sfc: Update copyright banners
[linux-2.6/btrfs-unstable.git] / drivers / net / ethernet / sfc / tx.c
blob2ac91c5b5eeae4e7a210e5b3693c9f01a04c9f9c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
25 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
26 struct efx_tx_buffer *buffer,
27 unsigned int *pkts_compl,
28 unsigned int *bytes_compl)
30 if (buffer->unmap_len) {
31 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
32 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
33 buffer->unmap_len);
34 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
35 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
36 DMA_TO_DEVICE);
37 else
38 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
39 DMA_TO_DEVICE);
40 buffer->unmap_len = 0;
43 if (buffer->flags & EFX_TX_BUF_SKB) {
44 (*pkts_compl)++;
45 (*bytes_compl) += buffer->skb->len;
46 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
47 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
48 "TX queue %d transmission id %x complete\n",
49 tx_queue->queue, tx_queue->read_count);
50 } else if (buffer->flags & EFX_TX_BUF_HEAP) {
51 kfree(buffer->heap_buf);
54 buffer->len = 0;
55 buffer->flags = 0;
58 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
59 struct sk_buff *skb);
61 static inline unsigned
62 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
64 /* Depending on the NIC revision, we can use descriptor
65 * lengths up to 8K or 8K-1. However, since PCI Express
66 * devices must split read requests at 4K boundaries, there is
67 * little benefit from using descriptors that cross those
68 * boundaries and we keep things simple by not doing so.
70 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
72 /* Work around hardware bug for unaligned buffers. */
73 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
74 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
76 return len;
79 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
81 /* Header and payload descriptor for each output segment, plus
82 * one for every input fragment boundary within a segment
84 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
86 /* Possibly one more per segment for the alignment workaround */
87 if (EFX_WORKAROUND_5391(efx))
88 max_descs += EFX_TSO_MAX_SEGS;
90 /* Possibly more for PCIe page boundaries within input fragments */
91 if (PAGE_SIZE > EFX_PAGE_SIZE)
92 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
93 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
95 return max_descs;
98 /* Get partner of a TX queue, seen as part of the same net core queue */
99 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
101 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
102 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
103 else
104 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
107 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
109 /* We need to consider both queues that the net core sees as one */
110 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
111 struct efx_nic *efx = txq1->efx;
112 unsigned int fill_level;
114 fill_level = max(txq1->insert_count - txq1->old_read_count,
115 txq2->insert_count - txq2->old_read_count);
116 if (likely(fill_level < efx->txq_stop_thresh))
117 return;
119 /* We used the stale old_read_count above, which gives us a
120 * pessimistic estimate of the fill level (which may even
121 * validly be >= efx->txq_entries). Now try again using
122 * read_count (more likely to be a cache miss).
124 * If we read read_count and then conditionally stop the
125 * queue, it is possible for the completion path to race with
126 * us and complete all outstanding descriptors in the middle,
127 * after which there will be no more completions to wake it.
128 * Therefore we stop the queue first, then read read_count
129 * (with a memory barrier to ensure the ordering), then
130 * restart the queue if the fill level turns out to be low
131 * enough.
133 netif_tx_stop_queue(txq1->core_txq);
134 smp_mb();
135 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
136 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
138 fill_level = max(txq1->insert_count - txq1->old_read_count,
139 txq2->insert_count - txq2->old_read_count);
140 EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
141 if (likely(fill_level < efx->txq_stop_thresh)) {
142 smp_mb();
143 if (likely(!efx->loopback_selftest))
144 netif_tx_start_queue(txq1->core_txq);
149 * Add a socket buffer to a TX queue
151 * This maps all fragments of a socket buffer for DMA and adds them to
152 * the TX queue. The queue's insert pointer will be incremented by
153 * the number of fragments in the socket buffer.
155 * If any DMA mapping fails, any mapped fragments will be unmapped,
156 * the queue's insert pointer will be restored to its original value.
158 * This function is split out from efx_hard_start_xmit to allow the
159 * loopback test to direct packets via specific TX queues.
161 * Returns NETDEV_TX_OK.
162 * You must hold netif_tx_lock() to call this function.
164 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
166 struct efx_nic *efx = tx_queue->efx;
167 struct device *dma_dev = &efx->pci_dev->dev;
168 struct efx_tx_buffer *buffer;
169 skb_frag_t *fragment;
170 unsigned int len, unmap_len = 0, insert_ptr;
171 dma_addr_t dma_addr, unmap_addr = 0;
172 unsigned int dma_len;
173 unsigned short dma_flags;
174 int i = 0;
176 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
178 if (skb_shinfo(skb)->gso_size)
179 return efx_enqueue_skb_tso(tx_queue, skb);
181 /* Get size of the initial fragment */
182 len = skb_headlen(skb);
184 /* Pad if necessary */
185 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
186 EFX_BUG_ON_PARANOID(skb->data_len);
187 len = 32 + 1;
188 if (skb_pad(skb, len - skb->len))
189 return NETDEV_TX_OK;
192 /* Map for DMA. Use dma_map_single rather than dma_map_page
193 * since this is more efficient on machines with sparse
194 * memory.
196 dma_flags = EFX_TX_BUF_MAP_SINGLE;
197 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
199 /* Process all fragments */
200 while (1) {
201 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
202 goto dma_err;
204 /* Store fields for marking in the per-fragment final
205 * descriptor */
206 unmap_len = len;
207 unmap_addr = dma_addr;
209 /* Add to TX queue, splitting across DMA boundaries */
210 do {
211 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212 buffer = &tx_queue->buffer[insert_ptr];
213 EFX_BUG_ON_PARANOID(buffer->flags);
214 EFX_BUG_ON_PARANOID(buffer->len);
215 EFX_BUG_ON_PARANOID(buffer->unmap_len);
217 dma_len = efx_max_tx_len(efx, dma_addr);
218 if (likely(dma_len >= len))
219 dma_len = len;
221 /* Fill out per descriptor fields */
222 buffer->len = dma_len;
223 buffer->dma_addr = dma_addr;
224 buffer->flags = EFX_TX_BUF_CONT;
225 len -= dma_len;
226 dma_addr += dma_len;
227 ++tx_queue->insert_count;
228 } while (len);
230 /* Transfer ownership of the unmapping to the final buffer */
231 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
232 buffer->unmap_len = unmap_len;
233 unmap_len = 0;
235 /* Get address and size of next fragment */
236 if (i >= skb_shinfo(skb)->nr_frags)
237 break;
238 fragment = &skb_shinfo(skb)->frags[i];
239 len = skb_frag_size(fragment);
240 i++;
241 /* Map for DMA */
242 dma_flags = 0;
243 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
244 DMA_TO_DEVICE);
247 /* Transfer ownership of the skb to the final buffer */
248 buffer->skb = skb;
249 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
251 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
253 /* Pass off to hardware */
254 efx_nic_push_buffers(tx_queue);
256 efx_tx_maybe_stop_queue(tx_queue);
258 return NETDEV_TX_OK;
260 dma_err:
261 netif_err(efx, tx_err, efx->net_dev,
262 " TX queue %d could not map skb with %d bytes %d "
263 "fragments for DMA\n", tx_queue->queue, skb->len,
264 skb_shinfo(skb)->nr_frags + 1);
266 /* Mark the packet as transmitted, and free the SKB ourselves */
267 dev_kfree_skb_any(skb);
269 /* Work backwards until we hit the original insert pointer value */
270 while (tx_queue->insert_count != tx_queue->write_count) {
271 unsigned int pkts_compl = 0, bytes_compl = 0;
272 --tx_queue->insert_count;
273 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274 buffer = &tx_queue->buffer[insert_ptr];
275 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
278 /* Free the fragment we were mid-way through pushing */
279 if (unmap_len) {
280 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
281 dma_unmap_single(dma_dev, unmap_addr, unmap_len,
282 DMA_TO_DEVICE);
283 else
284 dma_unmap_page(dma_dev, unmap_addr, unmap_len,
285 DMA_TO_DEVICE);
288 return NETDEV_TX_OK;
291 /* Remove packets from the TX queue
293 * This removes packets from the TX queue, up to and including the
294 * specified index.
296 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
297 unsigned int index,
298 unsigned int *pkts_compl,
299 unsigned int *bytes_compl)
301 struct efx_nic *efx = tx_queue->efx;
302 unsigned int stop_index, read_ptr;
304 stop_index = (index + 1) & tx_queue->ptr_mask;
305 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
307 while (read_ptr != stop_index) {
308 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
310 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
311 unlikely(buffer->len == 0)) {
312 netif_err(efx, tx_err, efx->net_dev,
313 "TX queue %d spurious TX completion id %x\n",
314 tx_queue->queue, read_ptr);
315 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
316 return;
319 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
321 ++tx_queue->read_count;
322 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
326 /* Initiate a packet transmission. We use one channel per CPU
327 * (sharing when we have more CPUs than channels). On Falcon, the TX
328 * completion events will be directed back to the CPU that transmitted
329 * the packet, which should be cache-efficient.
331 * Context: non-blocking.
332 * Note that returning anything other than NETDEV_TX_OK will cause the
333 * OS to free the skb.
335 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
336 struct net_device *net_dev)
338 struct efx_nic *efx = netdev_priv(net_dev);
339 struct efx_tx_queue *tx_queue;
340 unsigned index, type;
342 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
344 /* PTP "event" packet */
345 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
346 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
347 return efx_ptp_tx(efx, skb);
350 index = skb_get_queue_mapping(skb);
351 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352 if (index >= efx->n_tx_channels) {
353 index -= efx->n_tx_channels;
354 type |= EFX_TXQ_TYPE_HIGHPRI;
356 tx_queue = efx_get_tx_queue(efx, index, type);
358 return efx_enqueue_skb(tx_queue, skb);
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
363 struct efx_nic *efx = tx_queue->efx;
365 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
366 tx_queue->core_txq =
367 netdev_get_tx_queue(efx->net_dev,
368 tx_queue->queue / EFX_TXQ_TYPES +
369 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370 efx->n_tx_channels : 0));
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
375 struct efx_nic *efx = netdev_priv(net_dev);
376 struct efx_channel *channel;
377 struct efx_tx_queue *tx_queue;
378 unsigned tc;
379 int rc;
381 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382 return -EINVAL;
384 if (num_tc == net_dev->num_tc)
385 return 0;
387 for (tc = 0; tc < num_tc; tc++) {
388 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
392 if (num_tc > net_dev->num_tc) {
393 /* Initialise high-priority queues as necessary */
394 efx_for_each_channel(channel, efx) {
395 efx_for_each_possible_channel_tx_queue(tx_queue,
396 channel) {
397 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398 continue;
399 if (!tx_queue->buffer) {
400 rc = efx_probe_tx_queue(tx_queue);
401 if (rc)
402 return rc;
404 if (!tx_queue->initialised)
405 efx_init_tx_queue(tx_queue);
406 efx_init_tx_queue_core_txq(tx_queue);
409 } else {
410 /* Reduce number of classes before number of queues */
411 net_dev->num_tc = num_tc;
414 rc = netif_set_real_num_tx_queues(net_dev,
415 max_t(int, num_tc, 1) *
416 efx->n_tx_channels);
417 if (rc)
418 return rc;
420 /* Do not destroy high-priority queues when they become
421 * unused. We would have to flush them first, and it is
422 * fairly difficult to flush a subset of TX queues. Leave
423 * it to efx_fini_channels().
426 net_dev->num_tc = num_tc;
427 return 0;
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
432 unsigned fill_level;
433 struct efx_nic *efx = tx_queue->efx;
434 struct efx_tx_queue *txq2;
435 unsigned int pkts_compl = 0, bytes_compl = 0;
437 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
439 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
440 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
442 if (pkts_compl > 1)
443 ++tx_queue->merge_events;
445 /* See if we need to restart the netif queue. This memory
446 * barrier ensures that we write read_count (inside
447 * efx_dequeue_buffers()) before reading the queue status.
449 smp_mb();
450 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
451 likely(efx->port_enabled) &&
452 likely(netif_device_present(efx->net_dev))) {
453 txq2 = efx_tx_queue_partner(tx_queue);
454 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
455 txq2->insert_count - txq2->read_count);
456 if (fill_level <= efx->txq_wake_thresh)
457 netif_tx_wake_queue(tx_queue->core_txq);
460 /* Check whether the hardware queue is now empty */
461 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
462 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
463 if (tx_queue->read_count == tx_queue->old_write_count) {
464 smp_mb();
465 tx_queue->empty_read_count =
466 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
471 /* Size of page-based TSO header buffers. Larger blocks must be
472 * allocated from the heap.
474 #define TSOH_STD_SIZE 128
475 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
477 /* At most half the descriptors in the queue at any time will refer to
478 * a TSO header buffer, since they must always be followed by a
479 * payload descriptor referring to an skb.
481 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
483 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
486 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
488 struct efx_nic *efx = tx_queue->efx;
489 unsigned int entries;
490 int rc;
492 /* Create the smallest power-of-two aligned ring */
493 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
494 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
495 tx_queue->ptr_mask = entries - 1;
497 netif_dbg(efx, probe, efx->net_dev,
498 "creating TX queue %d size %#x mask %#x\n",
499 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
501 /* Allocate software ring */
502 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
503 GFP_KERNEL);
504 if (!tx_queue->buffer)
505 return -ENOMEM;
507 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
508 tx_queue->tsoh_page =
509 kcalloc(efx_tsoh_page_count(tx_queue),
510 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
511 if (!tx_queue->tsoh_page) {
512 rc = -ENOMEM;
513 goto fail1;
517 /* Allocate hardware ring */
518 rc = efx_nic_probe_tx(tx_queue);
519 if (rc)
520 goto fail2;
522 return 0;
524 fail2:
525 kfree(tx_queue->tsoh_page);
526 tx_queue->tsoh_page = NULL;
527 fail1:
528 kfree(tx_queue->buffer);
529 tx_queue->buffer = NULL;
530 return rc;
533 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
535 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
536 "initialising TX queue %d\n", tx_queue->queue);
538 tx_queue->insert_count = 0;
539 tx_queue->write_count = 0;
540 tx_queue->old_write_count = 0;
541 tx_queue->read_count = 0;
542 tx_queue->old_read_count = 0;
543 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
545 /* Set up TX descriptor ring */
546 efx_nic_init_tx(tx_queue);
548 tx_queue->initialised = true;
551 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
553 struct efx_tx_buffer *buffer;
555 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
556 "shutting down TX queue %d\n", tx_queue->queue);
558 if (!tx_queue->buffer)
559 return;
561 /* Free any buffers left in the ring */
562 while (tx_queue->read_count != tx_queue->write_count) {
563 unsigned int pkts_compl = 0, bytes_compl = 0;
564 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
565 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
567 ++tx_queue->read_count;
569 netdev_tx_reset_queue(tx_queue->core_txq);
572 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
574 int i;
576 if (!tx_queue->buffer)
577 return;
579 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
580 "destroying TX queue %d\n", tx_queue->queue);
581 efx_nic_remove_tx(tx_queue);
583 if (tx_queue->tsoh_page) {
584 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
585 efx_nic_free_buffer(tx_queue->efx,
586 &tx_queue->tsoh_page[i]);
587 kfree(tx_queue->tsoh_page);
588 tx_queue->tsoh_page = NULL;
591 kfree(tx_queue->buffer);
592 tx_queue->buffer = NULL;
596 /* Efx TCP segmentation acceleration.
598 * Why? Because by doing it here in the driver we can go significantly
599 * faster than the GSO.
601 * Requires TX checksum offload support.
604 /* Number of bytes inserted at the start of a TSO header buffer,
605 * similar to NET_IP_ALIGN.
607 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
608 #define TSOH_OFFSET 0
609 #else
610 #define TSOH_OFFSET NET_IP_ALIGN
611 #endif
613 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
616 * struct tso_state - TSO state for an SKB
617 * @out_len: Remaining length in current segment
618 * @seqnum: Current sequence number
619 * @ipv4_id: Current IPv4 ID, host endian
620 * @packet_space: Remaining space in current packet
621 * @dma_addr: DMA address of current position
622 * @in_len: Remaining length in current SKB fragment
623 * @unmap_len: Length of SKB fragment
624 * @unmap_addr: DMA address of SKB fragment
625 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
626 * @protocol: Network protocol (after any VLAN header)
627 * @ip_off: Offset of IP header
628 * @tcp_off: Offset of TCP header
629 * @header_len: Number of bytes of header
630 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
632 * The state used during segmentation. It is put into this data structure
633 * just to make it easy to pass into inline functions.
635 struct tso_state {
636 /* Output position */
637 unsigned out_len;
638 unsigned seqnum;
639 unsigned ipv4_id;
640 unsigned packet_space;
642 /* Input position */
643 dma_addr_t dma_addr;
644 unsigned in_len;
645 unsigned unmap_len;
646 dma_addr_t unmap_addr;
647 unsigned short dma_flags;
649 __be16 protocol;
650 unsigned int ip_off;
651 unsigned int tcp_off;
652 unsigned header_len;
653 unsigned int ip_base_len;
658 * Verify that our various assumptions about sk_buffs and the conditions
659 * under which TSO will be attempted hold true. Return the protocol number.
661 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
663 __be16 protocol = skb->protocol;
665 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
666 protocol);
667 if (protocol == htons(ETH_P_8021Q)) {
668 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
669 protocol = veh->h_vlan_encapsulated_proto;
672 if (protocol == htons(ETH_P_IP)) {
673 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
674 } else {
675 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
676 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
678 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
679 + (tcp_hdr(skb)->doff << 2u)) >
680 skb_headlen(skb));
682 return protocol;
685 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
686 struct efx_tx_buffer *buffer, unsigned int len)
688 u8 *result;
690 EFX_BUG_ON_PARANOID(buffer->len);
691 EFX_BUG_ON_PARANOID(buffer->flags);
692 EFX_BUG_ON_PARANOID(buffer->unmap_len);
694 if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
695 unsigned index =
696 (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
697 struct efx_buffer *page_buf =
698 &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
699 unsigned offset =
700 TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
702 if (unlikely(!page_buf->addr) &&
703 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
704 GFP_ATOMIC))
705 return NULL;
707 result = (u8 *)page_buf->addr + offset;
708 buffer->dma_addr = page_buf->dma_addr + offset;
709 buffer->flags = EFX_TX_BUF_CONT;
710 } else {
711 tx_queue->tso_long_headers++;
713 buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
714 if (unlikely(!buffer->heap_buf))
715 return NULL;
716 result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
717 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
720 buffer->len = len;
722 return result;
726 * efx_tx_queue_insert - push descriptors onto the TX queue
727 * @tx_queue: Efx TX queue
728 * @dma_addr: DMA address of fragment
729 * @len: Length of fragment
730 * @final_buffer: The final buffer inserted into the queue
732 * Push descriptors onto the TX queue.
734 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
735 dma_addr_t dma_addr, unsigned len,
736 struct efx_tx_buffer **final_buffer)
738 struct efx_tx_buffer *buffer;
739 struct efx_nic *efx = tx_queue->efx;
740 unsigned dma_len, insert_ptr;
742 EFX_BUG_ON_PARANOID(len <= 0);
744 while (1) {
745 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
746 buffer = &tx_queue->buffer[insert_ptr];
747 ++tx_queue->insert_count;
749 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
750 tx_queue->read_count >=
751 efx->txq_entries);
753 EFX_BUG_ON_PARANOID(buffer->len);
754 EFX_BUG_ON_PARANOID(buffer->unmap_len);
755 EFX_BUG_ON_PARANOID(buffer->flags);
757 buffer->dma_addr = dma_addr;
759 dma_len = efx_max_tx_len(efx, dma_addr);
761 /* If there is enough space to send then do so */
762 if (dma_len >= len)
763 break;
765 buffer->len = dma_len;
766 buffer->flags = EFX_TX_BUF_CONT;
767 dma_addr += dma_len;
768 len -= dma_len;
771 EFX_BUG_ON_PARANOID(!len);
772 buffer->len = len;
773 *final_buffer = buffer;
778 * Put a TSO header into the TX queue.
780 * This is special-cased because we know that it is small enough to fit in
781 * a single fragment, and we know it doesn't cross a page boundary. It
782 * also allows us to not worry about end-of-packet etc.
784 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
785 struct efx_tx_buffer *buffer, u8 *header)
787 if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
788 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
789 header, buffer->len,
790 DMA_TO_DEVICE);
791 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
792 buffer->dma_addr))) {
793 kfree(buffer->heap_buf);
794 buffer->len = 0;
795 buffer->flags = 0;
796 return -ENOMEM;
798 buffer->unmap_len = buffer->len;
799 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
802 ++tx_queue->insert_count;
803 return 0;
807 /* Remove buffers put into a tx_queue. None of the buffers must have
808 * an skb attached.
810 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
812 struct efx_tx_buffer *buffer;
814 /* Work backwards until we hit the original insert pointer value */
815 while (tx_queue->insert_count != tx_queue->write_count) {
816 --tx_queue->insert_count;
817 buffer = &tx_queue->buffer[tx_queue->insert_count &
818 tx_queue->ptr_mask];
819 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
824 /* Parse the SKB header and initialise state. */
825 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
827 st->ip_off = skb_network_header(skb) - skb->data;
828 st->tcp_off = skb_transport_header(skb) - skb->data;
829 st->header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
830 if (st->protocol == htons(ETH_P_IP)) {
831 st->ip_base_len = st->header_len - st->ip_off;
832 st->ipv4_id = ntohs(ip_hdr(skb)->id);
833 } else {
834 st->ip_base_len = st->header_len - st->tcp_off;
835 st->ipv4_id = 0;
837 st->seqnum = ntohl(tcp_hdr(skb)->seq);
839 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
840 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
841 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
843 st->out_len = skb->len - st->header_len;
844 st->unmap_len = 0;
845 st->dma_flags = 0;
848 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
849 skb_frag_t *frag)
851 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
852 skb_frag_size(frag), DMA_TO_DEVICE);
853 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
854 st->dma_flags = 0;
855 st->unmap_len = skb_frag_size(frag);
856 st->in_len = skb_frag_size(frag);
857 st->dma_addr = st->unmap_addr;
858 return 0;
860 return -ENOMEM;
863 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
864 const struct sk_buff *skb)
866 int hl = st->header_len;
867 int len = skb_headlen(skb) - hl;
869 st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
870 len, DMA_TO_DEVICE);
871 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
872 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
873 st->unmap_len = len;
874 st->in_len = len;
875 st->dma_addr = st->unmap_addr;
876 return 0;
878 return -ENOMEM;
883 * tso_fill_packet_with_fragment - form descriptors for the current fragment
884 * @tx_queue: Efx TX queue
885 * @skb: Socket buffer
886 * @st: TSO state
888 * Form descriptors for the current fragment, until we reach the end
889 * of fragment or end-of-packet.
891 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
892 const struct sk_buff *skb,
893 struct tso_state *st)
895 struct efx_tx_buffer *buffer;
896 int n;
898 if (st->in_len == 0)
899 return;
900 if (st->packet_space == 0)
901 return;
903 EFX_BUG_ON_PARANOID(st->in_len <= 0);
904 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
906 n = min(st->in_len, st->packet_space);
908 st->packet_space -= n;
909 st->out_len -= n;
910 st->in_len -= n;
912 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
914 if (st->out_len == 0) {
915 /* Transfer ownership of the skb */
916 buffer->skb = skb;
917 buffer->flags = EFX_TX_BUF_SKB;
918 } else if (st->packet_space != 0) {
919 buffer->flags = EFX_TX_BUF_CONT;
922 if (st->in_len == 0) {
923 /* Transfer ownership of the DMA mapping */
924 buffer->unmap_len = st->unmap_len;
925 buffer->flags |= st->dma_flags;
926 st->unmap_len = 0;
929 st->dma_addr += n;
934 * tso_start_new_packet - generate a new header and prepare for the new packet
935 * @tx_queue: Efx TX queue
936 * @skb: Socket buffer
937 * @st: TSO state
939 * Generate a new header and prepare for the new packet. Return 0 on
940 * success, or -%ENOMEM if failed to alloc header.
942 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
943 const struct sk_buff *skb,
944 struct tso_state *st)
946 struct efx_tx_buffer *buffer =
947 &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
948 struct tcphdr *tsoh_th;
949 unsigned ip_length;
950 u8 *header;
951 int rc;
953 /* Allocate and insert a DMA-mapped header buffer. */
954 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
955 if (!header)
956 return -ENOMEM;
958 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
960 /* Copy and update the headers. */
961 memcpy(header, skb->data, st->header_len);
963 tsoh_th->seq = htonl(st->seqnum);
964 st->seqnum += skb_shinfo(skb)->gso_size;
965 if (st->out_len > skb_shinfo(skb)->gso_size) {
966 /* This packet will not finish the TSO burst. */
967 st->packet_space = skb_shinfo(skb)->gso_size;
968 tsoh_th->fin = 0;
969 tsoh_th->psh = 0;
970 } else {
971 /* This packet will be the last in the TSO burst. */
972 st->packet_space = st->out_len;
973 tsoh_th->fin = tcp_hdr(skb)->fin;
974 tsoh_th->psh = tcp_hdr(skb)->psh;
976 ip_length = st->ip_base_len + st->packet_space;
978 if (st->protocol == htons(ETH_P_IP)) {
979 struct iphdr *tsoh_iph = (struct iphdr *)(header + st->ip_off);
981 tsoh_iph->tot_len = htons(ip_length);
983 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
984 tsoh_iph->id = htons(st->ipv4_id);
985 st->ipv4_id++;
986 } else {
987 struct ipv6hdr *tsoh_iph =
988 (struct ipv6hdr *)(header + st->ip_off);
990 tsoh_iph->payload_len = htons(ip_length);
993 rc = efx_tso_put_header(tx_queue, buffer, header);
994 if (unlikely(rc))
995 return rc;
997 ++tx_queue->tso_packets;
999 return 0;
1004 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1005 * @tx_queue: Efx TX queue
1006 * @skb: Socket buffer
1008 * Context: You must hold netif_tx_lock() to call this function.
1010 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1011 * @skb was not enqueued. In all cases @skb is consumed. Return
1012 * %NETDEV_TX_OK.
1014 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1015 struct sk_buff *skb)
1017 struct efx_nic *efx = tx_queue->efx;
1018 int frag_i, rc;
1019 struct tso_state state;
1021 /* Find the packet protocol and sanity-check it */
1022 state.protocol = efx_tso_check_protocol(skb);
1024 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1026 tso_start(&state, skb);
1028 /* Assume that skb header area contains exactly the headers, and
1029 * all payload is in the frag list.
1031 if (skb_headlen(skb) == state.header_len) {
1032 /* Grab the first payload fragment. */
1033 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1034 frag_i = 0;
1035 rc = tso_get_fragment(&state, efx,
1036 skb_shinfo(skb)->frags + frag_i);
1037 if (rc)
1038 goto mem_err;
1039 } else {
1040 rc = tso_get_head_fragment(&state, efx, skb);
1041 if (rc)
1042 goto mem_err;
1043 frag_i = -1;
1046 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1047 goto mem_err;
1049 while (1) {
1050 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1052 /* Move onto the next fragment? */
1053 if (state.in_len == 0) {
1054 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1055 /* End of payload reached. */
1056 break;
1057 rc = tso_get_fragment(&state, efx,
1058 skb_shinfo(skb)->frags + frag_i);
1059 if (rc)
1060 goto mem_err;
1063 /* Start at new packet? */
1064 if (state.packet_space == 0 &&
1065 tso_start_new_packet(tx_queue, skb, &state) < 0)
1066 goto mem_err;
1069 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1071 /* Pass off to hardware */
1072 efx_nic_push_buffers(tx_queue);
1074 efx_tx_maybe_stop_queue(tx_queue);
1076 tx_queue->tso_bursts++;
1077 return NETDEV_TX_OK;
1079 mem_err:
1080 netif_err(efx, tx_err, efx->net_dev,
1081 "Out of memory for TSO headers, or DMA mapping error\n");
1082 dev_kfree_skb_any(skb);
1084 /* Free the DMA mapping we were in the process of writing out */
1085 if (state.unmap_len) {
1086 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1087 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1088 state.unmap_len, DMA_TO_DEVICE);
1089 else
1090 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1091 state.unmap_len, DMA_TO_DEVICE);
1094 efx_enqueue_unwind(tx_queue);
1095 return NETDEV_TX_OK;