PCI: Refresh First VF Offset and VF Stride when updating NumVFs
[linux-2.6/btrfs-unstable.git] / kernel / exit.c
blobfeff10bbb30777f93c33369a186650a6eb1a2e6a
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct *tsk);
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct *tsk)
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
110 * If there is any task waiting for the group exit
111 * then notify it:
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
121 * Accumulate here the counters for all threads as they die. We could
122 * skip the group leader because it is the last user of signal_struct,
123 * but we want to avoid the race with thread_group_cputime() which can
124 * see the empty ->thread_head list.
126 task_cputime(tsk, &utime, &stime);
127 write_seqlock(&sig->stats_lock);
128 sig->utime += utime;
129 sig->stime += stime;
130 sig->gtime += task_gtime(tsk);
131 sig->min_flt += tsk->min_flt;
132 sig->maj_flt += tsk->maj_flt;
133 sig->nvcsw += tsk->nvcsw;
134 sig->nivcsw += tsk->nivcsw;
135 sig->inblock += task_io_get_inblock(tsk);
136 sig->oublock += task_io_get_oublock(tsk);
137 task_io_accounting_add(&sig->ioac, &tsk->ioac);
138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
139 sig->nr_threads--;
140 __unhash_process(tsk, group_dead);
141 write_sequnlock(&sig->stats_lock);
144 * Do this under ->siglock, we can race with another thread
145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
147 flush_sigqueue(&tsk->pending);
148 tsk->sighand = NULL;
149 spin_unlock(&sighand->siglock);
151 __cleanup_sighand(sighand);
152 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
153 if (group_dead) {
154 flush_sigqueue(&sig->shared_pending);
155 tty_kref_put(tty);
159 static void delayed_put_task_struct(struct rcu_head *rhp)
161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
163 perf_event_delayed_put(tsk);
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
169 void release_task(struct task_struct *p)
171 struct task_struct *leader;
172 int zap_leader;
173 repeat:
174 /* don't need to get the RCU readlock here - the process is dead and
175 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 rcu_read_lock();
177 atomic_dec(&__task_cred(p)->user->processes);
178 rcu_read_unlock();
180 proc_flush_task(p);
182 write_lock_irq(&tasklist_lock);
183 ptrace_release_task(p);
184 __exit_signal(p);
187 * If we are the last non-leader member of the thread
188 * group, and the leader is zombie, then notify the
189 * group leader's parent process. (if it wants notification.)
191 zap_leader = 0;
192 leader = p->group_leader;
193 if (leader != p && thread_group_empty(leader)
194 && leader->exit_state == EXIT_ZOMBIE) {
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 zap_leader = do_notify_parent(leader, leader->exit_signal);
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
215 * Determine if a process group is "orphaned", according to the POSIX
216 * definition in 2.2.2.52. Orphaned process groups are not to be affected
217 * by terminal-generated stop signals. Newly orphaned process groups are
218 * to receive a SIGHUP and a SIGCONT.
220 * "I ask you, have you ever known what it is to be an orphan?"
222 static int will_become_orphaned_pgrp(struct pid *pgrp,
223 struct task_struct *ignored_task)
225 struct task_struct *p;
227 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
228 if ((p == ignored_task) ||
229 (p->exit_state && thread_group_empty(p)) ||
230 is_global_init(p->real_parent))
231 continue;
233 if (task_pgrp(p->real_parent) != pgrp &&
234 task_session(p->real_parent) == task_session(p))
235 return 0;
236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
238 return 1;
241 int is_current_pgrp_orphaned(void)
243 int retval;
245 read_lock(&tasklist_lock);
246 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
247 read_unlock(&tasklist_lock);
249 return retval;
252 static bool has_stopped_jobs(struct pid *pgrp)
254 struct task_struct *p;
256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257 if (p->signal->flags & SIGNAL_STOP_STOPPED)
258 return true;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 return false;
265 * Check to see if any process groups have become orphaned as
266 * a result of our exiting, and if they have any stopped jobs,
267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
269 static void
270 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
272 struct pid *pgrp = task_pgrp(tsk);
273 struct task_struct *ignored_task = tsk;
275 if (!parent)
276 /* exit: our father is in a different pgrp than
277 * we are and we were the only connection outside.
279 parent = tsk->real_parent;
280 else
281 /* reparent: our child is in a different pgrp than
282 * we are, and it was the only connection outside.
284 ignored_task = NULL;
286 if (task_pgrp(parent) != pgrp &&
287 task_session(parent) == task_session(tsk) &&
288 will_become_orphaned_pgrp(pgrp, ignored_task) &&
289 has_stopped_jobs(pgrp)) {
290 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
291 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
295 #ifdef CONFIG_MEMCG
297 * A task is exiting. If it owned this mm, find a new owner for the mm.
299 void mm_update_next_owner(struct mm_struct *mm)
301 struct task_struct *c, *g, *p = current;
303 retry:
305 * If the exiting or execing task is not the owner, it's
306 * someone else's problem.
308 if (mm->owner != p)
309 return;
311 * The current owner is exiting/execing and there are no other
312 * candidates. Do not leave the mm pointing to a possibly
313 * freed task structure.
315 if (atomic_read(&mm->mm_users) <= 1) {
316 mm->owner = NULL;
317 return;
320 read_lock(&tasklist_lock);
322 * Search in the children
324 list_for_each_entry(c, &p->children, sibling) {
325 if (c->mm == mm)
326 goto assign_new_owner;
330 * Search in the siblings
332 list_for_each_entry(c, &p->real_parent->children, sibling) {
333 if (c->mm == mm)
334 goto assign_new_owner;
338 * Search through everything else, we should not get here often.
340 for_each_process(g) {
341 if (g->flags & PF_KTHREAD)
342 continue;
343 for_each_thread(g, c) {
344 if (c->mm == mm)
345 goto assign_new_owner;
346 if (c->mm)
347 break;
350 read_unlock(&tasklist_lock);
352 * We found no owner yet mm_users > 1: this implies that we are
353 * most likely racing with swapoff (try_to_unuse()) or /proc or
354 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
356 mm->owner = NULL;
357 return;
359 assign_new_owner:
360 BUG_ON(c == p);
361 get_task_struct(c);
363 * The task_lock protects c->mm from changing.
364 * We always want mm->owner->mm == mm
366 task_lock(c);
368 * Delay read_unlock() till we have the task_lock()
369 * to ensure that c does not slip away underneath us
371 read_unlock(&tasklist_lock);
372 if (c->mm != mm) {
373 task_unlock(c);
374 put_task_struct(c);
375 goto retry;
377 mm->owner = c;
378 task_unlock(c);
379 put_task_struct(c);
381 #endif /* CONFIG_MEMCG */
384 * Turn us into a lazy TLB process if we
385 * aren't already..
387 static void exit_mm(struct task_struct *tsk)
389 struct mm_struct *mm = tsk->mm;
390 struct core_state *core_state;
392 mm_release(tsk, mm);
393 if (!mm)
394 return;
395 sync_mm_rss(mm);
397 * Serialize with any possible pending coredump.
398 * We must hold mmap_sem around checking core_state
399 * and clearing tsk->mm. The core-inducing thread
400 * will increment ->nr_threads for each thread in the
401 * group with ->mm != NULL.
403 down_read(&mm->mmap_sem);
404 core_state = mm->core_state;
405 if (core_state) {
406 struct core_thread self;
408 up_read(&mm->mmap_sem);
410 self.task = tsk;
411 self.next = xchg(&core_state->dumper.next, &self);
413 * Implies mb(), the result of xchg() must be visible
414 * to core_state->dumper.
416 if (atomic_dec_and_test(&core_state->nr_threads))
417 complete(&core_state->startup);
419 for (;;) {
420 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
421 if (!self.task) /* see coredump_finish() */
422 break;
423 freezable_schedule();
425 __set_task_state(tsk, TASK_RUNNING);
426 down_read(&mm->mmap_sem);
428 atomic_inc(&mm->mm_count);
429 BUG_ON(mm != tsk->active_mm);
430 /* more a memory barrier than a real lock */
431 task_lock(tsk);
432 tsk->mm = NULL;
433 up_read(&mm->mmap_sem);
434 enter_lazy_tlb(mm, current);
435 task_unlock(tsk);
436 mm_update_next_owner(mm);
437 mmput(mm);
438 if (test_thread_flag(TIF_MEMDIE))
439 unmark_oom_victim();
442 static struct task_struct *find_alive_thread(struct task_struct *p)
444 struct task_struct *t;
446 for_each_thread(p, t) {
447 if (!(t->flags & PF_EXITING))
448 return t;
450 return NULL;
453 static struct task_struct *find_child_reaper(struct task_struct *father)
454 __releases(&tasklist_lock)
455 __acquires(&tasklist_lock)
457 struct pid_namespace *pid_ns = task_active_pid_ns(father);
458 struct task_struct *reaper = pid_ns->child_reaper;
460 if (likely(reaper != father))
461 return reaper;
463 reaper = find_alive_thread(father);
464 if (reaper) {
465 pid_ns->child_reaper = reaper;
466 return reaper;
469 write_unlock_irq(&tasklist_lock);
470 if (unlikely(pid_ns == &init_pid_ns)) {
471 panic("Attempted to kill init! exitcode=0x%08x\n",
472 father->signal->group_exit_code ?: father->exit_code);
474 zap_pid_ns_processes(pid_ns);
475 write_lock_irq(&tasklist_lock);
477 return father;
481 * When we die, we re-parent all our children, and try to:
482 * 1. give them to another thread in our thread group, if such a member exists
483 * 2. give it to the first ancestor process which prctl'd itself as a
484 * child_subreaper for its children (like a service manager)
485 * 3. give it to the init process (PID 1) in our pid namespace
487 static struct task_struct *find_new_reaper(struct task_struct *father,
488 struct task_struct *child_reaper)
490 struct task_struct *thread, *reaper;
492 thread = find_alive_thread(father);
493 if (thread)
494 return thread;
496 if (father->signal->has_child_subreaper) {
498 * Find the first ->is_child_subreaper ancestor in our pid_ns.
499 * We start from father to ensure we can not look into another
500 * namespace, this is safe because all its threads are dead.
502 for (reaper = father;
503 !same_thread_group(reaper, child_reaper);
504 reaper = reaper->real_parent) {
505 /* call_usermodehelper() descendants need this check */
506 if (reaper == &init_task)
507 break;
508 if (!reaper->signal->is_child_subreaper)
509 continue;
510 thread = find_alive_thread(reaper);
511 if (thread)
512 return thread;
516 return child_reaper;
520 * Any that need to be release_task'd are put on the @dead list.
522 static void reparent_leader(struct task_struct *father, struct task_struct *p,
523 struct list_head *dead)
525 if (unlikely(p->exit_state == EXIT_DEAD))
526 return;
528 /* We don't want people slaying init. */
529 p->exit_signal = SIGCHLD;
531 /* If it has exited notify the new parent about this child's death. */
532 if (!p->ptrace &&
533 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
534 if (do_notify_parent(p, p->exit_signal)) {
535 p->exit_state = EXIT_DEAD;
536 list_add(&p->ptrace_entry, dead);
540 kill_orphaned_pgrp(p, father);
544 * This does two things:
546 * A. Make init inherit all the child processes
547 * B. Check to see if any process groups have become orphaned
548 * as a result of our exiting, and if they have any stopped
549 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
551 static void forget_original_parent(struct task_struct *father,
552 struct list_head *dead)
554 struct task_struct *p, *t, *reaper;
556 if (unlikely(!list_empty(&father->ptraced)))
557 exit_ptrace(father, dead);
559 /* Can drop and reacquire tasklist_lock */
560 reaper = find_child_reaper(father);
561 if (list_empty(&father->children))
562 return;
564 reaper = find_new_reaper(father, reaper);
565 list_for_each_entry(p, &father->children, sibling) {
566 for_each_thread(p, t) {
567 t->real_parent = reaper;
568 BUG_ON((!t->ptrace) != (t->parent == father));
569 if (likely(!t->ptrace))
570 t->parent = t->real_parent;
571 if (t->pdeath_signal)
572 group_send_sig_info(t->pdeath_signal,
573 SEND_SIG_NOINFO, t);
576 * If this is a threaded reparent there is no need to
577 * notify anyone anything has happened.
579 if (!same_thread_group(reaper, father))
580 reparent_leader(father, p, dead);
582 list_splice_tail_init(&father->children, &reaper->children);
586 * Send signals to all our closest relatives so that they know
587 * to properly mourn us..
589 static void exit_notify(struct task_struct *tsk, int group_dead)
591 bool autoreap;
592 struct task_struct *p, *n;
593 LIST_HEAD(dead);
595 write_lock_irq(&tasklist_lock);
596 forget_original_parent(tsk, &dead);
598 if (group_dead)
599 kill_orphaned_pgrp(tsk->group_leader, NULL);
601 if (unlikely(tsk->ptrace)) {
602 int sig = thread_group_leader(tsk) &&
603 thread_group_empty(tsk) &&
604 !ptrace_reparented(tsk) ?
605 tsk->exit_signal : SIGCHLD;
606 autoreap = do_notify_parent(tsk, sig);
607 } else if (thread_group_leader(tsk)) {
608 autoreap = thread_group_empty(tsk) &&
609 do_notify_parent(tsk, tsk->exit_signal);
610 } else {
611 autoreap = true;
614 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
615 if (tsk->exit_state == EXIT_DEAD)
616 list_add(&tsk->ptrace_entry, &dead);
618 /* mt-exec, de_thread() is waiting for group leader */
619 if (unlikely(tsk->signal->notify_count < 0))
620 wake_up_process(tsk->signal->group_exit_task);
621 write_unlock_irq(&tasklist_lock);
623 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
624 list_del_init(&p->ptrace_entry);
625 release_task(p);
629 #ifdef CONFIG_DEBUG_STACK_USAGE
630 static void check_stack_usage(void)
632 static DEFINE_SPINLOCK(low_water_lock);
633 static int lowest_to_date = THREAD_SIZE;
634 unsigned long free;
636 free = stack_not_used(current);
638 if (free >= lowest_to_date)
639 return;
641 spin_lock(&low_water_lock);
642 if (free < lowest_to_date) {
643 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
644 current->comm, task_pid_nr(current), free);
645 lowest_to_date = free;
647 spin_unlock(&low_water_lock);
649 #else
650 static inline void check_stack_usage(void) {}
651 #endif
653 void do_exit(long code)
655 struct task_struct *tsk = current;
656 int group_dead;
657 TASKS_RCU(int tasks_rcu_i);
659 profile_task_exit(tsk);
661 WARN_ON(blk_needs_flush_plug(tsk));
663 if (unlikely(in_interrupt()))
664 panic("Aiee, killing interrupt handler!");
665 if (unlikely(!tsk->pid))
666 panic("Attempted to kill the idle task!");
669 * If do_exit is called because this processes oopsed, it's possible
670 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
671 * continuing. Amongst other possible reasons, this is to prevent
672 * mm_release()->clear_child_tid() from writing to a user-controlled
673 * kernel address.
675 set_fs(USER_DS);
677 ptrace_event(PTRACE_EVENT_EXIT, code);
679 validate_creds_for_do_exit(tsk);
682 * We're taking recursive faults here in do_exit. Safest is to just
683 * leave this task alone and wait for reboot.
685 if (unlikely(tsk->flags & PF_EXITING)) {
686 pr_alert("Fixing recursive fault but reboot is needed!\n");
688 * We can do this unlocked here. The futex code uses
689 * this flag just to verify whether the pi state
690 * cleanup has been done or not. In the worst case it
691 * loops once more. We pretend that the cleanup was
692 * done as there is no way to return. Either the
693 * OWNER_DIED bit is set by now or we push the blocked
694 * task into the wait for ever nirwana as well.
696 tsk->flags |= PF_EXITPIDONE;
697 set_current_state(TASK_UNINTERRUPTIBLE);
698 schedule();
701 exit_signals(tsk); /* sets PF_EXITING */
703 * tsk->flags are checked in the futex code to protect against
704 * an exiting task cleaning up the robust pi futexes.
706 smp_mb();
707 raw_spin_unlock_wait(&tsk->pi_lock);
709 if (unlikely(in_atomic()))
710 pr_info("note: %s[%d] exited with preempt_count %d\n",
711 current->comm, task_pid_nr(current),
712 preempt_count());
714 acct_update_integrals(tsk);
715 /* sync mm's RSS info before statistics gathering */
716 if (tsk->mm)
717 sync_mm_rss(tsk->mm);
718 group_dead = atomic_dec_and_test(&tsk->signal->live);
719 if (group_dead) {
720 hrtimer_cancel(&tsk->signal->real_timer);
721 exit_itimers(tsk->signal);
722 if (tsk->mm)
723 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
725 acct_collect(code, group_dead);
726 if (group_dead)
727 tty_audit_exit();
728 audit_free(tsk);
730 tsk->exit_code = code;
731 taskstats_exit(tsk, group_dead);
733 exit_mm(tsk);
735 if (group_dead)
736 acct_process();
737 trace_sched_process_exit(tsk);
739 exit_sem(tsk);
740 exit_shm(tsk);
741 exit_files(tsk);
742 exit_fs(tsk);
743 if (group_dead)
744 disassociate_ctty(1);
745 exit_task_namespaces(tsk);
746 exit_task_work(tsk);
747 exit_thread();
750 * Flush inherited counters to the parent - before the parent
751 * gets woken up by child-exit notifications.
753 * because of cgroup mode, must be called before cgroup_exit()
755 perf_event_exit_task(tsk);
757 cgroup_exit(tsk);
759 module_put(task_thread_info(tsk)->exec_domain->module);
762 * FIXME: do that only when needed, using sched_exit tracepoint
764 flush_ptrace_hw_breakpoint(tsk);
766 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
767 exit_notify(tsk, group_dead);
768 proc_exit_connector(tsk);
769 #ifdef CONFIG_NUMA
770 task_lock(tsk);
771 mpol_put(tsk->mempolicy);
772 tsk->mempolicy = NULL;
773 task_unlock(tsk);
774 #endif
775 #ifdef CONFIG_FUTEX
776 if (unlikely(current->pi_state_cache))
777 kfree(current->pi_state_cache);
778 #endif
780 * Make sure we are holding no locks:
782 debug_check_no_locks_held();
784 * We can do this unlocked here. The futex code uses this flag
785 * just to verify whether the pi state cleanup has been done
786 * or not. In the worst case it loops once more.
788 tsk->flags |= PF_EXITPIDONE;
790 if (tsk->io_context)
791 exit_io_context(tsk);
793 if (tsk->splice_pipe)
794 free_pipe_info(tsk->splice_pipe);
796 if (tsk->task_frag.page)
797 put_page(tsk->task_frag.page);
799 validate_creds_for_do_exit(tsk);
801 check_stack_usage();
802 preempt_disable();
803 if (tsk->nr_dirtied)
804 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
805 exit_rcu();
806 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
809 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
810 * when the following two conditions become true.
811 * - There is race condition of mmap_sem (It is acquired by
812 * exit_mm()), and
813 * - SMI occurs before setting TASK_RUNINNG.
814 * (or hypervisor of virtual machine switches to other guest)
815 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
817 * To avoid it, we have to wait for releasing tsk->pi_lock which
818 * is held by try_to_wake_up()
820 smp_mb();
821 raw_spin_unlock_wait(&tsk->pi_lock);
823 /* causes final put_task_struct in finish_task_switch(). */
824 tsk->state = TASK_DEAD;
825 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
826 schedule();
827 BUG();
828 /* Avoid "noreturn function does return". */
829 for (;;)
830 cpu_relax(); /* For when BUG is null */
832 EXPORT_SYMBOL_GPL(do_exit);
834 void complete_and_exit(struct completion *comp, long code)
836 if (comp)
837 complete(comp);
839 do_exit(code);
841 EXPORT_SYMBOL(complete_and_exit);
843 SYSCALL_DEFINE1(exit, int, error_code)
845 do_exit((error_code&0xff)<<8);
849 * Take down every thread in the group. This is called by fatal signals
850 * as well as by sys_exit_group (below).
852 void
853 do_group_exit(int exit_code)
855 struct signal_struct *sig = current->signal;
857 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
859 if (signal_group_exit(sig))
860 exit_code = sig->group_exit_code;
861 else if (!thread_group_empty(current)) {
862 struct sighand_struct *const sighand = current->sighand;
864 spin_lock_irq(&sighand->siglock);
865 if (signal_group_exit(sig))
866 /* Another thread got here before we took the lock. */
867 exit_code = sig->group_exit_code;
868 else {
869 sig->group_exit_code = exit_code;
870 sig->flags = SIGNAL_GROUP_EXIT;
871 zap_other_threads(current);
873 spin_unlock_irq(&sighand->siglock);
876 do_exit(exit_code);
877 /* NOTREACHED */
881 * this kills every thread in the thread group. Note that any externally
882 * wait4()-ing process will get the correct exit code - even if this
883 * thread is not the thread group leader.
885 SYSCALL_DEFINE1(exit_group, int, error_code)
887 do_group_exit((error_code & 0xff) << 8);
888 /* NOTREACHED */
889 return 0;
892 struct wait_opts {
893 enum pid_type wo_type;
894 int wo_flags;
895 struct pid *wo_pid;
897 struct siginfo __user *wo_info;
898 int __user *wo_stat;
899 struct rusage __user *wo_rusage;
901 wait_queue_t child_wait;
902 int notask_error;
905 static inline
906 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
908 if (type != PIDTYPE_PID)
909 task = task->group_leader;
910 return task->pids[type].pid;
913 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
915 return wo->wo_type == PIDTYPE_MAX ||
916 task_pid_type(p, wo->wo_type) == wo->wo_pid;
919 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
921 if (!eligible_pid(wo, p))
922 return 0;
923 /* Wait for all children (clone and not) if __WALL is set;
924 * otherwise, wait for clone children *only* if __WCLONE is
925 * set; otherwise, wait for non-clone children *only*. (Note:
926 * A "clone" child here is one that reports to its parent
927 * using a signal other than SIGCHLD.) */
928 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
929 && !(wo->wo_flags & __WALL))
930 return 0;
932 return 1;
935 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
936 pid_t pid, uid_t uid, int why, int status)
938 struct siginfo __user *infop;
939 int retval = wo->wo_rusage
940 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
942 put_task_struct(p);
943 infop = wo->wo_info;
944 if (infop) {
945 if (!retval)
946 retval = put_user(SIGCHLD, &infop->si_signo);
947 if (!retval)
948 retval = put_user(0, &infop->si_errno);
949 if (!retval)
950 retval = put_user((short)why, &infop->si_code);
951 if (!retval)
952 retval = put_user(pid, &infop->si_pid);
953 if (!retval)
954 retval = put_user(uid, &infop->si_uid);
955 if (!retval)
956 retval = put_user(status, &infop->si_status);
958 if (!retval)
959 retval = pid;
960 return retval;
964 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
965 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
966 * the lock and this task is uninteresting. If we return nonzero, we have
967 * released the lock and the system call should return.
969 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
971 int state, retval, status;
972 pid_t pid = task_pid_vnr(p);
973 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
974 struct siginfo __user *infop;
976 if (!likely(wo->wo_flags & WEXITED))
977 return 0;
979 if (unlikely(wo->wo_flags & WNOWAIT)) {
980 int exit_code = p->exit_code;
981 int why;
983 get_task_struct(p);
984 read_unlock(&tasklist_lock);
985 sched_annotate_sleep();
987 if ((exit_code & 0x7f) == 0) {
988 why = CLD_EXITED;
989 status = exit_code >> 8;
990 } else {
991 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
992 status = exit_code & 0x7f;
994 return wait_noreap_copyout(wo, p, pid, uid, why, status);
997 * Move the task's state to DEAD/TRACE, only one thread can do this.
999 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1000 EXIT_TRACE : EXIT_DEAD;
1001 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1002 return 0;
1004 * We own this thread, nobody else can reap it.
1006 read_unlock(&tasklist_lock);
1007 sched_annotate_sleep();
1010 * Check thread_group_leader() to exclude the traced sub-threads.
1012 if (state == EXIT_DEAD && thread_group_leader(p)) {
1013 struct signal_struct *sig = p->signal;
1014 struct signal_struct *psig = current->signal;
1015 unsigned long maxrss;
1016 cputime_t tgutime, tgstime;
1019 * The resource counters for the group leader are in its
1020 * own task_struct. Those for dead threads in the group
1021 * are in its signal_struct, as are those for the child
1022 * processes it has previously reaped. All these
1023 * accumulate in the parent's signal_struct c* fields.
1025 * We don't bother to take a lock here to protect these
1026 * p->signal fields because the whole thread group is dead
1027 * and nobody can change them.
1029 * psig->stats_lock also protects us from our sub-theads
1030 * which can reap other children at the same time. Until
1031 * we change k_getrusage()-like users to rely on this lock
1032 * we have to take ->siglock as well.
1034 * We use thread_group_cputime_adjusted() to get times for
1035 * the thread group, which consolidates times for all threads
1036 * in the group including the group leader.
1038 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1039 spin_lock_irq(&current->sighand->siglock);
1040 write_seqlock(&psig->stats_lock);
1041 psig->cutime += tgutime + sig->cutime;
1042 psig->cstime += tgstime + sig->cstime;
1043 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1044 psig->cmin_flt +=
1045 p->min_flt + sig->min_flt + sig->cmin_flt;
1046 psig->cmaj_flt +=
1047 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1048 psig->cnvcsw +=
1049 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1050 psig->cnivcsw +=
1051 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1052 psig->cinblock +=
1053 task_io_get_inblock(p) +
1054 sig->inblock + sig->cinblock;
1055 psig->coublock +=
1056 task_io_get_oublock(p) +
1057 sig->oublock + sig->coublock;
1058 maxrss = max(sig->maxrss, sig->cmaxrss);
1059 if (psig->cmaxrss < maxrss)
1060 psig->cmaxrss = maxrss;
1061 task_io_accounting_add(&psig->ioac, &p->ioac);
1062 task_io_accounting_add(&psig->ioac, &sig->ioac);
1063 write_sequnlock(&psig->stats_lock);
1064 spin_unlock_irq(&current->sighand->siglock);
1067 retval = wo->wo_rusage
1068 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1069 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1070 ? p->signal->group_exit_code : p->exit_code;
1071 if (!retval && wo->wo_stat)
1072 retval = put_user(status, wo->wo_stat);
1074 infop = wo->wo_info;
1075 if (!retval && infop)
1076 retval = put_user(SIGCHLD, &infop->si_signo);
1077 if (!retval && infop)
1078 retval = put_user(0, &infop->si_errno);
1079 if (!retval && infop) {
1080 int why;
1082 if ((status & 0x7f) == 0) {
1083 why = CLD_EXITED;
1084 status >>= 8;
1085 } else {
1086 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1087 status &= 0x7f;
1089 retval = put_user((short)why, &infop->si_code);
1090 if (!retval)
1091 retval = put_user(status, &infop->si_status);
1093 if (!retval && infop)
1094 retval = put_user(pid, &infop->si_pid);
1095 if (!retval && infop)
1096 retval = put_user(uid, &infop->si_uid);
1097 if (!retval)
1098 retval = pid;
1100 if (state == EXIT_TRACE) {
1101 write_lock_irq(&tasklist_lock);
1102 /* We dropped tasklist, ptracer could die and untrace */
1103 ptrace_unlink(p);
1105 /* If parent wants a zombie, don't release it now */
1106 state = EXIT_ZOMBIE;
1107 if (do_notify_parent(p, p->exit_signal))
1108 state = EXIT_DEAD;
1109 p->exit_state = state;
1110 write_unlock_irq(&tasklist_lock);
1112 if (state == EXIT_DEAD)
1113 release_task(p);
1115 return retval;
1118 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1120 if (ptrace) {
1121 if (task_is_stopped_or_traced(p) &&
1122 !(p->jobctl & JOBCTL_LISTENING))
1123 return &p->exit_code;
1124 } else {
1125 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1126 return &p->signal->group_exit_code;
1128 return NULL;
1132 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1133 * @wo: wait options
1134 * @ptrace: is the wait for ptrace
1135 * @p: task to wait for
1137 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1139 * CONTEXT:
1140 * read_lock(&tasklist_lock), which is released if return value is
1141 * non-zero. Also, grabs and releases @p->sighand->siglock.
1143 * RETURNS:
1144 * 0 if wait condition didn't exist and search for other wait conditions
1145 * should continue. Non-zero return, -errno on failure and @p's pid on
1146 * success, implies that tasklist_lock is released and wait condition
1147 * search should terminate.
1149 static int wait_task_stopped(struct wait_opts *wo,
1150 int ptrace, struct task_struct *p)
1152 struct siginfo __user *infop;
1153 int retval, exit_code, *p_code, why;
1154 uid_t uid = 0; /* unneeded, required by compiler */
1155 pid_t pid;
1158 * Traditionally we see ptrace'd stopped tasks regardless of options.
1160 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1161 return 0;
1163 if (!task_stopped_code(p, ptrace))
1164 return 0;
1166 exit_code = 0;
1167 spin_lock_irq(&p->sighand->siglock);
1169 p_code = task_stopped_code(p, ptrace);
1170 if (unlikely(!p_code))
1171 goto unlock_sig;
1173 exit_code = *p_code;
1174 if (!exit_code)
1175 goto unlock_sig;
1177 if (!unlikely(wo->wo_flags & WNOWAIT))
1178 *p_code = 0;
1180 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1181 unlock_sig:
1182 spin_unlock_irq(&p->sighand->siglock);
1183 if (!exit_code)
1184 return 0;
1187 * Now we are pretty sure this task is interesting.
1188 * Make sure it doesn't get reaped out from under us while we
1189 * give up the lock and then examine it below. We don't want to
1190 * keep holding onto the tasklist_lock while we call getrusage and
1191 * possibly take page faults for user memory.
1193 get_task_struct(p);
1194 pid = task_pid_vnr(p);
1195 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1196 read_unlock(&tasklist_lock);
1197 sched_annotate_sleep();
1199 if (unlikely(wo->wo_flags & WNOWAIT))
1200 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1202 retval = wo->wo_rusage
1203 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1204 if (!retval && wo->wo_stat)
1205 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1207 infop = wo->wo_info;
1208 if (!retval && infop)
1209 retval = put_user(SIGCHLD, &infop->si_signo);
1210 if (!retval && infop)
1211 retval = put_user(0, &infop->si_errno);
1212 if (!retval && infop)
1213 retval = put_user((short)why, &infop->si_code);
1214 if (!retval && infop)
1215 retval = put_user(exit_code, &infop->si_status);
1216 if (!retval && infop)
1217 retval = put_user(pid, &infop->si_pid);
1218 if (!retval && infop)
1219 retval = put_user(uid, &infop->si_uid);
1220 if (!retval)
1221 retval = pid;
1222 put_task_struct(p);
1224 BUG_ON(!retval);
1225 return retval;
1229 * Handle do_wait work for one task in a live, non-stopped state.
1230 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1231 * the lock and this task is uninteresting. If we return nonzero, we have
1232 * released the lock and the system call should return.
1234 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1236 int retval;
1237 pid_t pid;
1238 uid_t uid;
1240 if (!unlikely(wo->wo_flags & WCONTINUED))
1241 return 0;
1243 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1244 return 0;
1246 spin_lock_irq(&p->sighand->siglock);
1247 /* Re-check with the lock held. */
1248 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1249 spin_unlock_irq(&p->sighand->siglock);
1250 return 0;
1252 if (!unlikely(wo->wo_flags & WNOWAIT))
1253 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1254 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1255 spin_unlock_irq(&p->sighand->siglock);
1257 pid = task_pid_vnr(p);
1258 get_task_struct(p);
1259 read_unlock(&tasklist_lock);
1260 sched_annotate_sleep();
1262 if (!wo->wo_info) {
1263 retval = wo->wo_rusage
1264 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1265 put_task_struct(p);
1266 if (!retval && wo->wo_stat)
1267 retval = put_user(0xffff, wo->wo_stat);
1268 if (!retval)
1269 retval = pid;
1270 } else {
1271 retval = wait_noreap_copyout(wo, p, pid, uid,
1272 CLD_CONTINUED, SIGCONT);
1273 BUG_ON(retval == 0);
1276 return retval;
1280 * Consider @p for a wait by @parent.
1282 * -ECHILD should be in ->notask_error before the first call.
1283 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1284 * Returns zero if the search for a child should continue;
1285 * then ->notask_error is 0 if @p is an eligible child,
1286 * or another error from security_task_wait(), or still -ECHILD.
1288 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1289 struct task_struct *p)
1292 * We can race with wait_task_zombie() from another thread.
1293 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1294 * can't confuse the checks below.
1296 int exit_state = ACCESS_ONCE(p->exit_state);
1297 int ret;
1299 if (unlikely(exit_state == EXIT_DEAD))
1300 return 0;
1302 ret = eligible_child(wo, p);
1303 if (!ret)
1304 return ret;
1306 ret = security_task_wait(p);
1307 if (unlikely(ret < 0)) {
1309 * If we have not yet seen any eligible child,
1310 * then let this error code replace -ECHILD.
1311 * A permission error will give the user a clue
1312 * to look for security policy problems, rather
1313 * than for mysterious wait bugs.
1315 if (wo->notask_error)
1316 wo->notask_error = ret;
1317 return 0;
1320 if (unlikely(exit_state == EXIT_TRACE)) {
1322 * ptrace == 0 means we are the natural parent. In this case
1323 * we should clear notask_error, debugger will notify us.
1325 if (likely(!ptrace))
1326 wo->notask_error = 0;
1327 return 0;
1330 if (likely(!ptrace) && unlikely(p->ptrace)) {
1332 * If it is traced by its real parent's group, just pretend
1333 * the caller is ptrace_do_wait() and reap this child if it
1334 * is zombie.
1336 * This also hides group stop state from real parent; otherwise
1337 * a single stop can be reported twice as group and ptrace stop.
1338 * If a ptracer wants to distinguish these two events for its
1339 * own children it should create a separate process which takes
1340 * the role of real parent.
1342 if (!ptrace_reparented(p))
1343 ptrace = 1;
1346 /* slay zombie? */
1347 if (exit_state == EXIT_ZOMBIE) {
1348 /* we don't reap group leaders with subthreads */
1349 if (!delay_group_leader(p)) {
1351 * A zombie ptracee is only visible to its ptracer.
1352 * Notification and reaping will be cascaded to the
1353 * real parent when the ptracer detaches.
1355 if (unlikely(ptrace) || likely(!p->ptrace))
1356 return wait_task_zombie(wo, p);
1360 * Allow access to stopped/continued state via zombie by
1361 * falling through. Clearing of notask_error is complex.
1363 * When !@ptrace:
1365 * If WEXITED is set, notask_error should naturally be
1366 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1367 * so, if there are live subthreads, there are events to
1368 * wait for. If all subthreads are dead, it's still safe
1369 * to clear - this function will be called again in finite
1370 * amount time once all the subthreads are released and
1371 * will then return without clearing.
1373 * When @ptrace:
1375 * Stopped state is per-task and thus can't change once the
1376 * target task dies. Only continued and exited can happen.
1377 * Clear notask_error if WCONTINUED | WEXITED.
1379 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1380 wo->notask_error = 0;
1381 } else {
1383 * @p is alive and it's gonna stop, continue or exit, so
1384 * there always is something to wait for.
1386 wo->notask_error = 0;
1390 * Wait for stopped. Depending on @ptrace, different stopped state
1391 * is used and the two don't interact with each other.
1393 ret = wait_task_stopped(wo, ptrace, p);
1394 if (ret)
1395 return ret;
1398 * Wait for continued. There's only one continued state and the
1399 * ptracer can consume it which can confuse the real parent. Don't
1400 * use WCONTINUED from ptracer. You don't need or want it.
1402 return wait_task_continued(wo, p);
1406 * Do the work of do_wait() for one thread in the group, @tsk.
1408 * -ECHILD should be in ->notask_error before the first call.
1409 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1410 * Returns zero if the search for a child should continue; then
1411 * ->notask_error is 0 if there were any eligible children,
1412 * or another error from security_task_wait(), or still -ECHILD.
1414 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416 struct task_struct *p;
1418 list_for_each_entry(p, &tsk->children, sibling) {
1419 int ret = wait_consider_task(wo, 0, p);
1421 if (ret)
1422 return ret;
1425 return 0;
1428 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1430 struct task_struct *p;
1432 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1433 int ret = wait_consider_task(wo, 1, p);
1435 if (ret)
1436 return ret;
1439 return 0;
1442 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1443 int sync, void *key)
1445 struct wait_opts *wo = container_of(wait, struct wait_opts,
1446 child_wait);
1447 struct task_struct *p = key;
1449 if (!eligible_pid(wo, p))
1450 return 0;
1452 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1453 return 0;
1455 return default_wake_function(wait, mode, sync, key);
1458 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1460 __wake_up_sync_key(&parent->signal->wait_chldexit,
1461 TASK_INTERRUPTIBLE, 1, p);
1464 static long do_wait(struct wait_opts *wo)
1466 struct task_struct *tsk;
1467 int retval;
1469 trace_sched_process_wait(wo->wo_pid);
1471 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1472 wo->child_wait.private = current;
1473 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1474 repeat:
1476 * If there is nothing that can match our critiera just get out.
1477 * We will clear ->notask_error to zero if we see any child that
1478 * might later match our criteria, even if we are not able to reap
1479 * it yet.
1481 wo->notask_error = -ECHILD;
1482 if ((wo->wo_type < PIDTYPE_MAX) &&
1483 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1484 goto notask;
1486 set_current_state(TASK_INTERRUPTIBLE);
1487 read_lock(&tasklist_lock);
1488 tsk = current;
1489 do {
1490 retval = do_wait_thread(wo, tsk);
1491 if (retval)
1492 goto end;
1494 retval = ptrace_do_wait(wo, tsk);
1495 if (retval)
1496 goto end;
1498 if (wo->wo_flags & __WNOTHREAD)
1499 break;
1500 } while_each_thread(current, tsk);
1501 read_unlock(&tasklist_lock);
1503 notask:
1504 retval = wo->notask_error;
1505 if (!retval && !(wo->wo_flags & WNOHANG)) {
1506 retval = -ERESTARTSYS;
1507 if (!signal_pending(current)) {
1508 schedule();
1509 goto repeat;
1512 end:
1513 __set_current_state(TASK_RUNNING);
1514 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1515 return retval;
1518 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1519 infop, int, options, struct rusage __user *, ru)
1521 struct wait_opts wo;
1522 struct pid *pid = NULL;
1523 enum pid_type type;
1524 long ret;
1526 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1527 return -EINVAL;
1528 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1529 return -EINVAL;
1531 switch (which) {
1532 case P_ALL:
1533 type = PIDTYPE_MAX;
1534 break;
1535 case P_PID:
1536 type = PIDTYPE_PID;
1537 if (upid <= 0)
1538 return -EINVAL;
1539 break;
1540 case P_PGID:
1541 type = PIDTYPE_PGID;
1542 if (upid <= 0)
1543 return -EINVAL;
1544 break;
1545 default:
1546 return -EINVAL;
1549 if (type < PIDTYPE_MAX)
1550 pid = find_get_pid(upid);
1552 wo.wo_type = type;
1553 wo.wo_pid = pid;
1554 wo.wo_flags = options;
1555 wo.wo_info = infop;
1556 wo.wo_stat = NULL;
1557 wo.wo_rusage = ru;
1558 ret = do_wait(&wo);
1560 if (ret > 0) {
1561 ret = 0;
1562 } else if (infop) {
1564 * For a WNOHANG return, clear out all the fields
1565 * we would set so the user can easily tell the
1566 * difference.
1568 if (!ret)
1569 ret = put_user(0, &infop->si_signo);
1570 if (!ret)
1571 ret = put_user(0, &infop->si_errno);
1572 if (!ret)
1573 ret = put_user(0, &infop->si_code);
1574 if (!ret)
1575 ret = put_user(0, &infop->si_pid);
1576 if (!ret)
1577 ret = put_user(0, &infop->si_uid);
1578 if (!ret)
1579 ret = put_user(0, &infop->si_status);
1582 put_pid(pid);
1583 return ret;
1586 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1587 int, options, struct rusage __user *, ru)
1589 struct wait_opts wo;
1590 struct pid *pid = NULL;
1591 enum pid_type type;
1592 long ret;
1594 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1595 __WNOTHREAD|__WCLONE|__WALL))
1596 return -EINVAL;
1598 if (upid == -1)
1599 type = PIDTYPE_MAX;
1600 else if (upid < 0) {
1601 type = PIDTYPE_PGID;
1602 pid = find_get_pid(-upid);
1603 } else if (upid == 0) {
1604 type = PIDTYPE_PGID;
1605 pid = get_task_pid(current, PIDTYPE_PGID);
1606 } else /* upid > 0 */ {
1607 type = PIDTYPE_PID;
1608 pid = find_get_pid(upid);
1611 wo.wo_type = type;
1612 wo.wo_pid = pid;
1613 wo.wo_flags = options | WEXITED;
1614 wo.wo_info = NULL;
1615 wo.wo_stat = stat_addr;
1616 wo.wo_rusage = ru;
1617 ret = do_wait(&wo);
1618 put_pid(pid);
1620 return ret;
1623 #ifdef __ARCH_WANT_SYS_WAITPID
1626 * sys_waitpid() remains for compatibility. waitpid() should be
1627 * implemented by calling sys_wait4() from libc.a.
1629 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1631 return sys_wait4(pid, stat_addr, options, NULL);
1634 #endif