consolidate duplicate code is skb_checksum_setup() helpers
[linux-2.6/btrfs-unstable.git] / block / blk-mq.c
blob1fa9dd153fde22a976483ef3b5da3ec39f0f458e
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
18 #include <trace/events/block.h>
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
33 return per_cpu_ptr(q->queue_ctx, cpu);
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
44 return __blk_mq_get_ctx(q, get_cpu());
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
49 put_cpu();
53 * Check if any of the ctx's have pending work in this hardware queue
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
57 unsigned int i;
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
63 return false;
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
76 static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
77 bool reserved)
79 struct request *rq;
80 unsigned int tag;
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
87 return rq;
90 return NULL;
93 static int blk_mq_queue_enter(struct request_queue *q)
95 int ret;
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
109 /* inc usage with lock hold to avoid freeze_queue runs here */
110 if (!ret && !blk_queue_dying(q))
111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
114 spin_unlock_irq(q->queue_lock);
116 return ret;
119 static void blk_mq_queue_exit(struct request_queue *q)
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124 static void __blk_mq_drain_queue(struct request_queue *q)
126 while (true) {
127 s64 count;
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
144 static void blk_mq_freeze_queue(struct request_queue *q)
146 bool drain;
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
153 if (drain)
154 __blk_mq_drain_queue(q);
157 void blk_mq_drain_queue(struct request_queue *q)
159 __blk_mq_drain_queue(q);
162 static void blk_mq_unfreeze_queue(struct request_queue *q)
164 bool wake = false;
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
177 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
179 return blk_mq_has_free_tags(hctx->tags);
181 EXPORT_SYMBOL(blk_mq_can_queue);
183 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
196 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
197 gfp_t gfp, bool reserved)
199 return blk_mq_alloc_rq(hctx, gfp, reserved);
202 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
203 int rw, gfp_t gfp,
204 bool reserved)
206 struct request *rq;
208 do {
209 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
210 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
212 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
213 if (rq) {
214 blk_mq_rq_ctx_init(q, ctx, rq, rw);
215 break;
218 blk_mq_put_ctx(ctx);
219 if (!(gfp & __GFP_WAIT))
220 break;
222 __blk_mq_run_hw_queue(hctx);
223 blk_mq_wait_for_tags(hctx->tags);
224 } while (1);
226 return rq;
229 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
231 struct request *rq;
233 if (blk_mq_queue_enter(q))
234 return NULL;
236 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
237 if (rq)
238 blk_mq_put_ctx(rq->mq_ctx);
239 return rq;
242 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
243 gfp_t gfp)
245 struct request *rq;
247 if (blk_mq_queue_enter(q))
248 return NULL;
250 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
251 if (rq)
252 blk_mq_put_ctx(rq->mq_ctx);
253 return rq;
255 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
258 * Re-init and set pdu, if we have it
260 void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
262 blk_rq_init(hctx->queue, rq);
264 if (hctx->cmd_size)
265 rq->special = blk_mq_rq_to_pdu(rq);
268 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
269 struct blk_mq_ctx *ctx, struct request *rq)
271 const int tag = rq->tag;
272 struct request_queue *q = rq->q;
274 blk_mq_rq_init(hctx, rq);
275 blk_mq_put_tag(hctx->tags, tag);
277 blk_mq_queue_exit(q);
280 void blk_mq_free_request(struct request *rq)
282 struct blk_mq_ctx *ctx = rq->mq_ctx;
283 struct blk_mq_hw_ctx *hctx;
284 struct request_queue *q = rq->q;
286 ctx->rq_completed[rq_is_sync(rq)]++;
288 hctx = q->mq_ops->map_queue(q, ctx->cpu);
289 __blk_mq_free_request(hctx, ctx, rq);
292 static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
294 if (error)
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
297 error = -EIO;
299 if (unlikely(rq->cmd_flags & REQ_QUIET))
300 set_bit(BIO_QUIET, &bio->bi_flags);
302 /* don't actually finish bio if it's part of flush sequence */
303 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
304 bio_endio(bio, error);
307 void blk_mq_end_io(struct request *rq, int error)
309 struct bio *bio = rq->bio;
310 unsigned int bytes = 0;
312 trace_block_rq_complete(rq->q, rq);
314 while (bio) {
315 struct bio *next = bio->bi_next;
317 bio->bi_next = NULL;
318 bytes += bio->bi_iter.bi_size;
319 blk_mq_bio_endio(rq, bio, error);
320 bio = next;
323 blk_account_io_completion(rq, bytes);
325 blk_account_io_done(rq);
327 if (rq->end_io)
328 rq->end_io(rq, error);
329 else
330 blk_mq_free_request(rq);
332 EXPORT_SYMBOL(blk_mq_end_io);
334 static void __blk_mq_complete_request_remote(void *data)
336 struct request *rq = data;
338 rq->q->softirq_done_fn(rq);
341 void __blk_mq_complete_request(struct request *rq)
343 struct blk_mq_ctx *ctx = rq->mq_ctx;
344 int cpu;
346 if (!ctx->ipi_redirect) {
347 rq->q->softirq_done_fn(rq);
348 return;
351 cpu = get_cpu();
352 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
353 rq->csd.func = __blk_mq_complete_request_remote;
354 rq->csd.info = rq;
355 rq->csd.flags = 0;
356 __smp_call_function_single(ctx->cpu, &rq->csd, 0);
357 } else {
358 rq->q->softirq_done_fn(rq);
360 put_cpu();
364 * blk_mq_complete_request - end I/O on a request
365 * @rq: the request being processed
367 * Description:
368 * Ends all I/O on a request. It does not handle partial completions.
369 * The actual completion happens out-of-order, through a IPI handler.
371 void blk_mq_complete_request(struct request *rq)
373 if (unlikely(blk_should_fake_timeout(rq->q)))
374 return;
375 if (!blk_mark_rq_complete(rq))
376 __blk_mq_complete_request(rq);
378 EXPORT_SYMBOL(blk_mq_complete_request);
380 static void blk_mq_start_request(struct request *rq, bool last)
382 struct request_queue *q = rq->q;
384 trace_block_rq_issue(q, rq);
387 * Just mark start time and set the started bit. Due to memory
388 * ordering, we know we'll see the correct deadline as long as
389 * REQ_ATOMIC_STARTED is seen.
391 rq->deadline = jiffies + q->rq_timeout;
392 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
394 if (q->dma_drain_size && blk_rq_bytes(rq)) {
396 * Make sure space for the drain appears. We know we can do
397 * this because max_hw_segments has been adjusted to be one
398 * fewer than the device can handle.
400 rq->nr_phys_segments++;
404 * Flag the last request in the series so that drivers know when IO
405 * should be kicked off, if they don't do it on a per-request basis.
407 * Note: the flag isn't the only condition drivers should do kick off.
408 * If drive is busy, the last request might not have the bit set.
410 if (last)
411 rq->cmd_flags |= REQ_END;
414 static void blk_mq_requeue_request(struct request *rq)
416 struct request_queue *q = rq->q;
418 trace_block_rq_requeue(q, rq);
419 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
421 rq->cmd_flags &= ~REQ_END;
423 if (q->dma_drain_size && blk_rq_bytes(rq))
424 rq->nr_phys_segments--;
427 struct blk_mq_timeout_data {
428 struct blk_mq_hw_ctx *hctx;
429 unsigned long *next;
430 unsigned int *next_set;
433 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
435 struct blk_mq_timeout_data *data = __data;
436 struct blk_mq_hw_ctx *hctx = data->hctx;
437 unsigned int tag;
439 /* It may not be in flight yet (this is where
440 * the REQ_ATOMIC_STARTED flag comes in). The requests are
441 * statically allocated, so we know it's always safe to access the
442 * memory associated with a bit offset into ->rqs[].
444 tag = 0;
445 do {
446 struct request *rq;
448 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
449 if (tag >= hctx->queue_depth)
450 break;
452 rq = hctx->rqs[tag++];
454 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
455 continue;
457 blk_rq_check_expired(rq, data->next, data->next_set);
458 } while (1);
461 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
462 unsigned long *next,
463 unsigned int *next_set)
465 struct blk_mq_timeout_data data = {
466 .hctx = hctx,
467 .next = next,
468 .next_set = next_set,
472 * Ask the tagging code to iterate busy requests, so we can
473 * check them for timeout.
475 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
478 static void blk_mq_rq_timer(unsigned long data)
480 struct request_queue *q = (struct request_queue *) data;
481 struct blk_mq_hw_ctx *hctx;
482 unsigned long next = 0;
483 int i, next_set = 0;
485 queue_for_each_hw_ctx(q, hctx, i)
486 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
488 if (next_set)
489 mod_timer(&q->timeout, round_jiffies_up(next));
493 * Reverse check our software queue for entries that we could potentially
494 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
495 * too much time checking for merges.
497 static bool blk_mq_attempt_merge(struct request_queue *q,
498 struct blk_mq_ctx *ctx, struct bio *bio)
500 struct request *rq;
501 int checked = 8;
503 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
504 int el_ret;
506 if (!checked--)
507 break;
509 if (!blk_rq_merge_ok(rq, bio))
510 continue;
512 el_ret = blk_try_merge(rq, bio);
513 if (el_ret == ELEVATOR_BACK_MERGE) {
514 if (bio_attempt_back_merge(q, rq, bio)) {
515 ctx->rq_merged++;
516 return true;
518 break;
519 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
520 if (bio_attempt_front_merge(q, rq, bio)) {
521 ctx->rq_merged++;
522 return true;
524 break;
528 return false;
531 void blk_mq_add_timer(struct request *rq)
533 __blk_add_timer(rq, NULL);
537 * Run this hardware queue, pulling any software queues mapped to it in.
538 * Note that this function currently has various problems around ordering
539 * of IO. In particular, we'd like FIFO behaviour on handling existing
540 * items on the hctx->dispatch list. Ignore that for now.
542 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
544 struct request_queue *q = hctx->queue;
545 struct blk_mq_ctx *ctx;
546 struct request *rq;
547 LIST_HEAD(rq_list);
548 int bit, queued;
550 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
551 return;
553 hctx->run++;
556 * Touch any software queue that has pending entries.
558 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
559 clear_bit(bit, hctx->ctx_map);
560 ctx = hctx->ctxs[bit];
561 BUG_ON(bit != ctx->index_hw);
563 spin_lock(&ctx->lock);
564 list_splice_tail_init(&ctx->rq_list, &rq_list);
565 spin_unlock(&ctx->lock);
569 * If we have previous entries on our dispatch list, grab them
570 * and stuff them at the front for more fair dispatch.
572 if (!list_empty_careful(&hctx->dispatch)) {
573 spin_lock(&hctx->lock);
574 if (!list_empty(&hctx->dispatch))
575 list_splice_init(&hctx->dispatch, &rq_list);
576 spin_unlock(&hctx->lock);
580 * Delete and return all entries from our dispatch list
582 queued = 0;
585 * Now process all the entries, sending them to the driver.
587 while (!list_empty(&rq_list)) {
588 int ret;
590 rq = list_first_entry(&rq_list, struct request, queuelist);
591 list_del_init(&rq->queuelist);
593 blk_mq_start_request(rq, list_empty(&rq_list));
595 ret = q->mq_ops->queue_rq(hctx, rq);
596 switch (ret) {
597 case BLK_MQ_RQ_QUEUE_OK:
598 queued++;
599 continue;
600 case BLK_MQ_RQ_QUEUE_BUSY:
602 * FIXME: we should have a mechanism to stop the queue
603 * like blk_stop_queue, otherwise we will waste cpu
604 * time
606 list_add(&rq->queuelist, &rq_list);
607 blk_mq_requeue_request(rq);
608 break;
609 default:
610 pr_err("blk-mq: bad return on queue: %d\n", ret);
611 case BLK_MQ_RQ_QUEUE_ERROR:
612 rq->errors = -EIO;
613 blk_mq_end_io(rq, rq->errors);
614 break;
617 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
618 break;
621 if (!queued)
622 hctx->dispatched[0]++;
623 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
624 hctx->dispatched[ilog2(queued) + 1]++;
627 * Any items that need requeuing? Stuff them into hctx->dispatch,
628 * that is where we will continue on next queue run.
630 if (!list_empty(&rq_list)) {
631 spin_lock(&hctx->lock);
632 list_splice(&rq_list, &hctx->dispatch);
633 spin_unlock(&hctx->lock);
637 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
639 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
640 return;
642 if (!async)
643 __blk_mq_run_hw_queue(hctx);
644 else {
645 struct request_queue *q = hctx->queue;
647 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
651 void blk_mq_run_queues(struct request_queue *q, bool async)
653 struct blk_mq_hw_ctx *hctx;
654 int i;
656 queue_for_each_hw_ctx(q, hctx, i) {
657 if ((!blk_mq_hctx_has_pending(hctx) &&
658 list_empty_careful(&hctx->dispatch)) ||
659 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
660 continue;
662 blk_mq_run_hw_queue(hctx, async);
665 EXPORT_SYMBOL(blk_mq_run_queues);
667 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
669 cancel_delayed_work(&hctx->delayed_work);
670 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
672 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
674 void blk_mq_stop_hw_queues(struct request_queue *q)
676 struct blk_mq_hw_ctx *hctx;
677 int i;
679 queue_for_each_hw_ctx(q, hctx, i)
680 blk_mq_stop_hw_queue(hctx);
682 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
684 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
686 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
687 __blk_mq_run_hw_queue(hctx);
689 EXPORT_SYMBOL(blk_mq_start_hw_queue);
691 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
693 struct blk_mq_hw_ctx *hctx;
694 int i;
696 queue_for_each_hw_ctx(q, hctx, i) {
697 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
698 continue;
700 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
701 blk_mq_run_hw_queue(hctx, true);
704 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
706 static void blk_mq_work_fn(struct work_struct *work)
708 struct blk_mq_hw_ctx *hctx;
710 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
711 __blk_mq_run_hw_queue(hctx);
714 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
715 struct request *rq, bool at_head)
717 struct blk_mq_ctx *ctx = rq->mq_ctx;
719 trace_block_rq_insert(hctx->queue, rq);
721 if (at_head)
722 list_add(&rq->queuelist, &ctx->rq_list);
723 else
724 list_add_tail(&rq->queuelist, &ctx->rq_list);
725 blk_mq_hctx_mark_pending(hctx, ctx);
728 * We do this early, to ensure we are on the right CPU.
730 blk_mq_add_timer(rq);
733 void blk_mq_insert_request(struct request_queue *q, struct request *rq,
734 bool at_head, bool run_queue)
736 struct blk_mq_hw_ctx *hctx;
737 struct blk_mq_ctx *ctx, *current_ctx;
739 ctx = rq->mq_ctx;
740 hctx = q->mq_ops->map_queue(q, ctx->cpu);
742 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
743 blk_insert_flush(rq);
744 } else {
745 current_ctx = blk_mq_get_ctx(q);
747 if (!cpu_online(ctx->cpu)) {
748 ctx = current_ctx;
749 hctx = q->mq_ops->map_queue(q, ctx->cpu);
750 rq->mq_ctx = ctx;
752 spin_lock(&ctx->lock);
753 __blk_mq_insert_request(hctx, rq, at_head);
754 spin_unlock(&ctx->lock);
756 blk_mq_put_ctx(current_ctx);
759 if (run_queue)
760 __blk_mq_run_hw_queue(hctx);
762 EXPORT_SYMBOL(blk_mq_insert_request);
765 * This is a special version of blk_mq_insert_request to bypass FLUSH request
766 * check. Should only be used internally.
768 void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
770 struct request_queue *q = rq->q;
771 struct blk_mq_hw_ctx *hctx;
772 struct blk_mq_ctx *ctx, *current_ctx;
774 current_ctx = blk_mq_get_ctx(q);
776 ctx = rq->mq_ctx;
777 if (!cpu_online(ctx->cpu)) {
778 ctx = current_ctx;
779 rq->mq_ctx = ctx;
781 hctx = q->mq_ops->map_queue(q, ctx->cpu);
783 /* ctx->cpu might be offline */
784 spin_lock(&ctx->lock);
785 __blk_mq_insert_request(hctx, rq, false);
786 spin_unlock(&ctx->lock);
788 blk_mq_put_ctx(current_ctx);
790 if (run_queue)
791 blk_mq_run_hw_queue(hctx, async);
794 static void blk_mq_insert_requests(struct request_queue *q,
795 struct blk_mq_ctx *ctx,
796 struct list_head *list,
797 int depth,
798 bool from_schedule)
801 struct blk_mq_hw_ctx *hctx;
802 struct blk_mq_ctx *current_ctx;
804 trace_block_unplug(q, depth, !from_schedule);
806 current_ctx = blk_mq_get_ctx(q);
808 if (!cpu_online(ctx->cpu))
809 ctx = current_ctx;
810 hctx = q->mq_ops->map_queue(q, ctx->cpu);
813 * preemption doesn't flush plug list, so it's possible ctx->cpu is
814 * offline now
816 spin_lock(&ctx->lock);
817 while (!list_empty(list)) {
818 struct request *rq;
820 rq = list_first_entry(list, struct request, queuelist);
821 list_del_init(&rq->queuelist);
822 rq->mq_ctx = ctx;
823 __blk_mq_insert_request(hctx, rq, false);
825 spin_unlock(&ctx->lock);
827 blk_mq_put_ctx(current_ctx);
829 blk_mq_run_hw_queue(hctx, from_schedule);
832 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
834 struct request *rqa = container_of(a, struct request, queuelist);
835 struct request *rqb = container_of(b, struct request, queuelist);
837 return !(rqa->mq_ctx < rqb->mq_ctx ||
838 (rqa->mq_ctx == rqb->mq_ctx &&
839 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
842 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
844 struct blk_mq_ctx *this_ctx;
845 struct request_queue *this_q;
846 struct request *rq;
847 LIST_HEAD(list);
848 LIST_HEAD(ctx_list);
849 unsigned int depth;
851 list_splice_init(&plug->mq_list, &list);
853 list_sort(NULL, &list, plug_ctx_cmp);
855 this_q = NULL;
856 this_ctx = NULL;
857 depth = 0;
859 while (!list_empty(&list)) {
860 rq = list_entry_rq(list.next);
861 list_del_init(&rq->queuelist);
862 BUG_ON(!rq->q);
863 if (rq->mq_ctx != this_ctx) {
864 if (this_ctx) {
865 blk_mq_insert_requests(this_q, this_ctx,
866 &ctx_list, depth,
867 from_schedule);
870 this_ctx = rq->mq_ctx;
871 this_q = rq->q;
872 depth = 0;
875 depth++;
876 list_add_tail(&rq->queuelist, &ctx_list);
880 * If 'this_ctx' is set, we know we have entries to complete
881 * on 'ctx_list'. Do those.
883 if (this_ctx) {
884 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
885 from_schedule);
889 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
891 init_request_from_bio(rq, bio);
892 blk_account_io_start(rq, 1);
895 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
897 struct blk_mq_hw_ctx *hctx;
898 struct blk_mq_ctx *ctx;
899 const int is_sync = rw_is_sync(bio->bi_rw);
900 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
901 int rw = bio_data_dir(bio);
902 struct request *rq;
903 unsigned int use_plug, request_count = 0;
906 * If we have multiple hardware queues, just go directly to
907 * one of those for sync IO.
909 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
911 blk_queue_bounce(q, &bio);
913 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
914 bio_endio(bio, -EIO);
915 return;
918 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
919 return;
921 if (blk_mq_queue_enter(q)) {
922 bio_endio(bio, -EIO);
923 return;
926 ctx = blk_mq_get_ctx(q);
927 hctx = q->mq_ops->map_queue(q, ctx->cpu);
929 trace_block_getrq(q, bio, rw);
930 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
931 if (likely(rq))
932 blk_mq_rq_ctx_init(q, ctx, rq, rw);
933 else {
934 blk_mq_put_ctx(ctx);
935 trace_block_sleeprq(q, bio, rw);
936 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
937 false);
938 ctx = rq->mq_ctx;
939 hctx = q->mq_ops->map_queue(q, ctx->cpu);
942 hctx->queued++;
944 if (unlikely(is_flush_fua)) {
945 blk_mq_bio_to_request(rq, bio);
946 blk_mq_put_ctx(ctx);
947 blk_insert_flush(rq);
948 goto run_queue;
952 * A task plug currently exists. Since this is completely lockless,
953 * utilize that to temporarily store requests until the task is
954 * either done or scheduled away.
956 if (use_plug) {
957 struct blk_plug *plug = current->plug;
959 if (plug) {
960 blk_mq_bio_to_request(rq, bio);
961 if (list_empty(&plug->mq_list))
962 trace_block_plug(q);
963 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
964 blk_flush_plug_list(plug, false);
965 trace_block_plug(q);
967 list_add_tail(&rq->queuelist, &plug->mq_list);
968 blk_mq_put_ctx(ctx);
969 return;
973 spin_lock(&ctx->lock);
975 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
976 blk_mq_attempt_merge(q, ctx, bio))
977 __blk_mq_free_request(hctx, ctx, rq);
978 else {
979 blk_mq_bio_to_request(rq, bio);
980 __blk_mq_insert_request(hctx, rq, false);
983 spin_unlock(&ctx->lock);
984 blk_mq_put_ctx(ctx);
987 * For a SYNC request, send it to the hardware immediately. For an
988 * ASYNC request, just ensure that we run it later on. The latter
989 * allows for merging opportunities and more efficient dispatching.
991 run_queue:
992 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
996 * Default mapping to a software queue, since we use one per CPU.
998 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1000 return q->queue_hw_ctx[q->mq_map[cpu]];
1002 EXPORT_SYMBOL(blk_mq_map_queue);
1004 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1005 unsigned int hctx_index)
1007 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1008 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1010 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1012 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1013 unsigned int hctx_index)
1015 kfree(hctx);
1017 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1019 static void blk_mq_hctx_notify(void *data, unsigned long action,
1020 unsigned int cpu)
1022 struct blk_mq_hw_ctx *hctx = data;
1023 struct blk_mq_ctx *ctx;
1024 LIST_HEAD(tmp);
1026 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1027 return;
1030 * Move ctx entries to new CPU, if this one is going away.
1032 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1034 spin_lock(&ctx->lock);
1035 if (!list_empty(&ctx->rq_list)) {
1036 list_splice_init(&ctx->rq_list, &tmp);
1037 clear_bit(ctx->index_hw, hctx->ctx_map);
1039 spin_unlock(&ctx->lock);
1041 if (list_empty(&tmp))
1042 return;
1044 ctx = blk_mq_get_ctx(hctx->queue);
1045 spin_lock(&ctx->lock);
1047 while (!list_empty(&tmp)) {
1048 struct request *rq;
1050 rq = list_first_entry(&tmp, struct request, queuelist);
1051 rq->mq_ctx = ctx;
1052 list_move_tail(&rq->queuelist, &ctx->rq_list);
1055 blk_mq_hctx_mark_pending(hctx, ctx);
1057 spin_unlock(&ctx->lock);
1058 blk_mq_put_ctx(ctx);
1061 static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1062 void (*init)(void *, struct blk_mq_hw_ctx *,
1063 struct request *, unsigned int),
1064 void *data)
1066 unsigned int i;
1068 for (i = 0; i < hctx->queue_depth; i++) {
1069 struct request *rq = hctx->rqs[i];
1071 init(data, hctx, rq, i);
1075 void blk_mq_init_commands(struct request_queue *q,
1076 void (*init)(void *, struct blk_mq_hw_ctx *,
1077 struct request *, unsigned int),
1078 void *data)
1080 struct blk_mq_hw_ctx *hctx;
1081 unsigned int i;
1083 queue_for_each_hw_ctx(q, hctx, i)
1084 blk_mq_init_hw_commands(hctx, init, data);
1086 EXPORT_SYMBOL(blk_mq_init_commands);
1088 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1090 struct page *page;
1092 while (!list_empty(&hctx->page_list)) {
1093 page = list_first_entry(&hctx->page_list, struct page, lru);
1094 list_del_init(&page->lru);
1095 __free_pages(page, page->private);
1098 kfree(hctx->rqs);
1100 if (hctx->tags)
1101 blk_mq_free_tags(hctx->tags);
1104 static size_t order_to_size(unsigned int order)
1106 size_t ret = PAGE_SIZE;
1108 while (order--)
1109 ret *= 2;
1111 return ret;
1114 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1115 unsigned int reserved_tags, int node)
1117 unsigned int i, j, entries_per_page, max_order = 4;
1118 size_t rq_size, left;
1120 INIT_LIST_HEAD(&hctx->page_list);
1122 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1123 GFP_KERNEL, node);
1124 if (!hctx->rqs)
1125 return -ENOMEM;
1128 * rq_size is the size of the request plus driver payload, rounded
1129 * to the cacheline size
1131 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1132 cache_line_size());
1133 left = rq_size * hctx->queue_depth;
1135 for (i = 0; i < hctx->queue_depth;) {
1136 int this_order = max_order;
1137 struct page *page;
1138 int to_do;
1139 void *p;
1141 while (left < order_to_size(this_order - 1) && this_order)
1142 this_order--;
1144 do {
1145 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1146 if (page)
1147 break;
1148 if (!this_order--)
1149 break;
1150 if (order_to_size(this_order) < rq_size)
1151 break;
1152 } while (1);
1154 if (!page)
1155 break;
1157 page->private = this_order;
1158 list_add_tail(&page->lru, &hctx->page_list);
1160 p = page_address(page);
1161 entries_per_page = order_to_size(this_order) / rq_size;
1162 to_do = min(entries_per_page, hctx->queue_depth - i);
1163 left -= to_do * rq_size;
1164 for (j = 0; j < to_do; j++) {
1165 hctx->rqs[i] = p;
1166 blk_mq_rq_init(hctx, hctx->rqs[i]);
1167 p += rq_size;
1168 i++;
1172 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1173 goto err_rq_map;
1174 else if (i != hctx->queue_depth) {
1175 hctx->queue_depth = i;
1176 pr_warn("%s: queue depth set to %u because of low memory\n",
1177 __func__, i);
1180 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1181 if (!hctx->tags) {
1182 err_rq_map:
1183 blk_mq_free_rq_map(hctx);
1184 return -ENOMEM;
1187 return 0;
1190 static int blk_mq_init_hw_queues(struct request_queue *q,
1191 struct blk_mq_reg *reg, void *driver_data)
1193 struct blk_mq_hw_ctx *hctx;
1194 unsigned int i, j;
1197 * Initialize hardware queues
1199 queue_for_each_hw_ctx(q, hctx, i) {
1200 unsigned int num_maps;
1201 int node;
1203 node = hctx->numa_node;
1204 if (node == NUMA_NO_NODE)
1205 node = hctx->numa_node = reg->numa_node;
1207 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1208 spin_lock_init(&hctx->lock);
1209 INIT_LIST_HEAD(&hctx->dispatch);
1210 hctx->queue = q;
1211 hctx->queue_num = i;
1212 hctx->flags = reg->flags;
1213 hctx->queue_depth = reg->queue_depth;
1214 hctx->cmd_size = reg->cmd_size;
1216 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1217 blk_mq_hctx_notify, hctx);
1218 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1220 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1221 break;
1224 * Allocate space for all possible cpus to avoid allocation in
1225 * runtime
1227 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1228 GFP_KERNEL, node);
1229 if (!hctx->ctxs)
1230 break;
1232 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1233 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1234 GFP_KERNEL, node);
1235 if (!hctx->ctx_map)
1236 break;
1238 hctx->nr_ctx_map = num_maps;
1239 hctx->nr_ctx = 0;
1241 if (reg->ops->init_hctx &&
1242 reg->ops->init_hctx(hctx, driver_data, i))
1243 break;
1246 if (i == q->nr_hw_queues)
1247 return 0;
1250 * Init failed
1252 queue_for_each_hw_ctx(q, hctx, j) {
1253 if (i == j)
1254 break;
1256 if (reg->ops->exit_hctx)
1257 reg->ops->exit_hctx(hctx, j);
1259 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1260 blk_mq_free_rq_map(hctx);
1261 kfree(hctx->ctxs);
1264 return 1;
1267 static void blk_mq_init_cpu_queues(struct request_queue *q,
1268 unsigned int nr_hw_queues)
1270 unsigned int i;
1272 for_each_possible_cpu(i) {
1273 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1274 struct blk_mq_hw_ctx *hctx;
1276 memset(__ctx, 0, sizeof(*__ctx));
1277 __ctx->cpu = i;
1278 spin_lock_init(&__ctx->lock);
1279 INIT_LIST_HEAD(&__ctx->rq_list);
1280 __ctx->queue = q;
1282 /* If the cpu isn't online, the cpu is mapped to first hctx */
1283 hctx = q->mq_ops->map_queue(q, i);
1284 hctx->nr_ctx++;
1286 if (!cpu_online(i))
1287 continue;
1290 * Set local node, IFF we have more than one hw queue. If
1291 * not, we remain on the home node of the device
1293 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1294 hctx->numa_node = cpu_to_node(i);
1298 static void blk_mq_map_swqueue(struct request_queue *q)
1300 unsigned int i;
1301 struct blk_mq_hw_ctx *hctx;
1302 struct blk_mq_ctx *ctx;
1304 queue_for_each_hw_ctx(q, hctx, i) {
1305 hctx->nr_ctx = 0;
1309 * Map software to hardware queues
1311 queue_for_each_ctx(q, ctx, i) {
1312 /* If the cpu isn't online, the cpu is mapped to first hctx */
1313 hctx = q->mq_ops->map_queue(q, i);
1314 ctx->index_hw = hctx->nr_ctx;
1315 hctx->ctxs[hctx->nr_ctx++] = ctx;
1319 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1320 void *driver_data)
1322 struct blk_mq_hw_ctx **hctxs;
1323 struct blk_mq_ctx *ctx;
1324 struct request_queue *q;
1325 int i;
1327 if (!reg->nr_hw_queues ||
1328 !reg->ops->queue_rq || !reg->ops->map_queue ||
1329 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1330 return ERR_PTR(-EINVAL);
1332 if (!reg->queue_depth)
1333 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1334 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1335 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1336 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1339 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1340 return ERR_PTR(-EINVAL);
1342 ctx = alloc_percpu(struct blk_mq_ctx);
1343 if (!ctx)
1344 return ERR_PTR(-ENOMEM);
1346 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1347 reg->numa_node);
1349 if (!hctxs)
1350 goto err_percpu;
1352 for (i = 0; i < reg->nr_hw_queues; i++) {
1353 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1354 if (!hctxs[i])
1355 goto err_hctxs;
1357 hctxs[i]->numa_node = NUMA_NO_NODE;
1358 hctxs[i]->queue_num = i;
1361 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1362 if (!q)
1363 goto err_hctxs;
1365 q->mq_map = blk_mq_make_queue_map(reg);
1366 if (!q->mq_map)
1367 goto err_map;
1369 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1370 blk_queue_rq_timeout(q, 30000);
1372 q->nr_queues = nr_cpu_ids;
1373 q->nr_hw_queues = reg->nr_hw_queues;
1375 q->queue_ctx = ctx;
1376 q->queue_hw_ctx = hctxs;
1378 q->mq_ops = reg->ops;
1379 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1381 q->sg_reserved_size = INT_MAX;
1383 blk_queue_make_request(q, blk_mq_make_request);
1384 blk_queue_rq_timed_out(q, reg->ops->timeout);
1385 if (reg->timeout)
1386 blk_queue_rq_timeout(q, reg->timeout);
1388 if (reg->ops->complete)
1389 blk_queue_softirq_done(q, reg->ops->complete);
1391 blk_mq_init_flush(q);
1392 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1394 q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1395 cache_line_size()), GFP_KERNEL);
1396 if (!q->flush_rq)
1397 goto err_hw;
1399 if (blk_mq_init_hw_queues(q, reg, driver_data))
1400 goto err_flush_rq;
1402 blk_mq_map_swqueue(q);
1404 mutex_lock(&all_q_mutex);
1405 list_add_tail(&q->all_q_node, &all_q_list);
1406 mutex_unlock(&all_q_mutex);
1408 return q;
1410 err_flush_rq:
1411 kfree(q->flush_rq);
1412 err_hw:
1413 kfree(q->mq_map);
1414 err_map:
1415 blk_cleanup_queue(q);
1416 err_hctxs:
1417 for (i = 0; i < reg->nr_hw_queues; i++) {
1418 if (!hctxs[i])
1419 break;
1420 reg->ops->free_hctx(hctxs[i], i);
1422 kfree(hctxs);
1423 err_percpu:
1424 free_percpu(ctx);
1425 return ERR_PTR(-ENOMEM);
1427 EXPORT_SYMBOL(blk_mq_init_queue);
1429 void blk_mq_free_queue(struct request_queue *q)
1431 struct blk_mq_hw_ctx *hctx;
1432 int i;
1434 queue_for_each_hw_ctx(q, hctx, i) {
1435 kfree(hctx->ctx_map);
1436 kfree(hctx->ctxs);
1437 blk_mq_free_rq_map(hctx);
1438 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1439 if (q->mq_ops->exit_hctx)
1440 q->mq_ops->exit_hctx(hctx, i);
1441 q->mq_ops->free_hctx(hctx, i);
1444 free_percpu(q->queue_ctx);
1445 kfree(q->queue_hw_ctx);
1446 kfree(q->mq_map);
1448 q->queue_ctx = NULL;
1449 q->queue_hw_ctx = NULL;
1450 q->mq_map = NULL;
1452 mutex_lock(&all_q_mutex);
1453 list_del_init(&q->all_q_node);
1454 mutex_unlock(&all_q_mutex);
1457 /* Basically redo blk_mq_init_queue with queue frozen */
1458 static void blk_mq_queue_reinit(struct request_queue *q)
1460 blk_mq_freeze_queue(q);
1462 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1465 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1466 * we should change hctx numa_node according to new topology (this
1467 * involves free and re-allocate memory, worthy doing?)
1470 blk_mq_map_swqueue(q);
1472 blk_mq_unfreeze_queue(q);
1475 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1476 unsigned long action, void *hcpu)
1478 struct request_queue *q;
1481 * Before new mapping is established, hotadded cpu might already start
1482 * handling requests. This doesn't break anything as we map offline
1483 * CPUs to first hardware queue. We will re-init queue below to get
1484 * optimal settings.
1486 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1487 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1488 return NOTIFY_OK;
1490 mutex_lock(&all_q_mutex);
1491 list_for_each_entry(q, &all_q_list, all_q_node)
1492 blk_mq_queue_reinit(q);
1493 mutex_unlock(&all_q_mutex);
1494 return NOTIFY_OK;
1497 static int __init blk_mq_init(void)
1499 blk_mq_cpu_init();
1501 /* Must be called after percpu_counter_hotcpu_callback() */
1502 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1504 return 0;
1506 subsys_initcall(blk_mq_init);