cpufreq: Create for_each_governor()
[linux-2.6/btrfs-unstable.git] / kernel / time / tick-sched.c
blob1363d58f07e976475ffc583dbf16c81c120b1a16
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
28 #include <asm/irq_regs.h>
30 #include "tick-internal.h"
32 #include <trace/events/timer.h>
35 * Per cpu nohz control structure
37 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
42 static ktime_t last_jiffies_update;
44 struct tick_sched *tick_get_tick_sched(int cpu)
46 return &per_cpu(tick_cpu_sched, cpu);
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now)
54 unsigned long ticks = 0;
55 ktime_t delta;
58 * Do a quick check without holding jiffies_lock:
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
78 ticks = ktime_divns(delta, incr);
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
83 do_timer(++ticks);
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t tick_init_jiffy_update(void)
100 ktime_t period;
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
112 static void tick_sched_do_timer(ktime_t now)
114 int cpu = smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
160 static bool can_stop_full_tick(void)
162 WARN_ON_ONCE(!irqs_disabled());
164 if (!sched_can_stop_tick()) {
165 trace_tick_stop(0, "more than 1 task in runqueue\n");
166 return false;
169 if (!posix_cpu_timers_can_stop_tick(current)) {
170 trace_tick_stop(0, "posix timers running\n");
171 return false;
174 if (!perf_event_can_stop_tick()) {
175 trace_tick_stop(0, "perf events running\n");
176 return false;
179 /* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
182 * TODO: kick full dynticks CPUs when
183 * sched_clock_stable is set.
185 if (!sched_clock_stable()) {
186 trace_tick_stop(0, "unstable sched clock\n");
188 * Don't allow the user to think they can get
189 * full NO_HZ with this machine.
191 WARN_ONCE(tick_nohz_full_running,
192 "NO_HZ FULL will not work with unstable sched clock");
193 return false;
195 #endif
197 return true;
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
203 * Re-evaluate the need for the tick on the current CPU
204 * and restart it if necessary.
206 void __tick_nohz_full_check(void)
208 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
210 if (tick_nohz_full_cpu(smp_processor_id())) {
211 if (ts->tick_stopped && !is_idle_task(current)) {
212 if (!can_stop_full_tick())
213 tick_nohz_restart_sched_tick(ts, ktime_get());
218 static void nohz_full_kick_work_func(struct irq_work *work)
220 __tick_nohz_full_check();
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 .func = nohz_full_kick_work_func,
228 * Kick this CPU if it's full dynticks in order to force it to
229 * re-evaluate its dependency on the tick and restart it if necessary.
230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231 * is NMI safe.
233 void tick_nohz_full_kick(void)
235 if (!tick_nohz_full_cpu(smp_processor_id()))
236 return;
238 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 * Kick the CPU if it's full dynticks in order to force it to
243 * re-evaluate its dependency on the tick and restart it if necessary.
245 void tick_nohz_full_kick_cpu(int cpu)
247 if (!tick_nohz_full_cpu(cpu))
248 return;
250 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
253 static void nohz_full_kick_ipi(void *info)
255 __tick_nohz_full_check();
259 * Kick all full dynticks CPUs in order to force these to re-evaluate
260 * their dependency on the tick and restart it if necessary.
262 void tick_nohz_full_kick_all(void)
264 if (!tick_nohz_full_running)
265 return;
267 preempt_disable();
268 smp_call_function_many(tick_nohz_full_mask,
269 nohz_full_kick_ipi, NULL, false);
270 tick_nohz_full_kick();
271 preempt_enable();
275 * Re-evaluate the need for the tick as we switch the current task.
276 * It might need the tick due to per task/process properties:
277 * perf events, posix cpu timers, ...
279 void __tick_nohz_task_switch(struct task_struct *tsk)
281 unsigned long flags;
283 local_irq_save(flags);
285 if (!tick_nohz_full_cpu(smp_processor_id()))
286 goto out;
288 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 tick_nohz_full_kick();
291 out:
292 local_irq_restore(flags);
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
298 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 free_bootmem_cpumask_var(tick_nohz_full_mask);
302 return 1;
304 tick_nohz_full_running = true;
306 return 1;
308 __setup("nohz_full=", tick_nohz_full_setup);
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 unsigned long action,
312 void *hcpu)
314 unsigned int cpu = (unsigned long)hcpu;
316 switch (action & ~CPU_TASKS_FROZEN) {
317 case CPU_DOWN_PREPARE:
319 * If we handle the timekeeping duty for full dynticks CPUs,
320 * we can't safely shutdown that CPU.
322 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 return NOTIFY_BAD;
324 break;
326 return NOTIFY_OK;
330 * Worst case string length in chunks of CPU range seems 2 steps
331 * separations: 0,2,4,6,...
332 * This is NR_CPUS + sizeof('\0')
334 static char __initdata nohz_full_buf[NR_CPUS + 1];
336 static int tick_nohz_init_all(void)
338 int err = -1;
340 #ifdef CONFIG_NO_HZ_FULL_ALL
341 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
342 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
343 return err;
345 err = 0;
346 cpumask_setall(tick_nohz_full_mask);
347 tick_nohz_full_running = true;
348 #endif
349 return err;
352 void __init tick_nohz_init(void)
354 int cpu;
356 if (!tick_nohz_full_running) {
357 if (tick_nohz_init_all() < 0)
358 return;
361 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
362 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
363 cpumask_clear(tick_nohz_full_mask);
364 tick_nohz_full_running = false;
365 return;
369 * Full dynticks uses irq work to drive the tick rescheduling on safe
370 * locking contexts. But then we need irq work to raise its own
371 * interrupts to avoid circular dependency on the tick
373 if (!arch_irq_work_has_interrupt()) {
374 pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
375 "support irq work self-IPIs\n");
376 cpumask_clear(tick_nohz_full_mask);
377 cpumask_copy(housekeeping_mask, cpu_possible_mask);
378 tick_nohz_full_running = false;
379 return;
382 cpu = smp_processor_id();
384 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
385 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
386 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
389 cpumask_andnot(housekeeping_mask,
390 cpu_possible_mask, tick_nohz_full_mask);
392 for_each_cpu(cpu, tick_nohz_full_mask)
393 context_tracking_cpu_set(cpu);
395 cpu_notifier(tick_nohz_cpu_down_callback, 0);
396 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
397 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
399 #endif
402 * NOHZ - aka dynamic tick functionality
404 #ifdef CONFIG_NO_HZ_COMMON
406 * NO HZ enabled ?
408 static int tick_nohz_enabled __read_mostly = 1;
409 int tick_nohz_active __read_mostly;
411 * Enable / Disable tickless mode
413 static int __init setup_tick_nohz(char *str)
415 if (!strcmp(str, "off"))
416 tick_nohz_enabled = 0;
417 else if (!strcmp(str, "on"))
418 tick_nohz_enabled = 1;
419 else
420 return 0;
421 return 1;
424 __setup("nohz=", setup_tick_nohz);
427 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
429 * Called from interrupt entry when the CPU was idle
431 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
432 * must be updated. Otherwise an interrupt handler could use a stale jiffy
433 * value. We do this unconditionally on any cpu, as we don't know whether the
434 * cpu, which has the update task assigned is in a long sleep.
436 static void tick_nohz_update_jiffies(ktime_t now)
438 unsigned long flags;
440 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
442 local_irq_save(flags);
443 tick_do_update_jiffies64(now);
444 local_irq_restore(flags);
446 touch_softlockup_watchdog();
450 * Updates the per cpu time idle statistics counters
452 static void
453 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
455 ktime_t delta;
457 if (ts->idle_active) {
458 delta = ktime_sub(now, ts->idle_entrytime);
459 if (nr_iowait_cpu(cpu) > 0)
460 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
461 else
462 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
463 ts->idle_entrytime = now;
466 if (last_update_time)
467 *last_update_time = ktime_to_us(now);
471 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
473 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
474 ts->idle_active = 0;
476 sched_clock_idle_wakeup_event(0);
479 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
481 ktime_t now = ktime_get();
483 ts->idle_entrytime = now;
484 ts->idle_active = 1;
485 sched_clock_idle_sleep_event();
486 return now;
490 * get_cpu_idle_time_us - get the total idle time of a cpu
491 * @cpu: CPU number to query
492 * @last_update_time: variable to store update time in. Do not update
493 * counters if NULL.
495 * Return the cummulative idle time (since boot) for a given
496 * CPU, in microseconds.
498 * This time is measured via accounting rather than sampling,
499 * and is as accurate as ktime_get() is.
501 * This function returns -1 if NOHZ is not enabled.
503 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
505 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
506 ktime_t now, idle;
508 if (!tick_nohz_active)
509 return -1;
511 now = ktime_get();
512 if (last_update_time) {
513 update_ts_time_stats(cpu, ts, now, last_update_time);
514 idle = ts->idle_sleeptime;
515 } else {
516 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
517 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
519 idle = ktime_add(ts->idle_sleeptime, delta);
520 } else {
521 idle = ts->idle_sleeptime;
525 return ktime_to_us(idle);
528 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
531 * get_cpu_iowait_time_us - get the total iowait time of a cpu
532 * @cpu: CPU number to query
533 * @last_update_time: variable to store update time in. Do not update
534 * counters if NULL.
536 * Return the cummulative iowait time (since boot) for a given
537 * CPU, in microseconds.
539 * This time is measured via accounting rather than sampling,
540 * and is as accurate as ktime_get() is.
542 * This function returns -1 if NOHZ is not enabled.
544 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
546 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
547 ktime_t now, iowait;
549 if (!tick_nohz_active)
550 return -1;
552 now = ktime_get();
553 if (last_update_time) {
554 update_ts_time_stats(cpu, ts, now, last_update_time);
555 iowait = ts->iowait_sleeptime;
556 } else {
557 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
558 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
560 iowait = ktime_add(ts->iowait_sleeptime, delta);
561 } else {
562 iowait = ts->iowait_sleeptime;
566 return ktime_to_us(iowait);
568 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
570 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
571 ktime_t now, int cpu)
573 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
574 ktime_t last_update, expires, ret = { .tv64 = 0 };
575 unsigned long rcu_delta_jiffies;
576 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
577 u64 time_delta;
579 time_delta = timekeeping_max_deferment();
581 /* Read jiffies and the time when jiffies were updated last */
582 do {
583 seq = read_seqbegin(&jiffies_lock);
584 last_update = last_jiffies_update;
585 last_jiffies = jiffies;
586 } while (read_seqretry(&jiffies_lock, seq));
588 if (rcu_needs_cpu(&rcu_delta_jiffies) ||
589 arch_needs_cpu() || irq_work_needs_cpu()) {
590 next_jiffies = last_jiffies + 1;
591 delta_jiffies = 1;
592 } else {
593 /* Get the next timer wheel timer */
594 next_jiffies = get_next_timer_interrupt(last_jiffies);
595 delta_jiffies = next_jiffies - last_jiffies;
596 if (rcu_delta_jiffies < delta_jiffies) {
597 next_jiffies = last_jiffies + rcu_delta_jiffies;
598 delta_jiffies = rcu_delta_jiffies;
603 * Do not stop the tick, if we are only one off (or less)
604 * or if the cpu is required for RCU:
606 if (!ts->tick_stopped && delta_jiffies <= 1)
607 goto out;
609 /* Schedule the tick, if we are at least one jiffie off */
610 if ((long)delta_jiffies >= 1) {
613 * If this cpu is the one which updates jiffies, then
614 * give up the assignment and let it be taken by the
615 * cpu which runs the tick timer next, which might be
616 * this cpu as well. If we don't drop this here the
617 * jiffies might be stale and do_timer() never
618 * invoked. Keep track of the fact that it was the one
619 * which had the do_timer() duty last. If this cpu is
620 * the one which had the do_timer() duty last, we
621 * limit the sleep time to the timekeeping
622 * max_deferement value which we retrieved
623 * above. Otherwise we can sleep as long as we want.
625 if (cpu == tick_do_timer_cpu) {
626 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
627 ts->do_timer_last = 1;
628 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
629 time_delta = KTIME_MAX;
630 ts->do_timer_last = 0;
631 } else if (!ts->do_timer_last) {
632 time_delta = KTIME_MAX;
635 #ifdef CONFIG_NO_HZ_FULL
636 if (!ts->inidle) {
637 time_delta = min(time_delta,
638 scheduler_tick_max_deferment());
640 #endif
643 * calculate the expiry time for the next timer wheel
644 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
645 * that there is no timer pending or at least extremely
646 * far into the future (12 days for HZ=1000). In this
647 * case we set the expiry to the end of time.
649 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
651 * Calculate the time delta for the next timer event.
652 * If the time delta exceeds the maximum time delta
653 * permitted by the current clocksource then adjust
654 * the time delta accordingly to ensure the
655 * clocksource does not wrap.
657 time_delta = min_t(u64, time_delta,
658 tick_period.tv64 * delta_jiffies);
661 if (time_delta < KTIME_MAX)
662 expires = ktime_add_ns(last_update, time_delta);
663 else
664 expires.tv64 = KTIME_MAX;
666 /* Skip reprogram of event if its not changed */
667 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
668 goto out;
670 ret = expires;
673 * nohz_stop_sched_tick can be called several times before
674 * the nohz_restart_sched_tick is called. This happens when
675 * interrupts arrive which do not cause a reschedule. In the
676 * first call we save the current tick time, so we can restart
677 * the scheduler tick in nohz_restart_sched_tick.
679 if (!ts->tick_stopped) {
680 nohz_balance_enter_idle(cpu);
681 calc_load_enter_idle();
683 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
684 ts->tick_stopped = 1;
685 trace_tick_stop(1, " ");
689 * If the expiration time == KTIME_MAX, then
690 * in this case we simply stop the tick timer.
692 if (unlikely(expires.tv64 == KTIME_MAX)) {
693 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
694 hrtimer_cancel(&ts->sched_timer);
695 goto out;
698 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
699 hrtimer_start(&ts->sched_timer, expires,
700 HRTIMER_MODE_ABS_PINNED);
701 /* Check, if the timer was already in the past */
702 if (hrtimer_active(&ts->sched_timer))
703 goto out;
704 } else if (!tick_program_event(expires, 0))
705 goto out;
707 * We are past the event already. So we crossed a
708 * jiffie boundary. Update jiffies and raise the
709 * softirq.
711 tick_do_update_jiffies64(ktime_get());
713 raise_softirq_irqoff(TIMER_SOFTIRQ);
714 out:
715 ts->next_jiffies = next_jiffies;
716 ts->last_jiffies = last_jiffies;
717 ts->sleep_length = ktime_sub(dev->next_event, now);
719 return ret;
722 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
724 #ifdef CONFIG_NO_HZ_FULL
725 int cpu = smp_processor_id();
727 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
728 return;
730 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
731 return;
733 if (!can_stop_full_tick())
734 return;
736 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
737 #endif
740 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
743 * If this cpu is offline and it is the one which updates
744 * jiffies, then give up the assignment and let it be taken by
745 * the cpu which runs the tick timer next. If we don't drop
746 * this here the jiffies might be stale and do_timer() never
747 * invoked.
749 if (unlikely(!cpu_online(cpu))) {
750 if (cpu == tick_do_timer_cpu)
751 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
752 return false;
755 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
756 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
757 return false;
760 if (need_resched())
761 return false;
763 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
764 static int ratelimit;
766 if (ratelimit < 10 &&
767 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
768 pr_warn("NOHZ: local_softirq_pending %02x\n",
769 (unsigned int) local_softirq_pending());
770 ratelimit++;
772 return false;
775 if (tick_nohz_full_enabled()) {
777 * Keep the tick alive to guarantee timekeeping progression
778 * if there are full dynticks CPUs around
780 if (tick_do_timer_cpu == cpu)
781 return false;
783 * Boot safety: make sure the timekeeping duty has been
784 * assigned before entering dyntick-idle mode,
786 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
787 return false;
790 return true;
793 static void __tick_nohz_idle_enter(struct tick_sched *ts)
795 ktime_t now, expires;
796 int cpu = smp_processor_id();
798 now = tick_nohz_start_idle(ts);
800 if (can_stop_idle_tick(cpu, ts)) {
801 int was_stopped = ts->tick_stopped;
803 ts->idle_calls++;
805 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
806 if (expires.tv64 > 0LL) {
807 ts->idle_sleeps++;
808 ts->idle_expires = expires;
811 if (!was_stopped && ts->tick_stopped)
812 ts->idle_jiffies = ts->last_jiffies;
817 * tick_nohz_idle_enter - stop the idle tick from the idle task
819 * When the next event is more than a tick into the future, stop the idle tick
820 * Called when we start the idle loop.
822 * The arch is responsible of calling:
824 * - rcu_idle_enter() after its last use of RCU before the CPU is put
825 * to sleep.
826 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
828 void tick_nohz_idle_enter(void)
830 struct tick_sched *ts;
832 WARN_ON_ONCE(irqs_disabled());
835 * Update the idle state in the scheduler domain hierarchy
836 * when tick_nohz_stop_sched_tick() is called from the idle loop.
837 * State will be updated to busy during the first busy tick after
838 * exiting idle.
840 set_cpu_sd_state_idle();
842 local_irq_disable();
844 ts = this_cpu_ptr(&tick_cpu_sched);
845 ts->inidle = 1;
846 __tick_nohz_idle_enter(ts);
848 local_irq_enable();
852 * tick_nohz_irq_exit - update next tick event from interrupt exit
854 * When an interrupt fires while we are idle and it doesn't cause
855 * a reschedule, it may still add, modify or delete a timer, enqueue
856 * an RCU callback, etc...
857 * So we need to re-calculate and reprogram the next tick event.
859 void tick_nohz_irq_exit(void)
861 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
863 if (ts->inidle)
864 __tick_nohz_idle_enter(ts);
865 else
866 tick_nohz_full_stop_tick(ts);
870 * tick_nohz_get_sleep_length - return the length of the current sleep
872 * Called from power state control code with interrupts disabled
874 ktime_t tick_nohz_get_sleep_length(void)
876 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
878 return ts->sleep_length;
881 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
883 hrtimer_cancel(&ts->sched_timer);
884 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
886 while (1) {
887 /* Forward the time to expire in the future */
888 hrtimer_forward(&ts->sched_timer, now, tick_period);
890 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
891 hrtimer_start_expires(&ts->sched_timer,
892 HRTIMER_MODE_ABS_PINNED);
893 /* Check, if the timer was already in the past */
894 if (hrtimer_active(&ts->sched_timer))
895 break;
896 } else {
897 if (!tick_program_event(
898 hrtimer_get_expires(&ts->sched_timer), 0))
899 break;
901 /* Reread time and update jiffies */
902 now = ktime_get();
903 tick_do_update_jiffies64(now);
907 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
909 /* Update jiffies first */
910 tick_do_update_jiffies64(now);
911 update_cpu_load_nohz();
913 calc_load_exit_idle();
914 touch_softlockup_watchdog();
916 * Cancel the scheduled timer and restore the tick
918 ts->tick_stopped = 0;
919 ts->idle_exittime = now;
921 tick_nohz_restart(ts, now);
924 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
926 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
927 unsigned long ticks;
929 if (vtime_accounting_enabled())
930 return;
932 * We stopped the tick in idle. Update process times would miss the
933 * time we slept as update_process_times does only a 1 tick
934 * accounting. Enforce that this is accounted to idle !
936 ticks = jiffies - ts->idle_jiffies;
938 * We might be one off. Do not randomly account a huge number of ticks!
940 if (ticks && ticks < LONG_MAX)
941 account_idle_ticks(ticks);
942 #endif
946 * tick_nohz_idle_exit - restart the idle tick from the idle task
948 * Restart the idle tick when the CPU is woken up from idle
949 * This also exit the RCU extended quiescent state. The CPU
950 * can use RCU again after this function is called.
952 void tick_nohz_idle_exit(void)
954 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
955 ktime_t now;
957 local_irq_disable();
959 WARN_ON_ONCE(!ts->inidle);
961 ts->inidle = 0;
963 if (ts->idle_active || ts->tick_stopped)
964 now = ktime_get();
966 if (ts->idle_active)
967 tick_nohz_stop_idle(ts, now);
969 if (ts->tick_stopped) {
970 tick_nohz_restart_sched_tick(ts, now);
971 tick_nohz_account_idle_ticks(ts);
974 local_irq_enable();
977 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
979 hrtimer_forward(&ts->sched_timer, now, tick_period);
980 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
984 * The nohz low res interrupt handler
986 static void tick_nohz_handler(struct clock_event_device *dev)
988 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
989 struct pt_regs *regs = get_irq_regs();
990 ktime_t now = ktime_get();
992 dev->next_event.tv64 = KTIME_MAX;
994 tick_sched_do_timer(now);
995 tick_sched_handle(ts, regs);
997 /* No need to reprogram if we are running tickless */
998 if (unlikely(ts->tick_stopped))
999 return;
1001 while (tick_nohz_reprogram(ts, now)) {
1002 now = ktime_get();
1003 tick_do_update_jiffies64(now);
1008 * tick_nohz_switch_to_nohz - switch to nohz mode
1010 static void tick_nohz_switch_to_nohz(void)
1012 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1013 ktime_t next;
1015 if (!tick_nohz_enabled)
1016 return;
1018 local_irq_disable();
1019 if (tick_switch_to_oneshot(tick_nohz_handler)) {
1020 local_irq_enable();
1021 return;
1023 tick_nohz_active = 1;
1024 ts->nohz_mode = NOHZ_MODE_LOWRES;
1027 * Recycle the hrtimer in ts, so we can share the
1028 * hrtimer_forward with the highres code.
1030 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1031 /* Get the next period */
1032 next = tick_init_jiffy_update();
1034 for (;;) {
1035 hrtimer_set_expires(&ts->sched_timer, next);
1036 if (!tick_program_event(next, 0))
1037 break;
1038 next = ktime_add(next, tick_period);
1040 local_irq_enable();
1044 * When NOHZ is enabled and the tick is stopped, we need to kick the
1045 * tick timer from irq_enter() so that the jiffies update is kept
1046 * alive during long running softirqs. That's ugly as hell, but
1047 * correctness is key even if we need to fix the offending softirq in
1048 * the first place.
1050 * Note, this is different to tick_nohz_restart. We just kick the
1051 * timer and do not touch the other magic bits which need to be done
1052 * when idle is left.
1054 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1056 #if 0
1057 /* Switch back to 2.6.27 behaviour */
1058 ktime_t delta;
1061 * Do not touch the tick device, when the next expiry is either
1062 * already reached or less/equal than the tick period.
1064 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1065 if (delta.tv64 <= tick_period.tv64)
1066 return;
1068 tick_nohz_restart(ts, now);
1069 #endif
1072 static inline void tick_nohz_irq_enter(void)
1074 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1075 ktime_t now;
1077 if (!ts->idle_active && !ts->tick_stopped)
1078 return;
1079 now = ktime_get();
1080 if (ts->idle_active)
1081 tick_nohz_stop_idle(ts, now);
1082 if (ts->tick_stopped) {
1083 tick_nohz_update_jiffies(now);
1084 tick_nohz_kick_tick(ts, now);
1088 #else
1090 static inline void tick_nohz_switch_to_nohz(void) { }
1091 static inline void tick_nohz_irq_enter(void) { }
1093 #endif /* CONFIG_NO_HZ_COMMON */
1096 * Called from irq_enter to notify about the possible interruption of idle()
1098 void tick_irq_enter(void)
1100 tick_check_oneshot_broadcast_this_cpu();
1101 tick_nohz_irq_enter();
1105 * High resolution timer specific code
1107 #ifdef CONFIG_HIGH_RES_TIMERS
1109 * We rearm the timer until we get disabled by the idle code.
1110 * Called with interrupts disabled.
1112 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1114 struct tick_sched *ts =
1115 container_of(timer, struct tick_sched, sched_timer);
1116 struct pt_regs *regs = get_irq_regs();
1117 ktime_t now = ktime_get();
1119 tick_sched_do_timer(now);
1122 * Do not call, when we are not in irq context and have
1123 * no valid regs pointer
1125 if (regs)
1126 tick_sched_handle(ts, regs);
1128 /* No need to reprogram if we are in idle or full dynticks mode */
1129 if (unlikely(ts->tick_stopped))
1130 return HRTIMER_NORESTART;
1132 hrtimer_forward(timer, now, tick_period);
1134 return HRTIMER_RESTART;
1137 static int sched_skew_tick;
1139 static int __init skew_tick(char *str)
1141 get_option(&str, &sched_skew_tick);
1143 return 0;
1145 early_param("skew_tick", skew_tick);
1148 * tick_setup_sched_timer - setup the tick emulation timer
1150 void tick_setup_sched_timer(void)
1152 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1153 ktime_t now = ktime_get();
1156 * Emulate tick processing via per-CPU hrtimers:
1158 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1159 ts->sched_timer.function = tick_sched_timer;
1161 /* Get the next period (per cpu) */
1162 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1164 /* Offset the tick to avert jiffies_lock contention. */
1165 if (sched_skew_tick) {
1166 u64 offset = ktime_to_ns(tick_period) >> 1;
1167 do_div(offset, num_possible_cpus());
1168 offset *= smp_processor_id();
1169 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1172 for (;;) {
1173 hrtimer_forward(&ts->sched_timer, now, tick_period);
1174 hrtimer_start_expires(&ts->sched_timer,
1175 HRTIMER_MODE_ABS_PINNED);
1176 /* Check, if the timer was already in the past */
1177 if (hrtimer_active(&ts->sched_timer))
1178 break;
1179 now = ktime_get();
1182 #ifdef CONFIG_NO_HZ_COMMON
1183 if (tick_nohz_enabled) {
1184 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1185 tick_nohz_active = 1;
1187 #endif
1189 #endif /* HIGH_RES_TIMERS */
1191 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1192 void tick_cancel_sched_timer(int cpu)
1194 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1196 # ifdef CONFIG_HIGH_RES_TIMERS
1197 if (ts->sched_timer.base)
1198 hrtimer_cancel(&ts->sched_timer);
1199 # endif
1201 memset(ts, 0, sizeof(*ts));
1203 #endif
1206 * Async notification about clocksource changes
1208 void tick_clock_notify(void)
1210 int cpu;
1212 for_each_possible_cpu(cpu)
1213 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1217 * Async notification about clock event changes
1219 void tick_oneshot_notify(void)
1221 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223 set_bit(0, &ts->check_clocks);
1227 * Check, if a change happened, which makes oneshot possible.
1229 * Called cyclic from the hrtimer softirq (driven by the timer
1230 * softirq) allow_nohz signals, that we can switch into low-res nohz
1231 * mode, because high resolution timers are disabled (either compile
1232 * or runtime).
1234 int tick_check_oneshot_change(int allow_nohz)
1236 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1238 if (!test_and_clear_bit(0, &ts->check_clocks))
1239 return 0;
1241 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1242 return 0;
1244 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1245 return 0;
1247 if (!allow_nohz)
1248 return 1;
1250 tick_nohz_switch_to_nohz();
1251 return 0;