mm/compaction: do not count migratepages when unnecessary
[linux-2.6/btrfs-unstable.git] / mm / compaction.c
blob3c60e3d5237e3cef413ead272f7d9c136eb18e92
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
24 count_vm_event(item);
27 static inline void count_compact_events(enum vm_event_item item, long delta)
29 count_vm_events(item, delta);
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
41 static unsigned long release_freepages(struct list_head *freelist)
43 struct page *page, *next;
44 unsigned long count = 0;
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
52 return count;
55 static void map_pages(struct list_head *list)
57 struct page *page;
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
65 static inline bool migrate_async_suitable(int migratetype)
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
75 if (cc->ignore_skip_hint)
76 return true;
78 return !get_pageblock_skip(page);
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
86 static void __reset_isolation_suitable(struct zone *zone)
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
92 zone->compact_cached_migrate_pfn[0] = start_pfn;
93 zone->compact_cached_migrate_pfn[1] = start_pfn;
94 zone->compact_cached_free_pfn = end_pfn;
95 zone->compact_blockskip_flush = false;
97 /* Walk the zone and mark every pageblock as suitable for isolation */
98 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
99 struct page *page;
101 cond_resched();
103 if (!pfn_valid(pfn))
104 continue;
106 page = pfn_to_page(pfn);
107 if (zone != page_zone(page))
108 continue;
110 clear_pageblock_skip(page);
114 void reset_isolation_suitable(pg_data_t *pgdat)
116 int zoneid;
118 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
119 struct zone *zone = &pgdat->node_zones[zoneid];
120 if (!populated_zone(zone))
121 continue;
123 /* Only flush if a full compaction finished recently */
124 if (zone->compact_blockskip_flush)
125 __reset_isolation_suitable(zone);
130 * If no pages were isolated then mark this pageblock to be skipped in the
131 * future. The information is later cleared by __reset_isolation_suitable().
133 static void update_pageblock_skip(struct compact_control *cc,
134 struct page *page, unsigned long nr_isolated,
135 bool set_unsuitable, bool migrate_scanner)
137 struct zone *zone = cc->zone;
138 unsigned long pfn;
140 if (cc->ignore_skip_hint)
141 return;
143 if (!page)
144 return;
146 if (nr_isolated)
147 return;
150 * Only skip pageblocks when all forms of compaction will be known to
151 * fail in the near future.
153 if (set_unsuitable)
154 set_pageblock_skip(page);
156 pfn = page_to_pfn(page);
158 /* Update where async and sync compaction should restart */
159 if (migrate_scanner) {
160 if (cc->finished_update_migrate)
161 return;
162 if (pfn > zone->compact_cached_migrate_pfn[0])
163 zone->compact_cached_migrate_pfn[0] = pfn;
164 if (cc->mode != MIGRATE_ASYNC &&
165 pfn > zone->compact_cached_migrate_pfn[1])
166 zone->compact_cached_migrate_pfn[1] = pfn;
167 } else {
168 if (cc->finished_update_free)
169 return;
170 if (pfn < zone->compact_cached_free_pfn)
171 zone->compact_cached_free_pfn = pfn;
174 #else
175 static inline bool isolation_suitable(struct compact_control *cc,
176 struct page *page)
178 return true;
181 static void update_pageblock_skip(struct compact_control *cc,
182 struct page *page, unsigned long nr_isolated,
183 bool set_unsuitable, bool migrate_scanner)
186 #endif /* CONFIG_COMPACTION */
188 static inline bool should_release_lock(spinlock_t *lock)
190 return need_resched() || spin_is_contended(lock);
194 * Compaction requires the taking of some coarse locks that are potentially
195 * very heavily contended. Check if the process needs to be scheduled or
196 * if the lock is contended. For async compaction, back out in the event
197 * if contention is severe. For sync compaction, schedule.
199 * Returns true if the lock is held.
200 * Returns false if the lock is released and compaction should abort
202 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
203 bool locked, struct compact_control *cc)
205 if (should_release_lock(lock)) {
206 if (locked) {
207 spin_unlock_irqrestore(lock, *flags);
208 locked = false;
211 /* async aborts if taking too long or contended */
212 if (cc->mode == MIGRATE_ASYNC) {
213 cc->contended = true;
214 return false;
217 cond_resched();
220 if (!locked)
221 spin_lock_irqsave(lock, *flags);
222 return true;
225 /* Returns true if the page is within a block suitable for migration to */
226 static bool suitable_migration_target(struct page *page)
228 /* If the page is a large free page, then disallow migration */
229 if (PageBuddy(page) && page_order(page) >= pageblock_order)
230 return false;
232 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
233 if (migrate_async_suitable(get_pageblock_migratetype(page)))
234 return true;
236 /* Otherwise skip the block */
237 return false;
241 * Isolate free pages onto a private freelist. If @strict is true, will abort
242 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
243 * (even though it may still end up isolating some pages).
245 static unsigned long isolate_freepages_block(struct compact_control *cc,
246 unsigned long blockpfn,
247 unsigned long end_pfn,
248 struct list_head *freelist,
249 bool strict)
251 int nr_scanned = 0, total_isolated = 0;
252 struct page *cursor, *valid_page = NULL;
253 unsigned long flags;
254 bool locked = false;
255 bool checked_pageblock = false;
257 cursor = pfn_to_page(blockpfn);
259 /* Isolate free pages. */
260 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
261 int isolated, i;
262 struct page *page = cursor;
264 nr_scanned++;
265 if (!pfn_valid_within(blockpfn))
266 goto isolate_fail;
268 if (!valid_page)
269 valid_page = page;
270 if (!PageBuddy(page))
271 goto isolate_fail;
274 * The zone lock must be held to isolate freepages.
275 * Unfortunately this is a very coarse lock and can be
276 * heavily contended if there are parallel allocations
277 * or parallel compactions. For async compaction do not
278 * spin on the lock and we acquire the lock as late as
279 * possible.
281 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
282 locked, cc);
283 if (!locked)
284 break;
286 /* Recheck this is a suitable migration target under lock */
287 if (!strict && !checked_pageblock) {
289 * We need to check suitability of pageblock only once
290 * and this isolate_freepages_block() is called with
291 * pageblock range, so just check once is sufficient.
293 checked_pageblock = true;
294 if (!suitable_migration_target(page))
295 break;
298 /* Recheck this is a buddy page under lock */
299 if (!PageBuddy(page))
300 goto isolate_fail;
302 /* Found a free page, break it into order-0 pages */
303 isolated = split_free_page(page);
304 total_isolated += isolated;
305 for (i = 0; i < isolated; i++) {
306 list_add(&page->lru, freelist);
307 page++;
310 /* If a page was split, advance to the end of it */
311 if (isolated) {
312 blockpfn += isolated - 1;
313 cursor += isolated - 1;
314 continue;
317 isolate_fail:
318 if (strict)
319 break;
320 else
321 continue;
325 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
328 * If strict isolation is requested by CMA then check that all the
329 * pages requested were isolated. If there were any failures, 0 is
330 * returned and CMA will fail.
332 if (strict && blockpfn < end_pfn)
333 total_isolated = 0;
335 if (locked)
336 spin_unlock_irqrestore(&cc->zone->lock, flags);
338 /* Update the pageblock-skip if the whole pageblock was scanned */
339 if (blockpfn == end_pfn)
340 update_pageblock_skip(cc, valid_page, total_isolated, true,
341 false);
343 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
344 if (total_isolated)
345 count_compact_events(COMPACTISOLATED, total_isolated);
346 return total_isolated;
350 * isolate_freepages_range() - isolate free pages.
351 * @start_pfn: The first PFN to start isolating.
352 * @end_pfn: The one-past-last PFN.
354 * Non-free pages, invalid PFNs, or zone boundaries within the
355 * [start_pfn, end_pfn) range are considered errors, cause function to
356 * undo its actions and return zero.
358 * Otherwise, function returns one-past-the-last PFN of isolated page
359 * (which may be greater then end_pfn if end fell in a middle of
360 * a free page).
362 unsigned long
363 isolate_freepages_range(struct compact_control *cc,
364 unsigned long start_pfn, unsigned long end_pfn)
366 unsigned long isolated, pfn, block_end_pfn;
367 LIST_HEAD(freelist);
369 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
370 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
371 break;
374 * On subsequent iterations ALIGN() is actually not needed,
375 * but we keep it that we not to complicate the code.
377 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
378 block_end_pfn = min(block_end_pfn, end_pfn);
380 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
381 &freelist, true);
384 * In strict mode, isolate_freepages_block() returns 0 if
385 * there are any holes in the block (ie. invalid PFNs or
386 * non-free pages).
388 if (!isolated)
389 break;
392 * If we managed to isolate pages, it is always (1 << n) *
393 * pageblock_nr_pages for some non-negative n. (Max order
394 * page may span two pageblocks).
398 /* split_free_page does not map the pages */
399 map_pages(&freelist);
401 if (pfn < end_pfn) {
402 /* Loop terminated early, cleanup. */
403 release_freepages(&freelist);
404 return 0;
407 /* We don't use freelists for anything. */
408 return pfn;
411 /* Update the number of anon and file isolated pages in the zone */
412 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
414 struct page *page;
415 unsigned int count[2] = { 0, };
417 list_for_each_entry(page, &cc->migratepages, lru)
418 count[!!page_is_file_cache(page)]++;
420 /* If locked we can use the interrupt unsafe versions */
421 if (locked) {
422 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
423 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
424 } else {
425 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
426 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
430 /* Similar to reclaim, but different enough that they don't share logic */
431 static bool too_many_isolated(struct zone *zone)
433 unsigned long active, inactive, isolated;
435 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
436 zone_page_state(zone, NR_INACTIVE_ANON);
437 active = zone_page_state(zone, NR_ACTIVE_FILE) +
438 zone_page_state(zone, NR_ACTIVE_ANON);
439 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
440 zone_page_state(zone, NR_ISOLATED_ANON);
442 return isolated > (inactive + active) / 2;
446 * isolate_migratepages_range() - isolate all migrate-able pages in range.
447 * @zone: Zone pages are in.
448 * @cc: Compaction control structure.
449 * @low_pfn: The first PFN of the range.
450 * @end_pfn: The one-past-the-last PFN of the range.
451 * @unevictable: true if it allows to isolate unevictable pages
453 * Isolate all pages that can be migrated from the range specified by
454 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
455 * pending), otherwise PFN of the first page that was not scanned
456 * (which may be both less, equal to or more then end_pfn).
458 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
459 * zero.
461 * Apart from cc->migratepages and cc->nr_migratetypes this function
462 * does not modify any cc's fields, in particular it does not modify
463 * (or read for that matter) cc->migrate_pfn.
465 unsigned long
466 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
467 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
469 unsigned long last_pageblock_nr = 0, pageblock_nr;
470 unsigned long nr_scanned = 0, nr_isolated = 0;
471 struct list_head *migratelist = &cc->migratepages;
472 struct lruvec *lruvec;
473 unsigned long flags;
474 bool locked = false;
475 struct page *page = NULL, *valid_page = NULL;
476 bool set_unsuitable = true;
477 const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ?
478 ISOLATE_ASYNC_MIGRATE : 0) |
479 (unevictable ? ISOLATE_UNEVICTABLE : 0);
482 * Ensure that there are not too many pages isolated from the LRU
483 * list by either parallel reclaimers or compaction. If there are,
484 * delay for some time until fewer pages are isolated
486 while (unlikely(too_many_isolated(zone))) {
487 /* async migration should just abort */
488 if (cc->mode == MIGRATE_ASYNC)
489 return 0;
491 congestion_wait(BLK_RW_ASYNC, HZ/10);
493 if (fatal_signal_pending(current))
494 return 0;
497 if (cond_resched()) {
498 /* Async terminates prematurely on need_resched() */
499 if (cc->mode == MIGRATE_ASYNC)
500 return 0;
503 /* Time to isolate some pages for migration */
504 for (; low_pfn < end_pfn; low_pfn++) {
505 /* give a chance to irqs before checking need_resched() */
506 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
507 if (should_release_lock(&zone->lru_lock)) {
508 spin_unlock_irqrestore(&zone->lru_lock, flags);
509 locked = false;
514 * migrate_pfn does not necessarily start aligned to a
515 * pageblock. Ensure that pfn_valid is called when moving
516 * into a new MAX_ORDER_NR_PAGES range in case of large
517 * memory holes within the zone
519 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
520 if (!pfn_valid(low_pfn)) {
521 low_pfn += MAX_ORDER_NR_PAGES - 1;
522 continue;
526 if (!pfn_valid_within(low_pfn))
527 continue;
528 nr_scanned++;
531 * Get the page and ensure the page is within the same zone.
532 * See the comment in isolate_freepages about overlapping
533 * nodes. It is deliberate that the new zone lock is not taken
534 * as memory compaction should not move pages between nodes.
536 page = pfn_to_page(low_pfn);
537 if (page_zone(page) != zone)
538 continue;
540 if (!valid_page)
541 valid_page = page;
543 /* If isolation recently failed, do not retry */
544 pageblock_nr = low_pfn >> pageblock_order;
545 if (last_pageblock_nr != pageblock_nr) {
546 int mt;
548 last_pageblock_nr = pageblock_nr;
549 if (!isolation_suitable(cc, page))
550 goto next_pageblock;
553 * For async migration, also only scan in MOVABLE
554 * blocks. Async migration is optimistic to see if
555 * the minimum amount of work satisfies the allocation
557 mt = get_pageblock_migratetype(page);
558 if (cc->mode == MIGRATE_ASYNC &&
559 !migrate_async_suitable(mt)) {
560 set_unsuitable = false;
561 goto next_pageblock;
566 * Skip if free. page_order cannot be used without zone->lock
567 * as nothing prevents parallel allocations or buddy merging.
569 if (PageBuddy(page))
570 continue;
573 * Check may be lockless but that's ok as we recheck later.
574 * It's possible to migrate LRU pages and balloon pages
575 * Skip any other type of page
577 if (!PageLRU(page)) {
578 if (unlikely(balloon_page_movable(page))) {
579 if (locked && balloon_page_isolate(page)) {
580 /* Successfully isolated */
581 goto isolate_success;
584 continue;
588 * PageLRU is set. lru_lock normally excludes isolation
589 * splitting and collapsing (collapsing has already happened
590 * if PageLRU is set) but the lock is not necessarily taken
591 * here and it is wasteful to take it just to check transhuge.
592 * Check TransHuge without lock and skip the whole pageblock if
593 * it's either a transhuge or hugetlbfs page, as calling
594 * compound_order() without preventing THP from splitting the
595 * page underneath us may return surprising results.
597 if (PageTransHuge(page)) {
598 if (!locked)
599 goto next_pageblock;
600 low_pfn += (1 << compound_order(page)) - 1;
601 continue;
605 * Migration will fail if an anonymous page is pinned in memory,
606 * so avoid taking lru_lock and isolating it unnecessarily in an
607 * admittedly racy check.
609 if (!page_mapping(page) &&
610 page_count(page) > page_mapcount(page))
611 continue;
613 /* Check if it is ok to still hold the lock */
614 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
615 locked, cc);
616 if (!locked || fatal_signal_pending(current))
617 break;
619 /* Recheck PageLRU and PageTransHuge under lock */
620 if (!PageLRU(page))
621 continue;
622 if (PageTransHuge(page)) {
623 low_pfn += (1 << compound_order(page)) - 1;
624 continue;
627 lruvec = mem_cgroup_page_lruvec(page, zone);
629 /* Try isolate the page */
630 if (__isolate_lru_page(page, mode) != 0)
631 continue;
633 VM_BUG_ON_PAGE(PageTransCompound(page), page);
635 /* Successfully isolated */
636 del_page_from_lru_list(page, lruvec, page_lru(page));
638 isolate_success:
639 cc->finished_update_migrate = true;
640 list_add(&page->lru, migratelist);
641 cc->nr_migratepages++;
642 nr_isolated++;
644 /* Avoid isolating too much */
645 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
646 ++low_pfn;
647 break;
650 continue;
652 next_pageblock:
653 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
656 acct_isolated(zone, locked, cc);
658 if (locked)
659 spin_unlock_irqrestore(&zone->lru_lock, flags);
662 * Update the pageblock-skip information and cached scanner pfn,
663 * if the whole pageblock was scanned without isolating any page.
665 if (low_pfn == end_pfn)
666 update_pageblock_skip(cc, valid_page, nr_isolated,
667 set_unsuitable, true);
669 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
671 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
672 if (nr_isolated)
673 count_compact_events(COMPACTISOLATED, nr_isolated);
675 return low_pfn;
678 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
679 #ifdef CONFIG_COMPACTION
681 * Based on information in the current compact_control, find blocks
682 * suitable for isolating free pages from and then isolate them.
684 static void isolate_freepages(struct zone *zone,
685 struct compact_control *cc)
687 struct page *page;
688 unsigned long block_start_pfn; /* start of current pageblock */
689 unsigned long block_end_pfn; /* end of current pageblock */
690 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
691 unsigned long next_free_pfn; /* start pfn for scaning at next round */
692 int nr_freepages = cc->nr_freepages;
693 struct list_head *freelist = &cc->freepages;
696 * Initialise the free scanner. The starting point is where we last
697 * successfully isolated from, zone-cached value, or the end of the
698 * zone when isolating for the first time. We need this aligned to
699 * the pageblock boundary, because we do
700 * block_start_pfn -= pageblock_nr_pages in the for loop.
701 * For ending point, take care when isolating in last pageblock of a
702 * a zone which ends in the middle of a pageblock.
703 * The low boundary is the end of the pageblock the migration scanner
704 * is using.
706 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
707 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
708 zone_end_pfn(zone));
709 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
712 * If no pages are isolated, the block_start_pfn < low_pfn check
713 * will kick in.
715 next_free_pfn = 0;
718 * Isolate free pages until enough are available to migrate the
719 * pages on cc->migratepages. We stop searching if the migrate
720 * and free page scanners meet or enough free pages are isolated.
722 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
723 block_end_pfn = block_start_pfn,
724 block_start_pfn -= pageblock_nr_pages) {
725 unsigned long isolated;
728 * This can iterate a massively long zone without finding any
729 * suitable migration targets, so periodically check if we need
730 * to schedule.
732 cond_resched();
734 if (!pfn_valid(block_start_pfn))
735 continue;
738 * Check for overlapping nodes/zones. It's possible on some
739 * configurations to have a setup like
740 * node0 node1 node0
741 * i.e. it's possible that all pages within a zones range of
742 * pages do not belong to a single zone.
744 page = pfn_to_page(block_start_pfn);
745 if (page_zone(page) != zone)
746 continue;
748 /* Check the block is suitable for migration */
749 if (!suitable_migration_target(page))
750 continue;
752 /* If isolation recently failed, do not retry */
753 if (!isolation_suitable(cc, page))
754 continue;
756 /* Found a block suitable for isolating free pages from */
757 isolated = isolate_freepages_block(cc, block_start_pfn,
758 block_end_pfn, freelist, false);
759 nr_freepages += isolated;
762 * Record the highest PFN we isolated pages from. When next
763 * looking for free pages, the search will restart here as
764 * page migration may have returned some pages to the allocator
766 if (isolated && next_free_pfn == 0) {
767 cc->finished_update_free = true;
768 next_free_pfn = block_start_pfn;
772 /* split_free_page does not map the pages */
773 map_pages(freelist);
776 * If we crossed the migrate scanner, we want to keep it that way
777 * so that compact_finished() may detect this
779 if (block_start_pfn < low_pfn)
780 next_free_pfn = cc->migrate_pfn;
782 cc->free_pfn = next_free_pfn;
783 cc->nr_freepages = nr_freepages;
787 * This is a migrate-callback that "allocates" freepages by taking pages
788 * from the isolated freelists in the block we are migrating to.
790 static struct page *compaction_alloc(struct page *migratepage,
791 unsigned long data,
792 int **result)
794 struct compact_control *cc = (struct compact_control *)data;
795 struct page *freepage;
797 /* Isolate free pages if necessary */
798 if (list_empty(&cc->freepages)) {
799 isolate_freepages(cc->zone, cc);
801 if (list_empty(&cc->freepages))
802 return NULL;
805 freepage = list_entry(cc->freepages.next, struct page, lru);
806 list_del(&freepage->lru);
807 cc->nr_freepages--;
809 return freepage;
813 * This is a migrate-callback that "frees" freepages back to the isolated
814 * freelist. All pages on the freelist are from the same zone, so there is no
815 * special handling needed for NUMA.
817 static void compaction_free(struct page *page, unsigned long data)
819 struct compact_control *cc = (struct compact_control *)data;
821 list_add(&page->lru, &cc->freepages);
822 cc->nr_freepages++;
825 /* possible outcome of isolate_migratepages */
826 typedef enum {
827 ISOLATE_ABORT, /* Abort compaction now */
828 ISOLATE_NONE, /* No pages isolated, continue scanning */
829 ISOLATE_SUCCESS, /* Pages isolated, migrate */
830 } isolate_migrate_t;
833 * Isolate all pages that can be migrated from the block pointed to by
834 * the migrate scanner within compact_control.
836 static isolate_migrate_t isolate_migratepages(struct zone *zone,
837 struct compact_control *cc)
839 unsigned long low_pfn, end_pfn;
841 /* Do not scan outside zone boundaries */
842 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
844 /* Only scan within a pageblock boundary */
845 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
847 /* Do not cross the free scanner or scan within a memory hole */
848 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
849 cc->migrate_pfn = end_pfn;
850 return ISOLATE_NONE;
853 /* Perform the isolation */
854 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
855 if (!low_pfn || cc->contended)
856 return ISOLATE_ABORT;
858 cc->migrate_pfn = low_pfn;
860 return ISOLATE_SUCCESS;
863 static int compact_finished(struct zone *zone,
864 struct compact_control *cc)
866 unsigned int order;
867 unsigned long watermark;
869 if (fatal_signal_pending(current))
870 return COMPACT_PARTIAL;
872 /* Compaction run completes if the migrate and free scanner meet */
873 if (cc->free_pfn <= cc->migrate_pfn) {
874 /* Let the next compaction start anew. */
875 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
876 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
877 zone->compact_cached_free_pfn = zone_end_pfn(zone);
880 * Mark that the PG_migrate_skip information should be cleared
881 * by kswapd when it goes to sleep. kswapd does not set the
882 * flag itself as the decision to be clear should be directly
883 * based on an allocation request.
885 if (!current_is_kswapd())
886 zone->compact_blockskip_flush = true;
888 return COMPACT_COMPLETE;
892 * order == -1 is expected when compacting via
893 * /proc/sys/vm/compact_memory
895 if (cc->order == -1)
896 return COMPACT_CONTINUE;
898 /* Compaction run is not finished if the watermark is not met */
899 watermark = low_wmark_pages(zone);
900 watermark += (1 << cc->order);
902 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
903 return COMPACT_CONTINUE;
905 /* Direct compactor: Is a suitable page free? */
906 for (order = cc->order; order < MAX_ORDER; order++) {
907 struct free_area *area = &zone->free_area[order];
909 /* Job done if page is free of the right migratetype */
910 if (!list_empty(&area->free_list[cc->migratetype]))
911 return COMPACT_PARTIAL;
913 /* Job done if allocation would set block type */
914 if (cc->order >= pageblock_order && area->nr_free)
915 return COMPACT_PARTIAL;
918 return COMPACT_CONTINUE;
922 * compaction_suitable: Is this suitable to run compaction on this zone now?
923 * Returns
924 * COMPACT_SKIPPED - If there are too few free pages for compaction
925 * COMPACT_PARTIAL - If the allocation would succeed without compaction
926 * COMPACT_CONTINUE - If compaction should run now
928 unsigned long compaction_suitable(struct zone *zone, int order)
930 int fragindex;
931 unsigned long watermark;
934 * order == -1 is expected when compacting via
935 * /proc/sys/vm/compact_memory
937 if (order == -1)
938 return COMPACT_CONTINUE;
941 * Watermarks for order-0 must be met for compaction. Note the 2UL.
942 * This is because during migration, copies of pages need to be
943 * allocated and for a short time, the footprint is higher
945 watermark = low_wmark_pages(zone) + (2UL << order);
946 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
947 return COMPACT_SKIPPED;
950 * fragmentation index determines if allocation failures are due to
951 * low memory or external fragmentation
953 * index of -1000 implies allocations might succeed depending on
954 * watermarks
955 * index towards 0 implies failure is due to lack of memory
956 * index towards 1000 implies failure is due to fragmentation
958 * Only compact if a failure would be due to fragmentation.
960 fragindex = fragmentation_index(zone, order);
961 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
962 return COMPACT_SKIPPED;
964 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
965 0, 0))
966 return COMPACT_PARTIAL;
968 return COMPACT_CONTINUE;
971 static int compact_zone(struct zone *zone, struct compact_control *cc)
973 int ret;
974 unsigned long start_pfn = zone->zone_start_pfn;
975 unsigned long end_pfn = zone_end_pfn(zone);
976 const bool sync = cc->mode != MIGRATE_ASYNC;
978 ret = compaction_suitable(zone, cc->order);
979 switch (ret) {
980 case COMPACT_PARTIAL:
981 case COMPACT_SKIPPED:
982 /* Compaction is likely to fail */
983 return ret;
984 case COMPACT_CONTINUE:
985 /* Fall through to compaction */
990 * Clear pageblock skip if there were failures recently and compaction
991 * is about to be retried after being deferred. kswapd does not do
992 * this reset as it'll reset the cached information when going to sleep.
994 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
995 __reset_isolation_suitable(zone);
998 * Setup to move all movable pages to the end of the zone. Used cached
999 * information on where the scanners should start but check that it
1000 * is initialised by ensuring the values are within zone boundaries.
1002 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1003 cc->free_pfn = zone->compact_cached_free_pfn;
1004 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1005 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1006 zone->compact_cached_free_pfn = cc->free_pfn;
1008 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1009 cc->migrate_pfn = start_pfn;
1010 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1011 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1014 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1016 migrate_prep_local();
1018 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1019 int err;
1021 switch (isolate_migratepages(zone, cc)) {
1022 case ISOLATE_ABORT:
1023 ret = COMPACT_PARTIAL;
1024 putback_movable_pages(&cc->migratepages);
1025 cc->nr_migratepages = 0;
1026 goto out;
1027 case ISOLATE_NONE:
1028 continue;
1029 case ISOLATE_SUCCESS:
1033 if (!cc->nr_migratepages)
1034 continue;
1036 err = migrate_pages(&cc->migratepages, compaction_alloc,
1037 compaction_free, (unsigned long)cc, cc->mode,
1038 MR_COMPACTION);
1040 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1041 &cc->migratepages);
1043 /* All pages were either migrated or will be released */
1044 cc->nr_migratepages = 0;
1045 if (err) {
1046 putback_movable_pages(&cc->migratepages);
1048 * migrate_pages() may return -ENOMEM when scanners meet
1049 * and we want compact_finished() to detect it
1051 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1052 ret = COMPACT_PARTIAL;
1053 goto out;
1058 out:
1059 /* Release free pages and check accounting */
1060 cc->nr_freepages -= release_freepages(&cc->freepages);
1061 VM_BUG_ON(cc->nr_freepages != 0);
1063 trace_mm_compaction_end(ret);
1065 return ret;
1068 static unsigned long compact_zone_order(struct zone *zone, int order,
1069 gfp_t gfp_mask, enum migrate_mode mode, bool *contended)
1071 unsigned long ret;
1072 struct compact_control cc = {
1073 .nr_freepages = 0,
1074 .nr_migratepages = 0,
1075 .order = order,
1076 .migratetype = allocflags_to_migratetype(gfp_mask),
1077 .zone = zone,
1078 .mode = mode,
1080 INIT_LIST_HEAD(&cc.freepages);
1081 INIT_LIST_HEAD(&cc.migratepages);
1083 ret = compact_zone(zone, &cc);
1085 VM_BUG_ON(!list_empty(&cc.freepages));
1086 VM_BUG_ON(!list_empty(&cc.migratepages));
1088 *contended = cc.contended;
1089 return ret;
1092 int sysctl_extfrag_threshold = 500;
1095 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1096 * @zonelist: The zonelist used for the current allocation
1097 * @order: The order of the current allocation
1098 * @gfp_mask: The GFP mask of the current allocation
1099 * @nodemask: The allowed nodes to allocate from
1100 * @mode: The migration mode for async, sync light, or sync migration
1101 * @contended: Return value that is true if compaction was aborted due to lock contention
1102 * @page: Optionally capture a free page of the requested order during compaction
1104 * This is the main entry point for direct page compaction.
1106 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1107 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1108 enum migrate_mode mode, bool *contended)
1110 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1111 int may_enter_fs = gfp_mask & __GFP_FS;
1112 int may_perform_io = gfp_mask & __GFP_IO;
1113 struct zoneref *z;
1114 struct zone *zone;
1115 int rc = COMPACT_SKIPPED;
1116 int alloc_flags = 0;
1118 /* Check if the GFP flags allow compaction */
1119 if (!order || !may_enter_fs || !may_perform_io)
1120 return rc;
1122 count_compact_event(COMPACTSTALL);
1124 #ifdef CONFIG_CMA
1125 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1126 alloc_flags |= ALLOC_CMA;
1127 #endif
1128 /* Compact each zone in the list */
1129 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1130 nodemask) {
1131 int status;
1133 status = compact_zone_order(zone, order, gfp_mask, mode,
1134 contended);
1135 rc = max(status, rc);
1137 /* If a normal allocation would succeed, stop compacting */
1138 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1139 alloc_flags))
1140 break;
1143 return rc;
1147 /* Compact all zones within a node */
1148 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1150 int zoneid;
1151 struct zone *zone;
1153 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1155 zone = &pgdat->node_zones[zoneid];
1156 if (!populated_zone(zone))
1157 continue;
1159 cc->nr_freepages = 0;
1160 cc->nr_migratepages = 0;
1161 cc->zone = zone;
1162 INIT_LIST_HEAD(&cc->freepages);
1163 INIT_LIST_HEAD(&cc->migratepages);
1165 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1166 compact_zone(zone, cc);
1168 if (cc->order > 0) {
1169 if (zone_watermark_ok(zone, cc->order,
1170 low_wmark_pages(zone), 0, 0))
1171 compaction_defer_reset(zone, cc->order, false);
1174 VM_BUG_ON(!list_empty(&cc->freepages));
1175 VM_BUG_ON(!list_empty(&cc->migratepages));
1179 void compact_pgdat(pg_data_t *pgdat, int order)
1181 struct compact_control cc = {
1182 .order = order,
1183 .mode = MIGRATE_ASYNC,
1186 if (!order)
1187 return;
1189 __compact_pgdat(pgdat, &cc);
1192 static void compact_node(int nid)
1194 struct compact_control cc = {
1195 .order = -1,
1196 .mode = MIGRATE_SYNC,
1197 .ignore_skip_hint = true,
1200 __compact_pgdat(NODE_DATA(nid), &cc);
1203 /* Compact all nodes in the system */
1204 static void compact_nodes(void)
1206 int nid;
1208 /* Flush pending updates to the LRU lists */
1209 lru_add_drain_all();
1211 for_each_online_node(nid)
1212 compact_node(nid);
1215 /* The written value is actually unused, all memory is compacted */
1216 int sysctl_compact_memory;
1218 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1219 int sysctl_compaction_handler(struct ctl_table *table, int write,
1220 void __user *buffer, size_t *length, loff_t *ppos)
1222 if (write)
1223 compact_nodes();
1225 return 0;
1228 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1229 void __user *buffer, size_t *length, loff_t *ppos)
1231 proc_dointvec_minmax(table, write, buffer, length, ppos);
1233 return 0;
1236 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1237 static ssize_t sysfs_compact_node(struct device *dev,
1238 struct device_attribute *attr,
1239 const char *buf, size_t count)
1241 int nid = dev->id;
1243 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1244 /* Flush pending updates to the LRU lists */
1245 lru_add_drain_all();
1247 compact_node(nid);
1250 return count;
1252 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1254 int compaction_register_node(struct node *node)
1256 return device_create_file(&node->dev, &dev_attr_compact);
1259 void compaction_unregister_node(struct node *node)
1261 return device_remove_file(&node->dev, &dev_attr_compact);
1263 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1265 #endif /* CONFIG_COMPACTION */