Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / intel / igbvf / netdev.c
blobc358973ce4149940a692b03bb1d5afdb5ed62c02
1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
48 #include "igbvf.h"
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2011 Intel Corporation.";
58 static int igbvf_poll(struct napi_struct *napi, int budget);
59 static void igbvf_reset(struct igbvf_adapter *);
60 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
61 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
63 static struct igbvf_info igbvf_vf_info = {
64 .mac = e1000_vfadapt,
65 .flags = 0,
66 .pba = 10,
67 .init_ops = e1000_init_function_pointers_vf,
70 static struct igbvf_info igbvf_i350_vf_info = {
71 .mac = e1000_vfadapt_i350,
72 .flags = 0,
73 .pba = 10,
74 .init_ops = e1000_init_function_pointers_vf,
77 static const struct igbvf_info *igbvf_info_tbl[] = {
78 [board_vf] = &igbvf_vf_info,
79 [board_i350_vf] = &igbvf_i350_vf_info,
82 /**
83 * igbvf_desc_unused - calculate if we have unused descriptors
84 **/
85 static int igbvf_desc_unused(struct igbvf_ring *ring)
87 if (ring->next_to_clean > ring->next_to_use)
88 return ring->next_to_clean - ring->next_to_use - 1;
90 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
93 /**
94 * igbvf_receive_skb - helper function to handle Rx indications
95 * @adapter: board private structure
96 * @status: descriptor status field as written by hardware
97 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
98 * @skb: pointer to sk_buff to be indicated to stack
99 **/
100 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
101 struct net_device *netdev,
102 struct sk_buff *skb,
103 u32 status, u16 vlan)
105 if (status & E1000_RXD_STAT_VP) {
106 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
107 if (test_bit(vid, adapter->active_vlans))
108 __vlan_hwaccel_put_tag(skb, vid);
110 netif_receive_skb(skb);
113 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
114 u32 status_err, struct sk_buff *skb)
116 skb_checksum_none_assert(skb);
118 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
119 if ((status_err & E1000_RXD_STAT_IXSM) ||
120 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
121 return;
123 /* TCP/UDP checksum error bit is set */
124 if (status_err &
125 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
126 /* let the stack verify checksum errors */
127 adapter->hw_csum_err++;
128 return;
131 /* It must be a TCP or UDP packet with a valid checksum */
132 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
133 skb->ip_summed = CHECKSUM_UNNECESSARY;
135 adapter->hw_csum_good++;
139 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
140 * @rx_ring: address of ring structure to repopulate
141 * @cleaned_count: number of buffers to repopulate
143 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
144 int cleaned_count)
146 struct igbvf_adapter *adapter = rx_ring->adapter;
147 struct net_device *netdev = adapter->netdev;
148 struct pci_dev *pdev = adapter->pdev;
149 union e1000_adv_rx_desc *rx_desc;
150 struct igbvf_buffer *buffer_info;
151 struct sk_buff *skb;
152 unsigned int i;
153 int bufsz;
155 i = rx_ring->next_to_use;
156 buffer_info = &rx_ring->buffer_info[i];
158 if (adapter->rx_ps_hdr_size)
159 bufsz = adapter->rx_ps_hdr_size;
160 else
161 bufsz = adapter->rx_buffer_len;
163 while (cleaned_count--) {
164 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
166 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
167 if (!buffer_info->page) {
168 buffer_info->page = alloc_page(GFP_ATOMIC);
169 if (!buffer_info->page) {
170 adapter->alloc_rx_buff_failed++;
171 goto no_buffers;
173 buffer_info->page_offset = 0;
174 } else {
175 buffer_info->page_offset ^= PAGE_SIZE / 2;
177 buffer_info->page_dma =
178 dma_map_page(&pdev->dev, buffer_info->page,
179 buffer_info->page_offset,
180 PAGE_SIZE / 2,
181 DMA_FROM_DEVICE);
184 if (!buffer_info->skb) {
185 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
186 if (!skb) {
187 adapter->alloc_rx_buff_failed++;
188 goto no_buffers;
191 buffer_info->skb = skb;
192 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
193 bufsz,
194 DMA_FROM_DEVICE);
196 /* Refresh the desc even if buffer_addrs didn't change because
197 * each write-back erases this info. */
198 if (adapter->rx_ps_hdr_size) {
199 rx_desc->read.pkt_addr =
200 cpu_to_le64(buffer_info->page_dma);
201 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
202 } else {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->dma);
205 rx_desc->read.hdr_addr = 0;
208 i++;
209 if (i == rx_ring->count)
210 i = 0;
211 buffer_info = &rx_ring->buffer_info[i];
214 no_buffers:
215 if (rx_ring->next_to_use != i) {
216 rx_ring->next_to_use = i;
217 if (i == 0)
218 i = (rx_ring->count - 1);
219 else
220 i--;
222 /* Force memory writes to complete before letting h/w
223 * know there are new descriptors to fetch. (Only
224 * applicable for weak-ordered memory model archs,
225 * such as IA-64). */
226 wmb();
227 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
233 * @adapter: board private structure
235 * the return value indicates whether actual cleaning was done, there
236 * is no guarantee that everything was cleaned
238 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
239 int *work_done, int work_to_do)
241 struct igbvf_ring *rx_ring = adapter->rx_ring;
242 struct net_device *netdev = adapter->netdev;
243 struct pci_dev *pdev = adapter->pdev;
244 union e1000_adv_rx_desc *rx_desc, *next_rxd;
245 struct igbvf_buffer *buffer_info, *next_buffer;
246 struct sk_buff *skb;
247 bool cleaned = false;
248 int cleaned_count = 0;
249 unsigned int total_bytes = 0, total_packets = 0;
250 unsigned int i;
251 u32 length, hlen, staterr;
253 i = rx_ring->next_to_clean;
254 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
255 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
257 while (staterr & E1000_RXD_STAT_DD) {
258 if (*work_done >= work_to_do)
259 break;
260 (*work_done)++;
261 rmb(); /* read descriptor and rx_buffer_info after status DD */
263 buffer_info = &rx_ring->buffer_info[i];
265 /* HW will not DMA in data larger than the given buffer, even
266 * if it parses the (NFS, of course) header to be larger. In
267 * that case, it fills the header buffer and spills the rest
268 * into the page.
270 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
271 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
272 if (hlen > adapter->rx_ps_hdr_size)
273 hlen = adapter->rx_ps_hdr_size;
275 length = le16_to_cpu(rx_desc->wb.upper.length);
276 cleaned = true;
277 cleaned_count++;
279 skb = buffer_info->skb;
280 prefetch(skb->data - NET_IP_ALIGN);
281 buffer_info->skb = NULL;
282 if (!adapter->rx_ps_hdr_size) {
283 dma_unmap_single(&pdev->dev, buffer_info->dma,
284 adapter->rx_buffer_len,
285 DMA_FROM_DEVICE);
286 buffer_info->dma = 0;
287 skb_put(skb, length);
288 goto send_up;
291 if (!skb_shinfo(skb)->nr_frags) {
292 dma_unmap_single(&pdev->dev, buffer_info->dma,
293 adapter->rx_ps_hdr_size,
294 DMA_FROM_DEVICE);
295 skb_put(skb, hlen);
298 if (length) {
299 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
300 PAGE_SIZE / 2,
301 DMA_FROM_DEVICE);
302 buffer_info->page_dma = 0;
304 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
305 buffer_info->page,
306 buffer_info->page_offset,
307 length);
309 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
310 (page_count(buffer_info->page) != 1))
311 buffer_info->page = NULL;
312 else
313 get_page(buffer_info->page);
315 skb->len += length;
316 skb->data_len += length;
317 skb->truesize += PAGE_SIZE / 2;
319 send_up:
320 i++;
321 if (i == rx_ring->count)
322 i = 0;
323 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
324 prefetch(next_rxd);
325 next_buffer = &rx_ring->buffer_info[i];
327 if (!(staterr & E1000_RXD_STAT_EOP)) {
328 buffer_info->skb = next_buffer->skb;
329 buffer_info->dma = next_buffer->dma;
330 next_buffer->skb = skb;
331 next_buffer->dma = 0;
332 goto next_desc;
335 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
336 dev_kfree_skb_irq(skb);
337 goto next_desc;
340 total_bytes += skb->len;
341 total_packets++;
343 igbvf_rx_checksum_adv(adapter, staterr, skb);
345 skb->protocol = eth_type_trans(skb, netdev);
347 igbvf_receive_skb(adapter, netdev, skb, staterr,
348 rx_desc->wb.upper.vlan);
350 next_desc:
351 rx_desc->wb.upper.status_error = 0;
353 /* return some buffers to hardware, one at a time is too slow */
354 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
355 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
356 cleaned_count = 0;
359 /* use prefetched values */
360 rx_desc = next_rxd;
361 buffer_info = next_buffer;
363 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
366 rx_ring->next_to_clean = i;
367 cleaned_count = igbvf_desc_unused(rx_ring);
369 if (cleaned_count)
370 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
372 adapter->total_rx_packets += total_packets;
373 adapter->total_rx_bytes += total_bytes;
374 adapter->net_stats.rx_bytes += total_bytes;
375 adapter->net_stats.rx_packets += total_packets;
376 return cleaned;
379 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
380 struct igbvf_buffer *buffer_info)
382 if (buffer_info->dma) {
383 if (buffer_info->mapped_as_page)
384 dma_unmap_page(&adapter->pdev->dev,
385 buffer_info->dma,
386 buffer_info->length,
387 DMA_TO_DEVICE);
388 else
389 dma_unmap_single(&adapter->pdev->dev,
390 buffer_info->dma,
391 buffer_info->length,
392 DMA_TO_DEVICE);
393 buffer_info->dma = 0;
395 if (buffer_info->skb) {
396 dev_kfree_skb_any(buffer_info->skb);
397 buffer_info->skb = NULL;
399 buffer_info->time_stamp = 0;
403 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
404 * @adapter: board private structure
406 * Return 0 on success, negative on failure
408 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
409 struct igbvf_ring *tx_ring)
411 struct pci_dev *pdev = adapter->pdev;
412 int size;
414 size = sizeof(struct igbvf_buffer) * tx_ring->count;
415 tx_ring->buffer_info = vzalloc(size);
416 if (!tx_ring->buffer_info)
417 goto err;
419 /* round up to nearest 4K */
420 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
421 tx_ring->size = ALIGN(tx_ring->size, 4096);
423 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
424 &tx_ring->dma, GFP_KERNEL);
426 if (!tx_ring->desc)
427 goto err;
429 tx_ring->adapter = adapter;
430 tx_ring->next_to_use = 0;
431 tx_ring->next_to_clean = 0;
433 return 0;
434 err:
435 vfree(tx_ring->buffer_info);
436 dev_err(&adapter->pdev->dev,
437 "Unable to allocate memory for the transmit descriptor ring\n");
438 return -ENOMEM;
442 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
443 * @adapter: board private structure
445 * Returns 0 on success, negative on failure
447 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
448 struct igbvf_ring *rx_ring)
450 struct pci_dev *pdev = adapter->pdev;
451 int size, desc_len;
453 size = sizeof(struct igbvf_buffer) * rx_ring->count;
454 rx_ring->buffer_info = vzalloc(size);
455 if (!rx_ring->buffer_info)
456 goto err;
458 desc_len = sizeof(union e1000_adv_rx_desc);
460 /* Round up to nearest 4K */
461 rx_ring->size = rx_ring->count * desc_len;
462 rx_ring->size = ALIGN(rx_ring->size, 4096);
464 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
465 &rx_ring->dma, GFP_KERNEL);
467 if (!rx_ring->desc)
468 goto err;
470 rx_ring->next_to_clean = 0;
471 rx_ring->next_to_use = 0;
473 rx_ring->adapter = adapter;
475 return 0;
477 err:
478 vfree(rx_ring->buffer_info);
479 rx_ring->buffer_info = NULL;
480 dev_err(&adapter->pdev->dev,
481 "Unable to allocate memory for the receive descriptor ring\n");
482 return -ENOMEM;
486 * igbvf_clean_tx_ring - Free Tx Buffers
487 * @tx_ring: ring to be cleaned
489 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
491 struct igbvf_adapter *adapter = tx_ring->adapter;
492 struct igbvf_buffer *buffer_info;
493 unsigned long size;
494 unsigned int i;
496 if (!tx_ring->buffer_info)
497 return;
499 /* Free all the Tx ring sk_buffs */
500 for (i = 0; i < tx_ring->count; i++) {
501 buffer_info = &tx_ring->buffer_info[i];
502 igbvf_put_txbuf(adapter, buffer_info);
505 size = sizeof(struct igbvf_buffer) * tx_ring->count;
506 memset(tx_ring->buffer_info, 0, size);
508 /* Zero out the descriptor ring */
509 memset(tx_ring->desc, 0, tx_ring->size);
511 tx_ring->next_to_use = 0;
512 tx_ring->next_to_clean = 0;
514 writel(0, adapter->hw.hw_addr + tx_ring->head);
515 writel(0, adapter->hw.hw_addr + tx_ring->tail);
519 * igbvf_free_tx_resources - Free Tx Resources per Queue
520 * @tx_ring: ring to free resources from
522 * Free all transmit software resources
524 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
526 struct pci_dev *pdev = tx_ring->adapter->pdev;
528 igbvf_clean_tx_ring(tx_ring);
530 vfree(tx_ring->buffer_info);
531 tx_ring->buffer_info = NULL;
533 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
534 tx_ring->dma);
536 tx_ring->desc = NULL;
540 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
541 * @adapter: board private structure
543 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
545 struct igbvf_adapter *adapter = rx_ring->adapter;
546 struct igbvf_buffer *buffer_info;
547 struct pci_dev *pdev = adapter->pdev;
548 unsigned long size;
549 unsigned int i;
551 if (!rx_ring->buffer_info)
552 return;
554 /* Free all the Rx ring sk_buffs */
555 for (i = 0; i < rx_ring->count; i++) {
556 buffer_info = &rx_ring->buffer_info[i];
557 if (buffer_info->dma) {
558 if (adapter->rx_ps_hdr_size){
559 dma_unmap_single(&pdev->dev, buffer_info->dma,
560 adapter->rx_ps_hdr_size,
561 DMA_FROM_DEVICE);
562 } else {
563 dma_unmap_single(&pdev->dev, buffer_info->dma,
564 adapter->rx_buffer_len,
565 DMA_FROM_DEVICE);
567 buffer_info->dma = 0;
570 if (buffer_info->skb) {
571 dev_kfree_skb(buffer_info->skb);
572 buffer_info->skb = NULL;
575 if (buffer_info->page) {
576 if (buffer_info->page_dma)
577 dma_unmap_page(&pdev->dev,
578 buffer_info->page_dma,
579 PAGE_SIZE / 2,
580 DMA_FROM_DEVICE);
581 put_page(buffer_info->page);
582 buffer_info->page = NULL;
583 buffer_info->page_dma = 0;
584 buffer_info->page_offset = 0;
588 size = sizeof(struct igbvf_buffer) * rx_ring->count;
589 memset(rx_ring->buffer_info, 0, size);
591 /* Zero out the descriptor ring */
592 memset(rx_ring->desc, 0, rx_ring->size);
594 rx_ring->next_to_clean = 0;
595 rx_ring->next_to_use = 0;
597 writel(0, adapter->hw.hw_addr + rx_ring->head);
598 writel(0, adapter->hw.hw_addr + rx_ring->tail);
602 * igbvf_free_rx_resources - Free Rx Resources
603 * @rx_ring: ring to clean the resources from
605 * Free all receive software resources
608 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
610 struct pci_dev *pdev = rx_ring->adapter->pdev;
612 igbvf_clean_rx_ring(rx_ring);
614 vfree(rx_ring->buffer_info);
615 rx_ring->buffer_info = NULL;
617 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
618 rx_ring->dma);
619 rx_ring->desc = NULL;
623 * igbvf_update_itr - update the dynamic ITR value based on statistics
624 * @adapter: pointer to adapter
625 * @itr_setting: current adapter->itr
626 * @packets: the number of packets during this measurement interval
627 * @bytes: the number of bytes during this measurement interval
629 * Stores a new ITR value based on packets and byte
630 * counts during the last interrupt. The advantage of per interrupt
631 * computation is faster updates and more accurate ITR for the current
632 * traffic pattern. Constants in this function were computed
633 * based on theoretical maximum wire speed and thresholds were set based
634 * on testing data as well as attempting to minimize response time
635 * while increasing bulk throughput. This functionality is controlled
636 * by the InterruptThrottleRate module parameter.
638 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
639 u16 itr_setting, int packets,
640 int bytes)
642 unsigned int retval = itr_setting;
644 if (packets == 0)
645 goto update_itr_done;
647 switch (itr_setting) {
648 case lowest_latency:
649 /* handle TSO and jumbo frames */
650 if (bytes/packets > 8000)
651 retval = bulk_latency;
652 else if ((packets < 5) && (bytes > 512))
653 retval = low_latency;
654 break;
655 case low_latency: /* 50 usec aka 20000 ints/s */
656 if (bytes > 10000) {
657 /* this if handles the TSO accounting */
658 if (bytes/packets > 8000)
659 retval = bulk_latency;
660 else if ((packets < 10) || ((bytes/packets) > 1200))
661 retval = bulk_latency;
662 else if ((packets > 35))
663 retval = lowest_latency;
664 } else if (bytes/packets > 2000) {
665 retval = bulk_latency;
666 } else if (packets <= 2 && bytes < 512) {
667 retval = lowest_latency;
669 break;
670 case bulk_latency: /* 250 usec aka 4000 ints/s */
671 if (bytes > 25000) {
672 if (packets > 35)
673 retval = low_latency;
674 } else if (bytes < 6000) {
675 retval = low_latency;
677 break;
680 update_itr_done:
681 return retval;
684 static void igbvf_set_itr(struct igbvf_adapter *adapter)
686 struct e1000_hw *hw = &adapter->hw;
687 u16 current_itr;
688 u32 new_itr = adapter->itr;
690 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
691 adapter->total_tx_packets,
692 adapter->total_tx_bytes);
693 /* conservative mode (itr 3) eliminates the lowest_latency setting */
694 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
695 adapter->tx_itr = low_latency;
697 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
698 adapter->total_rx_packets,
699 adapter->total_rx_bytes);
700 /* conservative mode (itr 3) eliminates the lowest_latency setting */
701 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
702 adapter->rx_itr = low_latency;
704 current_itr = max(adapter->rx_itr, adapter->tx_itr);
706 switch (current_itr) {
707 /* counts and packets in update_itr are dependent on these numbers */
708 case lowest_latency:
709 new_itr = 70000;
710 break;
711 case low_latency:
712 new_itr = 20000; /* aka hwitr = ~200 */
713 break;
714 case bulk_latency:
715 new_itr = 4000;
716 break;
717 default:
718 break;
721 if (new_itr != adapter->itr) {
723 * this attempts to bias the interrupt rate towards Bulk
724 * by adding intermediate steps when interrupt rate is
725 * increasing
727 new_itr = new_itr > adapter->itr ?
728 min(adapter->itr + (new_itr >> 2), new_itr) :
729 new_itr;
730 adapter->itr = new_itr;
731 adapter->rx_ring->itr_val = 1952;
733 if (adapter->msix_entries)
734 adapter->rx_ring->set_itr = 1;
735 else
736 ew32(ITR, 1952);
741 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
742 * @adapter: board private structure
743 * returns true if ring is completely cleaned
745 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
747 struct igbvf_adapter *adapter = tx_ring->adapter;
748 struct net_device *netdev = adapter->netdev;
749 struct igbvf_buffer *buffer_info;
750 struct sk_buff *skb;
751 union e1000_adv_tx_desc *tx_desc, *eop_desc;
752 unsigned int total_bytes = 0, total_packets = 0;
753 unsigned int i, eop, count = 0;
754 bool cleaned = false;
756 i = tx_ring->next_to_clean;
757 eop = tx_ring->buffer_info[i].next_to_watch;
758 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
760 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
761 (count < tx_ring->count)) {
762 rmb(); /* read buffer_info after eop_desc status */
763 for (cleaned = false; !cleaned; count++) {
764 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
765 buffer_info = &tx_ring->buffer_info[i];
766 cleaned = (i == eop);
767 skb = buffer_info->skb;
769 if (skb) {
770 unsigned int segs, bytecount;
772 /* gso_segs is currently only valid for tcp */
773 segs = skb_shinfo(skb)->gso_segs ?: 1;
774 /* multiply data chunks by size of headers */
775 bytecount = ((segs - 1) * skb_headlen(skb)) +
776 skb->len;
777 total_packets += segs;
778 total_bytes += bytecount;
781 igbvf_put_txbuf(adapter, buffer_info);
782 tx_desc->wb.status = 0;
784 i++;
785 if (i == tx_ring->count)
786 i = 0;
788 eop = tx_ring->buffer_info[i].next_to_watch;
789 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
792 tx_ring->next_to_clean = i;
794 if (unlikely(count &&
795 netif_carrier_ok(netdev) &&
796 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
797 /* Make sure that anybody stopping the queue after this
798 * sees the new next_to_clean.
800 smp_mb();
801 if (netif_queue_stopped(netdev) &&
802 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
803 netif_wake_queue(netdev);
804 ++adapter->restart_queue;
808 adapter->net_stats.tx_bytes += total_bytes;
809 adapter->net_stats.tx_packets += total_packets;
810 return count < tx_ring->count;
813 static irqreturn_t igbvf_msix_other(int irq, void *data)
815 struct net_device *netdev = data;
816 struct igbvf_adapter *adapter = netdev_priv(netdev);
817 struct e1000_hw *hw = &adapter->hw;
819 adapter->int_counter1++;
821 netif_carrier_off(netdev);
822 hw->mac.get_link_status = 1;
823 if (!test_bit(__IGBVF_DOWN, &adapter->state))
824 mod_timer(&adapter->watchdog_timer, jiffies + 1);
826 ew32(EIMS, adapter->eims_other);
828 return IRQ_HANDLED;
831 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
833 struct net_device *netdev = data;
834 struct igbvf_adapter *adapter = netdev_priv(netdev);
835 struct e1000_hw *hw = &adapter->hw;
836 struct igbvf_ring *tx_ring = adapter->tx_ring;
839 adapter->total_tx_bytes = 0;
840 adapter->total_tx_packets = 0;
842 /* auto mask will automatically reenable the interrupt when we write
843 * EICS */
844 if (!igbvf_clean_tx_irq(tx_ring))
845 /* Ring was not completely cleaned, so fire another interrupt */
846 ew32(EICS, tx_ring->eims_value);
847 else
848 ew32(EIMS, tx_ring->eims_value);
850 return IRQ_HANDLED;
853 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
858 adapter->int_counter0++;
860 /* Write the ITR value calculated at the end of the
861 * previous interrupt.
863 if (adapter->rx_ring->set_itr) {
864 writel(adapter->rx_ring->itr_val,
865 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
866 adapter->rx_ring->set_itr = 0;
869 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
870 adapter->total_rx_bytes = 0;
871 adapter->total_rx_packets = 0;
872 __napi_schedule(&adapter->rx_ring->napi);
875 return IRQ_HANDLED;
878 #define IGBVF_NO_QUEUE -1
880 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
881 int tx_queue, int msix_vector)
883 struct e1000_hw *hw = &adapter->hw;
884 u32 ivar, index;
886 /* 82576 uses a table-based method for assigning vectors.
887 Each queue has a single entry in the table to which we write
888 a vector number along with a "valid" bit. Sadly, the layout
889 of the table is somewhat counterintuitive. */
890 if (rx_queue > IGBVF_NO_QUEUE) {
891 index = (rx_queue >> 1);
892 ivar = array_er32(IVAR0, index);
893 if (rx_queue & 0x1) {
894 /* vector goes into third byte of register */
895 ivar = ivar & 0xFF00FFFF;
896 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
897 } else {
898 /* vector goes into low byte of register */
899 ivar = ivar & 0xFFFFFF00;
900 ivar |= msix_vector | E1000_IVAR_VALID;
902 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
903 array_ew32(IVAR0, index, ivar);
905 if (tx_queue > IGBVF_NO_QUEUE) {
906 index = (tx_queue >> 1);
907 ivar = array_er32(IVAR0, index);
908 if (tx_queue & 0x1) {
909 /* vector goes into high byte of register */
910 ivar = ivar & 0x00FFFFFF;
911 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
912 } else {
913 /* vector goes into second byte of register */
914 ivar = ivar & 0xFFFF00FF;
915 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
917 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
918 array_ew32(IVAR0, index, ivar);
923 * igbvf_configure_msix - Configure MSI-X hardware
925 * igbvf_configure_msix sets up the hardware to properly
926 * generate MSI-X interrupts.
928 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
930 u32 tmp;
931 struct e1000_hw *hw = &adapter->hw;
932 struct igbvf_ring *tx_ring = adapter->tx_ring;
933 struct igbvf_ring *rx_ring = adapter->rx_ring;
934 int vector = 0;
936 adapter->eims_enable_mask = 0;
938 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
939 adapter->eims_enable_mask |= tx_ring->eims_value;
940 if (tx_ring->itr_val)
941 writel(tx_ring->itr_val,
942 hw->hw_addr + tx_ring->itr_register);
943 else
944 writel(1952, hw->hw_addr + tx_ring->itr_register);
946 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
947 adapter->eims_enable_mask |= rx_ring->eims_value;
948 if (rx_ring->itr_val)
949 writel(rx_ring->itr_val,
950 hw->hw_addr + rx_ring->itr_register);
951 else
952 writel(1952, hw->hw_addr + rx_ring->itr_register);
954 /* set vector for other causes, i.e. link changes */
956 tmp = (vector++ | E1000_IVAR_VALID);
958 ew32(IVAR_MISC, tmp);
960 adapter->eims_enable_mask = (1 << (vector)) - 1;
961 adapter->eims_other = 1 << (vector - 1);
962 e1e_flush();
965 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
967 if (adapter->msix_entries) {
968 pci_disable_msix(adapter->pdev);
969 kfree(adapter->msix_entries);
970 adapter->msix_entries = NULL;
975 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
977 * Attempt to configure interrupts using the best available
978 * capabilities of the hardware and kernel.
980 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
982 int err = -ENOMEM;
983 int i;
985 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
986 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
987 GFP_KERNEL);
988 if (adapter->msix_entries) {
989 for (i = 0; i < 3; i++)
990 adapter->msix_entries[i].entry = i;
992 err = pci_enable_msix(adapter->pdev,
993 adapter->msix_entries, 3);
996 if (err) {
997 /* MSI-X failed */
998 dev_err(&adapter->pdev->dev,
999 "Failed to initialize MSI-X interrupts.\n");
1000 igbvf_reset_interrupt_capability(adapter);
1005 * igbvf_request_msix - Initialize MSI-X interrupts
1007 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1008 * kernel.
1010 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1012 struct net_device *netdev = adapter->netdev;
1013 int err = 0, vector = 0;
1015 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1016 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1017 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1018 } else {
1019 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1020 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1023 err = request_irq(adapter->msix_entries[vector].vector,
1024 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1025 netdev);
1026 if (err)
1027 goto out;
1029 adapter->tx_ring->itr_register = E1000_EITR(vector);
1030 adapter->tx_ring->itr_val = 1952;
1031 vector++;
1033 err = request_irq(adapter->msix_entries[vector].vector,
1034 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1035 netdev);
1036 if (err)
1037 goto out;
1039 adapter->rx_ring->itr_register = E1000_EITR(vector);
1040 adapter->rx_ring->itr_val = 1952;
1041 vector++;
1043 err = request_irq(adapter->msix_entries[vector].vector,
1044 igbvf_msix_other, 0, netdev->name, netdev);
1045 if (err)
1046 goto out;
1048 igbvf_configure_msix(adapter);
1049 return 0;
1050 out:
1051 return err;
1055 * igbvf_alloc_queues - Allocate memory for all rings
1056 * @adapter: board private structure to initialize
1058 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1060 struct net_device *netdev = adapter->netdev;
1062 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1063 if (!adapter->tx_ring)
1064 return -ENOMEM;
1066 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1067 if (!adapter->rx_ring) {
1068 kfree(adapter->tx_ring);
1069 return -ENOMEM;
1072 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1074 return 0;
1078 * igbvf_request_irq - initialize interrupts
1080 * Attempts to configure interrupts using the best available
1081 * capabilities of the hardware and kernel.
1083 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1085 int err = -1;
1087 /* igbvf supports msi-x only */
1088 if (adapter->msix_entries)
1089 err = igbvf_request_msix(adapter);
1091 if (!err)
1092 return err;
1094 dev_err(&adapter->pdev->dev,
1095 "Unable to allocate interrupt, Error: %d\n", err);
1097 return err;
1100 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1102 struct net_device *netdev = adapter->netdev;
1103 int vector;
1105 if (adapter->msix_entries) {
1106 for (vector = 0; vector < 3; vector++)
1107 free_irq(adapter->msix_entries[vector].vector, netdev);
1112 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1114 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1116 struct e1000_hw *hw = &adapter->hw;
1118 ew32(EIMC, ~0);
1120 if (adapter->msix_entries)
1121 ew32(EIAC, 0);
1125 * igbvf_irq_enable - Enable default interrupt generation settings
1127 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1129 struct e1000_hw *hw = &adapter->hw;
1131 ew32(EIAC, adapter->eims_enable_mask);
1132 ew32(EIAM, adapter->eims_enable_mask);
1133 ew32(EIMS, adapter->eims_enable_mask);
1137 * igbvf_poll - NAPI Rx polling callback
1138 * @napi: struct associated with this polling callback
1139 * @budget: amount of packets driver is allowed to process this poll
1141 static int igbvf_poll(struct napi_struct *napi, int budget)
1143 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1144 struct igbvf_adapter *adapter = rx_ring->adapter;
1145 struct e1000_hw *hw = &adapter->hw;
1146 int work_done = 0;
1148 igbvf_clean_rx_irq(adapter, &work_done, budget);
1150 /* If not enough Rx work done, exit the polling mode */
1151 if (work_done < budget) {
1152 napi_complete(napi);
1154 if (adapter->itr_setting & 3)
1155 igbvf_set_itr(adapter);
1157 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1158 ew32(EIMS, adapter->rx_ring->eims_value);
1161 return work_done;
1165 * igbvf_set_rlpml - set receive large packet maximum length
1166 * @adapter: board private structure
1168 * Configure the maximum size of packets that will be received
1170 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1172 int max_frame_size;
1173 struct e1000_hw *hw = &adapter->hw;
1175 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1176 e1000_rlpml_set_vf(hw, max_frame_size);
1179 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1181 struct igbvf_adapter *adapter = netdev_priv(netdev);
1182 struct e1000_hw *hw = &adapter->hw;
1184 if (hw->mac.ops.set_vfta(hw, vid, true))
1185 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1186 else
1187 set_bit(vid, adapter->active_vlans);
1190 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1192 struct igbvf_adapter *adapter = netdev_priv(netdev);
1193 struct e1000_hw *hw = &adapter->hw;
1195 igbvf_irq_disable(adapter);
1197 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1198 igbvf_irq_enable(adapter);
1200 if (hw->mac.ops.set_vfta(hw, vid, false))
1201 dev_err(&adapter->pdev->dev,
1202 "Failed to remove vlan id %d\n", vid);
1203 else
1204 clear_bit(vid, adapter->active_vlans);
1207 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1209 u16 vid;
1211 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1212 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1216 * igbvf_configure_tx - Configure Transmit Unit after Reset
1217 * @adapter: board private structure
1219 * Configure the Tx unit of the MAC after a reset.
1221 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1223 struct e1000_hw *hw = &adapter->hw;
1224 struct igbvf_ring *tx_ring = adapter->tx_ring;
1225 u64 tdba;
1226 u32 txdctl, dca_txctrl;
1228 /* disable transmits */
1229 txdctl = er32(TXDCTL(0));
1230 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1231 e1e_flush();
1232 msleep(10);
1234 /* Setup the HW Tx Head and Tail descriptor pointers */
1235 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1236 tdba = tx_ring->dma;
1237 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1238 ew32(TDBAH(0), (tdba >> 32));
1239 ew32(TDH(0), 0);
1240 ew32(TDT(0), 0);
1241 tx_ring->head = E1000_TDH(0);
1242 tx_ring->tail = E1000_TDT(0);
1244 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1245 * MUST be delivered in order or it will completely screw up
1246 * our bookeeping.
1248 dca_txctrl = er32(DCA_TXCTRL(0));
1249 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1250 ew32(DCA_TXCTRL(0), dca_txctrl);
1252 /* enable transmits */
1253 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1254 ew32(TXDCTL(0), txdctl);
1256 /* Setup Transmit Descriptor Settings for eop descriptor */
1257 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1259 /* enable Report Status bit */
1260 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1264 * igbvf_setup_srrctl - configure the receive control registers
1265 * @adapter: Board private structure
1267 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1269 struct e1000_hw *hw = &adapter->hw;
1270 u32 srrctl = 0;
1272 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1273 E1000_SRRCTL_BSIZEHDR_MASK |
1274 E1000_SRRCTL_BSIZEPKT_MASK);
1276 /* Enable queue drop to avoid head of line blocking */
1277 srrctl |= E1000_SRRCTL_DROP_EN;
1279 /* Setup buffer sizes */
1280 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1281 E1000_SRRCTL_BSIZEPKT_SHIFT;
1283 if (adapter->rx_buffer_len < 2048) {
1284 adapter->rx_ps_hdr_size = 0;
1285 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1286 } else {
1287 adapter->rx_ps_hdr_size = 128;
1288 srrctl |= adapter->rx_ps_hdr_size <<
1289 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1290 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1293 ew32(SRRCTL(0), srrctl);
1297 * igbvf_configure_rx - Configure Receive Unit after Reset
1298 * @adapter: board private structure
1300 * Configure the Rx unit of the MAC after a reset.
1302 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1304 struct e1000_hw *hw = &adapter->hw;
1305 struct igbvf_ring *rx_ring = adapter->rx_ring;
1306 u64 rdba;
1307 u32 rdlen, rxdctl;
1309 /* disable receives */
1310 rxdctl = er32(RXDCTL(0));
1311 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1312 e1e_flush();
1313 msleep(10);
1315 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1318 * Setup the HW Rx Head and Tail Descriptor Pointers and
1319 * the Base and Length of the Rx Descriptor Ring
1321 rdba = rx_ring->dma;
1322 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1323 ew32(RDBAH(0), (rdba >> 32));
1324 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1325 rx_ring->head = E1000_RDH(0);
1326 rx_ring->tail = E1000_RDT(0);
1327 ew32(RDH(0), 0);
1328 ew32(RDT(0), 0);
1330 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1331 rxdctl &= 0xFFF00000;
1332 rxdctl |= IGBVF_RX_PTHRESH;
1333 rxdctl |= IGBVF_RX_HTHRESH << 8;
1334 rxdctl |= IGBVF_RX_WTHRESH << 16;
1336 igbvf_set_rlpml(adapter);
1338 /* enable receives */
1339 ew32(RXDCTL(0), rxdctl);
1343 * igbvf_set_multi - Multicast and Promiscuous mode set
1344 * @netdev: network interface device structure
1346 * The set_multi entry point is called whenever the multicast address
1347 * list or the network interface flags are updated. This routine is
1348 * responsible for configuring the hardware for proper multicast,
1349 * promiscuous mode, and all-multi behavior.
1351 static void igbvf_set_multi(struct net_device *netdev)
1353 struct igbvf_adapter *adapter = netdev_priv(netdev);
1354 struct e1000_hw *hw = &adapter->hw;
1355 struct netdev_hw_addr *ha;
1356 u8 *mta_list = NULL;
1357 int i;
1359 if (!netdev_mc_empty(netdev)) {
1360 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1361 if (!mta_list) {
1362 dev_err(&adapter->pdev->dev,
1363 "failed to allocate multicast filter list\n");
1364 return;
1368 /* prepare a packed array of only addresses. */
1369 i = 0;
1370 netdev_for_each_mc_addr(ha, netdev)
1371 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1373 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1374 kfree(mta_list);
1378 * igbvf_configure - configure the hardware for Rx and Tx
1379 * @adapter: private board structure
1381 static void igbvf_configure(struct igbvf_adapter *adapter)
1383 igbvf_set_multi(adapter->netdev);
1385 igbvf_restore_vlan(adapter);
1387 igbvf_configure_tx(adapter);
1388 igbvf_setup_srrctl(adapter);
1389 igbvf_configure_rx(adapter);
1390 igbvf_alloc_rx_buffers(adapter->rx_ring,
1391 igbvf_desc_unused(adapter->rx_ring));
1394 /* igbvf_reset - bring the hardware into a known good state
1396 * This function boots the hardware and enables some settings that
1397 * require a configuration cycle of the hardware - those cannot be
1398 * set/changed during runtime. After reset the device needs to be
1399 * properly configured for Rx, Tx etc.
1401 static void igbvf_reset(struct igbvf_adapter *adapter)
1403 struct e1000_mac_info *mac = &adapter->hw.mac;
1404 struct net_device *netdev = adapter->netdev;
1405 struct e1000_hw *hw = &adapter->hw;
1407 /* Allow time for pending master requests to run */
1408 if (mac->ops.reset_hw(hw))
1409 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1411 mac->ops.init_hw(hw);
1413 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1414 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1415 netdev->addr_len);
1416 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1417 netdev->addr_len);
1420 adapter->last_reset = jiffies;
1423 int igbvf_up(struct igbvf_adapter *adapter)
1425 struct e1000_hw *hw = &adapter->hw;
1427 /* hardware has been reset, we need to reload some things */
1428 igbvf_configure(adapter);
1430 clear_bit(__IGBVF_DOWN, &adapter->state);
1432 napi_enable(&adapter->rx_ring->napi);
1433 if (adapter->msix_entries)
1434 igbvf_configure_msix(adapter);
1436 /* Clear any pending interrupts. */
1437 er32(EICR);
1438 igbvf_irq_enable(adapter);
1440 /* start the watchdog */
1441 hw->mac.get_link_status = 1;
1442 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1445 return 0;
1448 void igbvf_down(struct igbvf_adapter *adapter)
1450 struct net_device *netdev = adapter->netdev;
1451 struct e1000_hw *hw = &adapter->hw;
1452 u32 rxdctl, txdctl;
1455 * signal that we're down so the interrupt handler does not
1456 * reschedule our watchdog timer
1458 set_bit(__IGBVF_DOWN, &adapter->state);
1460 /* disable receives in the hardware */
1461 rxdctl = er32(RXDCTL(0));
1462 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1464 netif_stop_queue(netdev);
1466 /* disable transmits in the hardware */
1467 txdctl = er32(TXDCTL(0));
1468 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1470 /* flush both disables and wait for them to finish */
1471 e1e_flush();
1472 msleep(10);
1474 napi_disable(&adapter->rx_ring->napi);
1476 igbvf_irq_disable(adapter);
1478 del_timer_sync(&adapter->watchdog_timer);
1480 netif_carrier_off(netdev);
1482 /* record the stats before reset*/
1483 igbvf_update_stats(adapter);
1485 adapter->link_speed = 0;
1486 adapter->link_duplex = 0;
1488 igbvf_reset(adapter);
1489 igbvf_clean_tx_ring(adapter->tx_ring);
1490 igbvf_clean_rx_ring(adapter->rx_ring);
1493 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1495 might_sleep();
1496 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1497 msleep(1);
1498 igbvf_down(adapter);
1499 igbvf_up(adapter);
1500 clear_bit(__IGBVF_RESETTING, &adapter->state);
1504 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1505 * @adapter: board private structure to initialize
1507 * igbvf_sw_init initializes the Adapter private data structure.
1508 * Fields are initialized based on PCI device information and
1509 * OS network device settings (MTU size).
1511 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1513 struct net_device *netdev = adapter->netdev;
1514 s32 rc;
1516 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1517 adapter->rx_ps_hdr_size = 0;
1518 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1519 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1521 adapter->tx_int_delay = 8;
1522 adapter->tx_abs_int_delay = 32;
1523 adapter->rx_int_delay = 0;
1524 adapter->rx_abs_int_delay = 8;
1525 adapter->itr_setting = 3;
1526 adapter->itr = 20000;
1528 /* Set various function pointers */
1529 adapter->ei->init_ops(&adapter->hw);
1531 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1532 if (rc)
1533 return rc;
1535 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1536 if (rc)
1537 return rc;
1539 igbvf_set_interrupt_capability(adapter);
1541 if (igbvf_alloc_queues(adapter))
1542 return -ENOMEM;
1544 spin_lock_init(&adapter->tx_queue_lock);
1546 /* Explicitly disable IRQ since the NIC can be in any state. */
1547 igbvf_irq_disable(adapter);
1549 spin_lock_init(&adapter->stats_lock);
1551 set_bit(__IGBVF_DOWN, &adapter->state);
1552 return 0;
1555 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1557 struct e1000_hw *hw = &adapter->hw;
1559 adapter->stats.last_gprc = er32(VFGPRC);
1560 adapter->stats.last_gorc = er32(VFGORC);
1561 adapter->stats.last_gptc = er32(VFGPTC);
1562 adapter->stats.last_gotc = er32(VFGOTC);
1563 adapter->stats.last_mprc = er32(VFMPRC);
1564 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1565 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1566 adapter->stats.last_gorlbc = er32(VFGORLBC);
1567 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1569 adapter->stats.base_gprc = er32(VFGPRC);
1570 adapter->stats.base_gorc = er32(VFGORC);
1571 adapter->stats.base_gptc = er32(VFGPTC);
1572 adapter->stats.base_gotc = er32(VFGOTC);
1573 adapter->stats.base_mprc = er32(VFMPRC);
1574 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1575 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1576 adapter->stats.base_gorlbc = er32(VFGORLBC);
1577 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1581 * igbvf_open - Called when a network interface is made active
1582 * @netdev: network interface device structure
1584 * Returns 0 on success, negative value on failure
1586 * The open entry point is called when a network interface is made
1587 * active by the system (IFF_UP). At this point all resources needed
1588 * for transmit and receive operations are allocated, the interrupt
1589 * handler is registered with the OS, the watchdog timer is started,
1590 * and the stack is notified that the interface is ready.
1592 static int igbvf_open(struct net_device *netdev)
1594 struct igbvf_adapter *adapter = netdev_priv(netdev);
1595 struct e1000_hw *hw = &adapter->hw;
1596 int err;
1598 /* disallow open during test */
1599 if (test_bit(__IGBVF_TESTING, &adapter->state))
1600 return -EBUSY;
1602 /* allocate transmit descriptors */
1603 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1604 if (err)
1605 goto err_setup_tx;
1607 /* allocate receive descriptors */
1608 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1609 if (err)
1610 goto err_setup_rx;
1613 * before we allocate an interrupt, we must be ready to handle it.
1614 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1615 * as soon as we call pci_request_irq, so we have to setup our
1616 * clean_rx handler before we do so.
1618 igbvf_configure(adapter);
1620 err = igbvf_request_irq(adapter);
1621 if (err)
1622 goto err_req_irq;
1624 /* From here on the code is the same as igbvf_up() */
1625 clear_bit(__IGBVF_DOWN, &adapter->state);
1627 napi_enable(&adapter->rx_ring->napi);
1629 /* clear any pending interrupts */
1630 er32(EICR);
1632 igbvf_irq_enable(adapter);
1634 /* start the watchdog */
1635 hw->mac.get_link_status = 1;
1636 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1638 return 0;
1640 err_req_irq:
1641 igbvf_free_rx_resources(adapter->rx_ring);
1642 err_setup_rx:
1643 igbvf_free_tx_resources(adapter->tx_ring);
1644 err_setup_tx:
1645 igbvf_reset(adapter);
1647 return err;
1651 * igbvf_close - Disables a network interface
1652 * @netdev: network interface device structure
1654 * Returns 0, this is not allowed to fail
1656 * The close entry point is called when an interface is de-activated
1657 * by the OS. The hardware is still under the drivers control, but
1658 * needs to be disabled. A global MAC reset is issued to stop the
1659 * hardware, and all transmit and receive resources are freed.
1661 static int igbvf_close(struct net_device *netdev)
1663 struct igbvf_adapter *adapter = netdev_priv(netdev);
1665 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1666 igbvf_down(adapter);
1668 igbvf_free_irq(adapter);
1670 igbvf_free_tx_resources(adapter->tx_ring);
1671 igbvf_free_rx_resources(adapter->rx_ring);
1673 return 0;
1676 * igbvf_set_mac - Change the Ethernet Address of the NIC
1677 * @netdev: network interface device structure
1678 * @p: pointer to an address structure
1680 * Returns 0 on success, negative on failure
1682 static int igbvf_set_mac(struct net_device *netdev, void *p)
1684 struct igbvf_adapter *adapter = netdev_priv(netdev);
1685 struct e1000_hw *hw = &adapter->hw;
1686 struct sockaddr *addr = p;
1688 if (!is_valid_ether_addr(addr->sa_data))
1689 return -EADDRNOTAVAIL;
1691 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1693 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1695 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1696 return -EADDRNOTAVAIL;
1698 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1700 return 0;
1703 #define UPDATE_VF_COUNTER(reg, name) \
1705 u32 current_counter = er32(reg); \
1706 if (current_counter < adapter->stats.last_##name) \
1707 adapter->stats.name += 0x100000000LL; \
1708 adapter->stats.last_##name = current_counter; \
1709 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1710 adapter->stats.name |= current_counter; \
1714 * igbvf_update_stats - Update the board statistics counters
1715 * @adapter: board private structure
1717 void igbvf_update_stats(struct igbvf_adapter *adapter)
1719 struct e1000_hw *hw = &adapter->hw;
1720 struct pci_dev *pdev = adapter->pdev;
1723 * Prevent stats update while adapter is being reset, link is down
1724 * or if the pci connection is down.
1726 if (adapter->link_speed == 0)
1727 return;
1729 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1730 return;
1732 if (pci_channel_offline(pdev))
1733 return;
1735 UPDATE_VF_COUNTER(VFGPRC, gprc);
1736 UPDATE_VF_COUNTER(VFGORC, gorc);
1737 UPDATE_VF_COUNTER(VFGPTC, gptc);
1738 UPDATE_VF_COUNTER(VFGOTC, gotc);
1739 UPDATE_VF_COUNTER(VFMPRC, mprc);
1740 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1741 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1742 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1743 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1745 /* Fill out the OS statistics structure */
1746 adapter->net_stats.multicast = adapter->stats.mprc;
1749 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1751 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1752 adapter->link_speed,
1753 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1756 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1758 struct e1000_hw *hw = &adapter->hw;
1759 s32 ret_val = E1000_SUCCESS;
1760 bool link_active;
1762 /* If interface is down, stay link down */
1763 if (test_bit(__IGBVF_DOWN, &adapter->state))
1764 return false;
1766 ret_val = hw->mac.ops.check_for_link(hw);
1767 link_active = !hw->mac.get_link_status;
1769 /* if check for link returns error we will need to reset */
1770 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1771 schedule_work(&adapter->reset_task);
1773 return link_active;
1777 * igbvf_watchdog - Timer Call-back
1778 * @data: pointer to adapter cast into an unsigned long
1780 static void igbvf_watchdog(unsigned long data)
1782 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1784 /* Do the rest outside of interrupt context */
1785 schedule_work(&adapter->watchdog_task);
1788 static void igbvf_watchdog_task(struct work_struct *work)
1790 struct igbvf_adapter *adapter = container_of(work,
1791 struct igbvf_adapter,
1792 watchdog_task);
1793 struct net_device *netdev = adapter->netdev;
1794 struct e1000_mac_info *mac = &adapter->hw.mac;
1795 struct igbvf_ring *tx_ring = adapter->tx_ring;
1796 struct e1000_hw *hw = &adapter->hw;
1797 u32 link;
1798 int tx_pending = 0;
1800 link = igbvf_has_link(adapter);
1802 if (link) {
1803 if (!netif_carrier_ok(netdev)) {
1804 mac->ops.get_link_up_info(&adapter->hw,
1805 &adapter->link_speed,
1806 &adapter->link_duplex);
1807 igbvf_print_link_info(adapter);
1809 netif_carrier_on(netdev);
1810 netif_wake_queue(netdev);
1812 } else {
1813 if (netif_carrier_ok(netdev)) {
1814 adapter->link_speed = 0;
1815 adapter->link_duplex = 0;
1816 dev_info(&adapter->pdev->dev, "Link is Down\n");
1817 netif_carrier_off(netdev);
1818 netif_stop_queue(netdev);
1822 if (netif_carrier_ok(netdev)) {
1823 igbvf_update_stats(adapter);
1824 } else {
1825 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1826 tx_ring->count);
1827 if (tx_pending) {
1829 * We've lost link, so the controller stops DMA,
1830 * but we've got queued Tx work that's never going
1831 * to get done, so reset controller to flush Tx.
1832 * (Do the reset outside of interrupt context).
1834 adapter->tx_timeout_count++;
1835 schedule_work(&adapter->reset_task);
1839 /* Cause software interrupt to ensure Rx ring is cleaned */
1840 ew32(EICS, adapter->rx_ring->eims_value);
1842 /* Reset the timer */
1843 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1844 mod_timer(&adapter->watchdog_timer,
1845 round_jiffies(jiffies + (2 * HZ)));
1848 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1849 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1850 #define IGBVF_TX_FLAGS_TSO 0x00000004
1851 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1852 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1853 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1855 static int igbvf_tso(struct igbvf_adapter *adapter,
1856 struct igbvf_ring *tx_ring,
1857 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1859 struct e1000_adv_tx_context_desc *context_desc;
1860 unsigned int i;
1861 int err;
1862 struct igbvf_buffer *buffer_info;
1863 u32 info = 0, tu_cmd = 0;
1864 u32 mss_l4len_idx, l4len;
1865 *hdr_len = 0;
1867 if (skb_header_cloned(skb)) {
1868 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1869 if (err) {
1870 dev_err(&adapter->pdev->dev,
1871 "igbvf_tso returning an error\n");
1872 return err;
1876 l4len = tcp_hdrlen(skb);
1877 *hdr_len += l4len;
1879 if (skb->protocol == htons(ETH_P_IP)) {
1880 struct iphdr *iph = ip_hdr(skb);
1881 iph->tot_len = 0;
1882 iph->check = 0;
1883 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1884 iph->daddr, 0,
1885 IPPROTO_TCP,
1887 } else if (skb_is_gso_v6(skb)) {
1888 ipv6_hdr(skb)->payload_len = 0;
1889 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1890 &ipv6_hdr(skb)->daddr,
1891 0, IPPROTO_TCP, 0);
1894 i = tx_ring->next_to_use;
1896 buffer_info = &tx_ring->buffer_info[i];
1897 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1898 /* VLAN MACLEN IPLEN */
1899 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1900 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1901 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1902 *hdr_len += skb_network_offset(skb);
1903 info |= (skb_transport_header(skb) - skb_network_header(skb));
1904 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1905 context_desc->vlan_macip_lens = cpu_to_le32(info);
1907 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1908 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1910 if (skb->protocol == htons(ETH_P_IP))
1911 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1912 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1914 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1916 /* MSS L4LEN IDX */
1917 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1918 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1920 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1921 context_desc->seqnum_seed = 0;
1923 buffer_info->time_stamp = jiffies;
1924 buffer_info->next_to_watch = i;
1925 buffer_info->dma = 0;
1926 i++;
1927 if (i == tx_ring->count)
1928 i = 0;
1930 tx_ring->next_to_use = i;
1932 return true;
1935 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1936 struct igbvf_ring *tx_ring,
1937 struct sk_buff *skb, u32 tx_flags)
1939 struct e1000_adv_tx_context_desc *context_desc;
1940 unsigned int i;
1941 struct igbvf_buffer *buffer_info;
1942 u32 info = 0, tu_cmd = 0;
1944 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1945 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1946 i = tx_ring->next_to_use;
1947 buffer_info = &tx_ring->buffer_info[i];
1948 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1950 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1953 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1954 if (skb->ip_summed == CHECKSUM_PARTIAL)
1955 info |= (skb_transport_header(skb) -
1956 skb_network_header(skb));
1959 context_desc->vlan_macip_lens = cpu_to_le32(info);
1961 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1963 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1964 switch (skb->protocol) {
1965 case __constant_htons(ETH_P_IP):
1966 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1967 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1968 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1969 break;
1970 case __constant_htons(ETH_P_IPV6):
1971 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1972 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1973 break;
1974 default:
1975 break;
1979 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1980 context_desc->seqnum_seed = 0;
1981 context_desc->mss_l4len_idx = 0;
1983 buffer_info->time_stamp = jiffies;
1984 buffer_info->next_to_watch = i;
1985 buffer_info->dma = 0;
1986 i++;
1987 if (i == tx_ring->count)
1988 i = 0;
1989 tx_ring->next_to_use = i;
1991 return true;
1994 return false;
1997 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1999 struct igbvf_adapter *adapter = netdev_priv(netdev);
2001 /* there is enough descriptors then we don't need to worry */
2002 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2003 return 0;
2005 netif_stop_queue(netdev);
2007 smp_mb();
2009 /* We need to check again just in case room has been made available */
2010 if (igbvf_desc_unused(adapter->tx_ring) < size)
2011 return -EBUSY;
2013 netif_wake_queue(netdev);
2015 ++adapter->restart_queue;
2016 return 0;
2019 #define IGBVF_MAX_TXD_PWR 16
2020 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2022 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2023 struct igbvf_ring *tx_ring,
2024 struct sk_buff *skb,
2025 unsigned int first)
2027 struct igbvf_buffer *buffer_info;
2028 struct pci_dev *pdev = adapter->pdev;
2029 unsigned int len = skb_headlen(skb);
2030 unsigned int count = 0, i;
2031 unsigned int f;
2033 i = tx_ring->next_to_use;
2035 buffer_info = &tx_ring->buffer_info[i];
2036 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2037 buffer_info->length = len;
2038 /* set time_stamp *before* dma to help avoid a possible race */
2039 buffer_info->time_stamp = jiffies;
2040 buffer_info->next_to_watch = i;
2041 buffer_info->mapped_as_page = false;
2042 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2043 DMA_TO_DEVICE);
2044 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2045 goto dma_error;
2048 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2049 const struct skb_frag_struct *frag;
2051 count++;
2052 i++;
2053 if (i == tx_ring->count)
2054 i = 0;
2056 frag = &skb_shinfo(skb)->frags[f];
2057 len = skb_frag_size(frag);
2059 buffer_info = &tx_ring->buffer_info[i];
2060 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2061 buffer_info->length = len;
2062 buffer_info->time_stamp = jiffies;
2063 buffer_info->next_to_watch = i;
2064 buffer_info->mapped_as_page = true;
2065 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2066 DMA_TO_DEVICE);
2067 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2068 goto dma_error;
2071 tx_ring->buffer_info[i].skb = skb;
2072 tx_ring->buffer_info[first].next_to_watch = i;
2074 return ++count;
2076 dma_error:
2077 dev_err(&pdev->dev, "TX DMA map failed\n");
2079 /* clear timestamp and dma mappings for failed buffer_info mapping */
2080 buffer_info->dma = 0;
2081 buffer_info->time_stamp = 0;
2082 buffer_info->length = 0;
2083 buffer_info->next_to_watch = 0;
2084 buffer_info->mapped_as_page = false;
2085 if (count)
2086 count--;
2088 /* clear timestamp and dma mappings for remaining portion of packet */
2089 while (count--) {
2090 if (i==0)
2091 i += tx_ring->count;
2092 i--;
2093 buffer_info = &tx_ring->buffer_info[i];
2094 igbvf_put_txbuf(adapter, buffer_info);
2097 return 0;
2100 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2101 struct igbvf_ring *tx_ring,
2102 int tx_flags, int count, u32 paylen,
2103 u8 hdr_len)
2105 union e1000_adv_tx_desc *tx_desc = NULL;
2106 struct igbvf_buffer *buffer_info;
2107 u32 olinfo_status = 0, cmd_type_len;
2108 unsigned int i;
2110 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2111 E1000_ADVTXD_DCMD_DEXT);
2113 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2114 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2116 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2117 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2119 /* insert tcp checksum */
2120 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2122 /* insert ip checksum */
2123 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2124 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2126 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2127 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2130 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2132 i = tx_ring->next_to_use;
2133 while (count--) {
2134 buffer_info = &tx_ring->buffer_info[i];
2135 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2136 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2137 tx_desc->read.cmd_type_len =
2138 cpu_to_le32(cmd_type_len | buffer_info->length);
2139 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2140 i++;
2141 if (i == tx_ring->count)
2142 i = 0;
2145 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2146 /* Force memory writes to complete before letting h/w
2147 * know there are new descriptors to fetch. (Only
2148 * applicable for weak-ordered memory model archs,
2149 * such as IA-64). */
2150 wmb();
2152 tx_ring->next_to_use = i;
2153 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2154 /* we need this if more than one processor can write to our tail
2155 * at a time, it syncronizes IO on IA64/Altix systems */
2156 mmiowb();
2159 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2160 struct net_device *netdev,
2161 struct igbvf_ring *tx_ring)
2163 struct igbvf_adapter *adapter = netdev_priv(netdev);
2164 unsigned int first, tx_flags = 0;
2165 u8 hdr_len = 0;
2166 int count = 0;
2167 int tso = 0;
2169 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2170 dev_kfree_skb_any(skb);
2171 return NETDEV_TX_OK;
2174 if (skb->len <= 0) {
2175 dev_kfree_skb_any(skb);
2176 return NETDEV_TX_OK;
2180 * need: count + 4 desc gap to keep tail from touching
2181 * + 2 desc gap to keep tail from touching head,
2182 * + 1 desc for skb->data,
2183 * + 1 desc for context descriptor,
2184 * head, otherwise try next time
2186 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2187 /* this is a hard error */
2188 return NETDEV_TX_BUSY;
2191 if (vlan_tx_tag_present(skb)) {
2192 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2193 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2196 if (skb->protocol == htons(ETH_P_IP))
2197 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2199 first = tx_ring->next_to_use;
2201 tso = skb_is_gso(skb) ?
2202 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2203 if (unlikely(tso < 0)) {
2204 dev_kfree_skb_any(skb);
2205 return NETDEV_TX_OK;
2208 if (tso)
2209 tx_flags |= IGBVF_TX_FLAGS_TSO;
2210 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2211 (skb->ip_summed == CHECKSUM_PARTIAL))
2212 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2215 * count reflects descriptors mapped, if 0 then mapping error
2216 * has occurred and we need to rewind the descriptor queue
2218 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2220 if (count) {
2221 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2222 skb->len, hdr_len);
2223 /* Make sure there is space in the ring for the next send. */
2224 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2225 } else {
2226 dev_kfree_skb_any(skb);
2227 tx_ring->buffer_info[first].time_stamp = 0;
2228 tx_ring->next_to_use = first;
2231 return NETDEV_TX_OK;
2234 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2235 struct net_device *netdev)
2237 struct igbvf_adapter *adapter = netdev_priv(netdev);
2238 struct igbvf_ring *tx_ring;
2240 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2241 dev_kfree_skb_any(skb);
2242 return NETDEV_TX_OK;
2245 tx_ring = &adapter->tx_ring[0];
2247 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2251 * igbvf_tx_timeout - Respond to a Tx Hang
2252 * @netdev: network interface device structure
2254 static void igbvf_tx_timeout(struct net_device *netdev)
2256 struct igbvf_adapter *adapter = netdev_priv(netdev);
2258 /* Do the reset outside of interrupt context */
2259 adapter->tx_timeout_count++;
2260 schedule_work(&adapter->reset_task);
2263 static void igbvf_reset_task(struct work_struct *work)
2265 struct igbvf_adapter *adapter;
2266 adapter = container_of(work, struct igbvf_adapter, reset_task);
2268 igbvf_reinit_locked(adapter);
2272 * igbvf_get_stats - Get System Network Statistics
2273 * @netdev: network interface device structure
2275 * Returns the address of the device statistics structure.
2276 * The statistics are actually updated from the timer callback.
2278 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2280 struct igbvf_adapter *adapter = netdev_priv(netdev);
2282 /* only return the current stats */
2283 return &adapter->net_stats;
2287 * igbvf_change_mtu - Change the Maximum Transfer Unit
2288 * @netdev: network interface device structure
2289 * @new_mtu: new value for maximum frame size
2291 * Returns 0 on success, negative on failure
2293 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2295 struct igbvf_adapter *adapter = netdev_priv(netdev);
2296 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2298 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2299 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2300 return -EINVAL;
2303 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2304 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2305 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2306 return -EINVAL;
2309 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2310 msleep(1);
2311 /* igbvf_down has a dependency on max_frame_size */
2312 adapter->max_frame_size = max_frame;
2313 if (netif_running(netdev))
2314 igbvf_down(adapter);
2317 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2318 * means we reserve 2 more, this pushes us to allocate from the next
2319 * larger slab size.
2320 * i.e. RXBUFFER_2048 --> size-4096 slab
2321 * However with the new *_jumbo_rx* routines, jumbo receives will use
2322 * fragmented skbs
2325 if (max_frame <= 1024)
2326 adapter->rx_buffer_len = 1024;
2327 else if (max_frame <= 2048)
2328 adapter->rx_buffer_len = 2048;
2329 else
2330 #if (PAGE_SIZE / 2) > 16384
2331 adapter->rx_buffer_len = 16384;
2332 #else
2333 adapter->rx_buffer_len = PAGE_SIZE / 2;
2334 #endif
2337 /* adjust allocation if LPE protects us, and we aren't using SBP */
2338 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2339 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2340 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2341 ETH_FCS_LEN;
2343 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2344 netdev->mtu, new_mtu);
2345 netdev->mtu = new_mtu;
2347 if (netif_running(netdev))
2348 igbvf_up(adapter);
2349 else
2350 igbvf_reset(adapter);
2352 clear_bit(__IGBVF_RESETTING, &adapter->state);
2354 return 0;
2357 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2359 switch (cmd) {
2360 default:
2361 return -EOPNOTSUPP;
2365 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2367 struct net_device *netdev = pci_get_drvdata(pdev);
2368 struct igbvf_adapter *adapter = netdev_priv(netdev);
2369 #ifdef CONFIG_PM
2370 int retval = 0;
2371 #endif
2373 netif_device_detach(netdev);
2375 if (netif_running(netdev)) {
2376 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2377 igbvf_down(adapter);
2378 igbvf_free_irq(adapter);
2381 #ifdef CONFIG_PM
2382 retval = pci_save_state(pdev);
2383 if (retval)
2384 return retval;
2385 #endif
2387 pci_disable_device(pdev);
2389 return 0;
2392 #ifdef CONFIG_PM
2393 static int igbvf_resume(struct pci_dev *pdev)
2395 struct net_device *netdev = pci_get_drvdata(pdev);
2396 struct igbvf_adapter *adapter = netdev_priv(netdev);
2397 u32 err;
2399 pci_restore_state(pdev);
2400 err = pci_enable_device_mem(pdev);
2401 if (err) {
2402 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2403 return err;
2406 pci_set_master(pdev);
2408 if (netif_running(netdev)) {
2409 err = igbvf_request_irq(adapter);
2410 if (err)
2411 return err;
2414 igbvf_reset(adapter);
2416 if (netif_running(netdev))
2417 igbvf_up(adapter);
2419 netif_device_attach(netdev);
2421 return 0;
2423 #endif
2425 static void igbvf_shutdown(struct pci_dev *pdev)
2427 igbvf_suspend(pdev, PMSG_SUSPEND);
2430 #ifdef CONFIG_NET_POLL_CONTROLLER
2432 * Polling 'interrupt' - used by things like netconsole to send skbs
2433 * without having to re-enable interrupts. It's not called while
2434 * the interrupt routine is executing.
2436 static void igbvf_netpoll(struct net_device *netdev)
2438 struct igbvf_adapter *adapter = netdev_priv(netdev);
2440 disable_irq(adapter->pdev->irq);
2442 igbvf_clean_tx_irq(adapter->tx_ring);
2444 enable_irq(adapter->pdev->irq);
2446 #endif
2449 * igbvf_io_error_detected - called when PCI error is detected
2450 * @pdev: Pointer to PCI device
2451 * @state: The current pci connection state
2453 * This function is called after a PCI bus error affecting
2454 * this device has been detected.
2456 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2457 pci_channel_state_t state)
2459 struct net_device *netdev = pci_get_drvdata(pdev);
2460 struct igbvf_adapter *adapter = netdev_priv(netdev);
2462 netif_device_detach(netdev);
2464 if (state == pci_channel_io_perm_failure)
2465 return PCI_ERS_RESULT_DISCONNECT;
2467 if (netif_running(netdev))
2468 igbvf_down(adapter);
2469 pci_disable_device(pdev);
2471 /* Request a slot slot reset. */
2472 return PCI_ERS_RESULT_NEED_RESET;
2476 * igbvf_io_slot_reset - called after the pci bus has been reset.
2477 * @pdev: Pointer to PCI device
2479 * Restart the card from scratch, as if from a cold-boot. Implementation
2480 * resembles the first-half of the igbvf_resume routine.
2482 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2484 struct net_device *netdev = pci_get_drvdata(pdev);
2485 struct igbvf_adapter *adapter = netdev_priv(netdev);
2487 if (pci_enable_device_mem(pdev)) {
2488 dev_err(&pdev->dev,
2489 "Cannot re-enable PCI device after reset.\n");
2490 return PCI_ERS_RESULT_DISCONNECT;
2492 pci_set_master(pdev);
2494 igbvf_reset(adapter);
2496 return PCI_ERS_RESULT_RECOVERED;
2500 * igbvf_io_resume - called when traffic can start flowing again.
2501 * @pdev: Pointer to PCI device
2503 * This callback is called when the error recovery driver tells us that
2504 * its OK to resume normal operation. Implementation resembles the
2505 * second-half of the igbvf_resume routine.
2507 static void igbvf_io_resume(struct pci_dev *pdev)
2509 struct net_device *netdev = pci_get_drvdata(pdev);
2510 struct igbvf_adapter *adapter = netdev_priv(netdev);
2512 if (netif_running(netdev)) {
2513 if (igbvf_up(adapter)) {
2514 dev_err(&pdev->dev,
2515 "can't bring device back up after reset\n");
2516 return;
2520 netif_device_attach(netdev);
2523 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2525 struct e1000_hw *hw = &adapter->hw;
2526 struct net_device *netdev = adapter->netdev;
2527 struct pci_dev *pdev = adapter->pdev;
2529 if (hw->mac.type == e1000_vfadapt_i350)
2530 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2531 else
2532 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2533 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2536 static int igbvf_set_features(struct net_device *netdev,
2537 netdev_features_t features)
2539 struct igbvf_adapter *adapter = netdev_priv(netdev);
2541 if (features & NETIF_F_RXCSUM)
2542 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2543 else
2544 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2546 return 0;
2549 static const struct net_device_ops igbvf_netdev_ops = {
2550 .ndo_open = igbvf_open,
2551 .ndo_stop = igbvf_close,
2552 .ndo_start_xmit = igbvf_xmit_frame,
2553 .ndo_get_stats = igbvf_get_stats,
2554 .ndo_set_rx_mode = igbvf_set_multi,
2555 .ndo_set_mac_address = igbvf_set_mac,
2556 .ndo_change_mtu = igbvf_change_mtu,
2557 .ndo_do_ioctl = igbvf_ioctl,
2558 .ndo_tx_timeout = igbvf_tx_timeout,
2559 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2560 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2561 #ifdef CONFIG_NET_POLL_CONTROLLER
2562 .ndo_poll_controller = igbvf_netpoll,
2563 #endif
2564 .ndo_set_features = igbvf_set_features,
2568 * igbvf_probe - Device Initialization Routine
2569 * @pdev: PCI device information struct
2570 * @ent: entry in igbvf_pci_tbl
2572 * Returns 0 on success, negative on failure
2574 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2575 * The OS initialization, configuring of the adapter private structure,
2576 * and a hardware reset occur.
2578 static int __devinit igbvf_probe(struct pci_dev *pdev,
2579 const struct pci_device_id *ent)
2581 struct net_device *netdev;
2582 struct igbvf_adapter *adapter;
2583 struct e1000_hw *hw;
2584 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2586 static int cards_found;
2587 int err, pci_using_dac;
2589 err = pci_enable_device_mem(pdev);
2590 if (err)
2591 return err;
2593 pci_using_dac = 0;
2594 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2595 if (!err) {
2596 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2597 if (!err)
2598 pci_using_dac = 1;
2599 } else {
2600 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2601 if (err) {
2602 err = dma_set_coherent_mask(&pdev->dev,
2603 DMA_BIT_MASK(32));
2604 if (err) {
2605 dev_err(&pdev->dev, "No usable DMA "
2606 "configuration, aborting\n");
2607 goto err_dma;
2612 err = pci_request_regions(pdev, igbvf_driver_name);
2613 if (err)
2614 goto err_pci_reg;
2616 pci_set_master(pdev);
2618 err = -ENOMEM;
2619 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2620 if (!netdev)
2621 goto err_alloc_etherdev;
2623 SET_NETDEV_DEV(netdev, &pdev->dev);
2625 pci_set_drvdata(pdev, netdev);
2626 adapter = netdev_priv(netdev);
2627 hw = &adapter->hw;
2628 adapter->netdev = netdev;
2629 adapter->pdev = pdev;
2630 adapter->ei = ei;
2631 adapter->pba = ei->pba;
2632 adapter->flags = ei->flags;
2633 adapter->hw.back = adapter;
2634 adapter->hw.mac.type = ei->mac;
2635 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2637 /* PCI config space info */
2639 hw->vendor_id = pdev->vendor;
2640 hw->device_id = pdev->device;
2641 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2642 hw->subsystem_device_id = pdev->subsystem_device;
2643 hw->revision_id = pdev->revision;
2645 err = -EIO;
2646 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2647 pci_resource_len(pdev, 0));
2649 if (!adapter->hw.hw_addr)
2650 goto err_ioremap;
2652 if (ei->get_variants) {
2653 err = ei->get_variants(adapter);
2654 if (err)
2655 goto err_ioremap;
2658 /* setup adapter struct */
2659 err = igbvf_sw_init(adapter);
2660 if (err)
2661 goto err_sw_init;
2663 /* construct the net_device struct */
2664 netdev->netdev_ops = &igbvf_netdev_ops;
2666 igbvf_set_ethtool_ops(netdev);
2667 netdev->watchdog_timeo = 5 * HZ;
2668 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2670 adapter->bd_number = cards_found++;
2672 netdev->hw_features = NETIF_F_SG |
2673 NETIF_F_IP_CSUM |
2674 NETIF_F_IPV6_CSUM |
2675 NETIF_F_TSO |
2676 NETIF_F_TSO6 |
2677 NETIF_F_RXCSUM;
2679 netdev->features = netdev->hw_features |
2680 NETIF_F_HW_VLAN_TX |
2681 NETIF_F_HW_VLAN_RX |
2682 NETIF_F_HW_VLAN_FILTER;
2684 if (pci_using_dac)
2685 netdev->features |= NETIF_F_HIGHDMA;
2687 netdev->vlan_features |= NETIF_F_TSO;
2688 netdev->vlan_features |= NETIF_F_TSO6;
2689 netdev->vlan_features |= NETIF_F_IP_CSUM;
2690 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2691 netdev->vlan_features |= NETIF_F_SG;
2693 /*reset the controller to put the device in a known good state */
2694 err = hw->mac.ops.reset_hw(hw);
2695 if (err) {
2696 dev_info(&pdev->dev,
2697 "PF still in reset state, assigning new address."
2698 " Is the PF interface up?\n");
2699 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2700 } else {
2701 err = hw->mac.ops.read_mac_addr(hw);
2702 if (err) {
2703 dev_err(&pdev->dev, "Error reading MAC address\n");
2704 goto err_hw_init;
2708 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2709 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2711 if (!is_valid_ether_addr(netdev->perm_addr)) {
2712 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2713 netdev->dev_addr);
2714 err = -EIO;
2715 goto err_hw_init;
2718 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2719 (unsigned long) adapter);
2721 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2722 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2724 /* ring size defaults */
2725 adapter->rx_ring->count = 1024;
2726 adapter->tx_ring->count = 1024;
2728 /* reset the hardware with the new settings */
2729 igbvf_reset(adapter);
2731 strcpy(netdev->name, "eth%d");
2732 err = register_netdev(netdev);
2733 if (err)
2734 goto err_hw_init;
2736 /* tell the stack to leave us alone until igbvf_open() is called */
2737 netif_carrier_off(netdev);
2738 netif_stop_queue(netdev);
2740 igbvf_print_device_info(adapter);
2742 igbvf_initialize_last_counter_stats(adapter);
2744 return 0;
2746 err_hw_init:
2747 kfree(adapter->tx_ring);
2748 kfree(adapter->rx_ring);
2749 err_sw_init:
2750 igbvf_reset_interrupt_capability(adapter);
2751 iounmap(adapter->hw.hw_addr);
2752 err_ioremap:
2753 free_netdev(netdev);
2754 err_alloc_etherdev:
2755 pci_release_regions(pdev);
2756 err_pci_reg:
2757 err_dma:
2758 pci_disable_device(pdev);
2759 return err;
2763 * igbvf_remove - Device Removal Routine
2764 * @pdev: PCI device information struct
2766 * igbvf_remove is called by the PCI subsystem to alert the driver
2767 * that it should release a PCI device. The could be caused by a
2768 * Hot-Plug event, or because the driver is going to be removed from
2769 * memory.
2771 static void __devexit igbvf_remove(struct pci_dev *pdev)
2773 struct net_device *netdev = pci_get_drvdata(pdev);
2774 struct igbvf_adapter *adapter = netdev_priv(netdev);
2775 struct e1000_hw *hw = &adapter->hw;
2778 * The watchdog timer may be rescheduled, so explicitly
2779 * disable it from being rescheduled.
2781 set_bit(__IGBVF_DOWN, &adapter->state);
2782 del_timer_sync(&adapter->watchdog_timer);
2784 cancel_work_sync(&adapter->reset_task);
2785 cancel_work_sync(&adapter->watchdog_task);
2787 unregister_netdev(netdev);
2789 igbvf_reset_interrupt_capability(adapter);
2792 * it is important to delete the napi struct prior to freeing the
2793 * rx ring so that you do not end up with null pointer refs
2795 netif_napi_del(&adapter->rx_ring->napi);
2796 kfree(adapter->tx_ring);
2797 kfree(adapter->rx_ring);
2799 iounmap(hw->hw_addr);
2800 if (hw->flash_address)
2801 iounmap(hw->flash_address);
2802 pci_release_regions(pdev);
2804 free_netdev(netdev);
2806 pci_disable_device(pdev);
2809 /* PCI Error Recovery (ERS) */
2810 static struct pci_error_handlers igbvf_err_handler = {
2811 .error_detected = igbvf_io_error_detected,
2812 .slot_reset = igbvf_io_slot_reset,
2813 .resume = igbvf_io_resume,
2816 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2817 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2818 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2819 { } /* terminate list */
2821 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2823 /* PCI Device API Driver */
2824 static struct pci_driver igbvf_driver = {
2825 .name = igbvf_driver_name,
2826 .id_table = igbvf_pci_tbl,
2827 .probe = igbvf_probe,
2828 .remove = __devexit_p(igbvf_remove),
2829 #ifdef CONFIG_PM
2830 /* Power Management Hooks */
2831 .suspend = igbvf_suspend,
2832 .resume = igbvf_resume,
2833 #endif
2834 .shutdown = igbvf_shutdown,
2835 .err_handler = &igbvf_err_handler
2839 * igbvf_init_module - Driver Registration Routine
2841 * igbvf_init_module is the first routine called when the driver is
2842 * loaded. All it does is register with the PCI subsystem.
2844 static int __init igbvf_init_module(void)
2846 int ret;
2847 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2848 pr_info("%s\n", igbvf_copyright);
2850 ret = pci_register_driver(&igbvf_driver);
2852 return ret;
2854 module_init(igbvf_init_module);
2857 * igbvf_exit_module - Driver Exit Cleanup Routine
2859 * igbvf_exit_module is called just before the driver is removed
2860 * from memory.
2862 static void __exit igbvf_exit_module(void)
2864 pci_unregister_driver(&igbvf_driver);
2866 module_exit(igbvf_exit_module);
2869 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2870 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2871 MODULE_LICENSE("GPL");
2872 MODULE_VERSION(DRV_VERSION);
2874 /* netdev.c */