4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
70 #include <trace/events/task.h>
73 #include <trace/events/sched.h>
75 int suid_dumpable
= 0;
77 static LIST_HEAD(formats
);
78 static DEFINE_RWLOCK(binfmt_lock
);
80 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
83 if (WARN_ON(!fmt
->load_binary
))
85 write_lock(&binfmt_lock
);
86 insert
? list_add(&fmt
->lh
, &formats
) :
87 list_add_tail(&fmt
->lh
, &formats
);
88 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(__register_binfmt
);
93 void unregister_binfmt(struct linux_binfmt
* fmt
)
95 write_lock(&binfmt_lock
);
97 write_unlock(&binfmt_lock
);
100 EXPORT_SYMBOL(unregister_binfmt
);
102 static inline void put_binfmt(struct linux_binfmt
* fmt
)
104 module_put(fmt
->module
);
107 bool path_noexec(const struct path
*path
)
109 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
110 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
115 * Note that a shared library must be both readable and executable due to
118 * Also note that we take the address to load from from the file itself.
120 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
122 struct linux_binfmt
*fmt
;
124 struct filename
*tmp
= getname(library
);
125 int error
= PTR_ERR(tmp
);
126 static const struct open_flags uselib_flags
= {
127 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
128 .acc_mode
= MAY_READ
| MAY_EXEC
,
129 .intent
= LOOKUP_OPEN
,
130 .lookup_flags
= LOOKUP_FOLLOW
,
136 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
138 error
= PTR_ERR(file
);
143 if (!S_ISREG(file_inode(file
)->i_mode
))
147 if (path_noexec(&file
->f_path
))
154 read_lock(&binfmt_lock
);
155 list_for_each_entry(fmt
, &formats
, lh
) {
156 if (!fmt
->load_shlib
)
158 if (!try_module_get(fmt
->module
))
160 read_unlock(&binfmt_lock
);
161 error
= fmt
->load_shlib(file
);
162 read_lock(&binfmt_lock
);
164 if (error
!= -ENOEXEC
)
167 read_unlock(&binfmt_lock
);
173 #endif /* #ifdef CONFIG_USELIB */
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
182 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
184 struct mm_struct
*mm
= current
->mm
;
185 long diff
= (long)(pages
- bprm
->vma_pages
);
190 bprm
->vma_pages
= pages
;
191 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
194 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
199 unsigned int gup_flags
= FOLL_FORCE
;
201 #ifdef CONFIG_STACK_GROWSUP
203 ret
= expand_downwards(bprm
->vma
, pos
);
210 gup_flags
|= FOLL_WRITE
;
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
216 ret
= get_user_pages_remote(current
, bprm
->mm
, pos
, 1, gup_flags
,
222 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
223 unsigned long ptr_size
, limit
;
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
237 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
238 if (ptr_size
> ULONG_MAX
- size
)
242 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
259 limit
= _STK_LIM
/ 4 * 3;
260 limit
= min(limit
, bprm
->rlim_stack
.rlim_cur
/ 4);
272 static void put_arg_page(struct page
*page
)
277 static void free_arg_pages(struct linux_binprm
*bprm
)
281 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
284 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
287 static int __bprm_mm_init(struct linux_binprm
*bprm
)
290 struct vm_area_struct
*vma
= NULL
;
291 struct mm_struct
*mm
= bprm
->mm
;
293 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
297 if (down_write_killable(&mm
->mmap_sem
)) {
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
309 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
310 vma
->vm_end
= STACK_TOP_MAX
;
311 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
312 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
313 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
314 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
316 err
= insert_vm_struct(mm
, vma
);
320 mm
->stack_vm
= mm
->total_vm
= 1;
321 arch_bprm_mm_init(mm
, vma
);
322 up_write(&mm
->mmap_sem
);
323 bprm
->p
= vma
->vm_end
- sizeof(void *);
326 up_write(&mm
->mmap_sem
);
329 kmem_cache_free(vm_area_cachep
, vma
);
333 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
335 return len
<= MAX_ARG_STRLEN
;
340 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
344 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
349 page
= bprm
->page
[pos
/ PAGE_SIZE
];
350 if (!page
&& write
) {
351 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
354 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
360 static void put_arg_page(struct page
*page
)
364 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
367 __free_page(bprm
->page
[i
]);
368 bprm
->page
[i
] = NULL
;
372 static void free_arg_pages(struct linux_binprm
*bprm
)
376 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
377 free_arg_page(bprm
, i
);
380 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
385 static int __bprm_mm_init(struct linux_binprm
*bprm
)
387 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
391 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
393 return len
<= bprm
->p
;
396 #endif /* CONFIG_MMU */
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
404 static int bprm_mm_init(struct linux_binprm
*bprm
)
407 struct mm_struct
*mm
= NULL
;
409 bprm
->mm
= mm
= mm_alloc();
414 /* Save current stack limit for all calculations made during exec. */
415 task_lock(current
->group_leader
);
416 bprm
->rlim_stack
= current
->signal
->rlim
[RLIMIT_STACK
];
417 task_unlock(current
->group_leader
);
419 err
= __bprm_mm_init(bprm
);
434 struct user_arg_ptr
{
439 const char __user
*const __user
*native
;
441 const compat_uptr_t __user
*compat
;
446 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
448 const char __user
*native
;
451 if (unlikely(argv
.is_compat
)) {
452 compat_uptr_t compat
;
454 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
455 return ERR_PTR(-EFAULT
);
457 return compat_ptr(compat
);
461 if (get_user(native
, argv
.ptr
.native
+ nr
))
462 return ERR_PTR(-EFAULT
);
468 * count() counts the number of strings in array ARGV.
470 static int count(struct user_arg_ptr argv
, int max
)
474 if (argv
.ptr
.native
!= NULL
) {
476 const char __user
*p
= get_user_arg_ptr(argv
, i
);
488 if (fatal_signal_pending(current
))
489 return -ERESTARTNOHAND
;
497 * 'copy_strings()' copies argument/environment strings from the old
498 * processes's memory to the new process's stack. The call to get_user_pages()
499 * ensures the destination page is created and not swapped out.
501 static int copy_strings(int argc
, struct user_arg_ptr argv
,
502 struct linux_binprm
*bprm
)
504 struct page
*kmapped_page
= NULL
;
506 unsigned long kpos
= 0;
510 const char __user
*str
;
515 str
= get_user_arg_ptr(argv
, argc
);
519 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
524 if (!valid_arg_len(bprm
, len
))
527 /* We're going to work our way backwords. */
533 int offset
, bytes_to_copy
;
535 if (fatal_signal_pending(current
)) {
536 ret
= -ERESTARTNOHAND
;
541 offset
= pos
% PAGE_SIZE
;
545 bytes_to_copy
= offset
;
546 if (bytes_to_copy
> len
)
549 offset
-= bytes_to_copy
;
550 pos
-= bytes_to_copy
;
551 str
-= bytes_to_copy
;
552 len
-= bytes_to_copy
;
554 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
557 page
= get_arg_page(bprm
, pos
, 1);
564 flush_kernel_dcache_page(kmapped_page
);
565 kunmap(kmapped_page
);
566 put_arg_page(kmapped_page
);
569 kaddr
= kmap(kmapped_page
);
570 kpos
= pos
& PAGE_MASK
;
571 flush_arg_page(bprm
, kpos
, kmapped_page
);
573 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
582 flush_kernel_dcache_page(kmapped_page
);
583 kunmap(kmapped_page
);
584 put_arg_page(kmapped_page
);
590 * Like copy_strings, but get argv and its values from kernel memory.
592 int copy_strings_kernel(int argc
, const char *const *__argv
,
593 struct linux_binprm
*bprm
)
596 mm_segment_t oldfs
= get_fs();
597 struct user_arg_ptr argv
= {
598 .ptr
.native
= (const char __user
*const __user
*)__argv
,
602 r
= copy_strings(argc
, argv
, bprm
);
607 EXPORT_SYMBOL(copy_strings_kernel
);
612 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
613 * the binfmt code determines where the new stack should reside, we shift it to
614 * its final location. The process proceeds as follows:
616 * 1) Use shift to calculate the new vma endpoints.
617 * 2) Extend vma to cover both the old and new ranges. This ensures the
618 * arguments passed to subsequent functions are consistent.
619 * 3) Move vma's page tables to the new range.
620 * 4) Free up any cleared pgd range.
621 * 5) Shrink the vma to cover only the new range.
623 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
625 struct mm_struct
*mm
= vma
->vm_mm
;
626 unsigned long old_start
= vma
->vm_start
;
627 unsigned long old_end
= vma
->vm_end
;
628 unsigned long length
= old_end
- old_start
;
629 unsigned long new_start
= old_start
- shift
;
630 unsigned long new_end
= old_end
- shift
;
631 struct mmu_gather tlb
;
633 BUG_ON(new_start
> new_end
);
636 * ensure there are no vmas between where we want to go
639 if (vma
!= find_vma(mm
, new_start
))
643 * cover the whole range: [new_start, old_end)
645 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
649 * move the page tables downwards, on failure we rely on
650 * process cleanup to remove whatever mess we made.
652 if (length
!= move_page_tables(vma
, old_start
,
653 vma
, new_start
, length
, false))
657 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
658 if (new_end
> old_start
) {
660 * when the old and new regions overlap clear from new_end.
662 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
663 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
666 * otherwise, clean from old_start; this is done to not touch
667 * the address space in [new_end, old_start) some architectures
668 * have constraints on va-space that make this illegal (IA64) -
669 * for the others its just a little faster.
671 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
672 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
674 tlb_finish_mmu(&tlb
, old_start
, old_end
);
677 * Shrink the vma to just the new range. Always succeeds.
679 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
685 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
686 * the stack is optionally relocated, and some extra space is added.
688 int setup_arg_pages(struct linux_binprm
*bprm
,
689 unsigned long stack_top
,
690 int executable_stack
)
693 unsigned long stack_shift
;
694 struct mm_struct
*mm
= current
->mm
;
695 struct vm_area_struct
*vma
= bprm
->vma
;
696 struct vm_area_struct
*prev
= NULL
;
697 unsigned long vm_flags
;
698 unsigned long stack_base
;
699 unsigned long stack_size
;
700 unsigned long stack_expand
;
701 unsigned long rlim_stack
;
703 #ifdef CONFIG_STACK_GROWSUP
704 /* Limit stack size */
705 stack_base
= bprm
->rlim_stack
.rlim_max
;
706 if (stack_base
> STACK_SIZE_MAX
)
707 stack_base
= STACK_SIZE_MAX
;
709 /* Add space for stack randomization. */
710 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
712 /* Make sure we didn't let the argument array grow too large. */
713 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
716 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
718 stack_shift
= vma
->vm_start
- stack_base
;
719 mm
->arg_start
= bprm
->p
- stack_shift
;
720 bprm
->p
= vma
->vm_end
- stack_shift
;
722 stack_top
= arch_align_stack(stack_top
);
723 stack_top
= PAGE_ALIGN(stack_top
);
725 if (unlikely(stack_top
< mmap_min_addr
) ||
726 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
729 stack_shift
= vma
->vm_end
- stack_top
;
731 bprm
->p
-= stack_shift
;
732 mm
->arg_start
= bprm
->p
;
736 bprm
->loader
-= stack_shift
;
737 bprm
->exec
-= stack_shift
;
739 if (down_write_killable(&mm
->mmap_sem
))
742 vm_flags
= VM_STACK_FLAGS
;
745 * Adjust stack execute permissions; explicitly enable for
746 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
747 * (arch default) otherwise.
749 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
751 else if (executable_stack
== EXSTACK_DISABLE_X
)
752 vm_flags
&= ~VM_EXEC
;
753 vm_flags
|= mm
->def_flags
;
754 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
756 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
762 /* Move stack pages down in memory. */
764 ret
= shift_arg_pages(vma
, stack_shift
);
769 /* mprotect_fixup is overkill to remove the temporary stack flags */
770 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
772 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
773 stack_size
= vma
->vm_end
- vma
->vm_start
;
775 * Align this down to a page boundary as expand_stack
778 rlim_stack
= bprm
->rlim_stack
.rlim_cur
& PAGE_MASK
;
779 #ifdef CONFIG_STACK_GROWSUP
780 if (stack_size
+ stack_expand
> rlim_stack
)
781 stack_base
= vma
->vm_start
+ rlim_stack
;
783 stack_base
= vma
->vm_end
+ stack_expand
;
785 if (stack_size
+ stack_expand
> rlim_stack
)
786 stack_base
= vma
->vm_end
- rlim_stack
;
788 stack_base
= vma
->vm_start
- stack_expand
;
790 current
->mm
->start_stack
= bprm
->p
;
791 ret
= expand_stack(vma
, stack_base
);
796 up_write(&mm
->mmap_sem
);
799 EXPORT_SYMBOL(setup_arg_pages
);
804 * Transfer the program arguments and environment from the holding pages
805 * onto the stack. The provided stack pointer is adjusted accordingly.
807 int transfer_args_to_stack(struct linux_binprm
*bprm
,
808 unsigned long *sp_location
)
810 unsigned long index
, stop
, sp
;
813 stop
= bprm
->p
>> PAGE_SHIFT
;
816 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
817 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
818 char *src
= kmap(bprm
->page
[index
]) + offset
;
819 sp
-= PAGE_SIZE
- offset
;
820 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
822 kunmap(bprm
->page
[index
]);
832 EXPORT_SYMBOL(transfer_args_to_stack
);
834 #endif /* CONFIG_MMU */
836 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
840 struct open_flags open_exec_flags
= {
841 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
842 .acc_mode
= MAY_EXEC
,
843 .intent
= LOOKUP_OPEN
,
844 .lookup_flags
= LOOKUP_FOLLOW
,
847 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
848 return ERR_PTR(-EINVAL
);
849 if (flags
& AT_SYMLINK_NOFOLLOW
)
850 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
851 if (flags
& AT_EMPTY_PATH
)
852 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
854 file
= do_filp_open(fd
, name
, &open_exec_flags
);
859 if (!S_ISREG(file_inode(file
)->i_mode
))
862 if (path_noexec(&file
->f_path
))
865 err
= deny_write_access(file
);
869 if (name
->name
[0] != '\0')
880 struct file
*open_exec(const char *name
)
882 struct filename
*filename
= getname_kernel(name
);
883 struct file
*f
= ERR_CAST(filename
);
885 if (!IS_ERR(filename
)) {
886 f
= do_open_execat(AT_FDCWD
, filename
, 0);
891 EXPORT_SYMBOL(open_exec
);
893 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
894 loff_t max_size
, enum kernel_read_file_id id
)
900 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
903 ret
= deny_write_access(file
);
907 ret
= security_kernel_read_file(file
, id
);
911 i_size
= i_size_read(file_inode(file
));
912 if (max_size
> 0 && i_size
> max_size
) {
921 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
)
922 *buf
= vmalloc(i_size
);
929 while (pos
< i_size
) {
930 bytes
= kernel_read(file
, *buf
+ pos
, i_size
- pos
, &pos
);
945 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
951 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
) {
958 allow_write_access(file
);
961 EXPORT_SYMBOL_GPL(kernel_read_file
);
963 int kernel_read_file_from_path(const char *path
, void **buf
, loff_t
*size
,
964 loff_t max_size
, enum kernel_read_file_id id
)
972 file
= filp_open(path
, O_RDONLY
, 0);
974 return PTR_ERR(file
);
976 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
980 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
982 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
983 enum kernel_read_file_id id
)
985 struct fd f
= fdget(fd
);
991 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
996 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
998 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
1000 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
1002 flush_icache_range(addr
, addr
+ len
);
1005 EXPORT_SYMBOL(read_code
);
1007 static int exec_mmap(struct mm_struct
*mm
)
1009 struct task_struct
*tsk
;
1010 struct mm_struct
*old_mm
, *active_mm
;
1012 /* Notify parent that we're no longer interested in the old VM */
1014 old_mm
= current
->mm
;
1015 mm_release(tsk
, old_mm
);
1018 sync_mm_rss(old_mm
);
1020 * Make sure that if there is a core dump in progress
1021 * for the old mm, we get out and die instead of going
1022 * through with the exec. We must hold mmap_sem around
1023 * checking core_state and changing tsk->mm.
1025 down_read(&old_mm
->mmap_sem
);
1026 if (unlikely(old_mm
->core_state
)) {
1027 up_read(&old_mm
->mmap_sem
);
1032 active_mm
= tsk
->active_mm
;
1034 tsk
->active_mm
= mm
;
1035 activate_mm(active_mm
, mm
);
1036 tsk
->mm
->vmacache_seqnum
= 0;
1037 vmacache_flush(tsk
);
1040 up_read(&old_mm
->mmap_sem
);
1041 BUG_ON(active_mm
!= old_mm
);
1042 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1043 mm_update_next_owner(old_mm
);
1052 * This function makes sure the current process has its own signal table,
1053 * so that flush_signal_handlers can later reset the handlers without
1054 * disturbing other processes. (Other processes might share the signal
1055 * table via the CLONE_SIGHAND option to clone().)
1057 static int de_thread(struct task_struct
*tsk
)
1059 struct signal_struct
*sig
= tsk
->signal
;
1060 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1061 spinlock_t
*lock
= &oldsighand
->siglock
;
1063 if (thread_group_empty(tsk
))
1064 goto no_thread_group
;
1067 * Kill all other threads in the thread group.
1069 spin_lock_irq(lock
);
1070 if (signal_group_exit(sig
)) {
1072 * Another group action in progress, just
1073 * return so that the signal is processed.
1075 spin_unlock_irq(lock
);
1079 sig
->group_exit_task
= tsk
;
1080 sig
->notify_count
= zap_other_threads(tsk
);
1081 if (!thread_group_leader(tsk
))
1082 sig
->notify_count
--;
1084 while (sig
->notify_count
) {
1085 __set_current_state(TASK_KILLABLE
);
1086 spin_unlock_irq(lock
);
1088 if (unlikely(__fatal_signal_pending(tsk
)))
1090 spin_lock_irq(lock
);
1092 spin_unlock_irq(lock
);
1095 * At this point all other threads have exited, all we have to
1096 * do is to wait for the thread group leader to become inactive,
1097 * and to assume its PID:
1099 if (!thread_group_leader(tsk
)) {
1100 struct task_struct
*leader
= tsk
->group_leader
;
1103 cgroup_threadgroup_change_begin(tsk
);
1104 write_lock_irq(&tasklist_lock
);
1106 * Do this under tasklist_lock to ensure that
1107 * exit_notify() can't miss ->group_exit_task
1109 sig
->notify_count
= -1;
1110 if (likely(leader
->exit_state
))
1112 __set_current_state(TASK_KILLABLE
);
1113 write_unlock_irq(&tasklist_lock
);
1114 cgroup_threadgroup_change_end(tsk
);
1116 if (unlikely(__fatal_signal_pending(tsk
)))
1121 * The only record we have of the real-time age of a
1122 * process, regardless of execs it's done, is start_time.
1123 * All the past CPU time is accumulated in signal_struct
1124 * from sister threads now dead. But in this non-leader
1125 * exec, nothing survives from the original leader thread,
1126 * whose birth marks the true age of this process now.
1127 * When we take on its identity by switching to its PID, we
1128 * also take its birthdate (always earlier than our own).
1130 tsk
->start_time
= leader
->start_time
;
1131 tsk
->real_start_time
= leader
->real_start_time
;
1133 BUG_ON(!same_thread_group(leader
, tsk
));
1134 BUG_ON(has_group_leader_pid(tsk
));
1136 * An exec() starts a new thread group with the
1137 * TGID of the previous thread group. Rehash the
1138 * two threads with a switched PID, and release
1139 * the former thread group leader:
1142 /* Become a process group leader with the old leader's pid.
1143 * The old leader becomes a thread of the this thread group.
1144 * Note: The old leader also uses this pid until release_task
1145 * is called. Odd but simple and correct.
1147 tsk
->pid
= leader
->pid
;
1148 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1149 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1150 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1152 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1153 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1155 tsk
->group_leader
= tsk
;
1156 leader
->group_leader
= tsk
;
1158 tsk
->exit_signal
= SIGCHLD
;
1159 leader
->exit_signal
= -1;
1161 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1162 leader
->exit_state
= EXIT_DEAD
;
1165 * We are going to release_task()->ptrace_unlink() silently,
1166 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1167 * the tracer wont't block again waiting for this thread.
1169 if (unlikely(leader
->ptrace
))
1170 __wake_up_parent(leader
, leader
->parent
);
1171 write_unlock_irq(&tasklist_lock
);
1172 cgroup_threadgroup_change_end(tsk
);
1174 release_task(leader
);
1177 sig
->group_exit_task
= NULL
;
1178 sig
->notify_count
= 0;
1181 /* we have changed execution domain */
1182 tsk
->exit_signal
= SIGCHLD
;
1184 #ifdef CONFIG_POSIX_TIMERS
1186 flush_itimer_signals();
1189 if (atomic_read(&oldsighand
->count
) != 1) {
1190 struct sighand_struct
*newsighand
;
1192 * This ->sighand is shared with the CLONE_SIGHAND
1193 * but not CLONE_THREAD task, switch to the new one.
1195 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1199 atomic_set(&newsighand
->count
, 1);
1200 memcpy(newsighand
->action
, oldsighand
->action
,
1201 sizeof(newsighand
->action
));
1203 write_lock_irq(&tasklist_lock
);
1204 spin_lock(&oldsighand
->siglock
);
1205 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1206 spin_unlock(&oldsighand
->siglock
);
1207 write_unlock_irq(&tasklist_lock
);
1209 __cleanup_sighand(oldsighand
);
1212 BUG_ON(!thread_group_leader(tsk
));
1216 /* protects against exit_notify() and __exit_signal() */
1217 read_lock(&tasklist_lock
);
1218 sig
->group_exit_task
= NULL
;
1219 sig
->notify_count
= 0;
1220 read_unlock(&tasklist_lock
);
1224 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1227 strncpy(buf
, tsk
->comm
, buf_size
);
1231 EXPORT_SYMBOL_GPL(__get_task_comm
);
1234 * These functions flushes out all traces of the currently running executable
1235 * so that a new one can be started
1238 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1241 trace_task_rename(tsk
, buf
);
1242 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1244 perf_event_comm(tsk
, exec
);
1248 * Calling this is the point of no return. None of the failures will be
1249 * seen by userspace since either the process is already taking a fatal
1250 * signal (via de_thread() or coredump), or will have SEGV raised
1251 * (after exec_mmap()) by search_binary_handlers (see below).
1253 int flush_old_exec(struct linux_binprm
* bprm
)
1258 * Make sure we have a private signal table and that
1259 * we are unassociated from the previous thread group.
1261 retval
= de_thread(current
);
1266 * Must be called _before_ exec_mmap() as bprm->mm is
1267 * not visibile until then. This also enables the update
1270 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1273 * Release all of the old mmap stuff
1275 acct_arg_size(bprm
, 0);
1276 retval
= exec_mmap(bprm
->mm
);
1281 * After clearing bprm->mm (to mark that current is using the
1282 * prepared mm now), we have nothing left of the original
1283 * process. If anything from here on returns an error, the check
1284 * in search_binary_handler() will SEGV current.
1289 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1290 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1292 current
->personality
&= ~bprm
->per_clear
;
1295 * We have to apply CLOEXEC before we change whether the process is
1296 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1297 * trying to access the should-be-closed file descriptors of a process
1298 * undergoing exec(2).
1300 do_close_on_exec(current
->files
);
1306 EXPORT_SYMBOL(flush_old_exec
);
1308 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1310 struct inode
*inode
= file_inode(file
);
1311 if (inode_permission(inode
, MAY_READ
) < 0) {
1312 struct user_namespace
*old
, *user_ns
;
1313 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1315 /* Ensure mm->user_ns contains the executable */
1316 user_ns
= old
= bprm
->mm
->user_ns
;
1317 while ((user_ns
!= &init_user_ns
) &&
1318 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1319 user_ns
= user_ns
->parent
;
1321 if (old
!= user_ns
) {
1322 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1327 EXPORT_SYMBOL(would_dump
);
1329 void setup_new_exec(struct linux_binprm
* bprm
)
1332 * Once here, prepare_binrpm() will not be called any more, so
1333 * the final state of setuid/setgid/fscaps can be merged into the
1336 bprm
->secureexec
|= bprm
->cap_elevated
;
1338 if (bprm
->secureexec
) {
1339 /* Make sure parent cannot signal privileged process. */
1340 current
->pdeath_signal
= 0;
1343 * For secureexec, reset the stack limit to sane default to
1344 * avoid bad behavior from the prior rlimits. This has to
1345 * happen before arch_pick_mmap_layout(), which examines
1346 * RLIMIT_STACK, but after the point of no return to avoid
1347 * needing to clean up the change on failure.
1349 if (bprm
->rlim_stack
.rlim_cur
> _STK_LIM
)
1350 bprm
->rlim_stack
.rlim_cur
= _STK_LIM
;
1353 arch_pick_mmap_layout(current
->mm
, &bprm
->rlim_stack
);
1355 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1358 * Figure out dumpability. Note that this checking only of current
1359 * is wrong, but userspace depends on it. This should be testing
1360 * bprm->secureexec instead.
1362 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
||
1363 !(uid_eq(current_euid(), current_uid()) &&
1364 gid_eq(current_egid(), current_gid())))
1365 set_dumpable(current
->mm
, suid_dumpable
);
1367 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1369 arch_setup_new_exec();
1371 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1373 /* Set the new mm task size. We have to do that late because it may
1374 * depend on TIF_32BIT which is only updated in flush_thread() on
1375 * some architectures like powerpc
1377 current
->mm
->task_size
= TASK_SIZE
;
1379 /* An exec changes our domain. We are no longer part of the thread
1381 current
->self_exec_id
++;
1382 flush_signal_handlers(current
, 0);
1384 EXPORT_SYMBOL(setup_new_exec
);
1386 /* Runs immediately before start_thread() takes over. */
1387 void finalize_exec(struct linux_binprm
*bprm
)
1389 /* Store any stack rlimit changes before starting thread. */
1390 task_lock(current
->group_leader
);
1391 current
->signal
->rlim
[RLIMIT_STACK
] = bprm
->rlim_stack
;
1392 task_unlock(current
->group_leader
);
1394 EXPORT_SYMBOL(finalize_exec
);
1397 * Prepare credentials and lock ->cred_guard_mutex.
1398 * install_exec_creds() commits the new creds and drops the lock.
1399 * Or, if exec fails before, free_bprm() should release ->cred and
1402 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1404 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1405 return -ERESTARTNOINTR
;
1407 bprm
->cred
= prepare_exec_creds();
1408 if (likely(bprm
->cred
))
1411 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1415 static void free_bprm(struct linux_binprm
*bprm
)
1417 free_arg_pages(bprm
);
1419 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1420 abort_creds(bprm
->cred
);
1423 allow_write_access(bprm
->file
);
1426 /* If a binfmt changed the interp, free it. */
1427 if (bprm
->interp
!= bprm
->filename
)
1428 kfree(bprm
->interp
);
1432 int bprm_change_interp(const char *interp
, struct linux_binprm
*bprm
)
1434 /* If a binfmt changed the interp, free it first. */
1435 if (bprm
->interp
!= bprm
->filename
)
1436 kfree(bprm
->interp
);
1437 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1442 EXPORT_SYMBOL(bprm_change_interp
);
1445 * install the new credentials for this executable
1447 void install_exec_creds(struct linux_binprm
*bprm
)
1449 security_bprm_committing_creds(bprm
);
1451 commit_creds(bprm
->cred
);
1455 * Disable monitoring for regular users
1456 * when executing setuid binaries. Must
1457 * wait until new credentials are committed
1458 * by commit_creds() above
1460 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1461 perf_event_exit_task(current
);
1463 * cred_guard_mutex must be held at least to this point to prevent
1464 * ptrace_attach() from altering our determination of the task's
1465 * credentials; any time after this it may be unlocked.
1467 security_bprm_committed_creds(bprm
);
1468 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1470 EXPORT_SYMBOL(install_exec_creds
);
1473 * determine how safe it is to execute the proposed program
1474 * - the caller must hold ->cred_guard_mutex to protect against
1475 * PTRACE_ATTACH or seccomp thread-sync
1477 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1479 struct task_struct
*p
= current
, *t
;
1483 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1486 * This isn't strictly necessary, but it makes it harder for LSMs to
1489 if (task_no_new_privs(current
))
1490 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1494 spin_lock(&p
->fs
->lock
);
1496 while_each_thread(p
, t
) {
1502 if (p
->fs
->users
> n_fs
)
1503 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1506 spin_unlock(&p
->fs
->lock
);
1509 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1511 struct inode
*inode
;
1517 * Since this can be called multiple times (via prepare_binprm),
1518 * we must clear any previous work done when setting set[ug]id
1519 * bits from any earlier bprm->file uses (for example when run
1520 * first for a setuid script then again for its interpreter).
1522 bprm
->cred
->euid
= current_euid();
1523 bprm
->cred
->egid
= current_egid();
1525 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
1528 if (task_no_new_privs(current
))
1531 inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1532 mode
= READ_ONCE(inode
->i_mode
);
1533 if (!(mode
& (S_ISUID
|S_ISGID
)))
1536 /* Be careful if suid/sgid is set */
1539 /* reload atomically mode/uid/gid now that lock held */
1540 mode
= inode
->i_mode
;
1543 inode_unlock(inode
);
1545 /* We ignore suid/sgid if there are no mappings for them in the ns */
1546 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1547 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1550 if (mode
& S_ISUID
) {
1551 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1552 bprm
->cred
->euid
= uid
;
1555 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1556 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1557 bprm
->cred
->egid
= gid
;
1562 * Fill the binprm structure from the inode.
1563 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1565 * This may be called multiple times for binary chains (scripts for example).
1567 int prepare_binprm(struct linux_binprm
*bprm
)
1572 bprm_fill_uid(bprm
);
1574 /* fill in binprm security blob */
1575 retval
= security_bprm_set_creds(bprm
);
1578 bprm
->called_set_creds
= 1;
1580 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1581 return kernel_read(bprm
->file
, bprm
->buf
, BINPRM_BUF_SIZE
, &pos
);
1584 EXPORT_SYMBOL(prepare_binprm
);
1587 * Arguments are '\0' separated strings found at the location bprm->p
1588 * points to; chop off the first by relocating brpm->p to right after
1589 * the first '\0' encountered.
1591 int remove_arg_zero(struct linux_binprm
*bprm
)
1594 unsigned long offset
;
1602 offset
= bprm
->p
& ~PAGE_MASK
;
1603 page
= get_arg_page(bprm
, bprm
->p
, 0);
1608 kaddr
= kmap_atomic(page
);
1610 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1611 offset
++, bprm
->p
++)
1614 kunmap_atomic(kaddr
);
1616 } while (offset
== PAGE_SIZE
);
1625 EXPORT_SYMBOL(remove_arg_zero
);
1627 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1629 * cycle the list of binary formats handler, until one recognizes the image
1631 int search_binary_handler(struct linux_binprm
*bprm
)
1633 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1634 struct linux_binfmt
*fmt
;
1637 /* This allows 4 levels of binfmt rewrites before failing hard. */
1638 if (bprm
->recursion_depth
> 5)
1641 retval
= security_bprm_check(bprm
);
1647 read_lock(&binfmt_lock
);
1648 list_for_each_entry(fmt
, &formats
, lh
) {
1649 if (!try_module_get(fmt
->module
))
1651 read_unlock(&binfmt_lock
);
1652 bprm
->recursion_depth
++;
1653 retval
= fmt
->load_binary(bprm
);
1654 read_lock(&binfmt_lock
);
1656 bprm
->recursion_depth
--;
1657 if (retval
< 0 && !bprm
->mm
) {
1658 /* we got to flush_old_exec() and failed after it */
1659 read_unlock(&binfmt_lock
);
1660 force_sigsegv(SIGSEGV
, current
);
1663 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1664 read_unlock(&binfmt_lock
);
1668 read_unlock(&binfmt_lock
);
1671 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1672 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1674 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1682 EXPORT_SYMBOL(search_binary_handler
);
1684 static int exec_binprm(struct linux_binprm
*bprm
)
1686 pid_t old_pid
, old_vpid
;
1689 /* Need to fetch pid before load_binary changes it */
1690 old_pid
= current
->pid
;
1692 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1695 ret
= search_binary_handler(bprm
);
1698 trace_sched_process_exec(current
, old_pid
, bprm
);
1699 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1700 proc_exec_connector(current
);
1707 * sys_execve() executes a new program.
1709 static int __do_execve_file(int fd
, struct filename
*filename
,
1710 struct user_arg_ptr argv
,
1711 struct user_arg_ptr envp
,
1712 int flags
, struct file
*file
)
1714 char *pathbuf
= NULL
;
1715 struct linux_binprm
*bprm
;
1716 struct files_struct
*displaced
;
1719 if (IS_ERR(filename
))
1720 return PTR_ERR(filename
);
1723 * We move the actual failure in case of RLIMIT_NPROC excess from
1724 * set*uid() to execve() because too many poorly written programs
1725 * don't check setuid() return code. Here we additionally recheck
1726 * whether NPROC limit is still exceeded.
1728 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1729 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1734 /* We're below the limit (still or again), so we don't want to make
1735 * further execve() calls fail. */
1736 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1738 retval
= unshare_files(&displaced
);
1743 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1747 retval
= prepare_bprm_creds(bprm
);
1751 check_unsafe_exec(bprm
);
1752 current
->in_execve
= 1;
1755 file
= do_open_execat(fd
, filename
, flags
);
1756 retval
= PTR_ERR(file
);
1764 bprm
->filename
= "none";
1765 } else if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1766 bprm
->filename
= filename
->name
;
1768 if (filename
->name
[0] == '\0')
1769 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d", fd
);
1771 pathbuf
= kasprintf(GFP_KERNEL
, "/dev/fd/%d/%s",
1772 fd
, filename
->name
);
1778 * Record that a name derived from an O_CLOEXEC fd will be
1779 * inaccessible after exec. Relies on having exclusive access to
1780 * current->files (due to unshare_files above).
1782 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1783 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1784 bprm
->filename
= pathbuf
;
1786 bprm
->interp
= bprm
->filename
;
1788 retval
= bprm_mm_init(bprm
);
1792 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1793 if ((retval
= bprm
->argc
) < 0)
1796 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1797 if ((retval
= bprm
->envc
) < 0)
1800 retval
= prepare_binprm(bprm
);
1804 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1808 bprm
->exec
= bprm
->p
;
1809 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1813 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1817 would_dump(bprm
, bprm
->file
);
1819 retval
= exec_binprm(bprm
);
1823 /* execve succeeded */
1824 current
->fs
->in_exec
= 0;
1825 current
->in_execve
= 0;
1826 membarrier_execve(current
);
1827 rseq_execve(current
);
1828 acct_update_integrals(current
);
1829 task_numa_free(current
);
1835 put_files_struct(displaced
);
1840 acct_arg_size(bprm
, 0);
1845 current
->fs
->in_exec
= 0;
1846 current
->in_execve
= 0;
1854 reset_files_struct(displaced
);
1861 static int do_execveat_common(int fd
, struct filename
*filename
,
1862 struct user_arg_ptr argv
,
1863 struct user_arg_ptr envp
,
1866 return __do_execve_file(fd
, filename
, argv
, envp
, flags
, NULL
);
1869 int do_execve_file(struct file
*file
, void *__argv
, void *__envp
)
1871 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1872 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1874 return __do_execve_file(AT_FDCWD
, NULL
, argv
, envp
, 0, file
);
1877 int do_execve(struct filename
*filename
,
1878 const char __user
*const __user
*__argv
,
1879 const char __user
*const __user
*__envp
)
1881 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1882 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1883 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1886 int do_execveat(int fd
, struct filename
*filename
,
1887 const char __user
*const __user
*__argv
,
1888 const char __user
*const __user
*__envp
,
1891 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1892 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1894 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1897 #ifdef CONFIG_COMPAT
1898 static int compat_do_execve(struct filename
*filename
,
1899 const compat_uptr_t __user
*__argv
,
1900 const compat_uptr_t __user
*__envp
)
1902 struct user_arg_ptr argv
= {
1904 .ptr
.compat
= __argv
,
1906 struct user_arg_ptr envp
= {
1908 .ptr
.compat
= __envp
,
1910 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1913 static int compat_do_execveat(int fd
, struct filename
*filename
,
1914 const compat_uptr_t __user
*__argv
,
1915 const compat_uptr_t __user
*__envp
,
1918 struct user_arg_ptr argv
= {
1920 .ptr
.compat
= __argv
,
1922 struct user_arg_ptr envp
= {
1924 .ptr
.compat
= __envp
,
1926 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1930 void set_binfmt(struct linux_binfmt
*new)
1932 struct mm_struct
*mm
= current
->mm
;
1935 module_put(mm
->binfmt
->module
);
1939 __module_get(new->module
);
1941 EXPORT_SYMBOL(set_binfmt
);
1944 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1946 void set_dumpable(struct mm_struct
*mm
, int value
)
1948 unsigned long old
, new;
1950 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1954 old
= READ_ONCE(mm
->flags
);
1955 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1956 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1959 SYSCALL_DEFINE3(execve
,
1960 const char __user
*, filename
,
1961 const char __user
*const __user
*, argv
,
1962 const char __user
*const __user
*, envp
)
1964 return do_execve(getname(filename
), argv
, envp
);
1967 SYSCALL_DEFINE5(execveat
,
1968 int, fd
, const char __user
*, filename
,
1969 const char __user
*const __user
*, argv
,
1970 const char __user
*const __user
*, envp
,
1973 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1975 return do_execveat(fd
,
1976 getname_flags(filename
, lookup_flags
, NULL
),
1980 #ifdef CONFIG_COMPAT
1981 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1982 const compat_uptr_t __user
*, argv
,
1983 const compat_uptr_t __user
*, envp
)
1985 return compat_do_execve(getname(filename
), argv
, envp
);
1988 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1989 const char __user
*, filename
,
1990 const compat_uptr_t __user
*, argv
,
1991 const compat_uptr_t __user
*, envp
,
1994 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1996 return compat_do_execveat(fd
,
1997 getname_flags(filename
, lookup_flags
, NULL
),