qlge: Do not propaged vlan tag offloads to vlans
[linux-2.6/btrfs-unstable.git] / kernel / audit.c
blob3392d3e0254ac5d93199c0b00e271cbb0b2bfc9c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/init.h>
47 #include <asm/types.h>
48 #include <linux/atomic.h>
49 #include <linux/mm.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
57 #include <linux/audit.h>
59 #include <net/sock.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
64 #endif
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
70 #include "audit.h"
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized;
79 #define AUDIT_OFF 0
80 #define AUDIT_ON 1
81 #define AUDIT_LOCKED 2
82 u32 audit_enabled;
83 u32 audit_ever_enabled;
85 EXPORT_SYMBOL_GPL(audit_enabled);
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default;
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure = AUDIT_FAIL_PRINTK;
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
98 int audit_pid;
99 static __u32 audit_nlk_portid;
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit;
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 static u32 audit_backlog_wait_overflow = 0;
113 /* The identity of the user shutting down the audit system. */
114 kuid_t audit_sig_uid = INVALID_UID;
115 pid_t audit_sig_pid = -1;
116 u32 audit_sig_sid = 0;
118 /* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
125 static atomic_t audit_lost = ATOMIC_INIT(0);
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 int audit_net_id;
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 .mask = -1,
150 .features = 0,
151 .lock = 0,};
153 static char *audit_feature_names[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE (2*NR_CPUS)
171 /* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176 struct audit_buffer {
177 struct list_head list;
178 struct sk_buff *skb; /* formatted skb ready to send */
179 struct audit_context *ctx; /* NULL or associated context */
180 gfp_t gfp_mask;
183 struct audit_reply {
184 __u32 portid;
185 struct net *net;
186 struct sk_buff *skb;
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191 if (ab) {
192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 nlh->nlmsg_pid = portid;
197 void audit_panic(const char *message)
199 switch (audit_failure) {
200 case AUDIT_FAIL_SILENT:
201 break;
202 case AUDIT_FAIL_PRINTK:
203 if (printk_ratelimit())
204 pr_err("%s\n", message);
205 break;
206 case AUDIT_FAIL_PANIC:
207 /* test audit_pid since printk is always losey, why bother? */
208 if (audit_pid)
209 panic("audit: %s\n", message);
210 break;
214 static inline int audit_rate_check(void)
216 static unsigned long last_check = 0;
217 static int messages = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 unsigned long elapsed;
222 int retval = 0;
224 if (!audit_rate_limit) return 1;
226 spin_lock_irqsave(&lock, flags);
227 if (++messages < audit_rate_limit) {
228 retval = 1;
229 } else {
230 now = jiffies;
231 elapsed = now - last_check;
232 if (elapsed > HZ) {
233 last_check = now;
234 messages = 0;
235 retval = 1;
238 spin_unlock_irqrestore(&lock, flags);
240 return retval;
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
247 * Emit at least 1 message per second, even if audit_rate_check is
248 * throttling.
249 * Always increment the lost messages counter.
251 void audit_log_lost(const char *message)
253 static unsigned long last_msg = 0;
254 static DEFINE_SPINLOCK(lock);
255 unsigned long flags;
256 unsigned long now;
257 int print;
259 atomic_inc(&audit_lost);
261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263 if (!print) {
264 spin_lock_irqsave(&lock, flags);
265 now = jiffies;
266 if (now - last_msg > HZ) {
267 print = 1;
268 last_msg = now;
270 spin_unlock_irqrestore(&lock, flags);
273 if (print) {
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 int allow_changes)
286 struct audit_buffer *ab;
287 int rc = 0;
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304 int allow_changes, rc = 0;
305 u32 old = *to_change;
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
328 static int audit_set_rate_limit(u32 limit)
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 static int audit_set_backlog_limit(u32 limit)
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 static int audit_set_backlog_wait_time(u32 timeout)
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time, timeout);
344 static int audit_set_enabled(u32 state)
346 int rc;
347 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 return -EINVAL;
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
354 return rc;
357 static int audit_set_failure(u32 state)
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
364 return audit_do_config_change("audit_failure", &audit_failure, state);
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
376 static void audit_hold_skb(struct sk_buff *skb)
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
390 static void audit_printk_skb(struct sk_buff *skb)
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded\n");
402 audit_hold_skb(skb);
405 static void kauditd_send_skb(struct sk_buff *skb)
407 int err;
408 /* take a reference in case we can't send it and we want to hold it */
409 skb_get(skb);
410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 if (err < 0) {
412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 if (audit_pid) {
414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 audit_log_lost("auditd disappeared\n");
416 audit_pid = 0;
417 audit_sock = NULL;
419 /* we might get lucky and get this in the next auditd */
420 audit_hold_skb(skb);
421 } else
422 /* drop the extra reference if sent ok */
423 consume_skb(skb);
427 * flush_hold_queue - empty the hold queue if auditd appears
429 * If auditd just started, drain the queue of messages already
430 * sent to syslog/printk. Remember loss here is ok. We already
431 * called audit_log_lost() if it didn't go out normally. so the
432 * race between the skb_dequeue and the next check for audit_pid
433 * doesn't matter.
435 * If you ever find kauditd to be too slow we can get a perf win
436 * by doing our own locking and keeping better track if there
437 * are messages in this queue. I don't see the need now, but
438 * in 5 years when I want to play with this again I'll see this
439 * note and still have no friggin idea what i'm thinking today.
441 static void flush_hold_queue(void)
443 struct sk_buff *skb;
445 if (!audit_default || !audit_pid)
446 return;
448 skb = skb_dequeue(&audit_skb_hold_queue);
449 if (likely(!skb))
450 return;
452 while (skb && audit_pid) {
453 kauditd_send_skb(skb);
454 skb = skb_dequeue(&audit_skb_hold_queue);
458 * if auditd just disappeared but we
459 * dequeued an skb we need to drop ref
461 if (skb)
462 consume_skb(skb);
465 static int kauditd_thread(void *dummy)
467 set_freezable();
468 while (!kthread_should_stop()) {
469 struct sk_buff *skb;
470 DECLARE_WAITQUEUE(wait, current);
472 flush_hold_queue();
474 skb = skb_dequeue(&audit_skb_queue);
476 if (skb) {
477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 wake_up(&audit_backlog_wait);
479 if (audit_pid)
480 kauditd_send_skb(skb);
481 else
482 audit_printk_skb(skb);
483 continue;
485 set_current_state(TASK_INTERRUPTIBLE);
486 add_wait_queue(&kauditd_wait, &wait);
488 if (!skb_queue_len(&audit_skb_queue)) {
489 try_to_freeze();
490 schedule();
493 __set_current_state(TASK_RUNNING);
494 remove_wait_queue(&kauditd_wait, &wait);
496 return 0;
499 int audit_send_list(void *_dest)
501 struct audit_netlink_list *dest = _dest;
502 struct sk_buff *skb;
503 struct net *net = dest->net;
504 struct audit_net *aunet = net_generic(net, audit_net_id);
506 /* wait for parent to finish and send an ACK */
507 mutex_lock(&audit_cmd_mutex);
508 mutex_unlock(&audit_cmd_mutex);
510 while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
513 put_net(net);
514 kfree(dest);
516 return 0;
519 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
520 int multi, const void *payload, int size)
522 struct sk_buff *skb;
523 struct nlmsghdr *nlh;
524 void *data;
525 int flags = multi ? NLM_F_MULTI : 0;
526 int t = done ? NLMSG_DONE : type;
528 skb = nlmsg_new(size, GFP_KERNEL);
529 if (!skb)
530 return NULL;
532 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
533 if (!nlh)
534 goto out_kfree_skb;
535 data = nlmsg_data(nlh);
536 memcpy(data, payload, size);
537 return skb;
539 out_kfree_skb:
540 kfree_skb(skb);
541 return NULL;
544 static int audit_send_reply_thread(void *arg)
546 struct audit_reply *reply = (struct audit_reply *)arg;
547 struct net *net = reply->net;
548 struct audit_net *aunet = net_generic(net, audit_net_id);
550 mutex_lock(&audit_cmd_mutex);
551 mutex_unlock(&audit_cmd_mutex);
553 /* Ignore failure. It'll only happen if the sender goes away,
554 because our timeout is set to infinite. */
555 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
556 put_net(net);
557 kfree(reply);
558 return 0;
561 * audit_send_reply - send an audit reply message via netlink
562 * @request_skb: skb of request we are replying to (used to target the reply)
563 * @seq: sequence number
564 * @type: audit message type
565 * @done: done (last) flag
566 * @multi: multi-part message flag
567 * @payload: payload data
568 * @size: payload size
570 * Allocates an skb, builds the netlink message, and sends it to the port id.
571 * No failure notifications.
573 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
574 int multi, const void *payload, int size)
576 u32 portid = NETLINK_CB(request_skb).portid;
577 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
578 struct sk_buff *skb;
579 struct task_struct *tsk;
580 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
581 GFP_KERNEL);
583 if (!reply)
584 return;
586 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
587 if (!skb)
588 goto out;
590 reply->net = get_net(net);
591 reply->portid = portid;
592 reply->skb = skb;
594 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
595 if (!IS_ERR(tsk))
596 return;
597 kfree_skb(skb);
598 out:
599 kfree(reply);
603 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
604 * control messages.
606 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
608 int err = 0;
610 /* Only support the initial namespaces for now. */
611 if ((current_user_ns() != &init_user_ns) ||
612 (task_active_pid_ns(current) != &init_pid_ns))
613 return -EPERM;
615 switch (msg_type) {
616 case AUDIT_LIST:
617 case AUDIT_ADD:
618 case AUDIT_DEL:
619 return -EOPNOTSUPP;
620 case AUDIT_GET:
621 case AUDIT_SET:
622 case AUDIT_GET_FEATURE:
623 case AUDIT_SET_FEATURE:
624 case AUDIT_LIST_RULES:
625 case AUDIT_ADD_RULE:
626 case AUDIT_DEL_RULE:
627 case AUDIT_SIGNAL_INFO:
628 case AUDIT_TTY_GET:
629 case AUDIT_TTY_SET:
630 case AUDIT_TRIM:
631 case AUDIT_MAKE_EQUIV:
632 if (!capable(CAP_AUDIT_CONTROL))
633 err = -EPERM;
634 break;
635 case AUDIT_USER:
636 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
637 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
638 if (!capable(CAP_AUDIT_WRITE))
639 err = -EPERM;
640 break;
641 default: /* bad msg */
642 err = -EINVAL;
645 return err;
648 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
650 int rc = 0;
651 uid_t uid = from_kuid(&init_user_ns, current_uid());
653 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
654 *ab = NULL;
655 return rc;
658 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
659 if (unlikely(!*ab))
660 return rc;
661 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
662 audit_log_session_info(*ab);
663 audit_log_task_context(*ab);
665 return rc;
668 int is_audit_feature_set(int i)
670 return af.features & AUDIT_FEATURE_TO_MASK(i);
674 static int audit_get_feature(struct sk_buff *skb)
676 u32 seq;
678 seq = nlmsg_hdr(skb)->nlmsg_seq;
680 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &af, sizeof(af));
682 return 0;
685 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
686 u32 old_lock, u32 new_lock, int res)
688 struct audit_buffer *ab;
690 if (audit_enabled == AUDIT_OFF)
691 return;
693 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
694 audit_log_task_info(ab, current);
695 audit_log_format(ab, "feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
696 audit_feature_names[which], !!old_feature, !!new_feature,
697 !!old_lock, !!new_lock, res);
698 audit_log_end(ab);
701 static int audit_set_feature(struct sk_buff *skb)
703 struct audit_features *uaf;
704 int i;
706 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
707 uaf = nlmsg_data(nlmsg_hdr(skb));
709 /* if there is ever a version 2 we should handle that here */
711 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
712 u32 feature = AUDIT_FEATURE_TO_MASK(i);
713 u32 old_feature, new_feature, old_lock, new_lock;
715 /* if we are not changing this feature, move along */
716 if (!(feature & uaf->mask))
717 continue;
719 old_feature = af.features & feature;
720 new_feature = uaf->features & feature;
721 new_lock = (uaf->lock | af.lock) & feature;
722 old_lock = af.lock & feature;
724 /* are we changing a locked feature? */
725 if (old_lock && (new_feature != old_feature)) {
726 audit_log_feature_change(i, old_feature, new_feature,
727 old_lock, new_lock, 0);
728 return -EPERM;
731 /* nothing invalid, do the changes */
732 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
733 u32 feature = AUDIT_FEATURE_TO_MASK(i);
734 u32 old_feature, new_feature, old_lock, new_lock;
736 /* if we are not changing this feature, move along */
737 if (!(feature & uaf->mask))
738 continue;
740 old_feature = af.features & feature;
741 new_feature = uaf->features & feature;
742 old_lock = af.lock & feature;
743 new_lock = (uaf->lock | af.lock) & feature;
745 if (new_feature != old_feature)
746 audit_log_feature_change(i, old_feature, new_feature,
747 old_lock, new_lock, 1);
749 if (new_feature)
750 af.features |= feature;
751 else
752 af.features &= ~feature;
753 af.lock |= new_lock;
756 return 0;
759 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
761 u32 seq;
762 void *data;
763 int err;
764 struct audit_buffer *ab;
765 u16 msg_type = nlh->nlmsg_type;
766 struct audit_sig_info *sig_data;
767 char *ctx = NULL;
768 u32 len;
770 err = audit_netlink_ok(skb, msg_type);
771 if (err)
772 return err;
774 /* As soon as there's any sign of userspace auditd,
775 * start kauditd to talk to it */
776 if (!kauditd_task) {
777 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
778 if (IS_ERR(kauditd_task)) {
779 err = PTR_ERR(kauditd_task);
780 kauditd_task = NULL;
781 return err;
784 seq = nlh->nlmsg_seq;
785 data = nlmsg_data(nlh);
787 switch (msg_type) {
788 case AUDIT_GET: {
789 struct audit_status s;
790 memset(&s, 0, sizeof(s));
791 s.enabled = audit_enabled;
792 s.failure = audit_failure;
793 s.pid = audit_pid;
794 s.rate_limit = audit_rate_limit;
795 s.backlog_limit = audit_backlog_limit;
796 s.lost = atomic_read(&audit_lost);
797 s.backlog = skb_queue_len(&audit_skb_queue);
798 s.version = AUDIT_VERSION_LATEST;
799 s.backlog_wait_time = audit_backlog_wait_time;
800 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
801 break;
803 case AUDIT_SET: {
804 struct audit_status s;
805 memset(&s, 0, sizeof(s));
806 /* guard against past and future API changes */
807 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
808 if (s.mask & AUDIT_STATUS_ENABLED) {
809 err = audit_set_enabled(s.enabled);
810 if (err < 0)
811 return err;
813 if (s.mask & AUDIT_STATUS_FAILURE) {
814 err = audit_set_failure(s.failure);
815 if (err < 0)
816 return err;
818 if (s.mask & AUDIT_STATUS_PID) {
819 int new_pid = s.pid;
821 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
822 return -EACCES;
823 if (audit_enabled != AUDIT_OFF)
824 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
825 audit_pid = new_pid;
826 audit_nlk_portid = NETLINK_CB(skb).portid;
827 audit_sock = skb->sk;
829 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
830 err = audit_set_rate_limit(s.rate_limit);
831 if (err < 0)
832 return err;
834 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
835 err = audit_set_backlog_limit(s.backlog_limit);
836 if (err < 0)
837 return err;
839 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
840 if (sizeof(s) > (size_t)nlh->nlmsg_len)
841 return -EINVAL;
842 if (s.backlog_wait_time < 0 ||
843 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
844 return -EINVAL;
845 err = audit_set_backlog_wait_time(s.backlog_wait_time);
846 if (err < 0)
847 return err;
849 break;
851 case AUDIT_GET_FEATURE:
852 err = audit_get_feature(skb);
853 if (err)
854 return err;
855 break;
856 case AUDIT_SET_FEATURE:
857 err = audit_set_feature(skb);
858 if (err)
859 return err;
860 break;
861 case AUDIT_USER:
862 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
863 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
864 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
865 return 0;
867 err = audit_filter_user(msg_type);
868 if (err == 1) { /* match or error */
869 err = 0;
870 if (msg_type == AUDIT_USER_TTY) {
871 err = tty_audit_push_current();
872 if (err)
873 break;
875 mutex_unlock(&audit_cmd_mutex);
876 audit_log_common_recv_msg(&ab, msg_type);
877 if (msg_type != AUDIT_USER_TTY)
878 audit_log_format(ab, " msg='%.*s'",
879 AUDIT_MESSAGE_TEXT_MAX,
880 (char *)data);
881 else {
882 int size;
884 audit_log_format(ab, " data=");
885 size = nlmsg_len(nlh);
886 if (size > 0 &&
887 ((unsigned char *)data)[size - 1] == '\0')
888 size--;
889 audit_log_n_untrustedstring(ab, data, size);
891 audit_set_portid(ab, NETLINK_CB(skb).portid);
892 audit_log_end(ab);
893 mutex_lock(&audit_cmd_mutex);
895 break;
896 case AUDIT_ADD_RULE:
897 case AUDIT_DEL_RULE:
898 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
899 return -EINVAL;
900 if (audit_enabled == AUDIT_LOCKED) {
901 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
902 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
903 audit_log_end(ab);
904 return -EPERM;
906 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
907 seq, data, nlmsg_len(nlh));
908 break;
909 case AUDIT_LIST_RULES:
910 err = audit_list_rules_send(skb, seq);
911 break;
912 case AUDIT_TRIM:
913 audit_trim_trees();
914 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
915 audit_log_format(ab, " op=trim res=1");
916 audit_log_end(ab);
917 break;
918 case AUDIT_MAKE_EQUIV: {
919 void *bufp = data;
920 u32 sizes[2];
921 size_t msglen = nlmsg_len(nlh);
922 char *old, *new;
924 err = -EINVAL;
925 if (msglen < 2 * sizeof(u32))
926 break;
927 memcpy(sizes, bufp, 2 * sizeof(u32));
928 bufp += 2 * sizeof(u32);
929 msglen -= 2 * sizeof(u32);
930 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
931 if (IS_ERR(old)) {
932 err = PTR_ERR(old);
933 break;
935 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
936 if (IS_ERR(new)) {
937 err = PTR_ERR(new);
938 kfree(old);
939 break;
941 /* OK, here comes... */
942 err = audit_tag_tree(old, new);
944 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
946 audit_log_format(ab, " op=make_equiv old=");
947 audit_log_untrustedstring(ab, old);
948 audit_log_format(ab, " new=");
949 audit_log_untrustedstring(ab, new);
950 audit_log_format(ab, " res=%d", !err);
951 audit_log_end(ab);
952 kfree(old);
953 kfree(new);
954 break;
956 case AUDIT_SIGNAL_INFO:
957 len = 0;
958 if (audit_sig_sid) {
959 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
960 if (err)
961 return err;
963 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
964 if (!sig_data) {
965 if (audit_sig_sid)
966 security_release_secctx(ctx, len);
967 return -ENOMEM;
969 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
970 sig_data->pid = audit_sig_pid;
971 if (audit_sig_sid) {
972 memcpy(sig_data->ctx, ctx, len);
973 security_release_secctx(ctx, len);
975 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
976 sig_data, sizeof(*sig_data) + len);
977 kfree(sig_data);
978 break;
979 case AUDIT_TTY_GET: {
980 struct audit_tty_status s;
981 struct task_struct *tsk = current;
983 spin_lock(&tsk->sighand->siglock);
984 s.enabled = tsk->signal->audit_tty;
985 s.log_passwd = tsk->signal->audit_tty_log_passwd;
986 spin_unlock(&tsk->sighand->siglock);
988 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
989 break;
991 case AUDIT_TTY_SET: {
992 struct audit_tty_status s, old;
993 struct task_struct *tsk = current;
994 struct audit_buffer *ab;
996 memset(&s, 0, sizeof(s));
997 /* guard against past and future API changes */
998 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
999 /* check if new data is valid */
1000 if ((s.enabled != 0 && s.enabled != 1) ||
1001 (s.log_passwd != 0 && s.log_passwd != 1))
1002 err = -EINVAL;
1004 spin_lock(&tsk->sighand->siglock);
1005 old.enabled = tsk->signal->audit_tty;
1006 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1007 if (!err) {
1008 tsk->signal->audit_tty = s.enabled;
1009 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1011 spin_unlock(&tsk->sighand->siglock);
1013 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1014 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1015 " old-log_passwd=%d new-log_passwd=%d res=%d",
1016 old.enabled, s.enabled, old.log_passwd,
1017 s.log_passwd, !err);
1018 audit_log_end(ab);
1019 break;
1021 default:
1022 err = -EINVAL;
1023 break;
1026 return err < 0 ? err : 0;
1030 * Get message from skb. Each message is processed by audit_receive_msg.
1031 * Malformed skbs with wrong length are discarded silently.
1033 static void audit_receive_skb(struct sk_buff *skb)
1035 struct nlmsghdr *nlh;
1037 * len MUST be signed for nlmsg_next to be able to dec it below 0
1038 * if the nlmsg_len was not aligned
1040 int len;
1041 int err;
1043 nlh = nlmsg_hdr(skb);
1044 len = skb->len;
1046 while (nlmsg_ok(nlh, len)) {
1047 err = audit_receive_msg(skb, nlh);
1048 /* if err or if this message says it wants a response */
1049 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1050 netlink_ack(skb, nlh, err);
1052 nlh = nlmsg_next(nlh, &len);
1056 /* Receive messages from netlink socket. */
1057 static void audit_receive(struct sk_buff *skb)
1059 mutex_lock(&audit_cmd_mutex);
1060 audit_receive_skb(skb);
1061 mutex_unlock(&audit_cmd_mutex);
1064 static int __net_init audit_net_init(struct net *net)
1066 struct netlink_kernel_cfg cfg = {
1067 .input = audit_receive,
1070 struct audit_net *aunet = net_generic(net, audit_net_id);
1072 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1073 if (aunet->nlsk == NULL) {
1074 audit_panic("cannot initialize netlink socket in namespace");
1075 return -ENOMEM;
1077 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1078 return 0;
1081 static void __net_exit audit_net_exit(struct net *net)
1083 struct audit_net *aunet = net_generic(net, audit_net_id);
1084 struct sock *sock = aunet->nlsk;
1085 if (sock == audit_sock) {
1086 audit_pid = 0;
1087 audit_sock = NULL;
1090 rcu_assign_pointer(aunet->nlsk, NULL);
1091 synchronize_net();
1092 netlink_kernel_release(sock);
1095 static struct pernet_operations audit_net_ops __net_initdata = {
1096 .init = audit_net_init,
1097 .exit = audit_net_exit,
1098 .id = &audit_net_id,
1099 .size = sizeof(struct audit_net),
1102 /* Initialize audit support at boot time. */
1103 static int __init audit_init(void)
1105 int i;
1107 if (audit_initialized == AUDIT_DISABLED)
1108 return 0;
1110 pr_info("initializing netlink subsys (%s)\n",
1111 audit_default ? "enabled" : "disabled");
1112 register_pernet_subsys(&audit_net_ops);
1114 skb_queue_head_init(&audit_skb_queue);
1115 skb_queue_head_init(&audit_skb_hold_queue);
1116 audit_initialized = AUDIT_INITIALIZED;
1117 audit_enabled = audit_default;
1118 audit_ever_enabled |= !!audit_default;
1120 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1122 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1123 INIT_LIST_HEAD(&audit_inode_hash[i]);
1125 return 0;
1127 __initcall(audit_init);
1129 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1130 static int __init audit_enable(char *str)
1132 audit_default = !!simple_strtol(str, NULL, 0);
1133 if (!audit_default)
1134 audit_initialized = AUDIT_DISABLED;
1136 pr_info("%s\n", audit_default ?
1137 "enabled (after initialization)" : "disabled (until reboot)");
1139 return 1;
1141 __setup("audit=", audit_enable);
1143 /* Process kernel command-line parameter at boot time.
1144 * audit_backlog_limit=<n> */
1145 static int __init audit_backlog_limit_set(char *str)
1147 u32 audit_backlog_limit_arg;
1149 pr_info("audit_backlog_limit: ");
1150 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1151 pr_cont("using default of %u, unable to parse %s\n",
1152 audit_backlog_limit, str);
1153 return 1;
1156 audit_backlog_limit = audit_backlog_limit_arg;
1157 pr_cont("%d\n", audit_backlog_limit);
1159 return 1;
1161 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1163 static void audit_buffer_free(struct audit_buffer *ab)
1165 unsigned long flags;
1167 if (!ab)
1168 return;
1170 if (ab->skb)
1171 kfree_skb(ab->skb);
1173 spin_lock_irqsave(&audit_freelist_lock, flags);
1174 if (audit_freelist_count > AUDIT_MAXFREE)
1175 kfree(ab);
1176 else {
1177 audit_freelist_count++;
1178 list_add(&ab->list, &audit_freelist);
1180 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1183 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1184 gfp_t gfp_mask, int type)
1186 unsigned long flags;
1187 struct audit_buffer *ab = NULL;
1188 struct nlmsghdr *nlh;
1190 spin_lock_irqsave(&audit_freelist_lock, flags);
1191 if (!list_empty(&audit_freelist)) {
1192 ab = list_entry(audit_freelist.next,
1193 struct audit_buffer, list);
1194 list_del(&ab->list);
1195 --audit_freelist_count;
1197 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1199 if (!ab) {
1200 ab = kmalloc(sizeof(*ab), gfp_mask);
1201 if (!ab)
1202 goto err;
1205 ab->ctx = ctx;
1206 ab->gfp_mask = gfp_mask;
1208 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1209 if (!ab->skb)
1210 goto err;
1212 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1213 if (!nlh)
1214 goto out_kfree_skb;
1216 return ab;
1218 out_kfree_skb:
1219 kfree_skb(ab->skb);
1220 ab->skb = NULL;
1221 err:
1222 audit_buffer_free(ab);
1223 return NULL;
1227 * audit_serial - compute a serial number for the audit record
1229 * Compute a serial number for the audit record. Audit records are
1230 * written to user-space as soon as they are generated, so a complete
1231 * audit record may be written in several pieces. The timestamp of the
1232 * record and this serial number are used by the user-space tools to
1233 * determine which pieces belong to the same audit record. The
1234 * (timestamp,serial) tuple is unique for each syscall and is live from
1235 * syscall entry to syscall exit.
1237 * NOTE: Another possibility is to store the formatted records off the
1238 * audit context (for those records that have a context), and emit them
1239 * all at syscall exit. However, this could delay the reporting of
1240 * significant errors until syscall exit (or never, if the system
1241 * halts).
1243 unsigned int audit_serial(void)
1245 static DEFINE_SPINLOCK(serial_lock);
1246 static unsigned int serial = 0;
1248 unsigned long flags;
1249 unsigned int ret;
1251 spin_lock_irqsave(&serial_lock, flags);
1252 do {
1253 ret = ++serial;
1254 } while (unlikely(!ret));
1255 spin_unlock_irqrestore(&serial_lock, flags);
1257 return ret;
1260 static inline void audit_get_stamp(struct audit_context *ctx,
1261 struct timespec *t, unsigned int *serial)
1263 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1264 *t = CURRENT_TIME;
1265 *serial = audit_serial();
1270 * Wait for auditd to drain the queue a little
1272 static long wait_for_auditd(long sleep_time)
1274 DECLARE_WAITQUEUE(wait, current);
1275 set_current_state(TASK_UNINTERRUPTIBLE);
1276 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1278 if (audit_backlog_limit &&
1279 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1280 sleep_time = schedule_timeout(sleep_time);
1282 __set_current_state(TASK_RUNNING);
1283 remove_wait_queue(&audit_backlog_wait, &wait);
1285 return sleep_time;
1289 * audit_log_start - obtain an audit buffer
1290 * @ctx: audit_context (may be NULL)
1291 * @gfp_mask: type of allocation
1292 * @type: audit message type
1294 * Returns audit_buffer pointer on success or NULL on error.
1296 * Obtain an audit buffer. This routine does locking to obtain the
1297 * audit buffer, but then no locking is required for calls to
1298 * audit_log_*format. If the task (ctx) is a task that is currently in a
1299 * syscall, then the syscall is marked as auditable and an audit record
1300 * will be written at syscall exit. If there is no associated task, then
1301 * task context (ctx) should be NULL.
1303 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1304 int type)
1306 struct audit_buffer *ab = NULL;
1307 struct timespec t;
1308 unsigned int uninitialized_var(serial);
1309 int reserve = 5; /* Allow atomic callers to go up to five
1310 entries over the normal backlog limit */
1311 unsigned long timeout_start = jiffies;
1313 if (audit_initialized != AUDIT_INITIALIZED)
1314 return NULL;
1316 if (unlikely(audit_filter_type(type)))
1317 return NULL;
1319 if (gfp_mask & __GFP_WAIT) {
1320 if (audit_pid && audit_pid == current->pid)
1321 gfp_mask &= ~__GFP_WAIT;
1322 else
1323 reserve = 0;
1326 while (audit_backlog_limit
1327 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1328 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1329 long sleep_time;
1331 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1332 if (sleep_time > 0) {
1333 sleep_time = wait_for_auditd(sleep_time);
1334 if (sleep_time > 0)
1335 continue;
1338 if (audit_rate_check() && printk_ratelimit())
1339 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1340 skb_queue_len(&audit_skb_queue),
1341 audit_backlog_limit);
1342 audit_log_lost("backlog limit exceeded");
1343 audit_backlog_wait_time = audit_backlog_wait_overflow;
1344 wake_up(&audit_backlog_wait);
1345 return NULL;
1348 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1350 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1351 if (!ab) {
1352 audit_log_lost("out of memory in audit_log_start");
1353 return NULL;
1356 audit_get_stamp(ab->ctx, &t, &serial);
1358 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1359 t.tv_sec, t.tv_nsec/1000000, serial);
1360 return ab;
1364 * audit_expand - expand skb in the audit buffer
1365 * @ab: audit_buffer
1366 * @extra: space to add at tail of the skb
1368 * Returns 0 (no space) on failed expansion, or available space if
1369 * successful.
1371 static inline int audit_expand(struct audit_buffer *ab, int extra)
1373 struct sk_buff *skb = ab->skb;
1374 int oldtail = skb_tailroom(skb);
1375 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1376 int newtail = skb_tailroom(skb);
1378 if (ret < 0) {
1379 audit_log_lost("out of memory in audit_expand");
1380 return 0;
1383 skb->truesize += newtail - oldtail;
1384 return newtail;
1388 * Format an audit message into the audit buffer. If there isn't enough
1389 * room in the audit buffer, more room will be allocated and vsnprint
1390 * will be called a second time. Currently, we assume that a printk
1391 * can't format message larger than 1024 bytes, so we don't either.
1393 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1394 va_list args)
1396 int len, avail;
1397 struct sk_buff *skb;
1398 va_list args2;
1400 if (!ab)
1401 return;
1403 BUG_ON(!ab->skb);
1404 skb = ab->skb;
1405 avail = skb_tailroom(skb);
1406 if (avail == 0) {
1407 avail = audit_expand(ab, AUDIT_BUFSIZ);
1408 if (!avail)
1409 goto out;
1411 va_copy(args2, args);
1412 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1413 if (len >= avail) {
1414 /* The printk buffer is 1024 bytes long, so if we get
1415 * here and AUDIT_BUFSIZ is at least 1024, then we can
1416 * log everything that printk could have logged. */
1417 avail = audit_expand(ab,
1418 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1419 if (!avail)
1420 goto out_va_end;
1421 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1423 if (len > 0)
1424 skb_put(skb, len);
1425 out_va_end:
1426 va_end(args2);
1427 out:
1428 return;
1432 * audit_log_format - format a message into the audit buffer.
1433 * @ab: audit_buffer
1434 * @fmt: format string
1435 * @...: optional parameters matching @fmt string
1437 * All the work is done in audit_log_vformat.
1439 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1441 va_list args;
1443 if (!ab)
1444 return;
1445 va_start(args, fmt);
1446 audit_log_vformat(ab, fmt, args);
1447 va_end(args);
1451 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1452 * @ab: the audit_buffer
1453 * @buf: buffer to convert to hex
1454 * @len: length of @buf to be converted
1456 * No return value; failure to expand is silently ignored.
1458 * This function will take the passed buf and convert it into a string of
1459 * ascii hex digits. The new string is placed onto the skb.
1461 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1462 size_t len)
1464 int i, avail, new_len;
1465 unsigned char *ptr;
1466 struct sk_buff *skb;
1468 if (!ab)
1469 return;
1471 BUG_ON(!ab->skb);
1472 skb = ab->skb;
1473 avail = skb_tailroom(skb);
1474 new_len = len<<1;
1475 if (new_len >= avail) {
1476 /* Round the buffer request up to the next multiple */
1477 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1478 avail = audit_expand(ab, new_len);
1479 if (!avail)
1480 return;
1483 ptr = skb_tail_pointer(skb);
1484 for (i = 0; i < len; i++)
1485 ptr = hex_byte_pack_upper(ptr, buf[i]);
1486 *ptr = 0;
1487 skb_put(skb, len << 1); /* new string is twice the old string */
1491 * Format a string of no more than slen characters into the audit buffer,
1492 * enclosed in quote marks.
1494 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1495 size_t slen)
1497 int avail, new_len;
1498 unsigned char *ptr;
1499 struct sk_buff *skb;
1501 if (!ab)
1502 return;
1504 BUG_ON(!ab->skb);
1505 skb = ab->skb;
1506 avail = skb_tailroom(skb);
1507 new_len = slen + 3; /* enclosing quotes + null terminator */
1508 if (new_len > avail) {
1509 avail = audit_expand(ab, new_len);
1510 if (!avail)
1511 return;
1513 ptr = skb_tail_pointer(skb);
1514 *ptr++ = '"';
1515 memcpy(ptr, string, slen);
1516 ptr += slen;
1517 *ptr++ = '"';
1518 *ptr = 0;
1519 skb_put(skb, slen + 2); /* don't include null terminator */
1523 * audit_string_contains_control - does a string need to be logged in hex
1524 * @string: string to be checked
1525 * @len: max length of the string to check
1527 int audit_string_contains_control(const char *string, size_t len)
1529 const unsigned char *p;
1530 for (p = string; p < (const unsigned char *)string + len; p++) {
1531 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1532 return 1;
1534 return 0;
1538 * audit_log_n_untrustedstring - log a string that may contain random characters
1539 * @ab: audit_buffer
1540 * @len: length of string (not including trailing null)
1541 * @string: string to be logged
1543 * This code will escape a string that is passed to it if the string
1544 * contains a control character, unprintable character, double quote mark,
1545 * or a space. Unescaped strings will start and end with a double quote mark.
1546 * Strings that are escaped are printed in hex (2 digits per char).
1548 * The caller specifies the number of characters in the string to log, which may
1549 * or may not be the entire string.
1551 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1552 size_t len)
1554 if (audit_string_contains_control(string, len))
1555 audit_log_n_hex(ab, string, len);
1556 else
1557 audit_log_n_string(ab, string, len);
1561 * audit_log_untrustedstring - log a string that may contain random characters
1562 * @ab: audit_buffer
1563 * @string: string to be logged
1565 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1566 * determine string length.
1568 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1570 audit_log_n_untrustedstring(ab, string, strlen(string));
1573 /* This is a helper-function to print the escaped d_path */
1574 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1575 const struct path *path)
1577 char *p, *pathname;
1579 if (prefix)
1580 audit_log_format(ab, "%s", prefix);
1582 /* We will allow 11 spaces for ' (deleted)' to be appended */
1583 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1584 if (!pathname) {
1585 audit_log_string(ab, "<no_memory>");
1586 return;
1588 p = d_path(path, pathname, PATH_MAX+11);
1589 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1590 /* FIXME: can we save some information here? */
1591 audit_log_string(ab, "<too_long>");
1592 } else
1593 audit_log_untrustedstring(ab, p);
1594 kfree(pathname);
1597 void audit_log_session_info(struct audit_buffer *ab)
1599 unsigned int sessionid = audit_get_sessionid(current);
1600 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1602 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1605 void audit_log_key(struct audit_buffer *ab, char *key)
1607 audit_log_format(ab, " key=");
1608 if (key)
1609 audit_log_untrustedstring(ab, key);
1610 else
1611 audit_log_format(ab, "(null)");
1614 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1616 int i;
1618 audit_log_format(ab, " %s=", prefix);
1619 CAP_FOR_EACH_U32(i) {
1620 audit_log_format(ab, "%08x",
1621 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1625 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1627 kernel_cap_t *perm = &name->fcap.permitted;
1628 kernel_cap_t *inh = &name->fcap.inheritable;
1629 int log = 0;
1631 if (!cap_isclear(*perm)) {
1632 audit_log_cap(ab, "cap_fp", perm);
1633 log = 1;
1635 if (!cap_isclear(*inh)) {
1636 audit_log_cap(ab, "cap_fi", inh);
1637 log = 1;
1640 if (log)
1641 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1642 name->fcap.fE, name->fcap_ver);
1645 static inline int audit_copy_fcaps(struct audit_names *name,
1646 const struct dentry *dentry)
1648 struct cpu_vfs_cap_data caps;
1649 int rc;
1651 if (!dentry)
1652 return 0;
1654 rc = get_vfs_caps_from_disk(dentry, &caps);
1655 if (rc)
1656 return rc;
1658 name->fcap.permitted = caps.permitted;
1659 name->fcap.inheritable = caps.inheritable;
1660 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1661 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1662 VFS_CAP_REVISION_SHIFT;
1664 return 0;
1667 /* Copy inode data into an audit_names. */
1668 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1669 const struct inode *inode)
1671 name->ino = inode->i_ino;
1672 name->dev = inode->i_sb->s_dev;
1673 name->mode = inode->i_mode;
1674 name->uid = inode->i_uid;
1675 name->gid = inode->i_gid;
1676 name->rdev = inode->i_rdev;
1677 security_inode_getsecid(inode, &name->osid);
1678 audit_copy_fcaps(name, dentry);
1682 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1683 * @context: audit_context for the task
1684 * @n: audit_names structure with reportable details
1685 * @path: optional path to report instead of audit_names->name
1686 * @record_num: record number to report when handling a list of names
1687 * @call_panic: optional pointer to int that will be updated if secid fails
1689 void audit_log_name(struct audit_context *context, struct audit_names *n,
1690 struct path *path, int record_num, int *call_panic)
1692 struct audit_buffer *ab;
1693 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1694 if (!ab)
1695 return;
1697 audit_log_format(ab, "item=%d", record_num);
1699 if (path)
1700 audit_log_d_path(ab, " name=", path);
1701 else if (n->name) {
1702 switch (n->name_len) {
1703 case AUDIT_NAME_FULL:
1704 /* log the full path */
1705 audit_log_format(ab, " name=");
1706 audit_log_untrustedstring(ab, n->name->name);
1707 break;
1708 case 0:
1709 /* name was specified as a relative path and the
1710 * directory component is the cwd */
1711 audit_log_d_path(ab, " name=", &context->pwd);
1712 break;
1713 default:
1714 /* log the name's directory component */
1715 audit_log_format(ab, " name=");
1716 audit_log_n_untrustedstring(ab, n->name->name,
1717 n->name_len);
1719 } else
1720 audit_log_format(ab, " name=(null)");
1722 if (n->ino != (unsigned long)-1) {
1723 audit_log_format(ab, " inode=%lu"
1724 " dev=%02x:%02x mode=%#ho"
1725 " ouid=%u ogid=%u rdev=%02x:%02x",
1726 n->ino,
1727 MAJOR(n->dev),
1728 MINOR(n->dev),
1729 n->mode,
1730 from_kuid(&init_user_ns, n->uid),
1731 from_kgid(&init_user_ns, n->gid),
1732 MAJOR(n->rdev),
1733 MINOR(n->rdev));
1735 if (n->osid != 0) {
1736 char *ctx = NULL;
1737 u32 len;
1738 if (security_secid_to_secctx(
1739 n->osid, &ctx, &len)) {
1740 audit_log_format(ab, " osid=%u", n->osid);
1741 if (call_panic)
1742 *call_panic = 2;
1743 } else {
1744 audit_log_format(ab, " obj=%s", ctx);
1745 security_release_secctx(ctx, len);
1749 /* log the audit_names record type */
1750 audit_log_format(ab, " nametype=");
1751 switch(n->type) {
1752 case AUDIT_TYPE_NORMAL:
1753 audit_log_format(ab, "NORMAL");
1754 break;
1755 case AUDIT_TYPE_PARENT:
1756 audit_log_format(ab, "PARENT");
1757 break;
1758 case AUDIT_TYPE_CHILD_DELETE:
1759 audit_log_format(ab, "DELETE");
1760 break;
1761 case AUDIT_TYPE_CHILD_CREATE:
1762 audit_log_format(ab, "CREATE");
1763 break;
1764 default:
1765 audit_log_format(ab, "UNKNOWN");
1766 break;
1769 audit_log_fcaps(ab, n);
1770 audit_log_end(ab);
1773 int audit_log_task_context(struct audit_buffer *ab)
1775 char *ctx = NULL;
1776 unsigned len;
1777 int error;
1778 u32 sid;
1780 security_task_getsecid(current, &sid);
1781 if (!sid)
1782 return 0;
1784 error = security_secid_to_secctx(sid, &ctx, &len);
1785 if (error) {
1786 if (error != -EINVAL)
1787 goto error_path;
1788 return 0;
1791 audit_log_format(ab, " subj=%s", ctx);
1792 security_release_secctx(ctx, len);
1793 return 0;
1795 error_path:
1796 audit_panic("error in audit_log_task_context");
1797 return error;
1799 EXPORT_SYMBOL(audit_log_task_context);
1801 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1803 const struct cred *cred;
1804 char name[sizeof(tsk->comm)];
1805 struct mm_struct *mm = tsk->mm;
1806 char *tty;
1808 if (!ab)
1809 return;
1811 /* tsk == current */
1812 cred = current_cred();
1814 spin_lock_irq(&tsk->sighand->siglock);
1815 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1816 tty = tsk->signal->tty->name;
1817 else
1818 tty = "(none)";
1819 spin_unlock_irq(&tsk->sighand->siglock);
1821 audit_log_format(ab,
1822 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1823 " euid=%u suid=%u fsuid=%u"
1824 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1825 sys_getppid(),
1826 tsk->pid,
1827 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1828 from_kuid(&init_user_ns, cred->uid),
1829 from_kgid(&init_user_ns, cred->gid),
1830 from_kuid(&init_user_ns, cred->euid),
1831 from_kuid(&init_user_ns, cred->suid),
1832 from_kuid(&init_user_ns, cred->fsuid),
1833 from_kgid(&init_user_ns, cred->egid),
1834 from_kgid(&init_user_ns, cred->sgid),
1835 from_kgid(&init_user_ns, cred->fsgid),
1836 tty, audit_get_sessionid(tsk));
1838 get_task_comm(name, tsk);
1839 audit_log_format(ab, " comm=");
1840 audit_log_untrustedstring(ab, name);
1842 if (mm) {
1843 down_read(&mm->mmap_sem);
1844 if (mm->exe_file)
1845 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1846 up_read(&mm->mmap_sem);
1847 } else
1848 audit_log_format(ab, " exe=(null)");
1849 audit_log_task_context(ab);
1851 EXPORT_SYMBOL(audit_log_task_info);
1854 * audit_log_link_denied - report a link restriction denial
1855 * @operation: specific link opreation
1856 * @link: the path that triggered the restriction
1858 void audit_log_link_denied(const char *operation, struct path *link)
1860 struct audit_buffer *ab;
1861 struct audit_names *name;
1863 name = kzalloc(sizeof(*name), GFP_NOFS);
1864 if (!name)
1865 return;
1867 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1868 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1869 AUDIT_ANOM_LINK);
1870 if (!ab)
1871 goto out;
1872 audit_log_format(ab, "op=%s", operation);
1873 audit_log_task_info(ab, current);
1874 audit_log_format(ab, " res=0");
1875 audit_log_end(ab);
1877 /* Generate AUDIT_PATH record with object. */
1878 name->type = AUDIT_TYPE_NORMAL;
1879 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1880 audit_log_name(current->audit_context, name, link, 0, NULL);
1881 out:
1882 kfree(name);
1886 * audit_log_end - end one audit record
1887 * @ab: the audit_buffer
1889 * The netlink_* functions cannot be called inside an irq context, so
1890 * the audit buffer is placed on a queue and a tasklet is scheduled to
1891 * remove them from the queue outside the irq context. May be called in
1892 * any context.
1894 void audit_log_end(struct audit_buffer *ab)
1896 if (!ab)
1897 return;
1898 if (!audit_rate_check()) {
1899 audit_log_lost("rate limit exceeded");
1900 } else {
1901 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1902 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1904 if (audit_pid) {
1905 skb_queue_tail(&audit_skb_queue, ab->skb);
1906 wake_up_interruptible(&kauditd_wait);
1907 } else {
1908 audit_printk_skb(ab->skb);
1910 ab->skb = NULL;
1912 audit_buffer_free(ab);
1916 * audit_log - Log an audit record
1917 * @ctx: audit context
1918 * @gfp_mask: type of allocation
1919 * @type: audit message type
1920 * @fmt: format string to use
1921 * @...: variable parameters matching the format string
1923 * This is a convenience function that calls audit_log_start,
1924 * audit_log_vformat, and audit_log_end. It may be called
1925 * in any context.
1927 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1928 const char *fmt, ...)
1930 struct audit_buffer *ab;
1931 va_list args;
1933 ab = audit_log_start(ctx, gfp_mask, type);
1934 if (ab) {
1935 va_start(args, fmt);
1936 audit_log_vformat(ab, fmt, args);
1937 va_end(args);
1938 audit_log_end(ab);
1942 #ifdef CONFIG_SECURITY
1944 * audit_log_secctx - Converts and logs SELinux context
1945 * @ab: audit_buffer
1946 * @secid: security number
1948 * This is a helper function that calls security_secid_to_secctx to convert
1949 * secid to secctx and then adds the (converted) SELinux context to the audit
1950 * log by calling audit_log_format, thus also preventing leak of internal secid
1951 * to userspace. If secid cannot be converted audit_panic is called.
1953 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1955 u32 len;
1956 char *secctx;
1958 if (security_secid_to_secctx(secid, &secctx, &len)) {
1959 audit_panic("Cannot convert secid to context");
1960 } else {
1961 audit_log_format(ab, " obj=%s", secctx);
1962 security_release_secctx(secctx, len);
1965 EXPORT_SYMBOL(audit_log_secctx);
1966 #endif
1968 EXPORT_SYMBOL(audit_log_start);
1969 EXPORT_SYMBOL(audit_log_end);
1970 EXPORT_SYMBOL(audit_log_format);
1971 EXPORT_SYMBOL(audit_log);