[media] coda: export auxiliary buffers via debugfs
[linux-2.6/btrfs-unstable.git] / kernel / sched / cputime.c
blob72fdf06ef8652d5cb443b080f53ac117bd5517ba
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
29 void enable_sched_clock_irqtime(void)
31 sched_clock_irqtime = 1;
34 void disable_sched_clock_irqtime(void)
36 sched_clock_irqtime = 0;
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
47 void irqtime_account_irq(struct task_struct *curr)
49 unsigned long flags;
50 s64 delta;
51 int cpu;
53 if (!sched_clock_irqtime)
54 return;
56 local_irq_save(flags);
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
62 irq_time_write_begin();
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
74 irq_time_write_end();
75 local_irq_restore(flags);
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
79 static int irqtime_account_hi_update(void)
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
94 static int irqtime_account_si_update(void)
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
111 #define sched_clock_irqtime (0)
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
126 cpuacct_account_field(p, index, tmp);
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
138 int index;
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
150 /* Account for user time used */
151 acct_account_cputime(p);
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
171 /* Add guest time to cpustat. */
172 if (task_nice(p) > 0) {
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
200 /* Account for system time used */
201 acct_account_cputime(p);
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
214 int index;
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
228 __account_system_time(p, cputime, cputime_scaled, index);
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
235 void account_steal_time(cputime_t cputime)
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
246 void account_idle_time(cputime_t cputime)
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
257 static __always_inline bool steal_account_process_tick(void)
259 #ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
261 u64 steal;
262 cputime_t steal_ct;
264 steal = paravirt_steal_clock(smp_processor_id());
265 steal -= this_rq()->prev_steal_time;
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
272 steal_ct = nsecs_to_cputime(steal);
273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
275 account_steal_time(steal_ct);
276 return steal_ct;
278 #endif
279 return false;
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
288 struct signal_struct *sig = tsk->signal;
289 cputime_t utime, stime;
290 struct task_struct *t;
292 times->utime = sig->utime;
293 times->stime = sig->stime;
294 times->sum_exec_runtime = sig->sum_sched_runtime;
296 rcu_read_lock();
297 /* make sure we can trust tsk->thread_group list */
298 if (!likely(pid_alive(tsk)))
299 goto out;
301 t = tsk;
302 do {
303 task_cputime(t, &utime, &stime);
304 times->utime += utime;
305 times->stime += stime;
306 times->sum_exec_runtime += task_sched_runtime(t);
307 } while_each_thread(tsk, t);
308 out:
309 rcu_read_unlock();
312 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
314 * Account a tick to a process and cpustat
315 * @p: the process that the cpu time gets accounted to
316 * @user_tick: is the tick from userspace
317 * @rq: the pointer to rq
319 * Tick demultiplexing follows the order
320 * - pending hardirq update
321 * - pending softirq update
322 * - user_time
323 * - idle_time
324 * - system time
325 * - check for guest_time
326 * - else account as system_time
328 * Check for hardirq is done both for system and user time as there is
329 * no timer going off while we are on hardirq and hence we may never get an
330 * opportunity to update it solely in system time.
331 * p->stime and friends are only updated on system time and not on irq
332 * softirq as those do not count in task exec_runtime any more.
334 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
335 struct rq *rq, int ticks)
337 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
338 u64 cputime = (__force u64) cputime_one_jiffy;
339 u64 *cpustat = kcpustat_this_cpu->cpustat;
341 if (steal_account_process_tick())
342 return;
344 cputime *= ticks;
345 scaled *= ticks;
347 if (irqtime_account_hi_update()) {
348 cpustat[CPUTIME_IRQ] += cputime;
349 } else if (irqtime_account_si_update()) {
350 cpustat[CPUTIME_SOFTIRQ] += cputime;
351 } else if (this_cpu_ksoftirqd() == p) {
353 * ksoftirqd time do not get accounted in cpu_softirq_time.
354 * So, we have to handle it separately here.
355 * Also, p->stime needs to be updated for ksoftirqd.
357 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
358 } else if (user_tick) {
359 account_user_time(p, cputime, scaled);
360 } else if (p == rq->idle) {
361 account_idle_time(cputime);
362 } else if (p->flags & PF_VCPU) { /* System time or guest time */
363 account_guest_time(p, cputime, scaled);
364 } else {
365 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
369 static void irqtime_account_idle_ticks(int ticks)
371 struct rq *rq = this_rq();
373 irqtime_account_process_tick(current, 0, rq, ticks);
375 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
376 static inline void irqtime_account_idle_ticks(int ticks) {}
377 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
378 struct rq *rq, int nr_ticks) {}
379 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
382 * Use precise platform statistics if available:
384 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
386 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
387 void vtime_common_task_switch(struct task_struct *prev)
389 if (is_idle_task(prev))
390 vtime_account_idle(prev);
391 else
392 vtime_account_system(prev);
394 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
395 vtime_account_user(prev);
396 #endif
397 arch_vtime_task_switch(prev);
399 #endif
402 * Archs that account the whole time spent in the idle task
403 * (outside irq) as idle time can rely on this and just implement
404 * vtime_account_system() and vtime_account_idle(). Archs that
405 * have other meaning of the idle time (s390 only includes the
406 * time spent by the CPU when it's in low power mode) must override
407 * vtime_account().
409 #ifndef __ARCH_HAS_VTIME_ACCOUNT
410 void vtime_common_account_irq_enter(struct task_struct *tsk)
412 if (!in_interrupt()) {
414 * If we interrupted user, context_tracking_in_user()
415 * is 1 because the context tracking don't hook
416 * on irq entry/exit. This way we know if
417 * we need to flush user time on kernel entry.
419 if (context_tracking_in_user()) {
420 vtime_account_user(tsk);
421 return;
424 if (is_idle_task(tsk)) {
425 vtime_account_idle(tsk);
426 return;
429 vtime_account_system(tsk);
431 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
439 *ut = p->utime;
440 *st = p->stime;
443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
445 struct task_cputime cputime;
447 thread_group_cputime(p, &cputime);
449 *ut = cputime.utime;
450 *st = cputime.stime;
452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
458 void account_process_tick(struct task_struct *p, int user_tick)
460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461 struct rq *rq = this_rq();
463 if (vtime_accounting_enabled())
464 return;
466 if (sched_clock_irqtime) {
467 irqtime_account_process_tick(p, user_tick, rq, 1);
468 return;
471 if (steal_account_process_tick())
472 return;
474 if (user_tick)
475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478 one_jiffy_scaled);
479 else
480 account_idle_time(cputime_one_jiffy);
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
488 void account_steal_ticks(unsigned long ticks)
490 account_steal_time(jiffies_to_cputime(ticks));
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
497 void account_idle_ticks(unsigned long ticks)
500 if (sched_clock_irqtime) {
501 irqtime_account_idle_ticks(ticks);
502 return;
505 account_idle_time(jiffies_to_cputime(ticks));
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
512 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
514 u64 scaled;
516 for (;;) {
517 /* Make sure "rtime" is the bigger of stime/rtime */
518 if (stime > rtime)
519 swap(rtime, stime);
521 /* Make sure 'total' fits in 32 bits */
522 if (total >> 32)
523 goto drop_precision;
525 /* Does rtime (and thus stime) fit in 32 bits? */
526 if (!(rtime >> 32))
527 break;
529 /* Can we just balance rtime/stime rather than dropping bits? */
530 if (stime >> 31)
531 goto drop_precision;
533 /* We can grow stime and shrink rtime and try to make them both fit */
534 stime <<= 1;
535 rtime >>= 1;
536 continue;
538 drop_precision:
539 /* We drop from rtime, it has more bits than stime */
540 rtime >>= 1;
541 total >>= 1;
545 * Make sure gcc understands that this is a 32x32->64 multiply,
546 * followed by a 64/32->64 divide.
548 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
549 return (__force cputime_t) scaled;
553 * Adjust tick based cputime random precision against scheduler
554 * runtime accounting.
556 static void cputime_adjust(struct task_cputime *curr,
557 struct cputime *prev,
558 cputime_t *ut, cputime_t *st)
560 cputime_t rtime, stime, utime;
563 * Tick based cputime accounting depend on random scheduling
564 * timeslices of a task to be interrupted or not by the timer.
565 * Depending on these circumstances, the number of these interrupts
566 * may be over or under-optimistic, matching the real user and system
567 * cputime with a variable precision.
569 * Fix this by scaling these tick based values against the total
570 * runtime accounted by the CFS scheduler.
572 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
575 * Update userspace visible utime/stime values only if actual execution
576 * time is bigger than already exported. Note that can happen, that we
577 * provided bigger values due to scaling inaccuracy on big numbers.
579 if (prev->stime + prev->utime >= rtime)
580 goto out;
582 stime = curr->stime;
583 utime = curr->utime;
585 if (utime == 0) {
586 stime = rtime;
587 } else if (stime == 0) {
588 utime = rtime;
589 } else {
590 cputime_t total = stime + utime;
592 stime = scale_stime((__force u64)stime,
593 (__force u64)rtime, (__force u64)total);
594 utime = rtime - stime;
598 * If the tick based count grows faster than the scheduler one,
599 * the result of the scaling may go backward.
600 * Let's enforce monotonicity.
602 prev->stime = max(prev->stime, stime);
603 prev->utime = max(prev->utime, utime);
605 out:
606 *ut = prev->utime;
607 *st = prev->stime;
610 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
612 struct task_cputime cputime = {
613 .sum_exec_runtime = p->se.sum_exec_runtime,
616 task_cputime(p, &cputime.utime, &cputime.stime);
617 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
621 * Must be called with siglock held.
623 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
625 struct task_cputime cputime;
627 thread_group_cputime(p, &cputime);
628 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
630 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
632 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
633 static unsigned long long vtime_delta(struct task_struct *tsk)
635 unsigned long long clock;
637 clock = local_clock();
638 if (clock < tsk->vtime_snap)
639 return 0;
641 return clock - tsk->vtime_snap;
644 static cputime_t get_vtime_delta(struct task_struct *tsk)
646 unsigned long long delta = vtime_delta(tsk);
648 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
649 tsk->vtime_snap += delta;
651 /* CHECKME: always safe to convert nsecs to cputime? */
652 return nsecs_to_cputime(delta);
655 static void __vtime_account_system(struct task_struct *tsk)
657 cputime_t delta_cpu = get_vtime_delta(tsk);
659 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
662 void vtime_account_system(struct task_struct *tsk)
664 write_seqlock(&tsk->vtime_seqlock);
665 __vtime_account_system(tsk);
666 write_sequnlock(&tsk->vtime_seqlock);
669 void vtime_gen_account_irq_exit(struct task_struct *tsk)
671 write_seqlock(&tsk->vtime_seqlock);
672 __vtime_account_system(tsk);
673 if (context_tracking_in_user())
674 tsk->vtime_snap_whence = VTIME_USER;
675 write_sequnlock(&tsk->vtime_seqlock);
678 void vtime_account_user(struct task_struct *tsk)
680 cputime_t delta_cpu;
682 write_seqlock(&tsk->vtime_seqlock);
683 delta_cpu = get_vtime_delta(tsk);
684 tsk->vtime_snap_whence = VTIME_SYS;
685 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
686 write_sequnlock(&tsk->vtime_seqlock);
689 void vtime_user_enter(struct task_struct *tsk)
691 write_seqlock(&tsk->vtime_seqlock);
692 __vtime_account_system(tsk);
693 tsk->vtime_snap_whence = VTIME_USER;
694 write_sequnlock(&tsk->vtime_seqlock);
697 void vtime_guest_enter(struct task_struct *tsk)
700 * The flags must be updated under the lock with
701 * the vtime_snap flush and update.
702 * That enforces a right ordering and update sequence
703 * synchronization against the reader (task_gtime())
704 * that can thus safely catch up with a tickless delta.
706 write_seqlock(&tsk->vtime_seqlock);
707 __vtime_account_system(tsk);
708 current->flags |= PF_VCPU;
709 write_sequnlock(&tsk->vtime_seqlock);
711 EXPORT_SYMBOL_GPL(vtime_guest_enter);
713 void vtime_guest_exit(struct task_struct *tsk)
715 write_seqlock(&tsk->vtime_seqlock);
716 __vtime_account_system(tsk);
717 current->flags &= ~PF_VCPU;
718 write_sequnlock(&tsk->vtime_seqlock);
720 EXPORT_SYMBOL_GPL(vtime_guest_exit);
722 void vtime_account_idle(struct task_struct *tsk)
724 cputime_t delta_cpu = get_vtime_delta(tsk);
726 account_idle_time(delta_cpu);
729 void arch_vtime_task_switch(struct task_struct *prev)
731 write_seqlock(&prev->vtime_seqlock);
732 prev->vtime_snap_whence = VTIME_SLEEPING;
733 write_sequnlock(&prev->vtime_seqlock);
735 write_seqlock(&current->vtime_seqlock);
736 current->vtime_snap_whence = VTIME_SYS;
737 current->vtime_snap = sched_clock_cpu(smp_processor_id());
738 write_sequnlock(&current->vtime_seqlock);
741 void vtime_init_idle(struct task_struct *t, int cpu)
743 unsigned long flags;
745 write_seqlock_irqsave(&t->vtime_seqlock, flags);
746 t->vtime_snap_whence = VTIME_SYS;
747 t->vtime_snap = sched_clock_cpu(cpu);
748 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
751 cputime_t task_gtime(struct task_struct *t)
753 unsigned int seq;
754 cputime_t gtime;
756 do {
757 seq = read_seqbegin(&t->vtime_seqlock);
759 gtime = t->gtime;
760 if (t->flags & PF_VCPU)
761 gtime += vtime_delta(t);
763 } while (read_seqretry(&t->vtime_seqlock, seq));
765 return gtime;
769 * Fetch cputime raw values from fields of task_struct and
770 * add up the pending nohz execution time since the last
771 * cputime snapshot.
773 static void
774 fetch_task_cputime(struct task_struct *t,
775 cputime_t *u_dst, cputime_t *s_dst,
776 cputime_t *u_src, cputime_t *s_src,
777 cputime_t *udelta, cputime_t *sdelta)
779 unsigned int seq;
780 unsigned long long delta;
782 do {
783 *udelta = 0;
784 *sdelta = 0;
786 seq = read_seqbegin(&t->vtime_seqlock);
788 if (u_dst)
789 *u_dst = *u_src;
790 if (s_dst)
791 *s_dst = *s_src;
793 /* Task is sleeping, nothing to add */
794 if (t->vtime_snap_whence == VTIME_SLEEPING ||
795 is_idle_task(t))
796 continue;
798 delta = vtime_delta(t);
801 * Task runs either in user or kernel space, add pending nohz time to
802 * the right place.
804 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
805 *udelta = delta;
806 } else {
807 if (t->vtime_snap_whence == VTIME_SYS)
808 *sdelta = delta;
810 } while (read_seqretry(&t->vtime_seqlock, seq));
814 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
816 cputime_t udelta, sdelta;
818 fetch_task_cputime(t, utime, stime, &t->utime,
819 &t->stime, &udelta, &sdelta);
820 if (utime)
821 *utime += udelta;
822 if (stime)
823 *stime += sdelta;
826 void task_cputime_scaled(struct task_struct *t,
827 cputime_t *utimescaled, cputime_t *stimescaled)
829 cputime_t udelta, sdelta;
831 fetch_task_cputime(t, utimescaled, stimescaled,
832 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
833 if (utimescaled)
834 *utimescaled += cputime_to_scaled(udelta);
835 if (stimescaled)
836 *stimescaled += cputime_to_scaled(sdelta);
838 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */