[PATCH] e1000: Fix desc. clean up
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000 / e1000_ethtool.c
blobad9ca2ac25fa1c48ca7b7a8a3e3f9730e35bae7d
1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
48 struct e1000_stats {
49 char stat_string[ETH_GSTRING_LEN];
50 int sizeof_stat;
51 int stat_offset;
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63 { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65 { "multicast", E1000_STAT(net_stats.multicast) },
66 { "collisions", E1000_STAT(net_stats.collisions) },
67 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71 { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80 { "tx_deferred_ok", E1000_STAT(stats.dc) },
81 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84 { "rx_long_length_errors", E1000_STAT(stats.roc) },
85 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
86 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
87 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
88 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
89 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
90 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
91 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
92 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
93 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
94 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
95 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
96 { "rx_header_split", E1000_STAT(rx_hdr_split) },
97 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100 #ifdef CONFIG_E1000_MQ
101 #define E1000_QUEUE_STATS_LEN \
102 (((struct e1000_adapter *)netdev->priv)->num_tx_queues + \
103 ((struct e1000_adapter *)netdev->priv)->num_rx_queues) \
104 * (sizeof(struct e1000_queue_stats) / sizeof(uint64_t))
105 #else
106 #define E1000_QUEUE_STATS_LEN 0
107 #endif
108 #define E1000_GLOBAL_STATS_LEN \
109 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
110 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
111 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
112 "Register test (offline)", "Eeprom test (offline)",
113 "Interrupt test (offline)", "Loopback test (offline)",
114 "Link test (on/offline)"
116 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
118 static int
119 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
121 struct e1000_adapter *adapter = netdev_priv(netdev);
122 struct e1000_hw *hw = &adapter->hw;
124 if(hw->media_type == e1000_media_type_copper) {
126 ecmd->supported = (SUPPORTED_10baseT_Half |
127 SUPPORTED_10baseT_Full |
128 SUPPORTED_100baseT_Half |
129 SUPPORTED_100baseT_Full |
130 SUPPORTED_1000baseT_Full|
131 SUPPORTED_Autoneg |
132 SUPPORTED_TP);
134 ecmd->advertising = ADVERTISED_TP;
136 if(hw->autoneg == 1) {
137 ecmd->advertising |= ADVERTISED_Autoneg;
139 /* the e1000 autoneg seems to match ethtool nicely */
141 ecmd->advertising |= hw->autoneg_advertised;
144 ecmd->port = PORT_TP;
145 ecmd->phy_address = hw->phy_addr;
147 if(hw->mac_type == e1000_82543)
148 ecmd->transceiver = XCVR_EXTERNAL;
149 else
150 ecmd->transceiver = XCVR_INTERNAL;
152 } else {
153 ecmd->supported = (SUPPORTED_1000baseT_Full |
154 SUPPORTED_FIBRE |
155 SUPPORTED_Autoneg);
157 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158 ADVERTISED_FIBRE |
159 ADVERTISED_Autoneg);
161 ecmd->port = PORT_FIBRE;
163 if(hw->mac_type >= e1000_82545)
164 ecmd->transceiver = XCVR_INTERNAL;
165 else
166 ecmd->transceiver = XCVR_EXTERNAL;
169 if(netif_carrier_ok(adapter->netdev)) {
171 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
172 &adapter->link_duplex);
173 ecmd->speed = adapter->link_speed;
175 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176 * and HALF_DUPLEX != DUPLEX_HALF */
178 if(adapter->link_duplex == FULL_DUPLEX)
179 ecmd->duplex = DUPLEX_FULL;
180 else
181 ecmd->duplex = DUPLEX_HALF;
182 } else {
183 ecmd->speed = -1;
184 ecmd->duplex = -1;
187 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
188 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189 return 0;
192 static int
193 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
195 struct e1000_adapter *adapter = netdev_priv(netdev);
196 struct e1000_hw *hw = &adapter->hw;
198 /* When SoL/IDER sessions are active, autoneg/speed/duplex
199 * cannot be changed */
200 if (e1000_check_phy_reset_block(hw)) {
201 DPRINTK(DRV, ERR, "Cannot change link characteristics "
202 "when SoL/IDER is active.\n");
203 return -EINVAL;
206 if (ecmd->autoneg == AUTONEG_ENABLE) {
207 hw->autoneg = 1;
208 if(hw->media_type == e1000_media_type_fiber)
209 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
210 ADVERTISED_FIBRE |
211 ADVERTISED_Autoneg;
212 else
213 hw->autoneg_advertised = ADVERTISED_10baseT_Half |
214 ADVERTISED_10baseT_Full |
215 ADVERTISED_100baseT_Half |
216 ADVERTISED_100baseT_Full |
217 ADVERTISED_1000baseT_Full|
218 ADVERTISED_Autoneg |
219 ADVERTISED_TP;
220 ecmd->advertising = hw->autoneg_advertised;
221 } else
222 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
223 return -EINVAL;
225 /* reset the link */
227 if(netif_running(adapter->netdev)) {
228 e1000_down(adapter);
229 e1000_reset(adapter);
230 e1000_up(adapter);
231 } else
232 e1000_reset(adapter);
234 return 0;
237 static void
238 e1000_get_pauseparam(struct net_device *netdev,
239 struct ethtool_pauseparam *pause)
241 struct e1000_adapter *adapter = netdev_priv(netdev);
242 struct e1000_hw *hw = &adapter->hw;
244 pause->autoneg =
245 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
247 if(hw->fc == e1000_fc_rx_pause)
248 pause->rx_pause = 1;
249 else if(hw->fc == e1000_fc_tx_pause)
250 pause->tx_pause = 1;
251 else if(hw->fc == e1000_fc_full) {
252 pause->rx_pause = 1;
253 pause->tx_pause = 1;
257 static int
258 e1000_set_pauseparam(struct net_device *netdev,
259 struct ethtool_pauseparam *pause)
261 struct e1000_adapter *adapter = netdev_priv(netdev);
262 struct e1000_hw *hw = &adapter->hw;
264 adapter->fc_autoneg = pause->autoneg;
266 if(pause->rx_pause && pause->tx_pause)
267 hw->fc = e1000_fc_full;
268 else if(pause->rx_pause && !pause->tx_pause)
269 hw->fc = e1000_fc_rx_pause;
270 else if(!pause->rx_pause && pause->tx_pause)
271 hw->fc = e1000_fc_tx_pause;
272 else if(!pause->rx_pause && !pause->tx_pause)
273 hw->fc = e1000_fc_none;
275 hw->original_fc = hw->fc;
277 if(adapter->fc_autoneg == AUTONEG_ENABLE) {
278 if(netif_running(adapter->netdev)) {
279 e1000_down(adapter);
280 e1000_up(adapter);
281 } else
282 e1000_reset(adapter);
284 else
285 return ((hw->media_type == e1000_media_type_fiber) ?
286 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
288 return 0;
291 static uint32_t
292 e1000_get_rx_csum(struct net_device *netdev)
294 struct e1000_adapter *adapter = netdev_priv(netdev);
295 return adapter->rx_csum;
298 static int
299 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
301 struct e1000_adapter *adapter = netdev_priv(netdev);
302 adapter->rx_csum = data;
304 if(netif_running(netdev)) {
305 e1000_down(adapter);
306 e1000_up(adapter);
307 } else
308 e1000_reset(adapter);
309 return 0;
312 static uint32_t
313 e1000_get_tx_csum(struct net_device *netdev)
315 return (netdev->features & NETIF_F_HW_CSUM) != 0;
318 static int
319 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
321 struct e1000_adapter *adapter = netdev_priv(netdev);
323 if(adapter->hw.mac_type < e1000_82543) {
324 if (!data)
325 return -EINVAL;
326 return 0;
329 if (data)
330 netdev->features |= NETIF_F_HW_CSUM;
331 else
332 netdev->features &= ~NETIF_F_HW_CSUM;
334 return 0;
337 #ifdef NETIF_F_TSO
338 static int
339 e1000_set_tso(struct net_device *netdev, uint32_t data)
341 struct e1000_adapter *adapter = netdev_priv(netdev);
342 if((adapter->hw.mac_type < e1000_82544) ||
343 (adapter->hw.mac_type == e1000_82547))
344 return data ? -EINVAL : 0;
346 if (data)
347 netdev->features |= NETIF_F_TSO;
348 else
349 netdev->features &= ~NETIF_F_TSO;
350 return 0;
352 #endif /* NETIF_F_TSO */
354 static uint32_t
355 e1000_get_msglevel(struct net_device *netdev)
357 struct e1000_adapter *adapter = netdev_priv(netdev);
358 return adapter->msg_enable;
361 static void
362 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
364 struct e1000_adapter *adapter = netdev_priv(netdev);
365 adapter->msg_enable = data;
368 static int
369 e1000_get_regs_len(struct net_device *netdev)
371 #define E1000_REGS_LEN 32
372 return E1000_REGS_LEN * sizeof(uint32_t);
375 static void
376 e1000_get_regs(struct net_device *netdev,
377 struct ethtool_regs *regs, void *p)
379 struct e1000_adapter *adapter = netdev_priv(netdev);
380 struct e1000_hw *hw = &adapter->hw;
381 uint32_t *regs_buff = p;
382 uint16_t phy_data;
384 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
386 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
388 regs_buff[0] = E1000_READ_REG(hw, CTRL);
389 regs_buff[1] = E1000_READ_REG(hw, STATUS);
391 regs_buff[2] = E1000_READ_REG(hw, RCTL);
392 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
393 regs_buff[4] = E1000_READ_REG(hw, RDH);
394 regs_buff[5] = E1000_READ_REG(hw, RDT);
395 regs_buff[6] = E1000_READ_REG(hw, RDTR);
397 regs_buff[7] = E1000_READ_REG(hw, TCTL);
398 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
399 regs_buff[9] = E1000_READ_REG(hw, TDH);
400 regs_buff[10] = E1000_READ_REG(hw, TDT);
401 regs_buff[11] = E1000_READ_REG(hw, TIDV);
403 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
404 if(hw->phy_type == e1000_phy_igp) {
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406 IGP01E1000_PHY_AGC_A);
407 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
408 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409 regs_buff[13] = (uint32_t)phy_data; /* cable length */
410 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411 IGP01E1000_PHY_AGC_B);
412 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
413 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414 regs_buff[14] = (uint32_t)phy_data; /* cable length */
415 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416 IGP01E1000_PHY_AGC_C);
417 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
418 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419 regs_buff[15] = (uint32_t)phy_data; /* cable length */
420 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
421 IGP01E1000_PHY_AGC_D);
422 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
423 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
424 regs_buff[16] = (uint32_t)phy_data; /* cable length */
425 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
426 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
427 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
428 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
429 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
430 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
431 IGP01E1000_PHY_PCS_INIT_REG);
432 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
433 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
434 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
435 regs_buff[20] = 0; /* polarity correction enabled (always) */
436 regs_buff[22] = 0; /* phy receive errors (unavailable) */
437 regs_buff[23] = regs_buff[18]; /* mdix mode */
438 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
439 } else {
440 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
441 regs_buff[13] = (uint32_t)phy_data; /* cable length */
442 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
443 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
444 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
445 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
446 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
447 regs_buff[18] = regs_buff[13]; /* cable polarity */
448 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
449 regs_buff[20] = regs_buff[17]; /* polarity correction */
450 /* phy receive errors */
451 regs_buff[22] = adapter->phy_stats.receive_errors;
452 regs_buff[23] = regs_buff[13]; /* mdix mode */
454 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
455 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
456 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
457 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
458 if(hw->mac_type >= e1000_82540 &&
459 hw->media_type == e1000_media_type_copper) {
460 regs_buff[26] = E1000_READ_REG(hw, MANC);
464 static int
465 e1000_get_eeprom_len(struct net_device *netdev)
467 struct e1000_adapter *adapter = netdev_priv(netdev);
468 return adapter->hw.eeprom.word_size * 2;
471 static int
472 e1000_get_eeprom(struct net_device *netdev,
473 struct ethtool_eeprom *eeprom, uint8_t *bytes)
475 struct e1000_adapter *adapter = netdev_priv(netdev);
476 struct e1000_hw *hw = &adapter->hw;
477 uint16_t *eeprom_buff;
478 int first_word, last_word;
479 int ret_val = 0;
480 uint16_t i;
482 if(eeprom->len == 0)
483 return -EINVAL;
485 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
487 first_word = eeprom->offset >> 1;
488 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
490 eeprom_buff = kmalloc(sizeof(uint16_t) *
491 (last_word - first_word + 1), GFP_KERNEL);
492 if(!eeprom_buff)
493 return -ENOMEM;
495 if(hw->eeprom.type == e1000_eeprom_spi)
496 ret_val = e1000_read_eeprom(hw, first_word,
497 last_word - first_word + 1,
498 eeprom_buff);
499 else {
500 for (i = 0; i < last_word - first_word + 1; i++)
501 if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
502 &eeprom_buff[i])))
503 break;
506 /* Device's eeprom is always little-endian, word addressable */
507 for (i = 0; i < last_word - first_word + 1; i++)
508 le16_to_cpus(&eeprom_buff[i]);
510 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
511 eeprom->len);
512 kfree(eeprom_buff);
514 return ret_val;
517 static int
518 e1000_set_eeprom(struct net_device *netdev,
519 struct ethtool_eeprom *eeprom, uint8_t *bytes)
521 struct e1000_adapter *adapter = netdev_priv(netdev);
522 struct e1000_hw *hw = &adapter->hw;
523 uint16_t *eeprom_buff;
524 void *ptr;
525 int max_len, first_word, last_word, ret_val = 0;
526 uint16_t i;
528 if(eeprom->len == 0)
529 return -EOPNOTSUPP;
531 if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
532 return -EFAULT;
534 max_len = hw->eeprom.word_size * 2;
536 first_word = eeprom->offset >> 1;
537 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
538 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
539 if(!eeprom_buff)
540 return -ENOMEM;
542 ptr = (void *)eeprom_buff;
544 if(eeprom->offset & 1) {
545 /* need read/modify/write of first changed EEPROM word */
546 /* only the second byte of the word is being modified */
547 ret_val = e1000_read_eeprom(hw, first_word, 1,
548 &eeprom_buff[0]);
549 ptr++;
551 if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
552 /* need read/modify/write of last changed EEPROM word */
553 /* only the first byte of the word is being modified */
554 ret_val = e1000_read_eeprom(hw, last_word, 1,
555 &eeprom_buff[last_word - first_word]);
558 /* Device's eeprom is always little-endian, word addressable */
559 for (i = 0; i < last_word - first_word + 1; i++)
560 le16_to_cpus(&eeprom_buff[i]);
562 memcpy(ptr, bytes, eeprom->len);
564 for (i = 0; i < last_word - first_word + 1; i++)
565 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
567 ret_val = e1000_write_eeprom(hw, first_word,
568 last_word - first_word + 1, eeprom_buff);
570 /* Update the checksum over the first part of the EEPROM if needed
571 * and flush shadow RAM for 82573 conrollers */
572 if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
573 (hw->mac_type == e1000_82573)))
574 e1000_update_eeprom_checksum(hw);
576 kfree(eeprom_buff);
577 return ret_val;
580 static void
581 e1000_get_drvinfo(struct net_device *netdev,
582 struct ethtool_drvinfo *drvinfo)
584 struct e1000_adapter *adapter = netdev_priv(netdev);
586 strncpy(drvinfo->driver, e1000_driver_name, 32);
587 strncpy(drvinfo->version, e1000_driver_version, 32);
588 strncpy(drvinfo->fw_version, "N/A", 32);
589 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
590 drvinfo->n_stats = E1000_STATS_LEN;
591 drvinfo->testinfo_len = E1000_TEST_LEN;
592 drvinfo->regdump_len = e1000_get_regs_len(netdev);
593 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
596 static void
597 e1000_get_ringparam(struct net_device *netdev,
598 struct ethtool_ringparam *ring)
600 struct e1000_adapter *adapter = netdev_priv(netdev);
601 e1000_mac_type mac_type = adapter->hw.mac_type;
602 struct e1000_tx_ring *txdr = adapter->tx_ring;
603 struct e1000_rx_ring *rxdr = adapter->rx_ring;
605 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
606 E1000_MAX_82544_RXD;
607 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
608 E1000_MAX_82544_TXD;
609 ring->rx_mini_max_pending = 0;
610 ring->rx_jumbo_max_pending = 0;
611 ring->rx_pending = rxdr->count;
612 ring->tx_pending = txdr->count;
613 ring->rx_mini_pending = 0;
614 ring->rx_jumbo_pending = 0;
617 static int
618 e1000_set_ringparam(struct net_device *netdev,
619 struct ethtool_ringparam *ring)
621 struct e1000_adapter *adapter = netdev_priv(netdev);
622 e1000_mac_type mac_type = adapter->hw.mac_type;
623 struct e1000_tx_ring *txdr, *tx_old, *tx_new;
624 struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
625 int i, err, tx_ring_size, rx_ring_size;
627 tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
628 rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
630 if (netif_running(adapter->netdev))
631 e1000_down(adapter);
633 tx_old = adapter->tx_ring;
634 rx_old = adapter->rx_ring;
636 adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
637 if (!adapter->tx_ring) {
638 err = -ENOMEM;
639 goto err_setup_rx;
641 memset(adapter->tx_ring, 0, tx_ring_size);
643 adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
644 if (!adapter->rx_ring) {
645 kfree(adapter->tx_ring);
646 err = -ENOMEM;
647 goto err_setup_rx;
649 memset(adapter->rx_ring, 0, rx_ring_size);
651 txdr = adapter->tx_ring;
652 rxdr = adapter->rx_ring;
654 if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
655 return -EINVAL;
657 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
658 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
659 E1000_MAX_RXD : E1000_MAX_82544_RXD));
660 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
662 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
663 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
664 E1000_MAX_TXD : E1000_MAX_82544_TXD));
665 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
667 for (i = 0; i < adapter->num_tx_queues; i++)
668 txdr[i].count = txdr->count;
669 for (i = 0; i < adapter->num_rx_queues; i++)
670 rxdr[i].count = rxdr->count;
672 if(netif_running(adapter->netdev)) {
673 /* Try to get new resources before deleting old */
674 if ((err = e1000_setup_all_rx_resources(adapter)))
675 goto err_setup_rx;
676 if ((err = e1000_setup_all_tx_resources(adapter)))
677 goto err_setup_tx;
679 /* save the new, restore the old in order to free it,
680 * then restore the new back again */
682 rx_new = adapter->rx_ring;
683 tx_new = adapter->tx_ring;
684 adapter->rx_ring = rx_old;
685 adapter->tx_ring = tx_old;
686 e1000_free_all_rx_resources(adapter);
687 e1000_free_all_tx_resources(adapter);
688 kfree(tx_old);
689 kfree(rx_old);
690 adapter->rx_ring = rx_new;
691 adapter->tx_ring = tx_new;
692 if((err = e1000_up(adapter)))
693 return err;
696 return 0;
697 err_setup_tx:
698 e1000_free_all_rx_resources(adapter);
699 err_setup_rx:
700 adapter->rx_ring = rx_old;
701 adapter->tx_ring = tx_old;
702 e1000_up(adapter);
703 return err;
706 #define REG_PATTERN_TEST(R, M, W) \
708 uint32_t pat, value; \
709 uint32_t test[] = \
710 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
711 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
712 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
713 value = E1000_READ_REG(&adapter->hw, R); \
714 if(value != (test[pat] & W & M)) { \
715 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
716 "0x%08X expected 0x%08X\n", \
717 E1000_##R, value, (test[pat] & W & M)); \
718 *data = (adapter->hw.mac_type < e1000_82543) ? \
719 E1000_82542_##R : E1000_##R; \
720 return 1; \
725 #define REG_SET_AND_CHECK(R, M, W) \
727 uint32_t value; \
728 E1000_WRITE_REG(&adapter->hw, R, W & M); \
729 value = E1000_READ_REG(&adapter->hw, R); \
730 if((W & M) != (value & M)) { \
731 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
732 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
733 *data = (adapter->hw.mac_type < e1000_82543) ? \
734 E1000_82542_##R : E1000_##R; \
735 return 1; \
739 static int
740 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
742 uint32_t value, before, after;
743 uint32_t i, toggle;
745 /* The status register is Read Only, so a write should fail.
746 * Some bits that get toggled are ignored.
748 switch (adapter->hw.mac_type) {
749 /* there are several bits on newer hardware that are r/w */
750 case e1000_82571:
751 case e1000_82572:
752 toggle = 0x7FFFF3FF;
753 break;
754 case e1000_82573:
755 toggle = 0x7FFFF033;
756 break;
757 default:
758 toggle = 0xFFFFF833;
759 break;
762 before = E1000_READ_REG(&adapter->hw, STATUS);
763 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
764 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
765 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
766 if(value != after) {
767 DPRINTK(DRV, ERR, "failed STATUS register test got: "
768 "0x%08X expected: 0x%08X\n", after, value);
769 *data = 1;
770 return 1;
772 /* restore previous status */
773 E1000_WRITE_REG(&adapter->hw, STATUS, before);
775 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
777 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
781 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
782 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
783 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
784 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
785 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
786 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
787 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
788 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
790 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
791 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
792 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
794 if(adapter->hw.mac_type >= e1000_82543) {
796 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
797 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
798 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
800 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
802 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
803 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
804 0xFFFFFFFF);
805 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
806 0xFFFFFFFF);
809 } else {
811 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
812 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
813 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
814 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
818 for(i = 0; i < E1000_MC_TBL_SIZE; i++)
819 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
821 *data = 0;
822 return 0;
825 static int
826 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
828 uint16_t temp;
829 uint16_t checksum = 0;
830 uint16_t i;
832 *data = 0;
833 /* Read and add up the contents of the EEPROM */
834 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
835 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
836 *data = 1;
837 break;
839 checksum += temp;
842 /* If Checksum is not Correct return error else test passed */
843 if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
844 *data = 2;
846 return *data;
849 static irqreturn_t
850 e1000_test_intr(int irq,
851 void *data,
852 struct pt_regs *regs)
854 struct net_device *netdev = (struct net_device *) data;
855 struct e1000_adapter *adapter = netdev_priv(netdev);
857 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
859 return IRQ_HANDLED;
862 static int
863 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
865 struct net_device *netdev = adapter->netdev;
866 uint32_t mask, i=0, shared_int = TRUE;
867 uint32_t irq = adapter->pdev->irq;
869 *data = 0;
871 /* Hook up test interrupt handler just for this test */
872 if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
873 shared_int = FALSE;
874 } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
875 netdev->name, netdev)){
876 *data = 1;
877 return -1;
880 /* Disable all the interrupts */
881 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
882 msec_delay(10);
884 /* Test each interrupt */
885 for(; i < 10; i++) {
887 /* Interrupt to test */
888 mask = 1 << i;
890 if(!shared_int) {
891 /* Disable the interrupt to be reported in
892 * the cause register and then force the same
893 * interrupt and see if one gets posted. If
894 * an interrupt was posted to the bus, the
895 * test failed.
897 adapter->test_icr = 0;
898 E1000_WRITE_REG(&adapter->hw, IMC, mask);
899 E1000_WRITE_REG(&adapter->hw, ICS, mask);
900 msec_delay(10);
902 if(adapter->test_icr & mask) {
903 *data = 3;
904 break;
908 /* Enable the interrupt to be reported in
909 * the cause register and then force the same
910 * interrupt and see if one gets posted. If
911 * an interrupt was not posted to the bus, the
912 * test failed.
914 adapter->test_icr = 0;
915 E1000_WRITE_REG(&adapter->hw, IMS, mask);
916 E1000_WRITE_REG(&adapter->hw, ICS, mask);
917 msec_delay(10);
919 if(!(adapter->test_icr & mask)) {
920 *data = 4;
921 break;
924 if(!shared_int) {
925 /* Disable the other interrupts to be reported in
926 * the cause register and then force the other
927 * interrupts and see if any get posted. If
928 * an interrupt was posted to the bus, the
929 * test failed.
931 adapter->test_icr = 0;
932 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
933 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
934 msec_delay(10);
936 if(adapter->test_icr) {
937 *data = 5;
938 break;
943 /* Disable all the interrupts */
944 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
945 msec_delay(10);
947 /* Unhook test interrupt handler */
948 free_irq(irq, netdev);
950 return *data;
953 static void
954 e1000_free_desc_rings(struct e1000_adapter *adapter)
956 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
957 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
958 struct pci_dev *pdev = adapter->pdev;
959 int i;
961 if(txdr->desc && txdr->buffer_info) {
962 for(i = 0; i < txdr->count; i++) {
963 if(txdr->buffer_info[i].dma)
964 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
965 txdr->buffer_info[i].length,
966 PCI_DMA_TODEVICE);
967 if(txdr->buffer_info[i].skb)
968 dev_kfree_skb(txdr->buffer_info[i].skb);
972 if(rxdr->desc && rxdr->buffer_info) {
973 for(i = 0; i < rxdr->count; i++) {
974 if(rxdr->buffer_info[i].dma)
975 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
976 rxdr->buffer_info[i].length,
977 PCI_DMA_FROMDEVICE);
978 if(rxdr->buffer_info[i].skb)
979 dev_kfree_skb(rxdr->buffer_info[i].skb);
983 if (txdr->desc) {
984 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
985 txdr->desc = NULL;
987 if (rxdr->desc) {
988 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
989 rxdr->desc = NULL;
992 kfree(txdr->buffer_info);
993 txdr->buffer_info = NULL;
994 kfree(rxdr->buffer_info);
995 rxdr->buffer_info = NULL;
997 return;
1000 static int
1001 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1003 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1004 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1005 struct pci_dev *pdev = adapter->pdev;
1006 uint32_t rctl;
1007 int size, i, ret_val;
1009 /* Setup Tx descriptor ring and Tx buffers */
1011 if(!txdr->count)
1012 txdr->count = E1000_DEFAULT_TXD;
1014 size = txdr->count * sizeof(struct e1000_buffer);
1015 if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1016 ret_val = 1;
1017 goto err_nomem;
1019 memset(txdr->buffer_info, 0, size);
1021 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1022 E1000_ROUNDUP(txdr->size, 4096);
1023 if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1024 ret_val = 2;
1025 goto err_nomem;
1027 memset(txdr->desc, 0, txdr->size);
1028 txdr->next_to_use = txdr->next_to_clean = 0;
1030 E1000_WRITE_REG(&adapter->hw, TDBAL,
1031 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1032 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1033 E1000_WRITE_REG(&adapter->hw, TDLEN,
1034 txdr->count * sizeof(struct e1000_tx_desc));
1035 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1036 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1037 E1000_WRITE_REG(&adapter->hw, TCTL,
1038 E1000_TCTL_PSP | E1000_TCTL_EN |
1039 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1040 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1042 for(i = 0; i < txdr->count; i++) {
1043 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1044 struct sk_buff *skb;
1045 unsigned int size = 1024;
1047 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
1048 ret_val = 3;
1049 goto err_nomem;
1051 skb_put(skb, size);
1052 txdr->buffer_info[i].skb = skb;
1053 txdr->buffer_info[i].length = skb->len;
1054 txdr->buffer_info[i].dma =
1055 pci_map_single(pdev, skb->data, skb->len,
1056 PCI_DMA_TODEVICE);
1057 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1058 tx_desc->lower.data = cpu_to_le32(skb->len);
1059 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1060 E1000_TXD_CMD_IFCS |
1061 E1000_TXD_CMD_RPS);
1062 tx_desc->upper.data = 0;
1065 /* Setup Rx descriptor ring and Rx buffers */
1067 if(!rxdr->count)
1068 rxdr->count = E1000_DEFAULT_RXD;
1070 size = rxdr->count * sizeof(struct e1000_buffer);
1071 if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1072 ret_val = 4;
1073 goto err_nomem;
1075 memset(rxdr->buffer_info, 0, size);
1077 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1078 if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1079 ret_val = 5;
1080 goto err_nomem;
1082 memset(rxdr->desc, 0, rxdr->size);
1083 rxdr->next_to_use = rxdr->next_to_clean = 0;
1085 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1086 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1087 E1000_WRITE_REG(&adapter->hw, RDBAL,
1088 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1089 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1090 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1091 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1092 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1093 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1094 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1095 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1096 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1098 for(i = 0; i < rxdr->count; i++) {
1099 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1100 struct sk_buff *skb;
1102 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1103 GFP_KERNEL))) {
1104 ret_val = 6;
1105 goto err_nomem;
1107 skb_reserve(skb, NET_IP_ALIGN);
1108 rxdr->buffer_info[i].skb = skb;
1109 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1110 rxdr->buffer_info[i].dma =
1111 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1112 PCI_DMA_FROMDEVICE);
1113 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1114 memset(skb->data, 0x00, skb->len);
1117 return 0;
1119 err_nomem:
1120 e1000_free_desc_rings(adapter);
1121 return ret_val;
1124 static void
1125 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1127 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1128 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1129 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1130 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1131 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1134 static void
1135 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1137 uint16_t phy_reg;
1139 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1140 * Extended PHY Specific Control Register to 25MHz clock. This
1141 * value defaults back to a 2.5MHz clock when the PHY is reset.
1143 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1144 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1145 e1000_write_phy_reg(&adapter->hw,
1146 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1148 /* In addition, because of the s/w reset above, we need to enable
1149 * CRS on TX. This must be set for both full and half duplex
1150 * operation.
1152 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154 e1000_write_phy_reg(&adapter->hw,
1155 M88E1000_PHY_SPEC_CTRL, phy_reg);
1158 static int
1159 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1161 uint32_t ctrl_reg;
1162 uint16_t phy_reg;
1164 /* Setup the Device Control Register for PHY loopback test. */
1166 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1167 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1168 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1169 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1170 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1171 E1000_CTRL_FD); /* Force Duplex to FULL */
1173 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1175 /* Read the PHY Specific Control Register (0x10) */
1176 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178 /* Clear Auto-Crossover bits in PHY Specific Control Register
1179 * (bits 6:5).
1181 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1182 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1184 /* Perform software reset on the PHY */
1185 e1000_phy_reset(&adapter->hw);
1187 /* Have to setup TX_CLK and TX_CRS after software reset */
1188 e1000_phy_reset_clk_and_crs(adapter);
1190 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1192 /* Wait for reset to complete. */
1193 udelay(500);
1195 /* Have to setup TX_CLK and TX_CRS after software reset */
1196 e1000_phy_reset_clk_and_crs(adapter);
1198 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1199 e1000_phy_disable_receiver(adapter);
1201 /* Set the loopback bit in the PHY control register. */
1202 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1203 phy_reg |= MII_CR_LOOPBACK;
1204 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1206 /* Setup TX_CLK and TX_CRS one more time. */
1207 e1000_phy_reset_clk_and_crs(adapter);
1209 /* Check Phy Configuration */
1210 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1211 if(phy_reg != 0x4100)
1212 return 9;
1214 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1215 if(phy_reg != 0x0070)
1216 return 10;
1218 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1219 if(phy_reg != 0x001A)
1220 return 11;
1222 return 0;
1225 static int
1226 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1228 uint32_t ctrl_reg = 0;
1229 uint32_t stat_reg = 0;
1231 adapter->hw.autoneg = FALSE;
1233 if(adapter->hw.phy_type == e1000_phy_m88) {
1234 /* Auto-MDI/MDIX Off */
1235 e1000_write_phy_reg(&adapter->hw,
1236 M88E1000_PHY_SPEC_CTRL, 0x0808);
1237 /* reset to update Auto-MDI/MDIX */
1238 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1239 /* autoneg off */
1240 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1242 /* force 1000, set loopback */
1243 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1245 /* Now set up the MAC to the same speed/duplex as the PHY. */
1246 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1247 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1248 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1249 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1250 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1251 E1000_CTRL_FD); /* Force Duplex to FULL */
1253 if(adapter->hw.media_type == e1000_media_type_copper &&
1254 adapter->hw.phy_type == e1000_phy_m88) {
1255 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1256 } else {
1257 /* Set the ILOS bit on the fiber Nic is half
1258 * duplex link is detected. */
1259 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1260 if((stat_reg & E1000_STATUS_FD) == 0)
1261 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1264 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1266 /* Disable the receiver on the PHY so when a cable is plugged in, the
1267 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1269 if(adapter->hw.phy_type == e1000_phy_m88)
1270 e1000_phy_disable_receiver(adapter);
1272 udelay(500);
1274 return 0;
1277 static int
1278 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1280 uint16_t phy_reg = 0;
1281 uint16_t count = 0;
1283 switch (adapter->hw.mac_type) {
1284 case e1000_82543:
1285 if(adapter->hw.media_type == e1000_media_type_copper) {
1286 /* Attempt to setup Loopback mode on Non-integrated PHY.
1287 * Some PHY registers get corrupted at random, so
1288 * attempt this 10 times.
1290 while(e1000_nonintegrated_phy_loopback(adapter) &&
1291 count++ < 10);
1292 if(count < 11)
1293 return 0;
1295 break;
1297 case e1000_82544:
1298 case e1000_82540:
1299 case e1000_82545:
1300 case e1000_82545_rev_3:
1301 case e1000_82546:
1302 case e1000_82546_rev_3:
1303 case e1000_82541:
1304 case e1000_82541_rev_2:
1305 case e1000_82547:
1306 case e1000_82547_rev_2:
1307 case e1000_82571:
1308 case e1000_82572:
1309 case e1000_82573:
1310 return e1000_integrated_phy_loopback(adapter);
1311 break;
1313 default:
1314 /* Default PHY loopback work is to read the MII
1315 * control register and assert bit 14 (loopback mode).
1317 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1318 phy_reg |= MII_CR_LOOPBACK;
1319 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1320 return 0;
1321 break;
1324 return 8;
1327 static int
1328 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1330 struct e1000_hw *hw = &adapter->hw;
1331 uint32_t rctl;
1333 if (hw->media_type == e1000_media_type_fiber ||
1334 hw->media_type == e1000_media_type_internal_serdes) {
1335 switch (hw->mac_type) {
1336 case e1000_82545:
1337 case e1000_82546:
1338 case e1000_82545_rev_3:
1339 case e1000_82546_rev_3:
1340 return e1000_set_phy_loopback(adapter);
1341 break;
1342 case e1000_82571:
1343 case e1000_82572:
1344 #define E1000_SERDES_LB_ON 0x410
1345 e1000_set_phy_loopback(adapter);
1346 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1347 msec_delay(10);
1348 return 0;
1349 break;
1350 default:
1351 rctl = E1000_READ_REG(hw, RCTL);
1352 rctl |= E1000_RCTL_LBM_TCVR;
1353 E1000_WRITE_REG(hw, RCTL, rctl);
1354 return 0;
1356 } else if (hw->media_type == e1000_media_type_copper)
1357 return e1000_set_phy_loopback(adapter);
1359 return 7;
1362 static void
1363 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1365 struct e1000_hw *hw = &adapter->hw;
1366 uint32_t rctl;
1367 uint16_t phy_reg;
1369 rctl = E1000_READ_REG(hw, RCTL);
1370 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1371 E1000_WRITE_REG(hw, RCTL, rctl);
1373 switch (hw->mac_type) {
1374 case e1000_82571:
1375 case e1000_82572:
1376 if (hw->media_type == e1000_media_type_fiber ||
1377 hw->media_type == e1000_media_type_internal_serdes) {
1378 #define E1000_SERDES_LB_OFF 0x400
1379 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1380 msec_delay(10);
1381 break;
1383 /* Fall Through */
1384 case e1000_82545:
1385 case e1000_82546:
1386 case e1000_82545_rev_3:
1387 case e1000_82546_rev_3:
1388 default:
1389 hw->autoneg = TRUE;
1390 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1391 if (phy_reg & MII_CR_LOOPBACK) {
1392 phy_reg &= ~MII_CR_LOOPBACK;
1393 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1394 e1000_phy_reset(hw);
1396 break;
1400 static void
1401 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1403 memset(skb->data, 0xFF, frame_size);
1404 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1405 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1406 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1407 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1410 static int
1411 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1413 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1414 if(*(skb->data + 3) == 0xFF) {
1415 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1416 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1417 return 0;
1420 return 13;
1423 static int
1424 e1000_run_loopback_test(struct e1000_adapter *adapter)
1426 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1427 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1428 struct pci_dev *pdev = adapter->pdev;
1429 int i, j, k, l, lc, good_cnt, ret_val=0;
1430 unsigned long time;
1432 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1434 /* Calculate the loop count based on the largest descriptor ring
1435 * The idea is to wrap the largest ring a number of times using 64
1436 * send/receive pairs during each loop
1439 if(rxdr->count <= txdr->count)
1440 lc = ((txdr->count / 64) * 2) + 1;
1441 else
1442 lc = ((rxdr->count / 64) * 2) + 1;
1444 k = l = 0;
1445 for(j = 0; j <= lc; j++) { /* loop count loop */
1446 for(i = 0; i < 64; i++) { /* send the packets */
1447 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1448 1024);
1449 pci_dma_sync_single_for_device(pdev,
1450 txdr->buffer_info[k].dma,
1451 txdr->buffer_info[k].length,
1452 PCI_DMA_TODEVICE);
1453 if(unlikely(++k == txdr->count)) k = 0;
1455 E1000_WRITE_REG(&adapter->hw, TDT, k);
1456 msec_delay(200);
1457 time = jiffies; /* set the start time for the receive */
1458 good_cnt = 0;
1459 do { /* receive the sent packets */
1460 pci_dma_sync_single_for_cpu(pdev,
1461 rxdr->buffer_info[l].dma,
1462 rxdr->buffer_info[l].length,
1463 PCI_DMA_FROMDEVICE);
1465 ret_val = e1000_check_lbtest_frame(
1466 rxdr->buffer_info[l].skb,
1467 1024);
1468 if(!ret_val)
1469 good_cnt++;
1470 if(unlikely(++l == rxdr->count)) l = 0;
1471 /* time + 20 msecs (200 msecs on 2.4) is more than
1472 * enough time to complete the receives, if it's
1473 * exceeded, break and error off
1475 } while (good_cnt < 64 && jiffies < (time + 20));
1476 if(good_cnt != 64) {
1477 ret_val = 13; /* ret_val is the same as mis-compare */
1478 break;
1480 if(jiffies >= (time + 2)) {
1481 ret_val = 14; /* error code for time out error */
1482 break;
1484 } /* end loop count loop */
1485 return ret_val;
1488 static int
1489 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1491 /* PHY loopback cannot be performed if SoL/IDER
1492 * sessions are active */
1493 if (e1000_check_phy_reset_block(&adapter->hw)) {
1494 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1495 "when SoL/IDER is active.\n");
1496 *data = 0;
1497 goto out;
1500 if ((*data = e1000_setup_desc_rings(adapter)))
1501 goto out;
1502 if ((*data = e1000_setup_loopback_test(adapter)))
1503 goto err_loopback;
1504 *data = e1000_run_loopback_test(adapter);
1505 e1000_loopback_cleanup(adapter);
1507 err_loopback:
1508 e1000_free_desc_rings(adapter);
1509 out:
1510 return *data;
1513 static int
1514 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1516 *data = 0;
1517 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1518 int i = 0;
1519 adapter->hw.serdes_link_down = TRUE;
1521 /* On some blade server designs, link establishment
1522 * could take as long as 2-3 minutes */
1523 do {
1524 e1000_check_for_link(&adapter->hw);
1525 if (adapter->hw.serdes_link_down == FALSE)
1526 return *data;
1527 msec_delay(20);
1528 } while (i++ < 3750);
1530 *data = 1;
1531 } else {
1532 e1000_check_for_link(&adapter->hw);
1533 if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
1534 msec_delay(4000);
1536 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1537 *data = 1;
1540 return *data;
1543 static int
1544 e1000_diag_test_count(struct net_device *netdev)
1546 return E1000_TEST_LEN;
1549 static void
1550 e1000_diag_test(struct net_device *netdev,
1551 struct ethtool_test *eth_test, uint64_t *data)
1553 struct e1000_adapter *adapter = netdev_priv(netdev);
1554 boolean_t if_running = netif_running(netdev);
1556 if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1557 /* Offline tests */
1559 /* save speed, duplex, autoneg settings */
1560 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1561 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1562 uint8_t autoneg = adapter->hw.autoneg;
1564 /* Link test performed before hardware reset so autoneg doesn't
1565 * interfere with test result */
1566 if(e1000_link_test(adapter, &data[4]))
1567 eth_test->flags |= ETH_TEST_FL_FAILED;
1569 if(if_running)
1570 e1000_down(adapter);
1571 else
1572 e1000_reset(adapter);
1574 if(e1000_reg_test(adapter, &data[0]))
1575 eth_test->flags |= ETH_TEST_FL_FAILED;
1577 e1000_reset(adapter);
1578 if(e1000_eeprom_test(adapter, &data[1]))
1579 eth_test->flags |= ETH_TEST_FL_FAILED;
1581 e1000_reset(adapter);
1582 if(e1000_intr_test(adapter, &data[2]))
1583 eth_test->flags |= ETH_TEST_FL_FAILED;
1585 e1000_reset(adapter);
1586 if(e1000_loopback_test(adapter, &data[3]))
1587 eth_test->flags |= ETH_TEST_FL_FAILED;
1589 /* restore speed, duplex, autoneg settings */
1590 adapter->hw.autoneg_advertised = autoneg_advertised;
1591 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1592 adapter->hw.autoneg = autoneg;
1594 e1000_reset(adapter);
1595 if(if_running)
1596 e1000_up(adapter);
1597 } else {
1598 /* Online tests */
1599 if(e1000_link_test(adapter, &data[4]))
1600 eth_test->flags |= ETH_TEST_FL_FAILED;
1602 /* Offline tests aren't run; pass by default */
1603 data[0] = 0;
1604 data[1] = 0;
1605 data[2] = 0;
1606 data[3] = 0;
1608 msleep_interruptible(4 * 1000);
1611 static void
1612 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1614 struct e1000_adapter *adapter = netdev_priv(netdev);
1615 struct e1000_hw *hw = &adapter->hw;
1617 switch(adapter->hw.device_id) {
1618 case E1000_DEV_ID_82542:
1619 case E1000_DEV_ID_82543GC_FIBER:
1620 case E1000_DEV_ID_82543GC_COPPER:
1621 case E1000_DEV_ID_82544EI_FIBER:
1622 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1623 case E1000_DEV_ID_82545EM_FIBER:
1624 case E1000_DEV_ID_82545EM_COPPER:
1625 wol->supported = 0;
1626 wol->wolopts = 0;
1627 return;
1629 case E1000_DEV_ID_82546EB_FIBER:
1630 case E1000_DEV_ID_82546GB_FIBER:
1631 /* Wake events only supported on port A for dual fiber */
1632 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1633 wol->supported = 0;
1634 wol->wolopts = 0;
1635 return;
1637 /* Fall Through */
1639 default:
1640 wol->supported = WAKE_UCAST | WAKE_MCAST |
1641 WAKE_BCAST | WAKE_MAGIC;
1643 wol->wolopts = 0;
1644 if(adapter->wol & E1000_WUFC_EX)
1645 wol->wolopts |= WAKE_UCAST;
1646 if(adapter->wol & E1000_WUFC_MC)
1647 wol->wolopts |= WAKE_MCAST;
1648 if(adapter->wol & E1000_WUFC_BC)
1649 wol->wolopts |= WAKE_BCAST;
1650 if(adapter->wol & E1000_WUFC_MAG)
1651 wol->wolopts |= WAKE_MAGIC;
1652 return;
1656 static int
1657 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1659 struct e1000_adapter *adapter = netdev_priv(netdev);
1660 struct e1000_hw *hw = &adapter->hw;
1662 switch(adapter->hw.device_id) {
1663 case E1000_DEV_ID_82542:
1664 case E1000_DEV_ID_82543GC_FIBER:
1665 case E1000_DEV_ID_82543GC_COPPER:
1666 case E1000_DEV_ID_82544EI_FIBER:
1667 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1668 case E1000_DEV_ID_82545EM_FIBER:
1669 case E1000_DEV_ID_82545EM_COPPER:
1670 return wol->wolopts ? -EOPNOTSUPP : 0;
1672 case E1000_DEV_ID_82546EB_FIBER:
1673 case E1000_DEV_ID_82546GB_FIBER:
1674 /* Wake events only supported on port A for dual fiber */
1675 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1676 return wol->wolopts ? -EOPNOTSUPP : 0;
1677 /* Fall Through */
1679 default:
1680 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1681 return -EOPNOTSUPP;
1683 adapter->wol = 0;
1685 if(wol->wolopts & WAKE_UCAST)
1686 adapter->wol |= E1000_WUFC_EX;
1687 if(wol->wolopts & WAKE_MCAST)
1688 adapter->wol |= E1000_WUFC_MC;
1689 if(wol->wolopts & WAKE_BCAST)
1690 adapter->wol |= E1000_WUFC_BC;
1691 if(wol->wolopts & WAKE_MAGIC)
1692 adapter->wol |= E1000_WUFC_MAG;
1695 return 0;
1698 /* toggle LED 4 times per second = 2 "blinks" per second */
1699 #define E1000_ID_INTERVAL (HZ/4)
1701 /* bit defines for adapter->led_status */
1702 #define E1000_LED_ON 0
1704 static void
1705 e1000_led_blink_callback(unsigned long data)
1707 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1709 if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1710 e1000_led_off(&adapter->hw);
1711 else
1712 e1000_led_on(&adapter->hw);
1714 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1717 static int
1718 e1000_phys_id(struct net_device *netdev, uint32_t data)
1720 struct e1000_adapter *adapter = netdev_priv(netdev);
1722 if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1723 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1725 if(adapter->hw.mac_type < e1000_82571) {
1726 if(!adapter->blink_timer.function) {
1727 init_timer(&adapter->blink_timer);
1728 adapter->blink_timer.function = e1000_led_blink_callback;
1729 adapter->blink_timer.data = (unsigned long) adapter;
1731 e1000_setup_led(&adapter->hw);
1732 mod_timer(&adapter->blink_timer, jiffies);
1733 msleep_interruptible(data * 1000);
1734 del_timer_sync(&adapter->blink_timer);
1735 } else if (adapter->hw.mac_type < e1000_82573) {
1736 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1737 (E1000_LEDCTL_LED2_BLINK_RATE |
1738 E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1739 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1740 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1741 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1742 msleep_interruptible(data * 1000);
1743 } else {
1744 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1745 (E1000_LEDCTL_LED2_BLINK_RATE |
1746 E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1747 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1748 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1749 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1750 msleep_interruptible(data * 1000);
1753 e1000_led_off(&adapter->hw);
1754 clear_bit(E1000_LED_ON, &adapter->led_status);
1755 e1000_cleanup_led(&adapter->hw);
1757 return 0;
1760 static int
1761 e1000_nway_reset(struct net_device *netdev)
1763 struct e1000_adapter *adapter = netdev_priv(netdev);
1764 if(netif_running(netdev)) {
1765 e1000_down(adapter);
1766 e1000_up(adapter);
1768 return 0;
1771 static int
1772 e1000_get_stats_count(struct net_device *netdev)
1774 return E1000_STATS_LEN;
1777 static void
1778 e1000_get_ethtool_stats(struct net_device *netdev,
1779 struct ethtool_stats *stats, uint64_t *data)
1781 struct e1000_adapter *adapter = netdev_priv(netdev);
1782 #ifdef CONFIG_E1000_MQ
1783 uint64_t *queue_stat;
1784 int stat_count = sizeof(struct e1000_queue_stats) / sizeof(uint64_t);
1785 int j, k;
1786 #endif
1787 int i;
1789 e1000_update_stats(adapter);
1790 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1791 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1792 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1793 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1795 #ifdef CONFIG_E1000_MQ
1796 for (j = 0; j < adapter->num_tx_queues; j++) {
1797 queue_stat = (uint64_t *)&adapter->tx_ring[j].tx_stats;
1798 for (k = 0; k < stat_count; k++)
1799 data[i + k] = queue_stat[k];
1800 i += k;
1802 for (j = 0; j < adapter->num_rx_queues; j++) {
1803 queue_stat = (uint64_t *)&adapter->rx_ring[j].rx_stats;
1804 for (k = 0; k < stat_count; k++)
1805 data[i + k] = queue_stat[k];
1806 i += k;
1808 #endif
1809 /* BUG_ON(i != E1000_STATS_LEN); */
1812 static void
1813 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1815 #ifdef CONFIG_E1000_MQ
1816 struct e1000_adapter *adapter = netdev_priv(netdev);
1817 #endif
1818 uint8_t *p = data;
1819 int i;
1821 switch(stringset) {
1822 case ETH_SS_TEST:
1823 memcpy(data, *e1000_gstrings_test,
1824 E1000_TEST_LEN*ETH_GSTRING_LEN);
1825 break;
1826 case ETH_SS_STATS:
1827 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1828 memcpy(p, e1000_gstrings_stats[i].stat_string,
1829 ETH_GSTRING_LEN);
1830 p += ETH_GSTRING_LEN;
1832 #ifdef CONFIG_E1000_MQ
1833 for (i = 0; i < adapter->num_tx_queues; i++) {
1834 sprintf(p, "tx_queue_%u_packets", i);
1835 p += ETH_GSTRING_LEN;
1836 sprintf(p, "tx_queue_%u_bytes", i);
1837 p += ETH_GSTRING_LEN;
1839 for (i = 0; i < adapter->num_rx_queues; i++) {
1840 sprintf(p, "rx_queue_%u_packets", i);
1841 p += ETH_GSTRING_LEN;
1842 sprintf(p, "rx_queue_%u_bytes", i);
1843 p += ETH_GSTRING_LEN;
1845 #endif
1846 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1847 break;
1851 static struct ethtool_ops e1000_ethtool_ops = {
1852 .get_settings = e1000_get_settings,
1853 .set_settings = e1000_set_settings,
1854 .get_drvinfo = e1000_get_drvinfo,
1855 .get_regs_len = e1000_get_regs_len,
1856 .get_regs = e1000_get_regs,
1857 .get_wol = e1000_get_wol,
1858 .set_wol = e1000_set_wol,
1859 .get_msglevel = e1000_get_msglevel,
1860 .set_msglevel = e1000_set_msglevel,
1861 .nway_reset = e1000_nway_reset,
1862 .get_link = ethtool_op_get_link,
1863 .get_eeprom_len = e1000_get_eeprom_len,
1864 .get_eeprom = e1000_get_eeprom,
1865 .set_eeprom = e1000_set_eeprom,
1866 .get_ringparam = e1000_get_ringparam,
1867 .set_ringparam = e1000_set_ringparam,
1868 .get_pauseparam = e1000_get_pauseparam,
1869 .set_pauseparam = e1000_set_pauseparam,
1870 .get_rx_csum = e1000_get_rx_csum,
1871 .set_rx_csum = e1000_set_rx_csum,
1872 .get_tx_csum = e1000_get_tx_csum,
1873 .set_tx_csum = e1000_set_tx_csum,
1874 .get_sg = ethtool_op_get_sg,
1875 .set_sg = ethtool_op_set_sg,
1876 #ifdef NETIF_F_TSO
1877 .get_tso = ethtool_op_get_tso,
1878 .set_tso = e1000_set_tso,
1879 #endif
1880 .self_test_count = e1000_diag_test_count,
1881 .self_test = e1000_diag_test,
1882 .get_strings = e1000_get_strings,
1883 .phys_id = e1000_phys_id,
1884 .get_stats_count = e1000_get_stats_count,
1885 .get_ethtool_stats = e1000_get_ethtool_stats,
1886 .get_perm_addr = ethtool_op_get_perm_addr,
1889 void e1000_set_ethtool_ops(struct net_device *netdev)
1891 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);