabled ACs,
1329 * that are destined for the non-AP STA.
1331 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1334 /* This will evaluate to 1, 3, 5 or 7. */
1335 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1337 ieee80211_send_null_response(sdata, sta, tid, reason);
1338 } else if (!driver_release_tids) {
1339 struct sk_buff_head pending;
1340 struct sk_buff *skb;
1341 int num = 0;
1342 u16 tids = 0;
1344 skb_queue_head_init(&pending);
1346 while ((skb = __skb_dequeue(&frames))) {
1347 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1348 struct ieee80211_hdr *hdr = (void *) skb->data;
1349 u8 *qoshdr = NULL;
1351 num++;
1354 * Tell TX path to send this frame even though the
1355 * STA may still remain is PS mode after this frame
1356 * exchange.
1358 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1359 IEEE80211_TX_CTL_PS_RESPONSE;
1362 * Use MoreData flag to indicate whether there are
1363 * more buffered frames for this STA
1365 if (more_data || !skb_queue_empty(&frames))
1366 hdr->frame_control |=
1367 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1368 else
1369 hdr->frame_control &=
1370 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1372 if (ieee80211_is_data_qos(hdr->frame_control) ||
1373 ieee80211_is_qos_nullfunc(hdr->frame_control))
1374 qoshdr = ieee80211_get_qos_ctl(hdr);
1376 /* end service period after last frame */
1377 if (skb_queue_empty(&frames)) {
1378 if (reason == IEEE80211_FRAME_RELEASE_UAPSD &&
1379 qoshdr)
1380 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1382 info->flags |= IEEE80211_TX_STATUS_EOSP |
1383 IEEE80211_TX_CTL_REQ_TX_STATUS;
1386 if (qoshdr)
1387 tids |= BIT(*qoshdr & IEEE80211_QOS_CTL_TID_MASK);
1388 else
1389 tids |= BIT(0);
1391 __skb_queue_tail(&pending, skb);
1394 drv_allow_buffered_frames(local, sta, tids, num,
1395 reason, more_data);
1397 ieee80211_add_pending_skbs(local, &pending);
1399 sta_info_recalc_tim(sta);
1400 } else {
1402 * We need to release a frame that is buffered somewhere in the
1403 * driver ... it'll have to handle that.
1404 * Note that the driver also has to check the number of frames
1405 * on the TIDs we're releasing from - if there are more than
1406 * n_frames it has to set the more-data bit (if we didn't ask
1407 * it to set it anyway due to other buffered frames); if there
1408 * are fewer than n_frames it has to make sure to adjust that
1409 * to allow the service period to end properly.
1411 drv_release_buffered_frames(local, sta, driver_release_tids,
1412 n_frames, reason, more_data);
1415 * Note that we don't recalculate the TIM bit here as it would
1416 * most likely have no effect at all unless the driver told us
1417 * that the TID(s) became empty before returning here from the
1418 * release function.
1419 * Either way, however, when the driver tells us that the TID(s)
1420 * became empty we'll do the TIM recalculation.
1425 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1427 u8 ignore_for_response = sta->sta.uapsd_queues;
1430 * If all ACs are delivery-enabled then we should reply
1431 * from any of them, if only some are enabled we reply
1432 * only from the non-enabled ones.
1434 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1435 ignore_for_response = 0;
1437 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1438 IEEE80211_FRAME_RELEASE_PSPOLL);
1441 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1443 int n_frames = sta->sta.max_sp;
1444 u8 delivery_enabled = sta->sta.uapsd_queues;
1447 * If we ever grow support for TSPEC this might happen if
1448 * the TSPEC update from hostapd comes in between a trigger
1449 * frame setting WLAN_STA_UAPSD in the RX path and this
1450 * actually getting called.
1452 if (!delivery_enabled)
1453 return;
1455 switch (sta->sta.max_sp) {
1456 case 1:
1457 n_frames = 2;
1458 break;
1459 case 2:
1460 n_frames = 4;
1461 break;
1462 case 3:
1463 n_frames = 6;
1464 break;
1465 case 0:
1466 /* XXX: what is a good value? */
1467 n_frames = 8;
1468 break;
1471 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1472 IEEE80211_FRAME_RELEASE_UAPSD);
1475 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1476 struct ieee80211_sta *pubsta, bool block)
1478 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1480 trace_api_sta_block_awake(sta->local, pubsta, block);
1482 if (block)
1483 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1484 else if (test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1485 ieee80211_queue_work(hw, &sta->drv_unblock_wk);
1487 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1489 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1491 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1492 struct ieee80211_local *local = sta->local;
1494 trace_api_eosp(local, pubsta);
1496 clear_sta_flag(sta, WLAN_STA_SP);
1498 EXPORT_SYMBOL(ieee80211_sta_eosp);
1500 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1501 u8 tid, bool buffered)
1503 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1505 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1506 return;
1508 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1510 if (buffered)
1511 set_bit(tid, &sta->driver_buffered_tids);
1512 else
1513 clear_bit(tid, &sta->driver_buffered_tids);
1515 sta_info_recalc_tim(sta);
1517 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1519 int sta_info_move_state(struct sta_info *sta,
1520 enum ieee80211_sta_state new_state)
1522 might_sleep();
1524 if (sta->sta_state == new_state)
1525 return 0;
1527 /* check allowed transitions first */
1529 switch (new_state) {
1530 case IEEE80211_STA_NONE:
1531 if (sta->sta_state != IEEE80211_STA_AUTH)
1532 return -EINVAL;
1533 break;
1534 case IEEE80211_STA_AUTH:
1535 if (sta->sta_state != IEEE80211_STA_NONE &&
1536 sta->sta_state != IEEE80211_STA_ASSOC)
1537 return -EINVAL;
1538 break;
1539 case IEEE80211_STA_ASSOC:
1540 if (sta->sta_state != IEEE80211_STA_AUTH &&
1541 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1542 return -EINVAL;
1543 break;
1544 case IEEE80211_STA_AUTHORIZED:
1545 if (sta->sta_state != IEEE80211_STA_ASSOC)
1546 return -EINVAL;
1547 break;
1548 default:
1549 WARN(1, "invalid state %d", new_state);
1550 return -EINVAL;
1553 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1554 sta->sta.addr, new_state);
1557 * notify the driver before the actual changes so it can
1558 * fail the transition
1560 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1561 int err = drv_sta_state(sta->local, sta->sdata, sta,
1562 sta->sta_state, new_state);
1563 if (err)
1564 return err;
1567 /* reflect the change in all state variables */
1569 switch (new_state) {
1570 case IEEE80211_STA_NONE:
1571 if (sta->sta_state == IEEE80211_STA_AUTH)
1572 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1573 break;
1574 case IEEE80211_STA_AUTH:
1575 if (sta->sta_state == IEEE80211_STA_NONE)
1576 set_bit(WLAN_STA_AUTH, &sta->_flags);
1577 else if (sta->sta_state == IEEE80211_STA_ASSOC)
1578 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1579 break;
1580 case IEEE80211_STA_ASSOC:
1581 if (sta->sta_state == IEEE80211_STA_AUTH) {
1582 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1583 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1584 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1585 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1586 !sta->sdata->u.vlan.sta))
1587 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1588 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1590 break;
1591 case IEEE80211_STA_AUTHORIZED:
1592 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1593 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1594 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1595 !sta->sdata->u.vlan.sta))
1596 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1597 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1599 break;
1600 default:
1601 break;
1604 sta->sta_state = new_state;
1606 return 0;
1609 u8 sta_info_tx_streams(struct sta_info *sta)
1611 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1612 u8 rx_streams;
1614 if (!sta->sta.ht_cap.ht_supported)
1615 return 1;
1617 if (sta->sta.vht_cap.vht_supported) {
1618 int i;
1619 u16 tx_mcs_map =
1620 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1622 for (i = 7; i >= 0; i--)
1623 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1624 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1625 return i + 1;
1628 if (ht_cap->mcs.rx_mask[3])
1629 rx_streams = 4;
1630 else if (ht_cap->mcs.rx_mask[2])
1631 rx_streams = 3;
1632 else if (ht_cap->mcs.rx_mask[1])
1633 rx_streams = 2;
1634 else
1635 rx_streams = 1;
1637 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1638 return rx_streams;
1640 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1641 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;