timekeeping: Provide hrtimer update function
[linux-2.6/btrfs-unstable.git] / kernel / time / timekeeping.c
blob269b1fe5f2ae2f7e6c0bb0fac8ce9a54e2d4d278
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* NTP adjusted clock multiplier */
29 u32 mult;
30 /* The shift value of the current clocksource. */
31 int shift;
33 /* Number of clock cycles in one NTP interval. */
34 cycle_t cycle_interval;
35 /* Number of clock shifted nano seconds in one NTP interval. */
36 u64 xtime_interval;
37 /* shifted nano seconds left over when rounding cycle_interval */
38 s64 xtime_remainder;
39 /* Raw nano seconds accumulated per NTP interval. */
40 u32 raw_interval;
42 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
43 u64 xtime_nsec;
44 /* Difference between accumulated time and NTP time in ntp
45 * shifted nano seconds. */
46 s64 ntp_error;
47 /* Shift conversion between clock shifted nano seconds and
48 * ntp shifted nano seconds. */
49 int ntp_error_shift;
51 /* The current time */
52 struct timespec xtime;
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
67 struct timespec wall_to_monotonic;
68 /* time spent in suspend */
69 struct timespec total_sleep_time;
70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
71 struct timespec raw_time;
73 /* Offset clock monotonic -> clock realtime */
74 ktime_t offs_real;
76 /* Offset clock monotonic -> clock boottime */
77 ktime_t offs_boot;
79 /* Seqlock for all timekeeper values */
80 seqlock_t lock;
83 static struct timekeeper timekeeper;
86 * This read-write spinlock protects us from races in SMP while
87 * playing with xtime.
89 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
97 /**
98 * timekeeper_setup_internals - Set up internals to use clocksource clock.
100 * @clock: Pointer to clocksource.
102 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
103 * pair and interval request.
105 * Unless you're the timekeeping code, you should not be using this!
107 static void timekeeper_setup_internals(struct clocksource *clock)
109 cycle_t interval;
110 u64 tmp, ntpinterval;
112 timekeeper.clock = clock;
113 clock->cycle_last = clock->read(clock);
115 /* Do the ns -> cycle conversion first, using original mult */
116 tmp = NTP_INTERVAL_LENGTH;
117 tmp <<= clock->shift;
118 ntpinterval = tmp;
119 tmp += clock->mult/2;
120 do_div(tmp, clock->mult);
121 if (tmp == 0)
122 tmp = 1;
124 interval = (cycle_t) tmp;
125 timekeeper.cycle_interval = interval;
127 /* Go back from cycles -> shifted ns */
128 timekeeper.xtime_interval = (u64) interval * clock->mult;
129 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
130 timekeeper.raw_interval =
131 ((u64) interval * clock->mult) >> clock->shift;
133 timekeeper.xtime_nsec = 0;
134 timekeeper.shift = clock->shift;
136 timekeeper.ntp_error = 0;
137 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
140 * The timekeeper keeps its own mult values for the currently
141 * active clocksource. These value will be adjusted via NTP
142 * to counteract clock drifting.
144 timekeeper.mult = clock->mult;
147 /* Timekeeper helper functions. */
148 static inline s64 timekeeping_get_ns(void)
150 cycle_t cycle_now, cycle_delta;
151 struct clocksource *clock;
153 /* read clocksource: */
154 clock = timekeeper.clock;
155 cycle_now = clock->read(clock);
157 /* calculate the delta since the last update_wall_time: */
158 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
160 /* return delta convert to nanoseconds using ntp adjusted mult. */
161 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
162 timekeeper.shift);
165 static inline s64 timekeeping_get_ns_raw(void)
167 cycle_t cycle_now, cycle_delta;
168 struct clocksource *clock;
170 /* read clocksource: */
171 clock = timekeeper.clock;
172 cycle_now = clock->read(clock);
174 /* calculate the delta since the last update_wall_time: */
175 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
177 /* return delta convert to nanoseconds. */
178 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
181 static void update_rt_offset(void)
183 struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
185 set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
186 timekeeper.offs_real = timespec_to_ktime(tmp);
189 /* must hold write on timekeeper.lock */
190 static void timekeeping_update(bool clearntp)
192 if (clearntp) {
193 timekeeper.ntp_error = 0;
194 ntp_clear();
196 update_rt_offset();
197 update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
198 timekeeper.clock, timekeeper.mult);
203 * timekeeping_forward_now - update clock to the current time
205 * Forward the current clock to update its state since the last call to
206 * update_wall_time(). This is useful before significant clock changes,
207 * as it avoids having to deal with this time offset explicitly.
209 static void timekeeping_forward_now(void)
211 cycle_t cycle_now, cycle_delta;
212 struct clocksource *clock;
213 s64 nsec;
215 clock = timekeeper.clock;
216 cycle_now = clock->read(clock);
217 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
218 clock->cycle_last = cycle_now;
220 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
221 timekeeper.shift);
223 /* If arch requires, add in gettimeoffset() */
224 nsec += arch_gettimeoffset();
226 timespec_add_ns(&timekeeper.xtime, nsec);
228 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
229 timespec_add_ns(&timekeeper.raw_time, nsec);
233 * getnstimeofday - Returns the time of day in a timespec
234 * @ts: pointer to the timespec to be set
236 * Returns the time of day in a timespec.
238 void getnstimeofday(struct timespec *ts)
240 unsigned long seq;
241 s64 nsecs;
243 WARN_ON(timekeeping_suspended);
245 do {
246 seq = read_seqbegin(&timekeeper.lock);
248 *ts = timekeeper.xtime;
249 nsecs = timekeeping_get_ns();
251 /* If arch requires, add in gettimeoffset() */
252 nsecs += arch_gettimeoffset();
254 } while (read_seqretry(&timekeeper.lock, seq));
256 timespec_add_ns(ts, nsecs);
258 EXPORT_SYMBOL(getnstimeofday);
260 ktime_t ktime_get(void)
262 unsigned int seq;
263 s64 secs, nsecs;
265 WARN_ON(timekeeping_suspended);
267 do {
268 seq = read_seqbegin(&timekeeper.lock);
269 secs = timekeeper.xtime.tv_sec +
270 timekeeper.wall_to_monotonic.tv_sec;
271 nsecs = timekeeper.xtime.tv_nsec +
272 timekeeper.wall_to_monotonic.tv_nsec;
273 nsecs += timekeeping_get_ns();
274 /* If arch requires, add in gettimeoffset() */
275 nsecs += arch_gettimeoffset();
277 } while (read_seqretry(&timekeeper.lock, seq));
279 * Use ktime_set/ktime_add_ns to create a proper ktime on
280 * 32-bit architectures without CONFIG_KTIME_SCALAR.
282 return ktime_add_ns(ktime_set(secs, 0), nsecs);
284 EXPORT_SYMBOL_GPL(ktime_get);
287 * ktime_get_ts - get the monotonic clock in timespec format
288 * @ts: pointer to timespec variable
290 * The function calculates the monotonic clock from the realtime
291 * clock and the wall_to_monotonic offset and stores the result
292 * in normalized timespec format in the variable pointed to by @ts.
294 void ktime_get_ts(struct timespec *ts)
296 struct timespec tomono;
297 unsigned int seq;
298 s64 nsecs;
300 WARN_ON(timekeeping_suspended);
302 do {
303 seq = read_seqbegin(&timekeeper.lock);
304 *ts = timekeeper.xtime;
305 tomono = timekeeper.wall_to_monotonic;
306 nsecs = timekeeping_get_ns();
307 /* If arch requires, add in gettimeoffset() */
308 nsecs += arch_gettimeoffset();
310 } while (read_seqretry(&timekeeper.lock, seq));
312 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
313 ts->tv_nsec + tomono.tv_nsec + nsecs);
315 EXPORT_SYMBOL_GPL(ktime_get_ts);
317 #ifdef CONFIG_NTP_PPS
320 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
321 * @ts_raw: pointer to the timespec to be set to raw monotonic time
322 * @ts_real: pointer to the timespec to be set to the time of day
324 * This function reads both the time of day and raw monotonic time at the
325 * same time atomically and stores the resulting timestamps in timespec
326 * format.
328 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
330 unsigned long seq;
331 s64 nsecs_raw, nsecs_real;
333 WARN_ON_ONCE(timekeeping_suspended);
335 do {
336 u32 arch_offset;
338 seq = read_seqbegin(&timekeeper.lock);
340 *ts_raw = timekeeper.raw_time;
341 *ts_real = timekeeper.xtime;
343 nsecs_raw = timekeeping_get_ns_raw();
344 nsecs_real = timekeeping_get_ns();
346 /* If arch requires, add in gettimeoffset() */
347 arch_offset = arch_gettimeoffset();
348 nsecs_raw += arch_offset;
349 nsecs_real += arch_offset;
351 } while (read_seqretry(&timekeeper.lock, seq));
353 timespec_add_ns(ts_raw, nsecs_raw);
354 timespec_add_ns(ts_real, nsecs_real);
356 EXPORT_SYMBOL(getnstime_raw_and_real);
358 #endif /* CONFIG_NTP_PPS */
361 * do_gettimeofday - Returns the time of day in a timeval
362 * @tv: pointer to the timeval to be set
364 * NOTE: Users should be converted to using getnstimeofday()
366 void do_gettimeofday(struct timeval *tv)
368 struct timespec now;
370 getnstimeofday(&now);
371 tv->tv_sec = now.tv_sec;
372 tv->tv_usec = now.tv_nsec/1000;
374 EXPORT_SYMBOL(do_gettimeofday);
377 * do_settimeofday - Sets the time of day
378 * @tv: pointer to the timespec variable containing the new time
380 * Sets the time of day to the new time and update NTP and notify hrtimers
382 int do_settimeofday(const struct timespec *tv)
384 struct timespec ts_delta;
385 unsigned long flags;
387 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
388 return -EINVAL;
390 write_seqlock_irqsave(&timekeeper.lock, flags);
392 timekeeping_forward_now();
394 ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
395 ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
396 timekeeper.wall_to_monotonic =
397 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
399 timekeeper.xtime = *tv;
400 timekeeping_update(true);
402 write_sequnlock_irqrestore(&timekeeper.lock, flags);
404 /* signal hrtimers about time change */
405 clock_was_set();
407 return 0;
409 EXPORT_SYMBOL(do_settimeofday);
413 * timekeeping_inject_offset - Adds or subtracts from the current time.
414 * @tv: pointer to the timespec variable containing the offset
416 * Adds or subtracts an offset value from the current time.
418 int timekeeping_inject_offset(struct timespec *ts)
420 unsigned long flags;
422 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
423 return -EINVAL;
425 write_seqlock_irqsave(&timekeeper.lock, flags);
427 timekeeping_forward_now();
429 timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
430 timekeeper.wall_to_monotonic =
431 timespec_sub(timekeeper.wall_to_monotonic, *ts);
433 timekeeping_update(true);
435 write_sequnlock_irqrestore(&timekeeper.lock, flags);
437 /* signal hrtimers about time change */
438 clock_was_set();
440 return 0;
442 EXPORT_SYMBOL(timekeeping_inject_offset);
445 * change_clocksource - Swaps clocksources if a new one is available
447 * Accumulates current time interval and initializes new clocksource
449 static int change_clocksource(void *data)
451 struct clocksource *new, *old;
452 unsigned long flags;
454 new = (struct clocksource *) data;
456 write_seqlock_irqsave(&timekeeper.lock, flags);
458 timekeeping_forward_now();
459 if (!new->enable || new->enable(new) == 0) {
460 old = timekeeper.clock;
461 timekeeper_setup_internals(new);
462 if (old->disable)
463 old->disable(old);
465 timekeeping_update(true);
467 write_sequnlock_irqrestore(&timekeeper.lock, flags);
469 return 0;
473 * timekeeping_notify - Install a new clock source
474 * @clock: pointer to the clock source
476 * This function is called from clocksource.c after a new, better clock
477 * source has been registered. The caller holds the clocksource_mutex.
479 void timekeeping_notify(struct clocksource *clock)
481 if (timekeeper.clock == clock)
482 return;
483 stop_machine(change_clocksource, clock, NULL);
484 tick_clock_notify();
488 * ktime_get_real - get the real (wall-) time in ktime_t format
490 * returns the time in ktime_t format
492 ktime_t ktime_get_real(void)
494 struct timespec now;
496 getnstimeofday(&now);
498 return timespec_to_ktime(now);
500 EXPORT_SYMBOL_GPL(ktime_get_real);
503 * getrawmonotonic - Returns the raw monotonic time in a timespec
504 * @ts: pointer to the timespec to be set
506 * Returns the raw monotonic time (completely un-modified by ntp)
508 void getrawmonotonic(struct timespec *ts)
510 unsigned long seq;
511 s64 nsecs;
513 do {
514 seq = read_seqbegin(&timekeeper.lock);
515 nsecs = timekeeping_get_ns_raw();
516 *ts = timekeeper.raw_time;
518 } while (read_seqretry(&timekeeper.lock, seq));
520 timespec_add_ns(ts, nsecs);
522 EXPORT_SYMBOL(getrawmonotonic);
526 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
528 int timekeeping_valid_for_hres(void)
530 unsigned long seq;
531 int ret;
533 do {
534 seq = read_seqbegin(&timekeeper.lock);
536 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
538 } while (read_seqretry(&timekeeper.lock, seq));
540 return ret;
544 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
546 u64 timekeeping_max_deferment(void)
548 unsigned long seq;
549 u64 ret;
550 do {
551 seq = read_seqbegin(&timekeeper.lock);
553 ret = timekeeper.clock->max_idle_ns;
555 } while (read_seqretry(&timekeeper.lock, seq));
557 return ret;
561 * read_persistent_clock - Return time from the persistent clock.
563 * Weak dummy function for arches that do not yet support it.
564 * Reads the time from the battery backed persistent clock.
565 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
567 * XXX - Do be sure to remove it once all arches implement it.
569 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
571 ts->tv_sec = 0;
572 ts->tv_nsec = 0;
576 * read_boot_clock - Return time of the system start.
578 * Weak dummy function for arches that do not yet support it.
579 * Function to read the exact time the system has been started.
580 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
582 * XXX - Do be sure to remove it once all arches implement it.
584 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
586 ts->tv_sec = 0;
587 ts->tv_nsec = 0;
591 * timekeeping_init - Initializes the clocksource and common timekeeping values
593 void __init timekeeping_init(void)
595 struct clocksource *clock;
596 unsigned long flags;
597 struct timespec now, boot;
599 read_persistent_clock(&now);
600 read_boot_clock(&boot);
602 seqlock_init(&timekeeper.lock);
604 ntp_init();
606 write_seqlock_irqsave(&timekeeper.lock, flags);
607 clock = clocksource_default_clock();
608 if (clock->enable)
609 clock->enable(clock);
610 timekeeper_setup_internals(clock);
612 timekeeper.xtime.tv_sec = now.tv_sec;
613 timekeeper.xtime.tv_nsec = now.tv_nsec;
614 timekeeper.raw_time.tv_sec = 0;
615 timekeeper.raw_time.tv_nsec = 0;
616 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
617 boot.tv_sec = timekeeper.xtime.tv_sec;
618 boot.tv_nsec = timekeeper.xtime.tv_nsec;
620 set_normalized_timespec(&timekeeper.wall_to_monotonic,
621 -boot.tv_sec, -boot.tv_nsec);
622 update_rt_offset();
623 timekeeper.total_sleep_time.tv_sec = 0;
624 timekeeper.total_sleep_time.tv_nsec = 0;
625 write_sequnlock_irqrestore(&timekeeper.lock, flags);
628 /* time in seconds when suspend began */
629 static struct timespec timekeeping_suspend_time;
631 static void update_sleep_time(struct timespec t)
633 timekeeper.total_sleep_time = t;
634 timekeeper.offs_boot = timespec_to_ktime(t);
638 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
639 * @delta: pointer to a timespec delta value
641 * Takes a timespec offset measuring a suspend interval and properly
642 * adds the sleep offset to the timekeeping variables.
644 static void __timekeeping_inject_sleeptime(struct timespec *delta)
646 if (!timespec_valid(delta)) {
647 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
648 "sleep delta value!\n");
649 return;
652 timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
653 timekeeper.wall_to_monotonic =
654 timespec_sub(timekeeper.wall_to_monotonic, *delta);
655 update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
660 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
661 * @delta: pointer to a timespec delta value
663 * This hook is for architectures that cannot support read_persistent_clock
664 * because their RTC/persistent clock is only accessible when irqs are enabled.
666 * This function should only be called by rtc_resume(), and allows
667 * a suspend offset to be injected into the timekeeping values.
669 void timekeeping_inject_sleeptime(struct timespec *delta)
671 unsigned long flags;
672 struct timespec ts;
674 /* Make sure we don't set the clock twice */
675 read_persistent_clock(&ts);
676 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
677 return;
679 write_seqlock_irqsave(&timekeeper.lock, flags);
681 timekeeping_forward_now();
683 __timekeeping_inject_sleeptime(delta);
685 timekeeping_update(true);
687 write_sequnlock_irqrestore(&timekeeper.lock, flags);
689 /* signal hrtimers about time change */
690 clock_was_set();
695 * timekeeping_resume - Resumes the generic timekeeping subsystem.
697 * This is for the generic clocksource timekeeping.
698 * xtime/wall_to_monotonic/jiffies/etc are
699 * still managed by arch specific suspend/resume code.
701 static void timekeeping_resume(void)
703 unsigned long flags;
704 struct timespec ts;
706 read_persistent_clock(&ts);
708 clocksource_resume();
710 write_seqlock_irqsave(&timekeeper.lock, flags);
712 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
713 ts = timespec_sub(ts, timekeeping_suspend_time);
714 __timekeeping_inject_sleeptime(&ts);
716 /* re-base the last cycle value */
717 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
718 timekeeper.ntp_error = 0;
719 timekeeping_suspended = 0;
720 write_sequnlock_irqrestore(&timekeeper.lock, flags);
722 touch_softlockup_watchdog();
724 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
726 /* Resume hrtimers */
727 hrtimers_resume();
730 static int timekeeping_suspend(void)
732 unsigned long flags;
733 struct timespec delta, delta_delta;
734 static struct timespec old_delta;
736 read_persistent_clock(&timekeeping_suspend_time);
738 write_seqlock_irqsave(&timekeeper.lock, flags);
739 timekeeping_forward_now();
740 timekeeping_suspended = 1;
743 * To avoid drift caused by repeated suspend/resumes,
744 * which each can add ~1 second drift error,
745 * try to compensate so the difference in system time
746 * and persistent_clock time stays close to constant.
748 delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
749 delta_delta = timespec_sub(delta, old_delta);
750 if (abs(delta_delta.tv_sec) >= 2) {
752 * if delta_delta is too large, assume time correction
753 * has occured and set old_delta to the current delta.
755 old_delta = delta;
756 } else {
757 /* Otherwise try to adjust old_system to compensate */
758 timekeeping_suspend_time =
759 timespec_add(timekeeping_suspend_time, delta_delta);
761 write_sequnlock_irqrestore(&timekeeper.lock, flags);
763 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
764 clocksource_suspend();
766 return 0;
769 /* sysfs resume/suspend bits for timekeeping */
770 static struct syscore_ops timekeeping_syscore_ops = {
771 .resume = timekeeping_resume,
772 .suspend = timekeeping_suspend,
775 static int __init timekeeping_init_ops(void)
777 register_syscore_ops(&timekeeping_syscore_ops);
778 return 0;
781 device_initcall(timekeeping_init_ops);
784 * If the error is already larger, we look ahead even further
785 * to compensate for late or lost adjustments.
787 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
788 s64 *offset)
790 s64 tick_error, i;
791 u32 look_ahead, adj;
792 s32 error2, mult;
795 * Use the current error value to determine how much to look ahead.
796 * The larger the error the slower we adjust for it to avoid problems
797 * with losing too many ticks, otherwise we would overadjust and
798 * produce an even larger error. The smaller the adjustment the
799 * faster we try to adjust for it, as lost ticks can do less harm
800 * here. This is tuned so that an error of about 1 msec is adjusted
801 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
803 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
804 error2 = abs(error2);
805 for (look_ahead = 0; error2 > 0; look_ahead++)
806 error2 >>= 2;
809 * Now calculate the error in (1 << look_ahead) ticks, but first
810 * remove the single look ahead already included in the error.
812 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
813 tick_error -= timekeeper.xtime_interval >> 1;
814 error = ((error - tick_error) >> look_ahead) + tick_error;
816 /* Finally calculate the adjustment shift value. */
817 i = *interval;
818 mult = 1;
819 if (error < 0) {
820 error = -error;
821 *interval = -*interval;
822 *offset = -*offset;
823 mult = -1;
825 for (adj = 0; error > i; adj++)
826 error >>= 1;
828 *interval <<= adj;
829 *offset <<= adj;
830 return mult << adj;
834 * Adjust the multiplier to reduce the error value,
835 * this is optimized for the most common adjustments of -1,0,1,
836 * for other values we can do a bit more work.
838 static void timekeeping_adjust(s64 offset)
840 s64 error, interval = timekeeper.cycle_interval;
841 int adj;
844 * The point of this is to check if the error is greater than half
845 * an interval.
847 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
849 * Note we subtract one in the shift, so that error is really error*2.
850 * This "saves" dividing(shifting) interval twice, but keeps the
851 * (error > interval) comparison as still measuring if error is
852 * larger than half an interval.
854 * Note: It does not "save" on aggravation when reading the code.
856 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
857 if (error > interval) {
859 * We now divide error by 4(via shift), which checks if
860 * the error is greater than twice the interval.
861 * If it is greater, we need a bigadjust, if its smaller,
862 * we can adjust by 1.
864 error >>= 2;
866 * XXX - In update_wall_time, we round up to the next
867 * nanosecond, and store the amount rounded up into
868 * the error. This causes the likely below to be unlikely.
870 * The proper fix is to avoid rounding up by using
871 * the high precision timekeeper.xtime_nsec instead of
872 * xtime.tv_nsec everywhere. Fixing this will take some
873 * time.
875 if (likely(error <= interval))
876 adj = 1;
877 else
878 adj = timekeeping_bigadjust(error, &interval, &offset);
879 } else if (error < -interval) {
880 /* See comment above, this is just switched for the negative */
881 error >>= 2;
882 if (likely(error >= -interval)) {
883 adj = -1;
884 interval = -interval;
885 offset = -offset;
886 } else
887 adj = timekeeping_bigadjust(error, &interval, &offset);
888 } else /* No adjustment needed */
889 return;
891 if (unlikely(timekeeper.clock->maxadj &&
892 (timekeeper.mult + adj >
893 timekeeper.clock->mult + timekeeper.clock->maxadj))) {
894 printk_once(KERN_WARNING
895 "Adjusting %s more than 11%% (%ld vs %ld)\n",
896 timekeeper.clock->name, (long)timekeeper.mult + adj,
897 (long)timekeeper.clock->mult +
898 timekeeper.clock->maxadj);
901 * So the following can be confusing.
903 * To keep things simple, lets assume adj == 1 for now.
905 * When adj != 1, remember that the interval and offset values
906 * have been appropriately scaled so the math is the same.
908 * The basic idea here is that we're increasing the multiplier
909 * by one, this causes the xtime_interval to be incremented by
910 * one cycle_interval. This is because:
911 * xtime_interval = cycle_interval * mult
912 * So if mult is being incremented by one:
913 * xtime_interval = cycle_interval * (mult + 1)
914 * Its the same as:
915 * xtime_interval = (cycle_interval * mult) + cycle_interval
916 * Which can be shortened to:
917 * xtime_interval += cycle_interval
919 * So offset stores the non-accumulated cycles. Thus the current
920 * time (in shifted nanoseconds) is:
921 * now = (offset * adj) + xtime_nsec
922 * Now, even though we're adjusting the clock frequency, we have
923 * to keep time consistent. In other words, we can't jump back
924 * in time, and we also want to avoid jumping forward in time.
926 * So given the same offset value, we need the time to be the same
927 * both before and after the freq adjustment.
928 * now = (offset * adj_1) + xtime_nsec_1
929 * now = (offset * adj_2) + xtime_nsec_2
930 * So:
931 * (offset * adj_1) + xtime_nsec_1 =
932 * (offset * adj_2) + xtime_nsec_2
933 * And we know:
934 * adj_2 = adj_1 + 1
935 * So:
936 * (offset * adj_1) + xtime_nsec_1 =
937 * (offset * (adj_1+1)) + xtime_nsec_2
938 * (offset * adj_1) + xtime_nsec_1 =
939 * (offset * adj_1) + offset + xtime_nsec_2
940 * Canceling the sides:
941 * xtime_nsec_1 = offset + xtime_nsec_2
942 * Which gives us:
943 * xtime_nsec_2 = xtime_nsec_1 - offset
944 * Which simplfies to:
945 * xtime_nsec -= offset
947 * XXX - TODO: Doc ntp_error calculation.
949 timekeeper.mult += adj;
950 timekeeper.xtime_interval += interval;
951 timekeeper.xtime_nsec -= offset;
952 timekeeper.ntp_error -= (interval - offset) <<
953 timekeeper.ntp_error_shift;
958 * logarithmic_accumulation - shifted accumulation of cycles
960 * This functions accumulates a shifted interval of cycles into
961 * into a shifted interval nanoseconds. Allows for O(log) accumulation
962 * loop.
964 * Returns the unconsumed cycles.
966 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
968 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
969 u64 raw_nsecs;
971 /* If the offset is smaller than a shifted interval, do nothing */
972 if (offset < timekeeper.cycle_interval<<shift)
973 return offset;
975 /* Accumulate one shifted interval */
976 offset -= timekeeper.cycle_interval << shift;
977 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
979 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
980 while (timekeeper.xtime_nsec >= nsecps) {
981 int leap;
982 timekeeper.xtime_nsec -= nsecps;
983 timekeeper.xtime.tv_sec++;
984 leap = second_overflow(timekeeper.xtime.tv_sec);
985 timekeeper.xtime.tv_sec += leap;
986 timekeeper.wall_to_monotonic.tv_sec -= leap;
987 if (leap)
988 clock_was_set_delayed();
991 /* Accumulate raw time */
992 raw_nsecs = timekeeper.raw_interval << shift;
993 raw_nsecs += timekeeper.raw_time.tv_nsec;
994 if (raw_nsecs >= NSEC_PER_SEC) {
995 u64 raw_secs = raw_nsecs;
996 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
997 timekeeper.raw_time.tv_sec += raw_secs;
999 timekeeper.raw_time.tv_nsec = raw_nsecs;
1001 /* Accumulate error between NTP and clock interval */
1002 timekeeper.ntp_error += ntp_tick_length() << shift;
1003 timekeeper.ntp_error -=
1004 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
1005 (timekeeper.ntp_error_shift + shift);
1007 return offset;
1012 * update_wall_time - Uses the current clocksource to increment the wall time
1015 static void update_wall_time(void)
1017 struct clocksource *clock;
1018 cycle_t offset;
1019 int shift = 0, maxshift;
1020 unsigned long flags;
1022 write_seqlock_irqsave(&timekeeper.lock, flags);
1024 /* Make sure we're fully resumed: */
1025 if (unlikely(timekeeping_suspended))
1026 goto out;
1028 clock = timekeeper.clock;
1030 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1031 offset = timekeeper.cycle_interval;
1032 #else
1033 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1034 #endif
1035 timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
1036 timekeeper.shift;
1039 * With NO_HZ we may have to accumulate many cycle_intervals
1040 * (think "ticks") worth of time at once. To do this efficiently,
1041 * we calculate the largest doubling multiple of cycle_intervals
1042 * that is smaller than the offset. We then accumulate that
1043 * chunk in one go, and then try to consume the next smaller
1044 * doubled multiple.
1046 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1047 shift = max(0, shift);
1048 /* Bound shift to one less than what overflows tick_length */
1049 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1050 shift = min(shift, maxshift);
1051 while (offset >= timekeeper.cycle_interval) {
1052 offset = logarithmic_accumulation(offset, shift);
1053 if(offset < timekeeper.cycle_interval<<shift)
1054 shift--;
1057 /* correct the clock when NTP error is too big */
1058 timekeeping_adjust(offset);
1061 * Since in the loop above, we accumulate any amount of time
1062 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1063 * xtime_nsec to be fairly small after the loop. Further, if we're
1064 * slightly speeding the clocksource up in timekeeping_adjust(),
1065 * its possible the required corrective factor to xtime_nsec could
1066 * cause it to underflow.
1068 * Now, we cannot simply roll the accumulated second back, since
1069 * the NTP subsystem has been notified via second_overflow. So
1070 * instead we push xtime_nsec forward by the amount we underflowed,
1071 * and add that amount into the error.
1073 * We'll correct this error next time through this function, when
1074 * xtime_nsec is not as small.
1076 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1077 s64 neg = -(s64)timekeeper.xtime_nsec;
1078 timekeeper.xtime_nsec = 0;
1079 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
1084 * Store full nanoseconds into xtime after rounding it up and
1085 * add the remainder to the error difference.
1087 timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
1088 timekeeper.shift) + 1;
1089 timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
1090 timekeeper.shift;
1091 timekeeper.ntp_error += timekeeper.xtime_nsec <<
1092 timekeeper.ntp_error_shift;
1095 * Finally, make sure that after the rounding
1096 * xtime.tv_nsec isn't larger than NSEC_PER_SEC
1098 if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
1099 int leap;
1100 timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
1101 timekeeper.xtime.tv_sec++;
1102 leap = second_overflow(timekeeper.xtime.tv_sec);
1103 timekeeper.xtime.tv_sec += leap;
1104 timekeeper.wall_to_monotonic.tv_sec -= leap;
1105 if (leap)
1106 clock_was_set_delayed();
1109 timekeeping_update(false);
1111 out:
1112 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1117 * getboottime - Return the real time of system boot.
1118 * @ts: pointer to the timespec to be set
1120 * Returns the wall-time of boot in a timespec.
1122 * This is based on the wall_to_monotonic offset and the total suspend
1123 * time. Calls to settimeofday will affect the value returned (which
1124 * basically means that however wrong your real time clock is at boot time,
1125 * you get the right time here).
1127 void getboottime(struct timespec *ts)
1129 struct timespec boottime = {
1130 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
1131 timekeeper.total_sleep_time.tv_sec,
1132 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
1133 timekeeper.total_sleep_time.tv_nsec
1136 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
1138 EXPORT_SYMBOL_GPL(getboottime);
1142 * get_monotonic_boottime - Returns monotonic time since boot
1143 * @ts: pointer to the timespec to be set
1145 * Returns the monotonic time since boot in a timespec.
1147 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1148 * includes the time spent in suspend.
1150 void get_monotonic_boottime(struct timespec *ts)
1152 struct timespec tomono, sleep;
1153 unsigned int seq;
1154 s64 nsecs;
1156 WARN_ON(timekeeping_suspended);
1158 do {
1159 seq = read_seqbegin(&timekeeper.lock);
1160 *ts = timekeeper.xtime;
1161 tomono = timekeeper.wall_to_monotonic;
1162 sleep = timekeeper.total_sleep_time;
1163 nsecs = timekeeping_get_ns();
1165 } while (read_seqretry(&timekeeper.lock, seq));
1167 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1168 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1170 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1173 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1175 * Returns the monotonic time since boot in a ktime
1177 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1178 * includes the time spent in suspend.
1180 ktime_t ktime_get_boottime(void)
1182 struct timespec ts;
1184 get_monotonic_boottime(&ts);
1185 return timespec_to_ktime(ts);
1187 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1190 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1191 * @ts: pointer to the timespec to be converted
1193 void monotonic_to_bootbased(struct timespec *ts)
1195 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
1197 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1199 unsigned long get_seconds(void)
1201 return timekeeper.xtime.tv_sec;
1203 EXPORT_SYMBOL(get_seconds);
1205 struct timespec __current_kernel_time(void)
1207 return timekeeper.xtime;
1210 struct timespec current_kernel_time(void)
1212 struct timespec now;
1213 unsigned long seq;
1215 do {
1216 seq = read_seqbegin(&timekeeper.lock);
1218 now = timekeeper.xtime;
1219 } while (read_seqretry(&timekeeper.lock, seq));
1221 return now;
1223 EXPORT_SYMBOL(current_kernel_time);
1225 struct timespec get_monotonic_coarse(void)
1227 struct timespec now, mono;
1228 unsigned long seq;
1230 do {
1231 seq = read_seqbegin(&timekeeper.lock);
1233 now = timekeeper.xtime;
1234 mono = timekeeper.wall_to_monotonic;
1235 } while (read_seqretry(&timekeeper.lock, seq));
1237 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1238 now.tv_nsec + mono.tv_nsec);
1239 return now;
1243 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1244 * without sampling the sequence number in xtime_lock.
1245 * jiffies is defined in the linker script...
1247 void do_timer(unsigned long ticks)
1249 jiffies_64 += ticks;
1250 update_wall_time();
1251 calc_global_load(ticks);
1255 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1256 * and sleep offsets.
1257 * @xtim: pointer to timespec to be set with xtime
1258 * @wtom: pointer to timespec to be set with wall_to_monotonic
1259 * @sleep: pointer to timespec to be set with time in suspend
1261 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1262 struct timespec *wtom, struct timespec *sleep)
1264 unsigned long seq;
1266 do {
1267 seq = read_seqbegin(&timekeeper.lock);
1268 *xtim = timekeeper.xtime;
1269 *wtom = timekeeper.wall_to_monotonic;
1270 *sleep = timekeeper.total_sleep_time;
1271 } while (read_seqretry(&timekeeper.lock, seq));
1274 #ifdef CONFIG_HIGH_RES_TIMERS
1276 * ktime_get_update_offsets - hrtimer helper
1277 * @offs_real: pointer to storage for monotonic -> realtime offset
1278 * @offs_boot: pointer to storage for monotonic -> boottime offset
1280 * Returns current monotonic time and updates the offsets
1281 * Called from hrtimer_interupt() or retrigger_next_event()
1283 ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1285 ktime_t now;
1286 unsigned int seq;
1287 u64 secs, nsecs;
1289 do {
1290 seq = read_seqbegin(&timekeeper.lock);
1292 secs = timekeeper.xtime.tv_sec;
1293 nsecs = timekeeper.xtime.tv_nsec;
1294 nsecs += timekeeping_get_ns();
1295 /* If arch requires, add in gettimeoffset() */
1296 nsecs += arch_gettimeoffset();
1298 *offs_real = timekeeper.offs_real;
1299 *offs_boot = timekeeper.offs_boot;
1300 } while (read_seqretry(&timekeeper.lock, seq));
1302 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1303 now = ktime_sub(now, *offs_real);
1304 return now;
1306 #endif
1309 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1311 ktime_t ktime_get_monotonic_offset(void)
1313 unsigned long seq;
1314 struct timespec wtom;
1316 do {
1317 seq = read_seqbegin(&timekeeper.lock);
1318 wtom = timekeeper.wall_to_monotonic;
1319 } while (read_seqretry(&timekeeper.lock, seq));
1321 return timespec_to_ktime(wtom);
1323 EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1327 * xtime_update() - advances the timekeeping infrastructure
1328 * @ticks: number of ticks, that have elapsed since the last call.
1330 * Must be called with interrupts disabled.
1332 void xtime_update(unsigned long ticks)
1334 write_seqlock(&xtime_lock);
1335 do_timer(ticks);
1336 write_sequnlock(&xtime_lock);