ARM: dts: socfpga: unuse the slot-node and deprecate the supports-highspeed for
[linux-2.6/btrfs-unstable.git] / mm / memory.c
blobab3537bcfed2334fd1636cfc8e74ff634e54c943
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
72 #include "internal.h"
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
94 void * high_memory;
96 EXPORT_SYMBOL(high_memory);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
107 #else
109 #endif
111 static int __init disable_randmaps(char *s)
113 randomize_va_space = 0;
114 return 1;
116 __setup("norandmaps", disable_randmaps);
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init init_zero_pfn(void)
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
129 core_initcall(init_zero_pfn);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct *mm)
136 int i;
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
144 current->rss_stat.events = 0;
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
149 struct task_struct *task = current;
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct *task)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather *tlb)
183 struct mmu_gather_batch *batch;
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
203 tlb->active->next = batch;
204 tlb->active = batch;
206 return 1;
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
216 tlb->mm = mm;
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
220 tlb->need_flush_all = 0;
221 tlb->start = start;
222 tlb->end = end;
223 tlb->need_flush = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 tlb->need_flush = 0;
238 tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb);
241 #endif
244 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
246 struct mmu_gather_batch *batch;
248 for (batch = &tlb->local; batch; batch = batch->next) {
249 free_pages_and_swap_cache(batch->pages, batch->nr);
250 batch->nr = 0;
252 tlb->active = &tlb->local;
255 void tlb_flush_mmu(struct mmu_gather *tlb)
257 if (!tlb->need_flush)
258 return;
259 tlb_flush_mmu_tlbonly(tlb);
260 tlb_flush_mmu_free(tlb);
263 /* tlb_finish_mmu
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
269 struct mmu_gather_batch *batch, *next;
271 tlb_flush_mmu(tlb);
273 /* keep the page table cache within bounds */
274 check_pgt_cache();
276 for (batch = tlb->local.next; batch; batch = next) {
277 next = batch->next;
278 free_pages((unsigned long)batch, 0);
280 tlb->local.next = NULL;
283 /* __tlb_remove_page
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
291 struct mmu_gather_batch *batch;
293 VM_BUG_ON(!tlb->need_flush);
295 batch = tlb->active;
296 batch->pages[batch->nr++] = page;
297 if (batch->nr == batch->max) {
298 if (!tlb_next_batch(tlb))
299 return 0;
300 batch = tlb->active;
302 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
304 return batch->max - batch->nr;
307 #endif /* HAVE_GENERIC_MMU_GATHER */
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 * See the comment near struct mmu_table_batch.
315 static void tlb_remove_table_smp_sync(void *arg)
317 /* Simply deliver the interrupt */
320 static void tlb_remove_table_one(void *table)
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 __tlb_remove_table(table);
333 static void tlb_remove_table_rcu(struct rcu_head *head)
335 struct mmu_table_batch *batch;
336 int i;
338 batch = container_of(head, struct mmu_table_batch, rcu);
340 for (i = 0; i < batch->nr; i++)
341 __tlb_remove_table(batch->tables[i]);
343 free_page((unsigned long)batch);
346 void tlb_table_flush(struct mmu_gather *tlb)
348 struct mmu_table_batch **batch = &tlb->batch;
350 if (*batch) {
351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 *batch = NULL;
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
358 struct mmu_table_batch **batch = &tlb->batch;
360 tlb->need_flush = 1;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
377 (*batch)->nr = 0;
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 unsigned long addr)
393 pgtable_t token = pmd_pgtable(*pmd);
394 pmd_clear(pmd);
395 pte_free_tlb(tlb, token, addr);
396 atomic_long_dec(&tlb->mm->nr_ptes);
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
403 pmd_t *pmd;
404 unsigned long next;
405 unsigned long start;
407 start = addr;
408 pmd = pmd_offset(pud, addr);
409 do {
410 next = pmd_addr_end(addr, end);
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
413 free_pte_range(tlb, pmd, addr);
414 } while (pmd++, addr = next, addr != end);
416 start &= PUD_MASK;
417 if (start < floor)
418 return;
419 if (ceiling) {
420 ceiling &= PUD_MASK;
421 if (!ceiling)
422 return;
424 if (end - 1 > ceiling - 1)
425 return;
427 pmd = pmd_offset(pud, start);
428 pud_clear(pud);
429 pmd_free_tlb(tlb, pmd, start);
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 unsigned long addr, unsigned long end,
434 unsigned long floor, unsigned long ceiling)
436 pud_t *pud;
437 unsigned long next;
438 unsigned long start;
440 start = addr;
441 pud = pud_offset(pgd, addr);
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
446 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447 } while (pud++, addr = next, addr != end);
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
457 if (end - 1 > ceiling - 1)
458 return;
460 pud = pud_offset(pgd, start);
461 pgd_clear(pgd);
462 pud_free_tlb(tlb, pud, start);
466 * This function frees user-level page tables of a process.
468 void free_pgd_range(struct mmu_gather *tlb,
469 unsigned long addr, unsigned long end,
470 unsigned long floor, unsigned long ceiling)
472 pgd_t *pgd;
473 unsigned long next;
476 * The next few lines have given us lots of grief...
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
501 addr &= PMD_MASK;
502 if (addr < floor) {
503 addr += PMD_SIZE;
504 if (!addr)
505 return;
507 if (ceiling) {
508 ceiling &= PMD_MASK;
509 if (!ceiling)
510 return;
512 if (end - 1 > ceiling - 1)
513 end -= PMD_SIZE;
514 if (addr > end - 1)
515 return;
517 pgd = pgd_offset(tlb->mm, addr);
518 do {
519 next = pgd_addr_end(addr, end);
520 if (pgd_none_or_clear_bad(pgd))
521 continue;
522 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523 } while (pgd++, addr = next, addr != end);
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527 unsigned long floor, unsigned long ceiling)
529 while (vma) {
530 struct vm_area_struct *next = vma->vm_next;
531 unsigned long addr = vma->vm_start;
534 * Hide vma from rmap and truncate_pagecache before freeing
535 * pgtables
537 unlink_anon_vmas(vma);
538 unlink_file_vma(vma);
540 if (is_vm_hugetlb_page(vma)) {
541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542 floor, next? next->vm_start: ceiling);
543 } else {
545 * Optimization: gather nearby vmas into one call down
547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548 && !is_vm_hugetlb_page(next)) {
549 vma = next;
550 next = vma->vm_next;
551 unlink_anon_vmas(vma);
552 unlink_file_vma(vma);
554 free_pgd_range(tlb, addr, vma->vm_end,
555 floor, next? next->vm_start: ceiling);
557 vma = next;
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 pmd_t *pmd, unsigned long address)
564 spinlock_t *ptl;
565 pgtable_t new = pte_alloc_one(mm, address);
566 int wait_split_huge_page;
567 if (!new)
568 return -ENOMEM;
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585 ptl = pmd_lock(mm, pmd);
586 wait_split_huge_page = 0;
587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
588 atomic_long_inc(&mm->nr_ptes);
589 pmd_populate(mm, pmd, new);
590 new = NULL;
591 } else if (unlikely(pmd_trans_splitting(*pmd)))
592 wait_split_huge_page = 1;
593 spin_unlock(ptl);
594 if (new)
595 pte_free(mm, new);
596 if (wait_split_huge_page)
597 wait_split_huge_page(vma->anon_vma, pmd);
598 return 0;
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm.page_table_lock);
610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm, pmd, new);
612 new = NULL;
613 } else
614 VM_BUG_ON(pmd_trans_splitting(*pmd));
615 spin_unlock(&init_mm.page_table_lock);
616 if (new)
617 pte_free_kernel(&init_mm, new);
618 return 0;
621 static inline void init_rss_vec(int *rss)
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 int i;
630 if (current->mm == mm)
631 sync_mm_rss(mm);
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
642 * The calling function must still handle the error.
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
665 if (nr_unshown) {
666 printk(KERN_ALERT
667 "BUG: Bad page map: %lu messages suppressed\n",
668 nr_unshown);
669 nr_unshown = 0;
671 nr_shown = 0;
673 if (nr_shown++ == 0)
674 resume = jiffies + 60 * HZ;
676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 index = linear_page_index(vma, addr);
679 printk(KERN_ALERT
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
681 current->comm,
682 (long long)pte_val(pte), (long long)pmd_val(*pmd));
683 if (page)
684 dump_page(page, "bad pte");
685 printk(KERN_ALERT
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691 if (vma->vm_ops)
692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 vma->vm_ops->fault);
694 if (vma->vm_file)
695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 vma->vm_file->f_op->mmap);
697 dump_stack();
698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
711 * described below.
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724 * And for normal mappings this is false.
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
745 #else
746 # define HAVE_PTE_SPECIAL 0
747 #endif
748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 pte_t pte)
751 unsigned long pfn = pte_pfn(pte);
753 if (HAVE_PTE_SPECIAL) {
754 if (likely(!pte_special(pte) || pte_numa(pte)))
755 goto check_pfn;
756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 return NULL;
758 if (!is_zero_pfn(pfn))
759 print_bad_pte(vma, addr, pte, NULL);
760 return NULL;
763 /* !HAVE_PTE_SPECIAL case follows: */
765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 if (vma->vm_flags & VM_MIXEDMAP) {
767 if (!pfn_valid(pfn))
768 return NULL;
769 goto out;
770 } else {
771 unsigned long off;
772 off = (addr - vma->vm_start) >> PAGE_SHIFT;
773 if (pfn == vma->vm_pgoff + off)
774 return NULL;
775 if (!is_cow_mapping(vma->vm_flags))
776 return NULL;
780 check_pfn:
781 if (unlikely(pfn > highest_memmap_pfn)) {
782 print_bad_pte(vma, addr, pte, NULL);
783 return NULL;
786 if (is_zero_pfn(pfn))
787 return NULL;
790 * NOTE! We still have PageReserved() pages in the page tables.
791 * eg. VDSO mappings can cause them to exist.
793 out:
794 return pfn_to_page(pfn);
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806 unsigned long addr, int *rss)
808 unsigned long vm_flags = vma->vm_flags;
809 pte_t pte = *src_pte;
810 struct page *page;
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte))) {
814 if (!pte_file(pte)) {
815 swp_entry_t entry = pte_to_swp_entry(pte);
817 if (swap_duplicate(entry) < 0)
818 return entry.val;
820 /* make sure dst_mm is on swapoff's mmlist. */
821 if (unlikely(list_empty(&dst_mm->mmlist))) {
822 spin_lock(&mmlist_lock);
823 if (list_empty(&dst_mm->mmlist))
824 list_add(&dst_mm->mmlist,
825 &src_mm->mmlist);
826 spin_unlock(&mmlist_lock);
828 if (likely(!non_swap_entry(entry)))
829 rss[MM_SWAPENTS]++;
830 else if (is_migration_entry(entry)) {
831 page = migration_entry_to_page(entry);
833 if (PageAnon(page))
834 rss[MM_ANONPAGES]++;
835 else
836 rss[MM_FILEPAGES]++;
838 if (is_write_migration_entry(entry) &&
839 is_cow_mapping(vm_flags)) {
841 * COW mappings require pages in both
842 * parent and child to be set to read.
844 make_migration_entry_read(&entry);
845 pte = swp_entry_to_pte(entry);
846 if (pte_swp_soft_dirty(*src_pte))
847 pte = pte_swp_mksoft_dirty(pte);
848 set_pte_at(src_mm, addr, src_pte, pte);
852 goto out_set_pte;
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
859 if (is_cow_mapping(vm_flags)) {
860 ptep_set_wrprotect(src_mm, addr, src_pte);
861 pte = pte_wrprotect(pte);
865 * If it's a shared mapping, mark it clean in
866 * the child
868 if (vm_flags & VM_SHARED)
869 pte = pte_mkclean(pte);
870 pte = pte_mkold(pte);
872 page = vm_normal_page(vma, addr, pte);
873 if (page) {
874 get_page(page);
875 page_dup_rmap(page);
876 if (PageAnon(page))
877 rss[MM_ANONPAGES]++;
878 else
879 rss[MM_FILEPAGES]++;
882 out_set_pte:
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 unsigned long addr, unsigned long end)
891 pte_t *orig_src_pte, *orig_dst_pte;
892 pte_t *src_pte, *dst_pte;
893 spinlock_t *src_ptl, *dst_ptl;
894 int progress = 0;
895 int rss[NR_MM_COUNTERS];
896 swp_entry_t entry = (swp_entry_t){0};
898 again:
899 init_rss_vec(rss);
901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902 if (!dst_pte)
903 return -ENOMEM;
904 src_pte = pte_offset_map(src_pmd, addr);
905 src_ptl = pte_lockptr(src_mm, src_pmd);
906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 orig_src_pte = src_pte;
908 orig_dst_pte = dst_pte;
909 arch_enter_lazy_mmu_mode();
911 do {
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
916 if (progress >= 32) {
917 progress = 0;
918 if (need_resched() ||
919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 break;
922 if (pte_none(*src_pte)) {
923 progress++;
924 continue;
926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 vma, addr, rss);
928 if (entry.val)
929 break;
930 progress += 8;
931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933 arch_leave_lazy_mmu_mode();
934 spin_unlock(src_ptl);
935 pte_unmap(orig_src_pte);
936 add_mm_rss_vec(dst_mm, rss);
937 pte_unmap_unlock(orig_dst_pte, dst_ptl);
938 cond_resched();
940 if (entry.val) {
941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 return -ENOMEM;
943 progress = 0;
945 if (addr != end)
946 goto again;
947 return 0;
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 unsigned long addr, unsigned long end)
954 pmd_t *src_pmd, *dst_pmd;
955 unsigned long next;
957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 if (!dst_pmd)
959 return -ENOMEM;
960 src_pmd = pmd_offset(src_pud, addr);
961 do {
962 next = pmd_addr_end(addr, end);
963 if (pmd_trans_huge(*src_pmd)) {
964 int err;
965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 err = copy_huge_pmd(dst_mm, src_mm,
967 dst_pmd, src_pmd, addr, vma);
968 if (err == -ENOMEM)
969 return -ENOMEM;
970 if (!err)
971 continue;
972 /* fall through */
974 if (pmd_none_or_clear_bad(src_pmd))
975 continue;
976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 vma, addr, next))
978 return -ENOMEM;
979 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 return 0;
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 unsigned long addr, unsigned long end)
987 pud_t *src_pud, *dst_pud;
988 unsigned long next;
990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 if (!dst_pud)
992 return -ENOMEM;
993 src_pud = pud_offset(src_pgd, addr);
994 do {
995 next = pud_addr_end(addr, end);
996 if (pud_none_or_clear_bad(src_pud))
997 continue;
998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 vma, addr, next))
1000 return -ENOMEM;
1001 } while (dst_pud++, src_pud++, addr = next, addr != end);
1002 return 0;
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 struct vm_area_struct *vma)
1008 pgd_t *src_pgd, *dst_pgd;
1009 unsigned long next;
1010 unsigned long addr = vma->vm_start;
1011 unsigned long end = vma->vm_end;
1012 unsigned long mmun_start; /* For mmu_notifiers */
1013 unsigned long mmun_end; /* For mmu_notifiers */
1014 bool is_cow;
1015 int ret;
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024 VM_PFNMAP | VM_MIXEDMAP))) {
1025 if (!vma->anon_vma)
1026 return 0;
1029 if (is_vm_hugetlb_page(vma))
1030 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1032 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1034 * We do not free on error cases below as remove_vma
1035 * gets called on error from higher level routine
1037 ret = track_pfn_copy(vma);
1038 if (ret)
1039 return ret;
1043 * We need to invalidate the secondary MMU mappings only when
1044 * there could be a permission downgrade on the ptes of the
1045 * parent mm. And a permission downgrade will only happen if
1046 * is_cow_mapping() returns true.
1048 is_cow = is_cow_mapping(vma->vm_flags);
1049 mmun_start = addr;
1050 mmun_end = end;
1051 if (is_cow)
1052 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053 mmun_end);
1055 ret = 0;
1056 dst_pgd = pgd_offset(dst_mm, addr);
1057 src_pgd = pgd_offset(src_mm, addr);
1058 do {
1059 next = pgd_addr_end(addr, end);
1060 if (pgd_none_or_clear_bad(src_pgd))
1061 continue;
1062 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063 vma, addr, next))) {
1064 ret = -ENOMEM;
1065 break;
1067 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1071 return ret;
1074 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1075 struct vm_area_struct *vma, pmd_t *pmd,
1076 unsigned long addr, unsigned long end,
1077 struct zap_details *details)
1079 struct mm_struct *mm = tlb->mm;
1080 int force_flush = 0;
1081 int rss[NR_MM_COUNTERS];
1082 spinlock_t *ptl;
1083 pte_t *start_pte;
1084 pte_t *pte;
1086 again:
1087 init_rss_vec(rss);
1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 pte = start_pte;
1090 arch_enter_lazy_mmu_mode();
1091 do {
1092 pte_t ptent = *pte;
1093 if (pte_none(ptent)) {
1094 continue;
1097 if (pte_present(ptent)) {
1098 struct page *page;
1100 page = vm_normal_page(vma, addr, ptent);
1101 if (unlikely(details) && page) {
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1107 if (details->check_mapping &&
1108 details->check_mapping != page->mapping)
1109 continue;
1111 * Each page->index must be checked when
1112 * invalidating or truncating nonlinear.
1114 if (details->nonlinear_vma &&
1115 (page->index < details->first_index ||
1116 page->index > details->last_index))
1117 continue;
1119 ptent = ptep_get_and_clear_full(mm, addr, pte,
1120 tlb->fullmm);
1121 tlb_remove_tlb_entry(tlb, pte, addr);
1122 if (unlikely(!page))
1123 continue;
1124 if (unlikely(details) && details->nonlinear_vma
1125 && linear_page_index(details->nonlinear_vma,
1126 addr) != page->index) {
1127 pte_t ptfile = pgoff_to_pte(page->index);
1128 if (pte_soft_dirty(ptent))
1129 pte_file_mksoft_dirty(ptfile);
1130 set_pte_at(mm, addr, pte, ptfile);
1132 if (PageAnon(page))
1133 rss[MM_ANONPAGES]--;
1134 else {
1135 if (pte_dirty(ptent)) {
1136 force_flush = 1;
1137 set_page_dirty(page);
1139 if (pte_young(ptent) &&
1140 likely(!(vma->vm_flags & VM_SEQ_READ)))
1141 mark_page_accessed(page);
1142 rss[MM_FILEPAGES]--;
1144 page_remove_rmap(page);
1145 if (unlikely(page_mapcount(page) < 0))
1146 print_bad_pte(vma, addr, ptent, page);
1147 if (unlikely(!__tlb_remove_page(tlb, page))) {
1148 force_flush = 1;
1149 break;
1151 continue;
1154 * If details->check_mapping, we leave swap entries;
1155 * if details->nonlinear_vma, we leave file entries.
1157 if (unlikely(details))
1158 continue;
1159 if (pte_file(ptent)) {
1160 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1161 print_bad_pte(vma, addr, ptent, NULL);
1162 } else {
1163 swp_entry_t entry = pte_to_swp_entry(ptent);
1165 if (!non_swap_entry(entry))
1166 rss[MM_SWAPENTS]--;
1167 else if (is_migration_entry(entry)) {
1168 struct page *page;
1170 page = migration_entry_to_page(entry);
1172 if (PageAnon(page))
1173 rss[MM_ANONPAGES]--;
1174 else
1175 rss[MM_FILEPAGES]--;
1177 if (unlikely(!free_swap_and_cache(entry)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1180 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1181 } while (pte++, addr += PAGE_SIZE, addr != end);
1183 add_mm_rss_vec(mm, rss);
1184 arch_leave_lazy_mmu_mode();
1186 /* Do the actual TLB flush before dropping ptl */
1187 if (force_flush) {
1188 unsigned long old_end;
1191 * Flush the TLB just for the previous segment,
1192 * then update the range to be the remaining
1193 * TLB range.
1195 old_end = tlb->end;
1196 tlb->end = addr;
1197 tlb_flush_mmu_tlbonly(tlb);
1198 tlb->start = addr;
1199 tlb->end = old_end;
1201 pte_unmap_unlock(start_pte, ptl);
1204 * If we forced a TLB flush (either due to running out of
1205 * batch buffers or because we needed to flush dirty TLB
1206 * entries before releasing the ptl), free the batched
1207 * memory too. Restart if we didn't do everything.
1209 if (force_flush) {
1210 force_flush = 0;
1211 tlb_flush_mmu_free(tlb);
1213 if (addr != end)
1214 goto again;
1217 return addr;
1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 struct vm_area_struct *vma, pud_t *pud,
1222 unsigned long addr, unsigned long end,
1223 struct zap_details *details)
1225 pmd_t *pmd;
1226 unsigned long next;
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
1231 if (pmd_trans_huge(*pmd)) {
1232 if (next - addr != HPAGE_PMD_SIZE) {
1233 #ifdef CONFIG_DEBUG_VM
1234 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1235 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1236 __func__, addr, end,
1237 vma->vm_start,
1238 vma->vm_end);
1239 BUG();
1241 #endif
1242 split_huge_page_pmd(vma, addr, pmd);
1243 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1244 goto next;
1245 /* fall through */
1248 * Here there can be other concurrent MADV_DONTNEED or
1249 * trans huge page faults running, and if the pmd is
1250 * none or trans huge it can change under us. This is
1251 * because MADV_DONTNEED holds the mmap_sem in read
1252 * mode.
1254 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1255 goto next;
1256 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1257 next:
1258 cond_resched();
1259 } while (pmd++, addr = next, addr != end);
1261 return addr;
1264 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1265 struct vm_area_struct *vma, pgd_t *pgd,
1266 unsigned long addr, unsigned long end,
1267 struct zap_details *details)
1269 pud_t *pud;
1270 unsigned long next;
1272 pud = pud_offset(pgd, addr);
1273 do {
1274 next = pud_addr_end(addr, end);
1275 if (pud_none_or_clear_bad(pud))
1276 continue;
1277 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1278 } while (pud++, addr = next, addr != end);
1280 return addr;
1283 static void unmap_page_range(struct mmu_gather *tlb,
1284 struct vm_area_struct *vma,
1285 unsigned long addr, unsigned long end,
1286 struct zap_details *details)
1288 pgd_t *pgd;
1289 unsigned long next;
1291 if (details && !details->check_mapping && !details->nonlinear_vma)
1292 details = NULL;
1294 BUG_ON(addr >= end);
1295 tlb_start_vma(tlb, vma);
1296 pgd = pgd_offset(vma->vm_mm, addr);
1297 do {
1298 next = pgd_addr_end(addr, end);
1299 if (pgd_none_or_clear_bad(pgd))
1300 continue;
1301 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1302 } while (pgd++, addr = next, addr != end);
1303 tlb_end_vma(tlb, vma);
1307 static void unmap_single_vma(struct mmu_gather *tlb,
1308 struct vm_area_struct *vma, unsigned long start_addr,
1309 unsigned long end_addr,
1310 struct zap_details *details)
1312 unsigned long start = max(vma->vm_start, start_addr);
1313 unsigned long end;
1315 if (start >= vma->vm_end)
1316 return;
1317 end = min(vma->vm_end, end_addr);
1318 if (end <= vma->vm_start)
1319 return;
1321 if (vma->vm_file)
1322 uprobe_munmap(vma, start, end);
1324 if (unlikely(vma->vm_flags & VM_PFNMAP))
1325 untrack_pfn(vma, 0, 0);
1327 if (start != end) {
1328 if (unlikely(is_vm_hugetlb_page(vma))) {
1330 * It is undesirable to test vma->vm_file as it
1331 * should be non-null for valid hugetlb area.
1332 * However, vm_file will be NULL in the error
1333 * cleanup path of mmap_region. When
1334 * hugetlbfs ->mmap method fails,
1335 * mmap_region() nullifies vma->vm_file
1336 * before calling this function to clean up.
1337 * Since no pte has actually been setup, it is
1338 * safe to do nothing in this case.
1340 if (vma->vm_file) {
1341 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1342 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1343 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345 } else
1346 unmap_page_range(tlb, vma, start, end, details);
1351 * unmap_vmas - unmap a range of memory covered by a list of vma's
1352 * @tlb: address of the caller's struct mmu_gather
1353 * @vma: the starting vma
1354 * @start_addr: virtual address at which to start unmapping
1355 * @end_addr: virtual address at which to end unmapping
1357 * Unmap all pages in the vma list.
1359 * Only addresses between `start' and `end' will be unmapped.
1361 * The VMA list must be sorted in ascending virtual address order.
1363 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1364 * range after unmap_vmas() returns. So the only responsibility here is to
1365 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1366 * drops the lock and schedules.
1368 void unmap_vmas(struct mmu_gather *tlb,
1369 struct vm_area_struct *vma, unsigned long start_addr,
1370 unsigned long end_addr)
1372 struct mm_struct *mm = vma->vm_mm;
1374 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1375 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1376 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1377 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1381 * zap_page_range - remove user pages in a given range
1382 * @vma: vm_area_struct holding the applicable pages
1383 * @start: starting address of pages to zap
1384 * @size: number of bytes to zap
1385 * @details: details of nonlinear truncation or shared cache invalidation
1387 * Caller must protect the VMA list
1389 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1390 unsigned long size, struct zap_details *details)
1392 struct mm_struct *mm = vma->vm_mm;
1393 struct mmu_gather tlb;
1394 unsigned long end = start + size;
1396 lru_add_drain();
1397 tlb_gather_mmu(&tlb, mm, start, end);
1398 update_hiwater_rss(mm);
1399 mmu_notifier_invalidate_range_start(mm, start, end);
1400 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1401 unmap_single_vma(&tlb, vma, start, end, details);
1402 mmu_notifier_invalidate_range_end(mm, start, end);
1403 tlb_finish_mmu(&tlb, start, end);
1407 * zap_page_range_single - remove user pages in a given range
1408 * @vma: vm_area_struct holding the applicable pages
1409 * @address: starting address of pages to zap
1410 * @size: number of bytes to zap
1411 * @details: details of nonlinear truncation or shared cache invalidation
1413 * The range must fit into one VMA.
1415 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1416 unsigned long size, struct zap_details *details)
1418 struct mm_struct *mm = vma->vm_mm;
1419 struct mmu_gather tlb;
1420 unsigned long end = address + size;
1422 lru_add_drain();
1423 tlb_gather_mmu(&tlb, mm, address, end);
1424 update_hiwater_rss(mm);
1425 mmu_notifier_invalidate_range_start(mm, address, end);
1426 unmap_single_vma(&tlb, vma, address, end, details);
1427 mmu_notifier_invalidate_range_end(mm, address, end);
1428 tlb_finish_mmu(&tlb, address, end);
1432 * zap_vma_ptes - remove ptes mapping the vma
1433 * @vma: vm_area_struct holding ptes to be zapped
1434 * @address: starting address of pages to zap
1435 * @size: number of bytes to zap
1437 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1439 * The entire address range must be fully contained within the vma.
1441 * Returns 0 if successful.
1443 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1444 unsigned long size)
1446 if (address < vma->vm_start || address + size > vma->vm_end ||
1447 !(vma->vm_flags & VM_PFNMAP))
1448 return -1;
1449 zap_page_range_single(vma, address, size, NULL);
1450 return 0;
1452 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1454 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1455 spinlock_t **ptl)
1457 pgd_t * pgd = pgd_offset(mm, addr);
1458 pud_t * pud = pud_alloc(mm, pgd, addr);
1459 if (pud) {
1460 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1461 if (pmd) {
1462 VM_BUG_ON(pmd_trans_huge(*pmd));
1463 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1466 return NULL;
1470 * This is the old fallback for page remapping.
1472 * For historical reasons, it only allows reserved pages. Only
1473 * old drivers should use this, and they needed to mark their
1474 * pages reserved for the old functions anyway.
1476 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1477 struct page *page, pgprot_t prot)
1479 struct mm_struct *mm = vma->vm_mm;
1480 int retval;
1481 pte_t *pte;
1482 spinlock_t *ptl;
1484 retval = -EINVAL;
1485 if (PageAnon(page))
1486 goto out;
1487 retval = -ENOMEM;
1488 flush_dcache_page(page);
1489 pte = get_locked_pte(mm, addr, &ptl);
1490 if (!pte)
1491 goto out;
1492 retval = -EBUSY;
1493 if (!pte_none(*pte))
1494 goto out_unlock;
1496 /* Ok, finally just insert the thing.. */
1497 get_page(page);
1498 inc_mm_counter_fast(mm, MM_FILEPAGES);
1499 page_add_file_rmap(page);
1500 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1502 retval = 0;
1503 pte_unmap_unlock(pte, ptl);
1504 return retval;
1505 out_unlock:
1506 pte_unmap_unlock(pte, ptl);
1507 out:
1508 return retval;
1512 * vm_insert_page - insert single page into user vma
1513 * @vma: user vma to map to
1514 * @addr: target user address of this page
1515 * @page: source kernel page
1517 * This allows drivers to insert individual pages they've allocated
1518 * into a user vma.
1520 * The page has to be a nice clean _individual_ kernel allocation.
1521 * If you allocate a compound page, you need to have marked it as
1522 * such (__GFP_COMP), or manually just split the page up yourself
1523 * (see split_page()).
1525 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1526 * took an arbitrary page protection parameter. This doesn't allow
1527 * that. Your vma protection will have to be set up correctly, which
1528 * means that if you want a shared writable mapping, you'd better
1529 * ask for a shared writable mapping!
1531 * The page does not need to be reserved.
1533 * Usually this function is called from f_op->mmap() handler
1534 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1535 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1536 * function from other places, for example from page-fault handler.
1538 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1539 struct page *page)
1541 if (addr < vma->vm_start || addr >= vma->vm_end)
1542 return -EFAULT;
1543 if (!page_count(page))
1544 return -EINVAL;
1545 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1546 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1547 BUG_ON(vma->vm_flags & VM_PFNMAP);
1548 vma->vm_flags |= VM_MIXEDMAP;
1550 return insert_page(vma, addr, page, vma->vm_page_prot);
1552 EXPORT_SYMBOL(vm_insert_page);
1554 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1555 unsigned long pfn, pgprot_t prot)
1557 struct mm_struct *mm = vma->vm_mm;
1558 int retval;
1559 pte_t *pte, entry;
1560 spinlock_t *ptl;
1562 retval = -ENOMEM;
1563 pte = get_locked_pte(mm, addr, &ptl);
1564 if (!pte)
1565 goto out;
1566 retval = -EBUSY;
1567 if (!pte_none(*pte))
1568 goto out_unlock;
1570 /* Ok, finally just insert the thing.. */
1571 entry = pte_mkspecial(pfn_pte(pfn, prot));
1572 set_pte_at(mm, addr, pte, entry);
1573 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1575 retval = 0;
1576 out_unlock:
1577 pte_unmap_unlock(pte, ptl);
1578 out:
1579 return retval;
1583 * vm_insert_pfn - insert single pfn into user vma
1584 * @vma: user vma to map to
1585 * @addr: target user address of this page
1586 * @pfn: source kernel pfn
1588 * Similar to vm_insert_page, this allows drivers to insert individual pages
1589 * they've allocated into a user vma. Same comments apply.
1591 * This function should only be called from a vm_ops->fault handler, and
1592 * in that case the handler should return NULL.
1594 * vma cannot be a COW mapping.
1596 * As this is called only for pages that do not currently exist, we
1597 * do not need to flush old virtual caches or the TLB.
1599 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600 unsigned long pfn)
1602 int ret;
1603 pgprot_t pgprot = vma->vm_page_prot;
1605 * Technically, architectures with pte_special can avoid all these
1606 * restrictions (same for remap_pfn_range). However we would like
1607 * consistency in testing and feature parity among all, so we should
1608 * try to keep these invariants in place for everybody.
1610 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1611 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1612 (VM_PFNMAP|VM_MIXEDMAP));
1613 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1614 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1616 if (addr < vma->vm_start || addr >= vma->vm_end)
1617 return -EFAULT;
1618 if (track_pfn_insert(vma, &pgprot, pfn))
1619 return -EINVAL;
1621 ret = insert_pfn(vma, addr, pfn, pgprot);
1623 return ret;
1625 EXPORT_SYMBOL(vm_insert_pfn);
1627 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1628 unsigned long pfn)
1630 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1632 if (addr < vma->vm_start || addr >= vma->vm_end)
1633 return -EFAULT;
1636 * If we don't have pte special, then we have to use the pfn_valid()
1637 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1638 * refcount the page if pfn_valid is true (hence insert_page rather
1639 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1640 * without pte special, it would there be refcounted as a normal page.
1642 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1643 struct page *page;
1645 page = pfn_to_page(pfn);
1646 return insert_page(vma, addr, page, vma->vm_page_prot);
1648 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1650 EXPORT_SYMBOL(vm_insert_mixed);
1653 * maps a range of physical memory into the requested pages. the old
1654 * mappings are removed. any references to nonexistent pages results
1655 * in null mappings (currently treated as "copy-on-access")
1657 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1658 unsigned long addr, unsigned long end,
1659 unsigned long pfn, pgprot_t prot)
1661 pte_t *pte;
1662 spinlock_t *ptl;
1664 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1665 if (!pte)
1666 return -ENOMEM;
1667 arch_enter_lazy_mmu_mode();
1668 do {
1669 BUG_ON(!pte_none(*pte));
1670 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1671 pfn++;
1672 } while (pte++, addr += PAGE_SIZE, addr != end);
1673 arch_leave_lazy_mmu_mode();
1674 pte_unmap_unlock(pte - 1, ptl);
1675 return 0;
1678 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1679 unsigned long addr, unsigned long end,
1680 unsigned long pfn, pgprot_t prot)
1682 pmd_t *pmd;
1683 unsigned long next;
1685 pfn -= addr >> PAGE_SHIFT;
1686 pmd = pmd_alloc(mm, pud, addr);
1687 if (!pmd)
1688 return -ENOMEM;
1689 VM_BUG_ON(pmd_trans_huge(*pmd));
1690 do {
1691 next = pmd_addr_end(addr, end);
1692 if (remap_pte_range(mm, pmd, addr, next,
1693 pfn + (addr >> PAGE_SHIFT), prot))
1694 return -ENOMEM;
1695 } while (pmd++, addr = next, addr != end);
1696 return 0;
1699 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1700 unsigned long addr, unsigned long end,
1701 unsigned long pfn, pgprot_t prot)
1703 pud_t *pud;
1704 unsigned long next;
1706 pfn -= addr >> PAGE_SHIFT;
1707 pud = pud_alloc(mm, pgd, addr);
1708 if (!pud)
1709 return -ENOMEM;
1710 do {
1711 next = pud_addr_end(addr, end);
1712 if (remap_pmd_range(mm, pud, addr, next,
1713 pfn + (addr >> PAGE_SHIFT), prot))
1714 return -ENOMEM;
1715 } while (pud++, addr = next, addr != end);
1716 return 0;
1720 * remap_pfn_range - remap kernel memory to userspace
1721 * @vma: user vma to map to
1722 * @addr: target user address to start at
1723 * @pfn: physical address of kernel memory
1724 * @size: size of map area
1725 * @prot: page protection flags for this mapping
1727 * Note: this is only safe if the mm semaphore is held when called.
1729 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1730 unsigned long pfn, unsigned long size, pgprot_t prot)
1732 pgd_t *pgd;
1733 unsigned long next;
1734 unsigned long end = addr + PAGE_ALIGN(size);
1735 struct mm_struct *mm = vma->vm_mm;
1736 int err;
1739 * Physically remapped pages are special. Tell the
1740 * rest of the world about it:
1741 * VM_IO tells people not to look at these pages
1742 * (accesses can have side effects).
1743 * VM_PFNMAP tells the core MM that the base pages are just
1744 * raw PFN mappings, and do not have a "struct page" associated
1745 * with them.
1746 * VM_DONTEXPAND
1747 * Disable vma merging and expanding with mremap().
1748 * VM_DONTDUMP
1749 * Omit vma from core dump, even when VM_IO turned off.
1751 * There's a horrible special case to handle copy-on-write
1752 * behaviour that some programs depend on. We mark the "original"
1753 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1754 * See vm_normal_page() for details.
1756 if (is_cow_mapping(vma->vm_flags)) {
1757 if (addr != vma->vm_start || end != vma->vm_end)
1758 return -EINVAL;
1759 vma->vm_pgoff = pfn;
1762 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1763 if (err)
1764 return -EINVAL;
1766 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1768 BUG_ON(addr >= end);
1769 pfn -= addr >> PAGE_SHIFT;
1770 pgd = pgd_offset(mm, addr);
1771 flush_cache_range(vma, addr, end);
1772 do {
1773 next = pgd_addr_end(addr, end);
1774 err = remap_pud_range(mm, pgd, addr, next,
1775 pfn + (addr >> PAGE_SHIFT), prot);
1776 if (err)
1777 break;
1778 } while (pgd++, addr = next, addr != end);
1780 if (err)
1781 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1783 return err;
1785 EXPORT_SYMBOL(remap_pfn_range);
1788 * vm_iomap_memory - remap memory to userspace
1789 * @vma: user vma to map to
1790 * @start: start of area
1791 * @len: size of area
1793 * This is a simplified io_remap_pfn_range() for common driver use. The
1794 * driver just needs to give us the physical memory range to be mapped,
1795 * we'll figure out the rest from the vma information.
1797 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1798 * whatever write-combining details or similar.
1800 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1802 unsigned long vm_len, pfn, pages;
1804 /* Check that the physical memory area passed in looks valid */
1805 if (start + len < start)
1806 return -EINVAL;
1808 * You *really* shouldn't map things that aren't page-aligned,
1809 * but we've historically allowed it because IO memory might
1810 * just have smaller alignment.
1812 len += start & ~PAGE_MASK;
1813 pfn = start >> PAGE_SHIFT;
1814 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1815 if (pfn + pages < pfn)
1816 return -EINVAL;
1818 /* We start the mapping 'vm_pgoff' pages into the area */
1819 if (vma->vm_pgoff > pages)
1820 return -EINVAL;
1821 pfn += vma->vm_pgoff;
1822 pages -= vma->vm_pgoff;
1824 /* Can we fit all of the mapping? */
1825 vm_len = vma->vm_end - vma->vm_start;
1826 if (vm_len >> PAGE_SHIFT > pages)
1827 return -EINVAL;
1829 /* Ok, let it rip */
1830 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1832 EXPORT_SYMBOL(vm_iomap_memory);
1834 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1835 unsigned long addr, unsigned long end,
1836 pte_fn_t fn, void *data)
1838 pte_t *pte;
1839 int err;
1840 pgtable_t token;
1841 spinlock_t *uninitialized_var(ptl);
1843 pte = (mm == &init_mm) ?
1844 pte_alloc_kernel(pmd, addr) :
1845 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1846 if (!pte)
1847 return -ENOMEM;
1849 BUG_ON(pmd_huge(*pmd));
1851 arch_enter_lazy_mmu_mode();
1853 token = pmd_pgtable(*pmd);
1855 do {
1856 err = fn(pte++, token, addr, data);
1857 if (err)
1858 break;
1859 } while (addr += PAGE_SIZE, addr != end);
1861 arch_leave_lazy_mmu_mode();
1863 if (mm != &init_mm)
1864 pte_unmap_unlock(pte-1, ptl);
1865 return err;
1868 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1869 unsigned long addr, unsigned long end,
1870 pte_fn_t fn, void *data)
1872 pmd_t *pmd;
1873 unsigned long next;
1874 int err;
1876 BUG_ON(pud_huge(*pud));
1878 pmd = pmd_alloc(mm, pud, addr);
1879 if (!pmd)
1880 return -ENOMEM;
1881 do {
1882 next = pmd_addr_end(addr, end);
1883 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1884 if (err)
1885 break;
1886 } while (pmd++, addr = next, addr != end);
1887 return err;
1890 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1891 unsigned long addr, unsigned long end,
1892 pte_fn_t fn, void *data)
1894 pud_t *pud;
1895 unsigned long next;
1896 int err;
1898 pud = pud_alloc(mm, pgd, addr);
1899 if (!pud)
1900 return -ENOMEM;
1901 do {
1902 next = pud_addr_end(addr, end);
1903 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1904 if (err)
1905 break;
1906 } while (pud++, addr = next, addr != end);
1907 return err;
1911 * Scan a region of virtual memory, filling in page tables as necessary
1912 * and calling a provided function on each leaf page table.
1914 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1915 unsigned long size, pte_fn_t fn, void *data)
1917 pgd_t *pgd;
1918 unsigned long next;
1919 unsigned long end = addr + size;
1920 int err;
1922 BUG_ON(addr >= end);
1923 pgd = pgd_offset(mm, addr);
1924 do {
1925 next = pgd_addr_end(addr, end);
1926 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1927 if (err)
1928 break;
1929 } while (pgd++, addr = next, addr != end);
1931 return err;
1933 EXPORT_SYMBOL_GPL(apply_to_page_range);
1936 * handle_pte_fault chooses page fault handler according to an entry
1937 * which was read non-atomically. Before making any commitment, on
1938 * those architectures or configurations (e.g. i386 with PAE) which
1939 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1940 * must check under lock before unmapping the pte and proceeding
1941 * (but do_wp_page is only called after already making such a check;
1942 * and do_anonymous_page can safely check later on).
1944 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1945 pte_t *page_table, pte_t orig_pte)
1947 int same = 1;
1948 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1949 if (sizeof(pte_t) > sizeof(unsigned long)) {
1950 spinlock_t *ptl = pte_lockptr(mm, pmd);
1951 spin_lock(ptl);
1952 same = pte_same(*page_table, orig_pte);
1953 spin_unlock(ptl);
1955 #endif
1956 pte_unmap(page_table);
1957 return same;
1960 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1962 debug_dma_assert_idle(src);
1965 * If the source page was a PFN mapping, we don't have
1966 * a "struct page" for it. We do a best-effort copy by
1967 * just copying from the original user address. If that
1968 * fails, we just zero-fill it. Live with it.
1970 if (unlikely(!src)) {
1971 void *kaddr = kmap_atomic(dst);
1972 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1975 * This really shouldn't fail, because the page is there
1976 * in the page tables. But it might just be unreadable,
1977 * in which case we just give up and fill the result with
1978 * zeroes.
1980 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1981 clear_page(kaddr);
1982 kunmap_atomic(kaddr);
1983 flush_dcache_page(dst);
1984 } else
1985 copy_user_highpage(dst, src, va, vma);
1989 * Notify the address space that the page is about to become writable so that
1990 * it can prohibit this or wait for the page to get into an appropriate state.
1992 * We do this without the lock held, so that it can sleep if it needs to.
1994 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1995 unsigned long address)
1997 struct vm_fault vmf;
1998 int ret;
2000 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2001 vmf.pgoff = page->index;
2002 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2003 vmf.page = page;
2005 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2006 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2007 return ret;
2008 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2009 lock_page(page);
2010 if (!page->mapping) {
2011 unlock_page(page);
2012 return 0; /* retry */
2014 ret |= VM_FAULT_LOCKED;
2015 } else
2016 VM_BUG_ON_PAGE(!PageLocked(page), page);
2017 return ret;
2021 * This routine handles present pages, when users try to write
2022 * to a shared page. It is done by copying the page to a new address
2023 * and decrementing the shared-page counter for the old page.
2025 * Note that this routine assumes that the protection checks have been
2026 * done by the caller (the low-level page fault routine in most cases).
2027 * Thus we can safely just mark it writable once we've done any necessary
2028 * COW.
2030 * We also mark the page dirty at this point even though the page will
2031 * change only once the write actually happens. This avoids a few races,
2032 * and potentially makes it more efficient.
2034 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2035 * but allow concurrent faults), with pte both mapped and locked.
2036 * We return with mmap_sem still held, but pte unmapped and unlocked.
2038 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2039 unsigned long address, pte_t *page_table, pmd_t *pmd,
2040 spinlock_t *ptl, pte_t orig_pte)
2041 __releases(ptl)
2043 struct page *old_page, *new_page = NULL;
2044 pte_t entry;
2045 int ret = 0;
2046 int page_mkwrite = 0;
2047 struct page *dirty_page = NULL;
2048 unsigned long mmun_start = 0; /* For mmu_notifiers */
2049 unsigned long mmun_end = 0; /* For mmu_notifiers */
2050 struct mem_cgroup *memcg;
2052 old_page = vm_normal_page(vma, address, orig_pte);
2053 if (!old_page) {
2055 * VM_MIXEDMAP !pfn_valid() case
2057 * We should not cow pages in a shared writeable mapping.
2058 * Just mark the pages writable as we can't do any dirty
2059 * accounting on raw pfn maps.
2061 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2062 (VM_WRITE|VM_SHARED))
2063 goto reuse;
2064 goto gotten;
2068 * Take out anonymous pages first, anonymous shared vmas are
2069 * not dirty accountable.
2071 if (PageAnon(old_page) && !PageKsm(old_page)) {
2072 if (!trylock_page(old_page)) {
2073 page_cache_get(old_page);
2074 pte_unmap_unlock(page_table, ptl);
2075 lock_page(old_page);
2076 page_table = pte_offset_map_lock(mm, pmd, address,
2077 &ptl);
2078 if (!pte_same(*page_table, orig_pte)) {
2079 unlock_page(old_page);
2080 goto unlock;
2082 page_cache_release(old_page);
2084 if (reuse_swap_page(old_page)) {
2086 * The page is all ours. Move it to our anon_vma so
2087 * the rmap code will not search our parent or siblings.
2088 * Protected against the rmap code by the page lock.
2090 page_move_anon_rmap(old_page, vma, address);
2091 unlock_page(old_page);
2092 goto reuse;
2094 unlock_page(old_page);
2095 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2096 (VM_WRITE|VM_SHARED))) {
2098 * Only catch write-faults on shared writable pages,
2099 * read-only shared pages can get COWed by
2100 * get_user_pages(.write=1, .force=1).
2102 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2103 int tmp;
2104 page_cache_get(old_page);
2105 pte_unmap_unlock(page_table, ptl);
2106 tmp = do_page_mkwrite(vma, old_page, address);
2107 if (unlikely(!tmp || (tmp &
2108 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2109 page_cache_release(old_page);
2110 return tmp;
2113 * Since we dropped the lock we need to revalidate
2114 * the PTE as someone else may have changed it. If
2115 * they did, we just return, as we can count on the
2116 * MMU to tell us if they didn't also make it writable.
2118 page_table = pte_offset_map_lock(mm, pmd, address,
2119 &ptl);
2120 if (!pte_same(*page_table, orig_pte)) {
2121 unlock_page(old_page);
2122 goto unlock;
2125 page_mkwrite = 1;
2127 dirty_page = old_page;
2128 get_page(dirty_page);
2130 reuse:
2132 * Clear the pages cpupid information as the existing
2133 * information potentially belongs to a now completely
2134 * unrelated process.
2136 if (old_page)
2137 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2139 flush_cache_page(vma, address, pte_pfn(orig_pte));
2140 entry = pte_mkyoung(orig_pte);
2141 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2142 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2143 update_mmu_cache(vma, address, page_table);
2144 pte_unmap_unlock(page_table, ptl);
2145 ret |= VM_FAULT_WRITE;
2147 if (!dirty_page)
2148 return ret;
2151 * Yes, Virginia, this is actually required to prevent a race
2152 * with clear_page_dirty_for_io() from clearing the page dirty
2153 * bit after it clear all dirty ptes, but before a racing
2154 * do_wp_page installs a dirty pte.
2156 * do_shared_fault is protected similarly.
2158 if (!page_mkwrite) {
2159 wait_on_page_locked(dirty_page);
2160 set_page_dirty_balance(dirty_page);
2161 /* file_update_time outside page_lock */
2162 if (vma->vm_file)
2163 file_update_time(vma->vm_file);
2165 put_page(dirty_page);
2166 if (page_mkwrite) {
2167 struct address_space *mapping = dirty_page->mapping;
2169 set_page_dirty(dirty_page);
2170 unlock_page(dirty_page);
2171 page_cache_release(dirty_page);
2172 if (mapping) {
2174 * Some device drivers do not set page.mapping
2175 * but still dirty their pages
2177 balance_dirty_pages_ratelimited(mapping);
2181 return ret;
2185 * Ok, we need to copy. Oh, well..
2187 page_cache_get(old_page);
2188 gotten:
2189 pte_unmap_unlock(page_table, ptl);
2191 if (unlikely(anon_vma_prepare(vma)))
2192 goto oom;
2194 if (is_zero_pfn(pte_pfn(orig_pte))) {
2195 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2196 if (!new_page)
2197 goto oom;
2198 } else {
2199 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2200 if (!new_page)
2201 goto oom;
2202 cow_user_page(new_page, old_page, address, vma);
2204 __SetPageUptodate(new_page);
2206 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2207 goto oom_free_new;
2209 mmun_start = address & PAGE_MASK;
2210 mmun_end = mmun_start + PAGE_SIZE;
2211 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2214 * Re-check the pte - we dropped the lock
2216 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2217 if (likely(pte_same(*page_table, orig_pte))) {
2218 if (old_page) {
2219 if (!PageAnon(old_page)) {
2220 dec_mm_counter_fast(mm, MM_FILEPAGES);
2221 inc_mm_counter_fast(mm, MM_ANONPAGES);
2223 } else
2224 inc_mm_counter_fast(mm, MM_ANONPAGES);
2225 flush_cache_page(vma, address, pte_pfn(orig_pte));
2226 entry = mk_pte(new_page, vma->vm_page_prot);
2227 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2229 * Clear the pte entry and flush it first, before updating the
2230 * pte with the new entry. This will avoid a race condition
2231 * seen in the presence of one thread doing SMC and another
2232 * thread doing COW.
2234 ptep_clear_flush(vma, address, page_table);
2235 page_add_new_anon_rmap(new_page, vma, address);
2236 mem_cgroup_commit_charge(new_page, memcg, false);
2237 lru_cache_add_active_or_unevictable(new_page, vma);
2239 * We call the notify macro here because, when using secondary
2240 * mmu page tables (such as kvm shadow page tables), we want the
2241 * new page to be mapped directly into the secondary page table.
2243 set_pte_at_notify(mm, address, page_table, entry);
2244 update_mmu_cache(vma, address, page_table);
2245 if (old_page) {
2247 * Only after switching the pte to the new page may
2248 * we remove the mapcount here. Otherwise another
2249 * process may come and find the rmap count decremented
2250 * before the pte is switched to the new page, and
2251 * "reuse" the old page writing into it while our pte
2252 * here still points into it and can be read by other
2253 * threads.
2255 * The critical issue is to order this
2256 * page_remove_rmap with the ptp_clear_flush above.
2257 * Those stores are ordered by (if nothing else,)
2258 * the barrier present in the atomic_add_negative
2259 * in page_remove_rmap.
2261 * Then the TLB flush in ptep_clear_flush ensures that
2262 * no process can access the old page before the
2263 * decremented mapcount is visible. And the old page
2264 * cannot be reused until after the decremented
2265 * mapcount is visible. So transitively, TLBs to
2266 * old page will be flushed before it can be reused.
2268 page_remove_rmap(old_page);
2271 /* Free the old page.. */
2272 new_page = old_page;
2273 ret |= VM_FAULT_WRITE;
2274 } else
2275 mem_cgroup_cancel_charge(new_page, memcg);
2277 if (new_page)
2278 page_cache_release(new_page);
2279 unlock:
2280 pte_unmap_unlock(page_table, ptl);
2281 if (mmun_end > mmun_start)
2282 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2283 if (old_page) {
2285 * Don't let another task, with possibly unlocked vma,
2286 * keep the mlocked page.
2288 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2289 lock_page(old_page); /* LRU manipulation */
2290 munlock_vma_page(old_page);
2291 unlock_page(old_page);
2293 page_cache_release(old_page);
2295 return ret;
2296 oom_free_new:
2297 page_cache_release(new_page);
2298 oom:
2299 if (old_page)
2300 page_cache_release(old_page);
2301 return VM_FAULT_OOM;
2304 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2305 unsigned long start_addr, unsigned long end_addr,
2306 struct zap_details *details)
2308 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2311 static inline void unmap_mapping_range_tree(struct rb_root *root,
2312 struct zap_details *details)
2314 struct vm_area_struct *vma;
2315 pgoff_t vba, vea, zba, zea;
2317 vma_interval_tree_foreach(vma, root,
2318 details->first_index, details->last_index) {
2320 vba = vma->vm_pgoff;
2321 vea = vba + vma_pages(vma) - 1;
2322 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2323 zba = details->first_index;
2324 if (zba < vba)
2325 zba = vba;
2326 zea = details->last_index;
2327 if (zea > vea)
2328 zea = vea;
2330 unmap_mapping_range_vma(vma,
2331 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2332 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2333 details);
2337 static inline void unmap_mapping_range_list(struct list_head *head,
2338 struct zap_details *details)
2340 struct vm_area_struct *vma;
2343 * In nonlinear VMAs there is no correspondence between virtual address
2344 * offset and file offset. So we must perform an exhaustive search
2345 * across *all* the pages in each nonlinear VMA, not just the pages
2346 * whose virtual address lies outside the file truncation point.
2348 list_for_each_entry(vma, head, shared.nonlinear) {
2349 details->nonlinear_vma = vma;
2350 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2355 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2356 * @mapping: the address space containing mmaps to be unmapped.
2357 * @holebegin: byte in first page to unmap, relative to the start of
2358 * the underlying file. This will be rounded down to a PAGE_SIZE
2359 * boundary. Note that this is different from truncate_pagecache(), which
2360 * must keep the partial page. In contrast, we must get rid of
2361 * partial pages.
2362 * @holelen: size of prospective hole in bytes. This will be rounded
2363 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2364 * end of the file.
2365 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2366 * but 0 when invalidating pagecache, don't throw away private data.
2368 void unmap_mapping_range(struct address_space *mapping,
2369 loff_t const holebegin, loff_t const holelen, int even_cows)
2371 struct zap_details details;
2372 pgoff_t hba = holebegin >> PAGE_SHIFT;
2373 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2375 /* Check for overflow. */
2376 if (sizeof(holelen) > sizeof(hlen)) {
2377 long long holeend =
2378 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2379 if (holeend & ~(long long)ULONG_MAX)
2380 hlen = ULONG_MAX - hba + 1;
2383 details.check_mapping = even_cows? NULL: mapping;
2384 details.nonlinear_vma = NULL;
2385 details.first_index = hba;
2386 details.last_index = hba + hlen - 1;
2387 if (details.last_index < details.first_index)
2388 details.last_index = ULONG_MAX;
2391 mutex_lock(&mapping->i_mmap_mutex);
2392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2393 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2394 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2395 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2396 mutex_unlock(&mapping->i_mmap_mutex);
2398 EXPORT_SYMBOL(unmap_mapping_range);
2401 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2402 * but allow concurrent faults), and pte mapped but not yet locked.
2403 * We return with pte unmapped and unlocked.
2405 * We return with the mmap_sem locked or unlocked in the same cases
2406 * as does filemap_fault().
2408 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2409 unsigned long address, pte_t *page_table, pmd_t *pmd,
2410 unsigned int flags, pte_t orig_pte)
2412 spinlock_t *ptl;
2413 struct page *page, *swapcache;
2414 struct mem_cgroup *memcg;
2415 swp_entry_t entry;
2416 pte_t pte;
2417 int locked;
2418 int exclusive = 0;
2419 int ret = 0;
2421 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2422 goto out;
2424 entry = pte_to_swp_entry(orig_pte);
2425 if (unlikely(non_swap_entry(entry))) {
2426 if (is_migration_entry(entry)) {
2427 migration_entry_wait(mm, pmd, address);
2428 } else if (is_hwpoison_entry(entry)) {
2429 ret = VM_FAULT_HWPOISON;
2430 } else {
2431 print_bad_pte(vma, address, orig_pte, NULL);
2432 ret = VM_FAULT_SIGBUS;
2434 goto out;
2436 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2437 page = lookup_swap_cache(entry);
2438 if (!page) {
2439 page = swapin_readahead(entry,
2440 GFP_HIGHUSER_MOVABLE, vma, address);
2441 if (!page) {
2443 * Back out if somebody else faulted in this pte
2444 * while we released the pte lock.
2446 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2447 if (likely(pte_same(*page_table, orig_pte)))
2448 ret = VM_FAULT_OOM;
2449 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2450 goto unlock;
2453 /* Had to read the page from swap area: Major fault */
2454 ret = VM_FAULT_MAJOR;
2455 count_vm_event(PGMAJFAULT);
2456 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2457 } else if (PageHWPoison(page)) {
2459 * hwpoisoned dirty swapcache pages are kept for killing
2460 * owner processes (which may be unknown at hwpoison time)
2462 ret = VM_FAULT_HWPOISON;
2463 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2464 swapcache = page;
2465 goto out_release;
2468 swapcache = page;
2469 locked = lock_page_or_retry(page, mm, flags);
2471 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2472 if (!locked) {
2473 ret |= VM_FAULT_RETRY;
2474 goto out_release;
2478 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2479 * release the swapcache from under us. The page pin, and pte_same
2480 * test below, are not enough to exclude that. Even if it is still
2481 * swapcache, we need to check that the page's swap has not changed.
2483 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2484 goto out_page;
2486 page = ksm_might_need_to_copy(page, vma, address);
2487 if (unlikely(!page)) {
2488 ret = VM_FAULT_OOM;
2489 page = swapcache;
2490 goto out_page;
2493 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2494 ret = VM_FAULT_OOM;
2495 goto out_page;
2499 * Back out if somebody else already faulted in this pte.
2501 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2502 if (unlikely(!pte_same(*page_table, orig_pte)))
2503 goto out_nomap;
2505 if (unlikely(!PageUptodate(page))) {
2506 ret = VM_FAULT_SIGBUS;
2507 goto out_nomap;
2511 * The page isn't present yet, go ahead with the fault.
2513 * Be careful about the sequence of operations here.
2514 * To get its accounting right, reuse_swap_page() must be called
2515 * while the page is counted on swap but not yet in mapcount i.e.
2516 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2517 * must be called after the swap_free(), or it will never succeed.
2520 inc_mm_counter_fast(mm, MM_ANONPAGES);
2521 dec_mm_counter_fast(mm, MM_SWAPENTS);
2522 pte = mk_pte(page, vma->vm_page_prot);
2523 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2524 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2525 flags &= ~FAULT_FLAG_WRITE;
2526 ret |= VM_FAULT_WRITE;
2527 exclusive = 1;
2529 flush_icache_page(vma, page);
2530 if (pte_swp_soft_dirty(orig_pte))
2531 pte = pte_mksoft_dirty(pte);
2532 set_pte_at(mm, address, page_table, pte);
2533 if (page == swapcache) {
2534 do_page_add_anon_rmap(page, vma, address, exclusive);
2535 mem_cgroup_commit_charge(page, memcg, true);
2536 } else { /* ksm created a completely new copy */
2537 page_add_new_anon_rmap(page, vma, address);
2538 mem_cgroup_commit_charge(page, memcg, false);
2539 lru_cache_add_active_or_unevictable(page, vma);
2542 swap_free(entry);
2543 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2544 try_to_free_swap(page);
2545 unlock_page(page);
2546 if (page != swapcache) {
2548 * Hold the lock to avoid the swap entry to be reused
2549 * until we take the PT lock for the pte_same() check
2550 * (to avoid false positives from pte_same). For
2551 * further safety release the lock after the swap_free
2552 * so that the swap count won't change under a
2553 * parallel locked swapcache.
2555 unlock_page(swapcache);
2556 page_cache_release(swapcache);
2559 if (flags & FAULT_FLAG_WRITE) {
2560 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2561 if (ret & VM_FAULT_ERROR)
2562 ret &= VM_FAULT_ERROR;
2563 goto out;
2566 /* No need to invalidate - it was non-present before */
2567 update_mmu_cache(vma, address, page_table);
2568 unlock:
2569 pte_unmap_unlock(page_table, ptl);
2570 out:
2571 return ret;
2572 out_nomap:
2573 mem_cgroup_cancel_charge(page, memcg);
2574 pte_unmap_unlock(page_table, ptl);
2575 out_page:
2576 unlock_page(page);
2577 out_release:
2578 page_cache_release(page);
2579 if (page != swapcache) {
2580 unlock_page(swapcache);
2581 page_cache_release(swapcache);
2583 return ret;
2587 * This is like a special single-page "expand_{down|up}wards()",
2588 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2589 * doesn't hit another vma.
2591 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2593 address &= PAGE_MASK;
2594 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2595 struct vm_area_struct *prev = vma->vm_prev;
2598 * Is there a mapping abutting this one below?
2600 * That's only ok if it's the same stack mapping
2601 * that has gotten split..
2603 if (prev && prev->vm_end == address)
2604 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2606 expand_downwards(vma, address - PAGE_SIZE);
2608 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2609 struct vm_area_struct *next = vma->vm_next;
2611 /* As VM_GROWSDOWN but s/below/above/ */
2612 if (next && next->vm_start == address + PAGE_SIZE)
2613 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2615 expand_upwards(vma, address + PAGE_SIZE);
2617 return 0;
2621 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2622 * but allow concurrent faults), and pte mapped but not yet locked.
2623 * We return with mmap_sem still held, but pte unmapped and unlocked.
2625 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2626 unsigned long address, pte_t *page_table, pmd_t *pmd,
2627 unsigned int flags)
2629 struct mem_cgroup *memcg;
2630 struct page *page;
2631 spinlock_t *ptl;
2632 pte_t entry;
2634 pte_unmap(page_table);
2636 /* Check if we need to add a guard page to the stack */
2637 if (check_stack_guard_page(vma, address) < 0)
2638 return VM_FAULT_SIGBUS;
2640 /* Use the zero-page for reads */
2641 if (!(flags & FAULT_FLAG_WRITE)) {
2642 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2643 vma->vm_page_prot));
2644 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2645 if (!pte_none(*page_table))
2646 goto unlock;
2647 goto setpte;
2650 /* Allocate our own private page. */
2651 if (unlikely(anon_vma_prepare(vma)))
2652 goto oom;
2653 page = alloc_zeroed_user_highpage_movable(vma, address);
2654 if (!page)
2655 goto oom;
2657 * The memory barrier inside __SetPageUptodate makes sure that
2658 * preceeding stores to the page contents become visible before
2659 * the set_pte_at() write.
2661 __SetPageUptodate(page);
2663 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2664 goto oom_free_page;
2666 entry = mk_pte(page, vma->vm_page_prot);
2667 if (vma->vm_flags & VM_WRITE)
2668 entry = pte_mkwrite(pte_mkdirty(entry));
2670 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2671 if (!pte_none(*page_table))
2672 goto release;
2674 inc_mm_counter_fast(mm, MM_ANONPAGES);
2675 page_add_new_anon_rmap(page, vma, address);
2676 mem_cgroup_commit_charge(page, memcg, false);
2677 lru_cache_add_active_or_unevictable(page, vma);
2678 setpte:
2679 set_pte_at(mm, address, page_table, entry);
2681 /* No need to invalidate - it was non-present before */
2682 update_mmu_cache(vma, address, page_table);
2683 unlock:
2684 pte_unmap_unlock(page_table, ptl);
2685 return 0;
2686 release:
2687 mem_cgroup_cancel_charge(page, memcg);
2688 page_cache_release(page);
2689 goto unlock;
2690 oom_free_page:
2691 page_cache_release(page);
2692 oom:
2693 return VM_FAULT_OOM;
2697 * The mmap_sem must have been held on entry, and may have been
2698 * released depending on flags and vma->vm_ops->fault() return value.
2699 * See filemap_fault() and __lock_page_retry().
2701 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2702 pgoff_t pgoff, unsigned int flags, struct page **page)
2704 struct vm_fault vmf;
2705 int ret;
2707 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2708 vmf.pgoff = pgoff;
2709 vmf.flags = flags;
2710 vmf.page = NULL;
2712 ret = vma->vm_ops->fault(vma, &vmf);
2713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2714 return ret;
2716 if (unlikely(PageHWPoison(vmf.page))) {
2717 if (ret & VM_FAULT_LOCKED)
2718 unlock_page(vmf.page);
2719 page_cache_release(vmf.page);
2720 return VM_FAULT_HWPOISON;
2723 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2724 lock_page(vmf.page);
2725 else
2726 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2728 *page = vmf.page;
2729 return ret;
2733 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2735 * @vma: virtual memory area
2736 * @address: user virtual address
2737 * @page: page to map
2738 * @pte: pointer to target page table entry
2739 * @write: true, if new entry is writable
2740 * @anon: true, if it's anonymous page
2742 * Caller must hold page table lock relevant for @pte.
2744 * Target users are page handler itself and implementations of
2745 * vm_ops->map_pages.
2747 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2748 struct page *page, pte_t *pte, bool write, bool anon)
2750 pte_t entry;
2752 flush_icache_page(vma, page);
2753 entry = mk_pte(page, vma->vm_page_prot);
2754 if (write)
2755 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2756 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2757 entry = pte_mksoft_dirty(entry);
2758 if (anon) {
2759 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2760 page_add_new_anon_rmap(page, vma, address);
2761 } else {
2762 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2763 page_add_file_rmap(page);
2765 set_pte_at(vma->vm_mm, address, pte, entry);
2767 /* no need to invalidate: a not-present page won't be cached */
2768 update_mmu_cache(vma, address, pte);
2771 static unsigned long fault_around_bytes __read_mostly =
2772 rounddown_pow_of_two(65536);
2774 #ifdef CONFIG_DEBUG_FS
2775 static int fault_around_bytes_get(void *data, u64 *val)
2777 *val = fault_around_bytes;
2778 return 0;
2782 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2783 * rounded down to nearest page order. It's what do_fault_around() expects to
2784 * see.
2786 static int fault_around_bytes_set(void *data, u64 val)
2788 if (val / PAGE_SIZE > PTRS_PER_PTE)
2789 return -EINVAL;
2790 if (val > PAGE_SIZE)
2791 fault_around_bytes = rounddown_pow_of_two(val);
2792 else
2793 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2794 return 0;
2796 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2797 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2799 static int __init fault_around_debugfs(void)
2801 void *ret;
2803 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2804 &fault_around_bytes_fops);
2805 if (!ret)
2806 pr_warn("Failed to create fault_around_bytes in debugfs");
2807 return 0;
2809 late_initcall(fault_around_debugfs);
2810 #endif
2813 * do_fault_around() tries to map few pages around the fault address. The hope
2814 * is that the pages will be needed soon and this will lower the number of
2815 * faults to handle.
2817 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2818 * not ready to be mapped: not up-to-date, locked, etc.
2820 * This function is called with the page table lock taken. In the split ptlock
2821 * case the page table lock only protects only those entries which belong to
2822 * the page table corresponding to the fault address.
2824 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2825 * only once.
2827 * fault_around_pages() defines how many pages we'll try to map.
2828 * do_fault_around() expects it to return a power of two less than or equal to
2829 * PTRS_PER_PTE.
2831 * The virtual address of the area that we map is naturally aligned to the
2832 * fault_around_pages() value (and therefore to page order). This way it's
2833 * easier to guarantee that we don't cross page table boundaries.
2835 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2836 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2838 unsigned long start_addr, nr_pages, mask;
2839 pgoff_t max_pgoff;
2840 struct vm_fault vmf;
2841 int off;
2843 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2844 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2846 start_addr = max(address & mask, vma->vm_start);
2847 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2848 pte -= off;
2849 pgoff -= off;
2852 * max_pgoff is either end of page table or end of vma
2853 * or fault_around_pages() from pgoff, depending what is nearest.
2855 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2856 PTRS_PER_PTE - 1;
2857 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2858 pgoff + nr_pages - 1);
2860 /* Check if it makes any sense to call ->map_pages */
2861 while (!pte_none(*pte)) {
2862 if (++pgoff > max_pgoff)
2863 return;
2864 start_addr += PAGE_SIZE;
2865 if (start_addr >= vma->vm_end)
2866 return;
2867 pte++;
2870 vmf.virtual_address = (void __user *) start_addr;
2871 vmf.pte = pte;
2872 vmf.pgoff = pgoff;
2873 vmf.max_pgoff = max_pgoff;
2874 vmf.flags = flags;
2875 vma->vm_ops->map_pages(vma, &vmf);
2878 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2879 unsigned long address, pmd_t *pmd,
2880 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2882 struct page *fault_page;
2883 spinlock_t *ptl;
2884 pte_t *pte;
2885 int ret = 0;
2888 * Let's call ->map_pages() first and use ->fault() as fallback
2889 * if page by the offset is not ready to be mapped (cold cache or
2890 * something).
2892 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2893 fault_around_bytes >> PAGE_SHIFT > 1) {
2894 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2895 do_fault_around(vma, address, pte, pgoff, flags);
2896 if (!pte_same(*pte, orig_pte))
2897 goto unlock_out;
2898 pte_unmap_unlock(pte, ptl);
2901 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2902 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2903 return ret;
2905 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2906 if (unlikely(!pte_same(*pte, orig_pte))) {
2907 pte_unmap_unlock(pte, ptl);
2908 unlock_page(fault_page);
2909 page_cache_release(fault_page);
2910 return ret;
2912 do_set_pte(vma, address, fault_page, pte, false, false);
2913 unlock_page(fault_page);
2914 unlock_out:
2915 pte_unmap_unlock(pte, ptl);
2916 return ret;
2919 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2920 unsigned long address, pmd_t *pmd,
2921 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2923 struct page *fault_page, *new_page;
2924 struct mem_cgroup *memcg;
2925 spinlock_t *ptl;
2926 pte_t *pte;
2927 int ret;
2929 if (unlikely(anon_vma_prepare(vma)))
2930 return VM_FAULT_OOM;
2932 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2933 if (!new_page)
2934 return VM_FAULT_OOM;
2936 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2937 page_cache_release(new_page);
2938 return VM_FAULT_OOM;
2941 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2942 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2943 goto uncharge_out;
2945 copy_user_highpage(new_page, fault_page, address, vma);
2946 __SetPageUptodate(new_page);
2948 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2949 if (unlikely(!pte_same(*pte, orig_pte))) {
2950 pte_unmap_unlock(pte, ptl);
2951 unlock_page(fault_page);
2952 page_cache_release(fault_page);
2953 goto uncharge_out;
2955 do_set_pte(vma, address, new_page, pte, true, true);
2956 mem_cgroup_commit_charge(new_page, memcg, false);
2957 lru_cache_add_active_or_unevictable(new_page, vma);
2958 pte_unmap_unlock(pte, ptl);
2959 unlock_page(fault_page);
2960 page_cache_release(fault_page);
2961 return ret;
2962 uncharge_out:
2963 mem_cgroup_cancel_charge(new_page, memcg);
2964 page_cache_release(new_page);
2965 return ret;
2968 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2969 unsigned long address, pmd_t *pmd,
2970 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2972 struct page *fault_page;
2973 struct address_space *mapping;
2974 spinlock_t *ptl;
2975 pte_t *pte;
2976 int dirtied = 0;
2977 int ret, tmp;
2979 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2981 return ret;
2984 * Check if the backing address space wants to know that the page is
2985 * about to become writable
2987 if (vma->vm_ops->page_mkwrite) {
2988 unlock_page(fault_page);
2989 tmp = do_page_mkwrite(vma, fault_page, address);
2990 if (unlikely(!tmp ||
2991 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2992 page_cache_release(fault_page);
2993 return tmp;
2997 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2998 if (unlikely(!pte_same(*pte, orig_pte))) {
2999 pte_unmap_unlock(pte, ptl);
3000 unlock_page(fault_page);
3001 page_cache_release(fault_page);
3002 return ret;
3004 do_set_pte(vma, address, fault_page, pte, true, false);
3005 pte_unmap_unlock(pte, ptl);
3007 if (set_page_dirty(fault_page))
3008 dirtied = 1;
3009 mapping = fault_page->mapping;
3010 unlock_page(fault_page);
3011 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3013 * Some device drivers do not set page.mapping but still
3014 * dirty their pages
3016 balance_dirty_pages_ratelimited(mapping);
3019 /* file_update_time outside page_lock */
3020 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3021 file_update_time(vma->vm_file);
3023 return ret;
3027 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3028 * but allow concurrent faults).
3029 * The mmap_sem may have been released depending on flags and our
3030 * return value. See filemap_fault() and __lock_page_or_retry().
3032 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3033 unsigned long address, pte_t *page_table, pmd_t *pmd,
3034 unsigned int flags, pte_t orig_pte)
3036 pgoff_t pgoff = (((address & PAGE_MASK)
3037 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3039 pte_unmap(page_table);
3040 if (!(flags & FAULT_FLAG_WRITE))
3041 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3042 orig_pte);
3043 if (!(vma->vm_flags & VM_SHARED))
3044 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3045 orig_pte);
3046 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3050 * Fault of a previously existing named mapping. Repopulate the pte
3051 * from the encoded file_pte if possible. This enables swappable
3052 * nonlinear vmas.
3054 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3055 * but allow concurrent faults), and pte mapped but not yet locked.
3056 * We return with pte unmapped and unlocked.
3057 * The mmap_sem may have been released depending on flags and our
3058 * return value. See filemap_fault() and __lock_page_or_retry().
3060 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3061 unsigned long address, pte_t *page_table, pmd_t *pmd,
3062 unsigned int flags, pte_t orig_pte)
3064 pgoff_t pgoff;
3066 flags |= FAULT_FLAG_NONLINEAR;
3068 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3069 return 0;
3071 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3073 * Page table corrupted: show pte and kill process.
3075 print_bad_pte(vma, address, orig_pte, NULL);
3076 return VM_FAULT_SIGBUS;
3079 pgoff = pte_to_pgoff(orig_pte);
3080 if (!(flags & FAULT_FLAG_WRITE))
3081 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3082 orig_pte);
3083 if (!(vma->vm_flags & VM_SHARED))
3084 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3085 orig_pte);
3086 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3089 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3090 unsigned long addr, int page_nid,
3091 int *flags)
3093 get_page(page);
3095 count_vm_numa_event(NUMA_HINT_FAULTS);
3096 if (page_nid == numa_node_id()) {
3097 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3098 *flags |= TNF_FAULT_LOCAL;
3101 return mpol_misplaced(page, vma, addr);
3104 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3105 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3107 struct page *page = NULL;
3108 spinlock_t *ptl;
3109 int page_nid = -1;
3110 int last_cpupid;
3111 int target_nid;
3112 bool migrated = false;
3113 int flags = 0;
3116 * The "pte" at this point cannot be used safely without
3117 * validation through pte_unmap_same(). It's of NUMA type but
3118 * the pfn may be screwed if the read is non atomic.
3120 * ptep_modify_prot_start is not called as this is clearing
3121 * the _PAGE_NUMA bit and it is not really expected that there
3122 * would be concurrent hardware modifications to the PTE.
3124 ptl = pte_lockptr(mm, pmd);
3125 spin_lock(ptl);
3126 if (unlikely(!pte_same(*ptep, pte))) {
3127 pte_unmap_unlock(ptep, ptl);
3128 goto out;
3131 pte = pte_mknonnuma(pte);
3132 set_pte_at(mm, addr, ptep, pte);
3133 update_mmu_cache(vma, addr, ptep);
3135 page = vm_normal_page(vma, addr, pte);
3136 if (!page) {
3137 pte_unmap_unlock(ptep, ptl);
3138 return 0;
3140 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3143 * Avoid grouping on DSO/COW pages in specific and RO pages
3144 * in general, RO pages shouldn't hurt as much anyway since
3145 * they can be in shared cache state.
3147 if (!pte_write(pte))
3148 flags |= TNF_NO_GROUP;
3151 * Flag if the page is shared between multiple address spaces. This
3152 * is later used when determining whether to group tasks together
3154 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3155 flags |= TNF_SHARED;
3157 last_cpupid = page_cpupid_last(page);
3158 page_nid = page_to_nid(page);
3159 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3160 pte_unmap_unlock(ptep, ptl);
3161 if (target_nid == -1) {
3162 put_page(page);
3163 goto out;
3166 /* Migrate to the requested node */
3167 migrated = migrate_misplaced_page(page, vma, target_nid);
3168 if (migrated) {
3169 page_nid = target_nid;
3170 flags |= TNF_MIGRATED;
3173 out:
3174 if (page_nid != -1)
3175 task_numa_fault(last_cpupid, page_nid, 1, flags);
3176 return 0;
3180 * These routines also need to handle stuff like marking pages dirty
3181 * and/or accessed for architectures that don't do it in hardware (most
3182 * RISC architectures). The early dirtying is also good on the i386.
3184 * There is also a hook called "update_mmu_cache()" that architectures
3185 * with external mmu caches can use to update those (ie the Sparc or
3186 * PowerPC hashed page tables that act as extended TLBs).
3188 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3189 * but allow concurrent faults), and pte mapped but not yet locked.
3190 * We return with pte unmapped and unlocked.
3192 * The mmap_sem may have been released depending on flags and our
3193 * return value. See filemap_fault() and __lock_page_or_retry().
3195 static int handle_pte_fault(struct mm_struct *mm,
3196 struct vm_area_struct *vma, unsigned long address,
3197 pte_t *pte, pmd_t *pmd, unsigned int flags)
3199 pte_t entry;
3200 spinlock_t *ptl;
3202 entry = ACCESS_ONCE(*pte);
3203 if (!pte_present(entry)) {
3204 if (pte_none(entry)) {
3205 if (vma->vm_ops) {
3206 if (likely(vma->vm_ops->fault))
3207 return do_linear_fault(mm, vma, address,
3208 pte, pmd, flags, entry);
3210 return do_anonymous_page(mm, vma, address,
3211 pte, pmd, flags);
3213 if (pte_file(entry))
3214 return do_nonlinear_fault(mm, vma, address,
3215 pte, pmd, flags, entry);
3216 return do_swap_page(mm, vma, address,
3217 pte, pmd, flags, entry);
3220 if (pte_numa(entry))
3221 return do_numa_page(mm, vma, address, entry, pte, pmd);
3223 ptl = pte_lockptr(mm, pmd);
3224 spin_lock(ptl);
3225 if (unlikely(!pte_same(*pte, entry)))
3226 goto unlock;
3227 if (flags & FAULT_FLAG_WRITE) {
3228 if (!pte_write(entry))
3229 return do_wp_page(mm, vma, address,
3230 pte, pmd, ptl, entry);
3231 entry = pte_mkdirty(entry);
3233 entry = pte_mkyoung(entry);
3234 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3235 update_mmu_cache(vma, address, pte);
3236 } else {
3238 * This is needed only for protection faults but the arch code
3239 * is not yet telling us if this is a protection fault or not.
3240 * This still avoids useless tlb flushes for .text page faults
3241 * with threads.
3243 if (flags & FAULT_FLAG_WRITE)
3244 flush_tlb_fix_spurious_fault(vma, address);
3246 unlock:
3247 pte_unmap_unlock(pte, ptl);
3248 return 0;
3252 * By the time we get here, we already hold the mm semaphore
3254 * The mmap_sem may have been released depending on flags and our
3255 * return value. See filemap_fault() and __lock_page_or_retry().
3257 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3258 unsigned long address, unsigned int flags)
3260 pgd_t *pgd;
3261 pud_t *pud;
3262 pmd_t *pmd;
3263 pte_t *pte;
3265 if (unlikely(is_vm_hugetlb_page(vma)))
3266 return hugetlb_fault(mm, vma, address, flags);
3268 pgd = pgd_offset(mm, address);
3269 pud = pud_alloc(mm, pgd, address);
3270 if (!pud)
3271 return VM_FAULT_OOM;
3272 pmd = pmd_alloc(mm, pud, address);
3273 if (!pmd)
3274 return VM_FAULT_OOM;
3275 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3276 int ret = VM_FAULT_FALLBACK;
3277 if (!vma->vm_ops)
3278 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3279 pmd, flags);
3280 if (!(ret & VM_FAULT_FALLBACK))
3281 return ret;
3282 } else {
3283 pmd_t orig_pmd = *pmd;
3284 int ret;
3286 barrier();
3287 if (pmd_trans_huge(orig_pmd)) {
3288 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3291 * If the pmd is splitting, return and retry the
3292 * the fault. Alternative: wait until the split
3293 * is done, and goto retry.
3295 if (pmd_trans_splitting(orig_pmd))
3296 return 0;
3298 if (pmd_numa(orig_pmd))
3299 return do_huge_pmd_numa_page(mm, vma, address,
3300 orig_pmd, pmd);
3302 if (dirty && !pmd_write(orig_pmd)) {
3303 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3304 orig_pmd);
3305 if (!(ret & VM_FAULT_FALLBACK))
3306 return ret;
3307 } else {
3308 huge_pmd_set_accessed(mm, vma, address, pmd,
3309 orig_pmd, dirty);
3310 return 0;
3316 * Use __pte_alloc instead of pte_alloc_map, because we can't
3317 * run pte_offset_map on the pmd, if an huge pmd could
3318 * materialize from under us from a different thread.
3320 if (unlikely(pmd_none(*pmd)) &&
3321 unlikely(__pte_alloc(mm, vma, pmd, address)))
3322 return VM_FAULT_OOM;
3323 /* if an huge pmd materialized from under us just retry later */
3324 if (unlikely(pmd_trans_huge(*pmd)))
3325 return 0;
3327 * A regular pmd is established and it can't morph into a huge pmd
3328 * from under us anymore at this point because we hold the mmap_sem
3329 * read mode and khugepaged takes it in write mode. So now it's
3330 * safe to run pte_offset_map().
3332 pte = pte_offset_map(pmd, address);
3334 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3338 * By the time we get here, we already hold the mm semaphore
3340 * The mmap_sem may have been released depending on flags and our
3341 * return value. See filemap_fault() and __lock_page_or_retry().
3343 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3344 unsigned long address, unsigned int flags)
3346 int ret;
3348 __set_current_state(TASK_RUNNING);
3350 count_vm_event(PGFAULT);
3351 mem_cgroup_count_vm_event(mm, PGFAULT);
3353 /* do counter updates before entering really critical section. */
3354 check_sync_rss_stat(current);
3357 * Enable the memcg OOM handling for faults triggered in user
3358 * space. Kernel faults are handled more gracefully.
3360 if (flags & FAULT_FLAG_USER)
3361 mem_cgroup_oom_enable();
3363 ret = __handle_mm_fault(mm, vma, address, flags);
3365 if (flags & FAULT_FLAG_USER) {
3366 mem_cgroup_oom_disable();
3368 * The task may have entered a memcg OOM situation but
3369 * if the allocation error was handled gracefully (no
3370 * VM_FAULT_OOM), there is no need to kill anything.
3371 * Just clean up the OOM state peacefully.
3373 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3374 mem_cgroup_oom_synchronize(false);
3377 return ret;
3380 #ifndef __PAGETABLE_PUD_FOLDED
3382 * Allocate page upper directory.
3383 * We've already handled the fast-path in-line.
3385 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3387 pud_t *new = pud_alloc_one(mm, address);
3388 if (!new)
3389 return -ENOMEM;
3391 smp_wmb(); /* See comment in __pte_alloc */
3393 spin_lock(&mm->page_table_lock);
3394 if (pgd_present(*pgd)) /* Another has populated it */
3395 pud_free(mm, new);
3396 else
3397 pgd_populate(mm, pgd, new);
3398 spin_unlock(&mm->page_table_lock);
3399 return 0;
3401 #endif /* __PAGETABLE_PUD_FOLDED */
3403 #ifndef __PAGETABLE_PMD_FOLDED
3405 * Allocate page middle directory.
3406 * We've already handled the fast-path in-line.
3408 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3410 pmd_t *new = pmd_alloc_one(mm, address);
3411 if (!new)
3412 return -ENOMEM;
3414 smp_wmb(); /* See comment in __pte_alloc */
3416 spin_lock(&mm->page_table_lock);
3417 #ifndef __ARCH_HAS_4LEVEL_HACK
3418 if (pud_present(*pud)) /* Another has populated it */
3419 pmd_free(mm, new);
3420 else
3421 pud_populate(mm, pud, new);
3422 #else
3423 if (pgd_present(*pud)) /* Another has populated it */
3424 pmd_free(mm, new);
3425 else
3426 pgd_populate(mm, pud, new);
3427 #endif /* __ARCH_HAS_4LEVEL_HACK */
3428 spin_unlock(&mm->page_table_lock);
3429 return 0;
3431 #endif /* __PAGETABLE_PMD_FOLDED */
3433 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3434 pte_t **ptepp, spinlock_t **ptlp)
3436 pgd_t *pgd;
3437 pud_t *pud;
3438 pmd_t *pmd;
3439 pte_t *ptep;
3441 pgd = pgd_offset(mm, address);
3442 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3443 goto out;
3445 pud = pud_offset(pgd, address);
3446 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3447 goto out;
3449 pmd = pmd_offset(pud, address);
3450 VM_BUG_ON(pmd_trans_huge(*pmd));
3451 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3452 goto out;
3454 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3455 if (pmd_huge(*pmd))
3456 goto out;
3458 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3459 if (!ptep)
3460 goto out;
3461 if (!pte_present(*ptep))
3462 goto unlock;
3463 *ptepp = ptep;
3464 return 0;
3465 unlock:
3466 pte_unmap_unlock(ptep, *ptlp);
3467 out:
3468 return -EINVAL;
3471 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3472 pte_t **ptepp, spinlock_t **ptlp)
3474 int res;
3476 /* (void) is needed to make gcc happy */
3477 (void) __cond_lock(*ptlp,
3478 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3479 return res;
3483 * follow_pfn - look up PFN at a user virtual address
3484 * @vma: memory mapping
3485 * @address: user virtual address
3486 * @pfn: location to store found PFN
3488 * Only IO mappings and raw PFN mappings are allowed.
3490 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3492 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3493 unsigned long *pfn)
3495 int ret = -EINVAL;
3496 spinlock_t *ptl;
3497 pte_t *ptep;
3499 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3500 return ret;
3502 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3503 if (ret)
3504 return ret;
3505 *pfn = pte_pfn(*ptep);
3506 pte_unmap_unlock(ptep, ptl);
3507 return 0;
3509 EXPORT_SYMBOL(follow_pfn);
3511 #ifdef CONFIG_HAVE_IOREMAP_PROT
3512 int follow_phys(struct vm_area_struct *vma,
3513 unsigned long address, unsigned int flags,
3514 unsigned long *prot, resource_size_t *phys)
3516 int ret = -EINVAL;
3517 pte_t *ptep, pte;
3518 spinlock_t *ptl;
3520 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3521 goto out;
3523 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3524 goto out;
3525 pte = *ptep;
3527 if ((flags & FOLL_WRITE) && !pte_write(pte))
3528 goto unlock;
3530 *prot = pgprot_val(pte_pgprot(pte));
3531 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3533 ret = 0;
3534 unlock:
3535 pte_unmap_unlock(ptep, ptl);
3536 out:
3537 return ret;
3540 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3541 void *buf, int len, int write)
3543 resource_size_t phys_addr;
3544 unsigned long prot = 0;
3545 void __iomem *maddr;
3546 int offset = addr & (PAGE_SIZE-1);
3548 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3549 return -EINVAL;
3551 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3552 if (write)
3553 memcpy_toio(maddr + offset, buf, len);
3554 else
3555 memcpy_fromio(buf, maddr + offset, len);
3556 iounmap(maddr);
3558 return len;
3560 EXPORT_SYMBOL_GPL(generic_access_phys);
3561 #endif
3564 * Access another process' address space as given in mm. If non-NULL, use the
3565 * given task for page fault accounting.
3567 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3568 unsigned long addr, void *buf, int len, int write)
3570 struct vm_area_struct *vma;
3571 void *old_buf = buf;
3573 down_read(&mm->mmap_sem);
3574 /* ignore errors, just check how much was successfully transferred */
3575 while (len) {
3576 int bytes, ret, offset;
3577 void *maddr;
3578 struct page *page = NULL;
3580 ret = get_user_pages(tsk, mm, addr, 1,
3581 write, 1, &page, &vma);
3582 if (ret <= 0) {
3583 #ifndef CONFIG_HAVE_IOREMAP_PROT
3584 break;
3585 #else
3587 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3588 * we can access using slightly different code.
3590 vma = find_vma(mm, addr);
3591 if (!vma || vma->vm_start > addr)
3592 break;
3593 if (vma->vm_ops && vma->vm_ops->access)
3594 ret = vma->vm_ops->access(vma, addr, buf,
3595 len, write);
3596 if (ret <= 0)
3597 break;
3598 bytes = ret;
3599 #endif
3600 } else {
3601 bytes = len;
3602 offset = addr & (PAGE_SIZE-1);
3603 if (bytes > PAGE_SIZE-offset)
3604 bytes = PAGE_SIZE-offset;
3606 maddr = kmap(page);
3607 if (write) {
3608 copy_to_user_page(vma, page, addr,
3609 maddr + offset, buf, bytes);
3610 set_page_dirty_lock(page);
3611 } else {
3612 copy_from_user_page(vma, page, addr,
3613 buf, maddr + offset, bytes);
3615 kunmap(page);
3616 page_cache_release(page);
3618 len -= bytes;
3619 buf += bytes;
3620 addr += bytes;
3622 up_read(&mm->mmap_sem);
3624 return buf - old_buf;
3628 * access_remote_vm - access another process' address space
3629 * @mm: the mm_struct of the target address space
3630 * @addr: start address to access
3631 * @buf: source or destination buffer
3632 * @len: number of bytes to transfer
3633 * @write: whether the access is a write
3635 * The caller must hold a reference on @mm.
3637 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3638 void *buf, int len, int write)
3640 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3644 * Access another process' address space.
3645 * Source/target buffer must be kernel space,
3646 * Do not walk the page table directly, use get_user_pages
3648 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3649 void *buf, int len, int write)
3651 struct mm_struct *mm;
3652 int ret;
3654 mm = get_task_mm(tsk);
3655 if (!mm)
3656 return 0;
3658 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3659 mmput(mm);
3661 return ret;
3665 * Print the name of a VMA.
3667 void print_vma_addr(char *prefix, unsigned long ip)
3669 struct mm_struct *mm = current->mm;
3670 struct vm_area_struct *vma;
3673 * Do not print if we are in atomic
3674 * contexts (in exception stacks, etc.):
3676 if (preempt_count())
3677 return;
3679 down_read(&mm->mmap_sem);
3680 vma = find_vma(mm, ip);
3681 if (vma && vma->vm_file) {
3682 struct file *f = vma->vm_file;
3683 char *buf = (char *)__get_free_page(GFP_KERNEL);
3684 if (buf) {
3685 char *p;
3687 p = d_path(&f->f_path, buf, PAGE_SIZE);
3688 if (IS_ERR(p))
3689 p = "?";
3690 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3691 vma->vm_start,
3692 vma->vm_end - vma->vm_start);
3693 free_page((unsigned long)buf);
3696 up_read(&mm->mmap_sem);
3699 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3700 void might_fault(void)
3703 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3704 * holding the mmap_sem, this is safe because kernel memory doesn't
3705 * get paged out, therefore we'll never actually fault, and the
3706 * below annotations will generate false positives.
3708 if (segment_eq(get_fs(), KERNEL_DS))
3709 return;
3712 * it would be nicer only to annotate paths which are not under
3713 * pagefault_disable, however that requires a larger audit and
3714 * providing helpers like get_user_atomic.
3716 if (in_atomic())
3717 return;
3719 __might_sleep(__FILE__, __LINE__, 0);
3721 if (current->mm)
3722 might_lock_read(&current->mm->mmap_sem);
3724 EXPORT_SYMBOL(might_fault);
3725 #endif
3727 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3728 static void clear_gigantic_page(struct page *page,
3729 unsigned long addr,
3730 unsigned int pages_per_huge_page)
3732 int i;
3733 struct page *p = page;
3735 might_sleep();
3736 for (i = 0; i < pages_per_huge_page;
3737 i++, p = mem_map_next(p, page, i)) {
3738 cond_resched();
3739 clear_user_highpage(p, addr + i * PAGE_SIZE);
3742 void clear_huge_page(struct page *page,
3743 unsigned long addr, unsigned int pages_per_huge_page)
3745 int i;
3747 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3748 clear_gigantic_page(page, addr, pages_per_huge_page);
3749 return;
3752 might_sleep();
3753 for (i = 0; i < pages_per_huge_page; i++) {
3754 cond_resched();
3755 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3759 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3760 unsigned long addr,
3761 struct vm_area_struct *vma,
3762 unsigned int pages_per_huge_page)
3764 int i;
3765 struct page *dst_base = dst;
3766 struct page *src_base = src;
3768 for (i = 0; i < pages_per_huge_page; ) {
3769 cond_resched();
3770 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3772 i++;
3773 dst = mem_map_next(dst, dst_base, i);
3774 src = mem_map_next(src, src_base, i);
3778 void copy_user_huge_page(struct page *dst, struct page *src,
3779 unsigned long addr, struct vm_area_struct *vma,
3780 unsigned int pages_per_huge_page)
3782 int i;
3784 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3785 copy_user_gigantic_page(dst, src, addr, vma,
3786 pages_per_huge_page);
3787 return;
3790 might_sleep();
3791 for (i = 0; i < pages_per_huge_page; i++) {
3792 cond_resched();
3793 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3796 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3798 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3800 static struct kmem_cache *page_ptl_cachep;
3802 void __init ptlock_cache_init(void)
3804 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3805 SLAB_PANIC, NULL);
3808 bool ptlock_alloc(struct page *page)
3810 spinlock_t *ptl;
3812 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3813 if (!ptl)
3814 return false;
3815 page->ptl = ptl;
3816 return true;
3819 void ptlock_free(struct page *page)
3821 kmem_cache_free(page_ptl_cachep, page->ptl);
3823 #endif