cpufreq: Create for_each_governor()
[linux-2.6/btrfs-unstable.git] / kernel / time / time.c
blob6390517e77d48abb83c0d0ffec27864b4695c4c4
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
45 #include "timekeeping.h"
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
51 struct timezone sys_tz;
53 EXPORT_SYMBOL(sys_tz);
55 #ifdef __ARCH_WANT_SYS_TIME
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
65 time_t i = get_seconds();
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
71 force_successful_syscall_return();
72 return i;
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
84 struct timespec tv;
85 int err;
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
90 tv.tv_nsec = 0;
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
96 do_settimeofday(&tv);
97 return 0;
100 #endif /* __ARCH_WANT_SYS_TIME */
102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
115 return 0;
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
122 int persistent_clock_is_local;
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
134 * - TYT, 1992-01-01
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
140 static inline void warp_clock(void)
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
165 static int firsttime = 1;
166 int error = 0;
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
175 if (tz) {
176 sys_tz = *tz;
177 update_vsyscall_tz();
178 if (firsttime) {
179 firsttime = 0;
180 if (!tv)
181 warp_clock();
184 if (tv)
185 return do_settimeofday(tv);
186 return 0;
189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 struct timezone __user *, tz)
192 struct timeval user_tv;
193 struct timespec new_ts;
194 struct timezone new_tz;
196 if (tv) {
197 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 return -EFAULT;
199 new_ts.tv_sec = user_tv.tv_sec;
200 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
202 if (tz) {
203 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
204 return -EFAULT;
207 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
210 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
212 struct timex txc; /* Local copy of parameter */
213 int ret;
215 /* Copy the user data space into the kernel copy
216 * structure. But bear in mind that the structures
217 * may change
219 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
220 return -EFAULT;
221 ret = do_adjtimex(&txc);
222 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
226 * current_fs_time - Return FS time
227 * @sb: Superblock.
229 * Return the current time truncated to the time granularity supported by
230 * the fs.
232 struct timespec current_fs_time(struct super_block *sb)
234 struct timespec now = current_kernel_time();
235 return timespec_trunc(now, sb->s_time_gran);
237 EXPORT_SYMBOL(current_fs_time);
240 * Convert jiffies to milliseconds and back.
242 * Avoid unnecessary multiplications/divisions in the
243 * two most common HZ cases:
245 unsigned int jiffies_to_msecs(const unsigned long j)
247 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
248 return (MSEC_PER_SEC / HZ) * j;
249 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
250 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
251 #else
252 # if BITS_PER_LONG == 32
253 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
254 # else
255 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
256 # endif
257 #endif
259 EXPORT_SYMBOL(jiffies_to_msecs);
261 unsigned int jiffies_to_usecs(const unsigned long j)
263 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
264 return (USEC_PER_SEC / HZ) * j;
265 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
266 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
267 #else
268 # if BITS_PER_LONG == 32
269 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
270 # else
271 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
272 # endif
273 #endif
275 EXPORT_SYMBOL(jiffies_to_usecs);
278 * timespec_trunc - Truncate timespec to a granularity
279 * @t: Timespec
280 * @gran: Granularity in ns.
282 * Truncate a timespec to a granularity. gran must be smaller than a second.
283 * Always rounds down.
285 * This function should be only used for timestamps returned by
286 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
287 * it doesn't handle the better resolution of the latter.
289 struct timespec timespec_trunc(struct timespec t, unsigned gran)
292 * Division is pretty slow so avoid it for common cases.
293 * Currently current_kernel_time() never returns better than
294 * jiffies resolution. Exploit that.
296 if (gran <= jiffies_to_usecs(1) * 1000) {
297 /* nothing */
298 } else if (gran == 1000000000) {
299 t.tv_nsec = 0;
300 } else {
301 t.tv_nsec -= t.tv_nsec % gran;
303 return t;
305 EXPORT_SYMBOL(timespec_trunc);
308 * mktime64 - Converts date to seconds.
309 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
310 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
311 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
313 * [For the Julian calendar (which was used in Russia before 1917,
314 * Britain & colonies before 1752, anywhere else before 1582,
315 * and is still in use by some communities) leave out the
316 * -year/100+year/400 terms, and add 10.]
318 * This algorithm was first published by Gauss (I think).
320 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
321 const unsigned int day, const unsigned int hour,
322 const unsigned int min, const unsigned int sec)
324 unsigned int mon = mon0, year = year0;
326 /* 1..12 -> 11,12,1..10 */
327 if (0 >= (int) (mon -= 2)) {
328 mon += 12; /* Puts Feb last since it has leap day */
329 year -= 1;
332 return ((((time64_t)
333 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
334 year*365 - 719499
335 )*24 + hour /* now have hours */
336 )*60 + min /* now have minutes */
337 )*60 + sec; /* finally seconds */
339 EXPORT_SYMBOL(mktime64);
342 * set_normalized_timespec - set timespec sec and nsec parts and normalize
344 * @ts: pointer to timespec variable to be set
345 * @sec: seconds to set
346 * @nsec: nanoseconds to set
348 * Set seconds and nanoseconds field of a timespec variable and
349 * normalize to the timespec storage format
351 * Note: The tv_nsec part is always in the range of
352 * 0 <= tv_nsec < NSEC_PER_SEC
353 * For negative values only the tv_sec field is negative !
355 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
357 while (nsec >= NSEC_PER_SEC) {
359 * The following asm() prevents the compiler from
360 * optimising this loop into a modulo operation. See
361 * also __iter_div_u64_rem() in include/linux/time.h
363 asm("" : "+rm"(nsec));
364 nsec -= NSEC_PER_SEC;
365 ++sec;
367 while (nsec < 0) {
368 asm("" : "+rm"(nsec));
369 nsec += NSEC_PER_SEC;
370 --sec;
372 ts->tv_sec = sec;
373 ts->tv_nsec = nsec;
375 EXPORT_SYMBOL(set_normalized_timespec);
378 * ns_to_timespec - Convert nanoseconds to timespec
379 * @nsec: the nanoseconds value to be converted
381 * Returns the timespec representation of the nsec parameter.
383 struct timespec ns_to_timespec(const s64 nsec)
385 struct timespec ts;
386 s32 rem;
388 if (!nsec)
389 return (struct timespec) {0, 0};
391 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
392 if (unlikely(rem < 0)) {
393 ts.tv_sec--;
394 rem += NSEC_PER_SEC;
396 ts.tv_nsec = rem;
398 return ts;
400 EXPORT_SYMBOL(ns_to_timespec);
403 * ns_to_timeval - Convert nanoseconds to timeval
404 * @nsec: the nanoseconds value to be converted
406 * Returns the timeval representation of the nsec parameter.
408 struct timeval ns_to_timeval(const s64 nsec)
410 struct timespec ts = ns_to_timespec(nsec);
411 struct timeval tv;
413 tv.tv_sec = ts.tv_sec;
414 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
416 return tv;
418 EXPORT_SYMBOL(ns_to_timeval);
420 #if BITS_PER_LONG == 32
422 * set_normalized_timespec - set timespec sec and nsec parts and normalize
424 * @ts: pointer to timespec variable to be set
425 * @sec: seconds to set
426 * @nsec: nanoseconds to set
428 * Set seconds and nanoseconds field of a timespec variable and
429 * normalize to the timespec storage format
431 * Note: The tv_nsec part is always in the range of
432 * 0 <= tv_nsec < NSEC_PER_SEC
433 * For negative values only the tv_sec field is negative !
435 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
437 while (nsec >= NSEC_PER_SEC) {
439 * The following asm() prevents the compiler from
440 * optimising this loop into a modulo operation. See
441 * also __iter_div_u64_rem() in include/linux/time.h
443 asm("" : "+rm"(nsec));
444 nsec -= NSEC_PER_SEC;
445 ++sec;
447 while (nsec < 0) {
448 asm("" : "+rm"(nsec));
449 nsec += NSEC_PER_SEC;
450 --sec;
452 ts->tv_sec = sec;
453 ts->tv_nsec = nsec;
455 EXPORT_SYMBOL(set_normalized_timespec64);
458 * ns_to_timespec64 - Convert nanoseconds to timespec64
459 * @nsec: the nanoseconds value to be converted
461 * Returns the timespec64 representation of the nsec parameter.
463 struct timespec64 ns_to_timespec64(const s64 nsec)
465 struct timespec64 ts;
466 s32 rem;
468 if (!nsec)
469 return (struct timespec64) {0, 0};
471 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
472 if (unlikely(rem < 0)) {
473 ts.tv_sec--;
474 rem += NSEC_PER_SEC;
476 ts.tv_nsec = rem;
478 return ts;
480 EXPORT_SYMBOL(ns_to_timespec64);
481 #endif
483 * When we convert to jiffies then we interpret incoming values
484 * the following way:
486 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
488 * - 'too large' values [that would result in larger than
489 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
491 * - all other values are converted to jiffies by either multiplying
492 * the input value by a factor or dividing it with a factor
494 * We must also be careful about 32-bit overflows.
496 unsigned long msecs_to_jiffies(const unsigned int m)
499 * Negative value, means infinite timeout:
501 if ((int)m < 0)
502 return MAX_JIFFY_OFFSET;
504 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
506 * HZ is equal to or smaller than 1000, and 1000 is a nice
507 * round multiple of HZ, divide with the factor between them,
508 * but round upwards:
510 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
511 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
513 * HZ is larger than 1000, and HZ is a nice round multiple of
514 * 1000 - simply multiply with the factor between them.
516 * But first make sure the multiplication result cannot
517 * overflow:
519 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
520 return MAX_JIFFY_OFFSET;
522 return m * (HZ / MSEC_PER_SEC);
523 #else
525 * Generic case - multiply, round and divide. But first
526 * check that if we are doing a net multiplication, that
527 * we wouldn't overflow:
529 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
530 return MAX_JIFFY_OFFSET;
532 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
533 >> MSEC_TO_HZ_SHR32;
534 #endif
536 EXPORT_SYMBOL(msecs_to_jiffies);
538 unsigned long usecs_to_jiffies(const unsigned int u)
540 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
541 return MAX_JIFFY_OFFSET;
542 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
543 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
544 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
545 return u * (HZ / USEC_PER_SEC);
546 #else
547 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
548 >> USEC_TO_HZ_SHR32;
549 #endif
551 EXPORT_SYMBOL(usecs_to_jiffies);
554 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
555 * that a remainder subtract here would not do the right thing as the
556 * resolution values don't fall on second boundries. I.e. the line:
557 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
558 * Note that due to the small error in the multiplier here, this
559 * rounding is incorrect for sufficiently large values of tv_nsec, but
560 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
561 * OK.
563 * Rather, we just shift the bits off the right.
565 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
566 * value to a scaled second value.
568 static unsigned long
569 __timespec_to_jiffies(unsigned long sec, long nsec)
571 nsec = nsec + TICK_NSEC - 1;
573 if (sec >= MAX_SEC_IN_JIFFIES){
574 sec = MAX_SEC_IN_JIFFIES;
575 nsec = 0;
577 return (((u64)sec * SEC_CONVERSION) +
578 (((u64)nsec * NSEC_CONVERSION) >>
579 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
583 unsigned long
584 timespec_to_jiffies(const struct timespec *value)
586 return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
589 EXPORT_SYMBOL(timespec_to_jiffies);
591 void
592 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
595 * Convert jiffies to nanoseconds and separate with
596 * one divide.
598 u32 rem;
599 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
600 NSEC_PER_SEC, &rem);
601 value->tv_nsec = rem;
603 EXPORT_SYMBOL(jiffies_to_timespec);
606 * We could use a similar algorithm to timespec_to_jiffies (with a
607 * different multiplier for usec instead of nsec). But this has a
608 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
609 * usec value, since it's not necessarily integral.
611 * We could instead round in the intermediate scaled representation
612 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
613 * perilous: the scaling introduces a small positive error, which
614 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
615 * units to the intermediate before shifting) leads to accidental
616 * overflow and overestimates.
618 * At the cost of one additional multiplication by a constant, just
619 * use the timespec implementation.
621 unsigned long
622 timeval_to_jiffies(const struct timeval *value)
624 return __timespec_to_jiffies(value->tv_sec,
625 value->tv_usec * NSEC_PER_USEC);
627 EXPORT_SYMBOL(timeval_to_jiffies);
629 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
632 * Convert jiffies to nanoseconds and separate with
633 * one divide.
635 u32 rem;
637 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
638 NSEC_PER_SEC, &rem);
639 value->tv_usec = rem / NSEC_PER_USEC;
641 EXPORT_SYMBOL(jiffies_to_timeval);
644 * Convert jiffies/jiffies_64 to clock_t and back.
646 clock_t jiffies_to_clock_t(unsigned long x)
648 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
649 # if HZ < USER_HZ
650 return x * (USER_HZ / HZ);
651 # else
652 return x / (HZ / USER_HZ);
653 # endif
654 #else
655 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
656 #endif
658 EXPORT_SYMBOL(jiffies_to_clock_t);
660 unsigned long clock_t_to_jiffies(unsigned long x)
662 #if (HZ % USER_HZ)==0
663 if (x >= ~0UL / (HZ / USER_HZ))
664 return ~0UL;
665 return x * (HZ / USER_HZ);
666 #else
667 /* Don't worry about loss of precision here .. */
668 if (x >= ~0UL / HZ * USER_HZ)
669 return ~0UL;
671 /* .. but do try to contain it here */
672 return div_u64((u64)x * HZ, USER_HZ);
673 #endif
675 EXPORT_SYMBOL(clock_t_to_jiffies);
677 u64 jiffies_64_to_clock_t(u64 x)
679 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
680 # if HZ < USER_HZ
681 x = div_u64(x * USER_HZ, HZ);
682 # elif HZ > USER_HZ
683 x = div_u64(x, HZ / USER_HZ);
684 # else
685 /* Nothing to do */
686 # endif
687 #else
689 * There are better ways that don't overflow early,
690 * but even this doesn't overflow in hundreds of years
691 * in 64 bits, so..
693 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
694 #endif
695 return x;
697 EXPORT_SYMBOL(jiffies_64_to_clock_t);
699 u64 nsec_to_clock_t(u64 x)
701 #if (NSEC_PER_SEC % USER_HZ) == 0
702 return div_u64(x, NSEC_PER_SEC / USER_HZ);
703 #elif (USER_HZ % 512) == 0
704 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
705 #else
707 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
708 * overflow after 64.99 years.
709 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
711 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
712 #endif
716 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
718 * @n: nsecs in u64
720 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
721 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
722 * for scheduler, not for use in device drivers to calculate timeout value.
724 * note:
725 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
726 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
728 u64 nsecs_to_jiffies64(u64 n)
730 #if (NSEC_PER_SEC % HZ) == 0
731 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
732 return div_u64(n, NSEC_PER_SEC / HZ);
733 #elif (HZ % 512) == 0
734 /* overflow after 292 years if HZ = 1024 */
735 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
736 #else
738 * Generic case - optimized for cases where HZ is a multiple of 3.
739 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
741 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
742 #endif
744 EXPORT_SYMBOL(nsecs_to_jiffies64);
747 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
749 * @n: nsecs in u64
751 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
752 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
753 * for scheduler, not for use in device drivers to calculate timeout value.
755 * note:
756 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
757 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
759 unsigned long nsecs_to_jiffies(u64 n)
761 return (unsigned long)nsecs_to_jiffies64(n);
763 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
766 * Add two timespec values and do a safety check for overflow.
767 * It's assumed that both values are valid (>= 0)
769 struct timespec timespec_add_safe(const struct timespec lhs,
770 const struct timespec rhs)
772 struct timespec res;
774 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
775 lhs.tv_nsec + rhs.tv_nsec);
777 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
778 res.tv_sec = TIME_T_MAX;
780 return res;