rt2x00: Remove HWMODE_{A,B,G}
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob72c4f13a53361d7167ea8d00d7f67129aec42705
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Link tuning handlers
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
38 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39 return;
42 * Reset link information.
43 * Both the currently active vgc level as well as
44 * the link tuner counter should be reset. Resetting
45 * the counter is important for devices where the
46 * device should only perform link tuning during the
47 * first minute after being enabled.
49 rt2x00dev->link.count = 0;
50 rt2x00dev->link.vgc_level = 0;
53 * Reset the link tuner.
55 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
61 * Clear all (possibly) pre-existing quality statistics.
63 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
66 * The RX and TX percentage should start at 50%
67 * this will assure we will get at least get some
68 * decent value when the link tuner starts.
69 * The value will be dropped and overwritten with
70 * the correct (measured )value anyway during the
71 * first run of the link tuner.
73 rt2x00dev->link.qual.rx_percentage = 50;
74 rt2x00dev->link.qual.tx_percentage = 50;
76 rt2x00lib_reset_link_tuner(rt2x00dev);
78 queue_delayed_work(rt2x00dev->hw->workqueue,
79 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
84 cancel_delayed_work_sync(&rt2x00dev->link.work);
88 * Radio control handlers.
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
92 int status;
95 * Don't enable the radio twice.
96 * And check if the hardware button has been disabled.
98 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100 return 0;
103 * Initialize all data queues.
105 rt2x00queue_init_rx(rt2x00dev);
106 rt2x00queue_init_tx(rt2x00dev);
109 * Enable radio.
111 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112 STATE_RADIO_ON);
113 if (status)
114 return status;
116 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119 * Enable RX.
121 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124 * Start the TX queues.
126 ieee80211_start_queues(rt2x00dev->hw);
128 return 0;
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
133 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134 return;
137 * Stop all scheduled work.
139 if (work_pending(&rt2x00dev->intf_work))
140 cancel_work_sync(&rt2x00dev->intf_work);
141 if (work_pending(&rt2x00dev->filter_work))
142 cancel_work_sync(&rt2x00dev->filter_work);
145 * Stop the TX queues.
147 ieee80211_stop_queues(rt2x00dev->hw);
150 * Disable RX.
152 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155 * Disable radio.
157 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
163 * When we are disabling the RX, we should also stop the link tuner.
165 if (state == STATE_RADIO_RX_OFF)
166 rt2x00lib_stop_link_tuner(rt2x00dev);
168 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
171 * When we are enabling the RX, we should also start the link tuner.
173 if (state == STATE_RADIO_RX_ON &&
174 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175 rt2x00lib_start_link_tuner(rt2x00dev);
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
180 enum antenna rx = rt2x00dev->link.ant.active.rx;
181 enum antenna tx = rt2x00dev->link.ant.active.tx;
182 int sample_a =
183 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184 int sample_b =
185 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
188 * We are done sampling. Now we should evaluate the results.
190 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
193 * During the last period we have sampled the RSSI
194 * from both antenna's. It now is time to determine
195 * which antenna demonstrated the best performance.
196 * When we are already on the antenna with the best
197 * performance, then there really is nothing for us
198 * left to do.
200 if (sample_a == sample_b)
201 return;
203 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
206 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
209 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
214 enum antenna rx = rt2x00dev->link.ant.active.rx;
215 enum antenna tx = rt2x00dev->link.ant.active.tx;
216 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
220 * Legacy driver indicates that we should swap antenna's
221 * when the difference in RSSI is greater that 5. This
222 * also should be done when the RSSI was actually better
223 * then the previous sample.
224 * When the difference exceeds the threshold we should
225 * sample the rssi from the other antenna to make a valid
226 * comparison between the 2 antennas.
228 if (abs(rssi_curr - rssi_old) < 5)
229 return;
231 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
233 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
236 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
245 * Determine if software diversity is enabled for
246 * either the TX or RX antenna (or both).
247 * Always perform this check since within the link
248 * tuner interval the configuration might have changed.
250 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
253 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
260 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262 rt2x00dev->link.ant.flags = 0;
263 return;
267 * If we have only sampled the data over the last period
268 * we should now harvest the data. Otherwise just evaluate
269 * the data. The latter should only be performed once
270 * every 2 seconds.
272 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274 else if (rt2x00dev->link.count & 1)
275 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
280 int avg_rssi = rssi;
283 * Update global RSSI
285 if (link->qual.avg_rssi)
286 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287 link->qual.avg_rssi = avg_rssi;
290 * Update antenna RSSI
292 if (link->ant.rssi_ant)
293 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294 link->ant.rssi_ant = rssi;
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
299 if (qual->rx_failed || qual->rx_success)
300 qual->rx_percentage =
301 (qual->rx_success * 100) /
302 (qual->rx_failed + qual->rx_success);
303 else
304 qual->rx_percentage = 50;
306 if (qual->tx_failed || qual->tx_success)
307 qual->tx_percentage =
308 (qual->tx_success * 100) /
309 (qual->tx_failed + qual->tx_success);
310 else
311 qual->tx_percentage = 50;
313 qual->rx_success = 0;
314 qual->rx_failed = 0;
315 qual->tx_success = 0;
316 qual->tx_failed = 0;
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320 int rssi)
322 int rssi_percentage = 0;
323 int signal;
326 * We need a positive value for the RSSI.
328 if (rssi < 0)
329 rssi += rt2x00dev->rssi_offset;
332 * Calculate the different percentages,
333 * which will be used for the signal.
335 if (rt2x00dev->rssi_offset)
336 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
339 * Add the individual percentages and use the WEIGHT
340 * defines to calculate the current link signal.
342 signal = ((WEIGHT_RSSI * rssi_percentage) +
343 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
346 return (signal > 100) ? 100 : signal;
349 static void rt2x00lib_link_tuner(struct work_struct *work)
351 struct rt2x00_dev *rt2x00dev =
352 container_of(work, struct rt2x00_dev, link.work.work);
355 * When the radio is shutting down we should
356 * immediately cease all link tuning.
358 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359 return;
362 * Update statistics.
364 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366 rt2x00dev->link.qual.rx_failed;
369 * Only perform the link tuning when Link tuning
370 * has been enabled (This could have been disabled from the EEPROM).
372 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
376 * Precalculate a portion of the link signal which is
377 * in based on the tx/rx success/failure counters.
379 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
382 * Evaluate antenna setup, make this the last step since this could
383 * possibly reset some statistics.
385 rt2x00lib_evaluate_antenna(rt2x00dev);
388 * Increase tuner counter, and reschedule the next link tuner run.
390 rt2x00dev->link.count++;
391 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
392 LINK_TUNE_INTERVAL);
395 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
397 struct rt2x00_dev *rt2x00dev =
398 container_of(work, struct rt2x00_dev, filter_work);
399 unsigned int filter = rt2x00dev->packet_filter;
402 * Since we had stored the filter inside rt2x00dev->packet_filter,
403 * we should now clear that field. Otherwise the driver will
404 * assume nothing has changed (*total_flags will be compared
405 * to rt2x00dev->packet_filter to determine if any action is required).
407 rt2x00dev->packet_filter = 0;
409 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
410 filter, &filter, 0, NULL);
413 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
414 struct ieee80211_vif *vif)
416 struct rt2x00_dev *rt2x00dev = data;
417 struct rt2x00_intf *intf = vif_to_intf(vif);
418 struct sk_buff *skb;
419 struct ieee80211_tx_control control;
420 struct ieee80211_bss_conf conf;
421 int delayed_flags;
424 * Copy all data we need during this action under the protection
425 * of a spinlock. Otherwise race conditions might occur which results
426 * into an invalid configuration.
428 spin_lock(&intf->lock);
430 memcpy(&conf, &intf->conf, sizeof(conf));
431 delayed_flags = intf->delayed_flags;
432 intf->delayed_flags = 0;
434 spin_unlock(&intf->lock);
436 if (delayed_flags & DELAYED_UPDATE_BEACON) {
437 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
438 if (skb) {
439 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
440 &control);
441 dev_kfree_skb(skb);
445 if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
446 rt2x00lib_config_preamble(rt2x00dev, intf,
447 intf->conf.use_short_preamble);
450 static void rt2x00lib_intf_scheduled(struct work_struct *work)
452 struct rt2x00_dev *rt2x00dev =
453 container_of(work, struct rt2x00_dev, intf_work);
456 * Iterate over each interface and perform the
457 * requested configurations.
459 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
460 rt2x00lib_intf_scheduled_iter,
461 rt2x00dev);
465 * Interrupt context handlers.
467 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
468 struct ieee80211_vif *vif)
470 struct rt2x00_intf *intf = vif_to_intf(vif);
472 if (vif->type != IEEE80211_IF_TYPE_AP &&
473 vif->type != IEEE80211_IF_TYPE_IBSS)
474 return;
476 spin_lock(&intf->lock);
477 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
478 spin_unlock(&intf->lock);
481 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
483 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
484 return;
486 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
487 rt2x00lib_beacondone_iter,
488 rt2x00dev);
490 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
492 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
494 void rt2x00lib_txdone(struct queue_entry *entry,
495 struct txdone_entry_desc *txdesc)
497 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498 struct ieee80211_tx_status tx_status;
499 int success = !!(txdesc->status == TX_SUCCESS ||
500 txdesc->status == TX_SUCCESS_RETRY);
501 int fail = !!(txdesc->status == TX_FAIL_RETRY ||
502 txdesc->status == TX_FAIL_INVALID ||
503 txdesc->status == TX_FAIL_OTHER);
506 * Update TX statistics.
508 rt2x00dev->link.qual.tx_success += success;
509 rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
512 * Initialize TX status
514 tx_status.flags = 0;
515 tx_status.ack_signal = 0;
516 tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
517 tx_status.retry_count = txdesc->retry;
518 memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
520 if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
521 if (success)
522 tx_status.flags |= IEEE80211_TX_STATUS_ACK;
523 else
524 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
527 tx_status.queue_length = entry->queue->limit;
528 tx_status.queue_number = tx_status.control.queue;
530 if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
531 if (success)
532 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
533 else
534 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
538 * Send the tx_status to mac80211 & debugfs.
539 * mac80211 will clean up the skb structure.
541 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
542 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
543 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
544 entry->skb = NULL;
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
548 void rt2x00lib_rxdone(struct queue_entry *entry,
549 struct rxdone_entry_desc *rxdesc)
551 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
552 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
553 struct ieee80211_supported_band *sband;
554 struct ieee80211_hdr *hdr;
555 const struct rt2x00_rate *rate;
556 unsigned int i;
557 int idx = -1;
558 u16 fc;
561 * Update RX statistics.
563 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
564 for (i = 0; i < sband->n_bitrates; i++) {
565 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
568 * When frame was received with an OFDM bitrate,
569 * the signal is the PLCP value. If it was received with
570 * a CCK bitrate the signal is the rate in 100kbit/s.
572 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
573 (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
574 idx = i;
575 break;
580 * Only update link status if this is a beacon frame carrying our bssid.
582 hdr = (struct ieee80211_hdr *)entry->skb->data;
583 fc = le16_to_cpu(hdr->frame_control);
584 if (is_beacon(fc) && rxdesc->my_bss)
585 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
587 rt2x00dev->link.qual.rx_success++;
589 rx_status->rate_idx = idx;
590 rx_status->signal =
591 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
592 rx_status->ssi = rxdesc->rssi;
593 rx_status->flag = rxdesc->flags;
594 rx_status->antenna = rt2x00dev->link.ant.active.rx;
597 * Send frame to mac80211 & debugfs.
598 * mac80211 will clean up the skb structure.
600 get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
601 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
602 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
603 entry->skb = NULL;
605 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
608 * TX descriptor initializer
610 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
611 struct sk_buff *skb,
612 struct ieee80211_tx_control *control)
614 struct txentry_desc txdesc;
615 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
616 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
617 const struct rt2x00_rate *rate;
618 int tx_rate;
619 int length;
620 int duration;
621 int residual;
622 u16 frame_control;
623 u16 seq_ctrl;
625 memset(&txdesc, 0, sizeof(txdesc));
627 txdesc.queue = skbdesc->entry->queue->qid;
628 txdesc.cw_min = skbdesc->entry->queue->cw_min;
629 txdesc.cw_max = skbdesc->entry->queue->cw_max;
630 txdesc.aifs = skbdesc->entry->queue->aifs;
633 * Read required fields from ieee80211 header.
635 frame_control = le16_to_cpu(hdr->frame_control);
636 seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
638 tx_rate = control->tx_rate->hw_value;
641 * Check whether this frame is to be acked
643 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
644 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
647 * Check if this is a RTS/CTS frame
649 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
650 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
651 if (is_rts_frame(frame_control)) {
652 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
653 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
654 } else
655 __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
656 if (control->rts_cts_rate)
657 tx_rate = control->rts_cts_rate->hw_value;
660 rate = rt2x00_get_rate(tx_rate);
663 * Check if more fragments are pending
665 if (ieee80211_get_morefrag(hdr)) {
666 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
667 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
671 * Beacons and probe responses require the tsf timestamp
672 * to be inserted into the frame.
674 if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
675 is_probe_resp(frame_control))
676 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
679 * Determine with what IFS priority this frame should be send.
680 * Set ifs to IFS_SIFS when the this is not the first fragment,
681 * or this fragment came after RTS/CTS.
683 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
684 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
685 txdesc.ifs = IFS_SIFS;
686 else
687 txdesc.ifs = IFS_BACKOFF;
690 * PLCP setup
691 * Length calculation depends on OFDM/CCK rate.
693 txdesc.signal = rate->plcp;
694 txdesc.service = 0x04;
696 length = skb->len + FCS_LEN;
697 if (rate->flags & DEV_RATE_OFDM) {
698 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
700 txdesc.length_high = (length >> 6) & 0x3f;
701 txdesc.length_low = length & 0x3f;
702 } else {
704 * Convert length to microseconds.
706 residual = get_duration_res(length, rate->bitrate);
707 duration = get_duration(length, rate->bitrate);
709 if (residual != 0) {
710 duration++;
713 * Check if we need to set the Length Extension
715 if (rate->bitrate == 110 && residual <= 30)
716 txdesc.service |= 0x80;
719 txdesc.length_high = (duration >> 8) & 0xff;
720 txdesc.length_low = duration & 0xff;
723 * When preamble is enabled we should set the
724 * preamble bit for the signal.
726 if (rt2x00_get_rate_preamble(tx_rate))
727 txdesc.signal |= 0x08;
730 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
733 * Update queue entry.
735 skbdesc->entry->skb = skb;
738 * The frame has been completely initialized and ready
739 * for sending to the device. The caller will push the
740 * frame to the device, but we are going to push the
741 * frame to debugfs here.
743 skbdesc->frame_type = DUMP_FRAME_TX;
744 rt2x00debug_dump_frame(rt2x00dev, skb);
746 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
749 * Driver initialization handlers.
751 const struct rt2x00_rate rt2x00_supported_rates[12] = {
753 .flags = 0,
754 .bitrate = 10,
755 .ratemask = DEV_RATEMASK_1MB,
756 .plcp = 0x00,
759 .flags = DEV_RATE_SHORT_PREAMBLE,
760 .bitrate = 20,
761 .ratemask = DEV_RATEMASK_2MB,
762 .plcp = 0x01,
765 .flags = DEV_RATE_SHORT_PREAMBLE,
766 .bitrate = 55,
767 .ratemask = DEV_RATEMASK_5_5MB,
768 .plcp = 0x02,
771 .flags = DEV_RATE_SHORT_PREAMBLE,
772 .bitrate = 110,
773 .ratemask = DEV_RATEMASK_11MB,
774 .plcp = 0x03,
777 .flags = DEV_RATE_OFDM,
778 .bitrate = 60,
779 .ratemask = DEV_RATEMASK_6MB,
780 .plcp = 0x0b,
783 .flags = DEV_RATE_OFDM,
784 .bitrate = 90,
785 .ratemask = DEV_RATEMASK_9MB,
786 .plcp = 0x0f,
789 .flags = DEV_RATE_OFDM,
790 .bitrate = 120,
791 .ratemask = DEV_RATEMASK_12MB,
792 .plcp = 0x0a,
795 .flags = DEV_RATE_OFDM,
796 .bitrate = 180,
797 .ratemask = DEV_RATEMASK_18MB,
798 .plcp = 0x0e,
801 .flags = DEV_RATE_OFDM,
802 .bitrate = 240,
803 .ratemask = DEV_RATEMASK_24MB,
804 .plcp = 0x09,
807 .flags = DEV_RATE_OFDM,
808 .bitrate = 360,
809 .ratemask = DEV_RATEMASK_36MB,
810 .plcp = 0x0d,
813 .flags = DEV_RATE_OFDM,
814 .bitrate = 480,
815 .ratemask = DEV_RATEMASK_48MB,
816 .plcp = 0x08,
819 .flags = DEV_RATE_OFDM,
820 .bitrate = 540,
821 .ratemask = DEV_RATEMASK_54MB,
822 .plcp = 0x0c,
826 static void rt2x00lib_channel(struct ieee80211_channel *entry,
827 const int channel, const int tx_power,
828 const int value)
830 if (channel <= 14)
831 entry->center_freq = 2407 + (5 * channel);
832 else
833 entry->center_freq = 5000 + (5 * channel);
834 entry->hw_value = value;
835 entry->max_power = tx_power;
836 entry->max_antenna_gain = 0xff;
839 static void rt2x00lib_rate(struct ieee80211_rate *entry,
840 const u16 index, const struct rt2x00_rate *rate)
842 entry->flags = 0;
843 entry->bitrate = rate->bitrate;
844 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
845 entry->hw_value_short = entry->hw_value;
847 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
848 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
849 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
853 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
854 struct hw_mode_spec *spec)
856 struct ieee80211_hw *hw = rt2x00dev->hw;
857 struct ieee80211_supported_band *sbands;
858 struct ieee80211_channel *channels;
859 struct ieee80211_rate *rates;
860 unsigned int i;
861 unsigned char tx_power;
863 sbands = &rt2x00dev->bands[0];
865 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
866 if (!channels)
867 return -ENOMEM;
869 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
870 if (!rates)
871 goto exit_free_channels;
874 * Initialize Rate list.
876 for (i = 0; i < spec->num_rates; i++)
877 rt2x00lib_rate(&rates[0], i, rt2x00_get_rate(i));
880 * Initialize Channel list.
882 for (i = 0; i < spec->num_channels; i++) {
883 if (spec->channels[i].channel <= 14)
884 tx_power = spec->tx_power_bg[i];
885 else if (spec->tx_power_a)
886 tx_power = spec->tx_power_a[i];
887 else
888 tx_power = spec->tx_power_default;
890 rt2x00lib_channel(&channels[i],
891 spec->channels[i].channel, tx_power, i);
895 * Intitialize 802.11b
896 * Rates: CCK.
897 * Channels: 2.4 GHz
899 if (spec->num_modes > 0) {
900 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
901 sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4;
902 sbands[IEEE80211_BAND_2GHZ].channels = channels;
903 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
904 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
908 * Intitialize 802.11g
909 * Rates: CCK, OFDM.
910 * Channels: 2.4 GHz
912 if (spec->num_modes > 1) {
913 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
914 sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates;
915 sbands[IEEE80211_BAND_2GHZ].channels = channels;
916 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
917 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
921 * Intitialize 802.11a
922 * Rates: OFDM.
923 * Channels: OFDM, UNII, HiperLAN2.
925 if (spec->num_modes > 2) {
926 sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14;
927 sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4;
928 sbands[IEEE80211_BAND_5GHZ].channels = &channels[14];
929 sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
930 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
933 return 0;
935 exit_free_channels:
936 kfree(channels);
937 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
938 return -ENOMEM;
941 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
943 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
944 ieee80211_unregister_hw(rt2x00dev->hw);
946 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
947 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
948 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
949 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
950 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
954 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
956 struct hw_mode_spec *spec = &rt2x00dev->spec;
957 int status;
960 * Initialize HW modes.
962 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
963 if (status)
964 return status;
967 * Register HW.
969 status = ieee80211_register_hw(rt2x00dev->hw);
970 if (status) {
971 rt2x00lib_remove_hw(rt2x00dev);
972 return status;
975 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
977 return 0;
981 * Initialization/uninitialization handlers.
983 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
985 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
986 return;
989 * Unregister rfkill.
991 rt2x00rfkill_unregister(rt2x00dev);
994 * Allow the HW to uninitialize.
996 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
999 * Free allocated queue entries.
1001 rt2x00queue_uninitialize(rt2x00dev);
1004 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1006 int status;
1008 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1009 return 0;
1012 * Allocate all queue entries.
1014 status = rt2x00queue_initialize(rt2x00dev);
1015 if (status)
1016 return status;
1019 * Initialize the device.
1021 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1022 if (status)
1023 goto exit;
1025 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1028 * Register the rfkill handler.
1030 status = rt2x00rfkill_register(rt2x00dev);
1031 if (status)
1032 goto exit;
1034 return 0;
1036 exit:
1037 rt2x00lib_uninitialize(rt2x00dev);
1039 return status;
1042 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1044 int retval;
1046 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1047 return 0;
1050 * If this is the first interface which is added,
1051 * we should load the firmware now.
1053 retval = rt2x00lib_load_firmware(rt2x00dev);
1054 if (retval)
1055 return retval;
1058 * Initialize the device.
1060 retval = rt2x00lib_initialize(rt2x00dev);
1061 if (retval)
1062 return retval;
1065 * Enable radio.
1067 retval = rt2x00lib_enable_radio(rt2x00dev);
1068 if (retval) {
1069 rt2x00lib_uninitialize(rt2x00dev);
1070 return retval;
1073 rt2x00dev->intf_ap_count = 0;
1074 rt2x00dev->intf_sta_count = 0;
1075 rt2x00dev->intf_associated = 0;
1077 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1079 return 0;
1082 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1084 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1085 return;
1088 * Perhaps we can add something smarter here,
1089 * but for now just disabling the radio should do.
1091 rt2x00lib_disable_radio(rt2x00dev);
1093 rt2x00dev->intf_ap_count = 0;
1094 rt2x00dev->intf_sta_count = 0;
1095 rt2x00dev->intf_associated = 0;
1097 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1101 * driver allocation handlers.
1103 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1105 int retval = -ENOMEM;
1108 * Make room for rt2x00_intf inside the per-interface
1109 * structure ieee80211_vif.
1111 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1114 * Let the driver probe the device to detect the capabilities.
1116 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1117 if (retval) {
1118 ERROR(rt2x00dev, "Failed to allocate device.\n");
1119 goto exit;
1123 * Initialize configuration work.
1125 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1126 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1127 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1130 * Allocate queue array.
1132 retval = rt2x00queue_allocate(rt2x00dev);
1133 if (retval)
1134 goto exit;
1137 * Initialize ieee80211 structure.
1139 retval = rt2x00lib_probe_hw(rt2x00dev);
1140 if (retval) {
1141 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1142 goto exit;
1146 * Allocatie rfkill.
1148 retval = rt2x00rfkill_allocate(rt2x00dev);
1149 if (retval)
1150 goto exit;
1153 * Open the debugfs entry.
1155 rt2x00debug_register(rt2x00dev);
1157 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1159 return 0;
1161 exit:
1162 rt2x00lib_remove_dev(rt2x00dev);
1164 return retval;
1166 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1168 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1170 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1173 * Disable radio.
1175 rt2x00lib_disable_radio(rt2x00dev);
1178 * Uninitialize device.
1180 rt2x00lib_uninitialize(rt2x00dev);
1183 * Close debugfs entry.
1185 rt2x00debug_deregister(rt2x00dev);
1188 * Free rfkill
1190 rt2x00rfkill_free(rt2x00dev);
1193 * Free ieee80211_hw memory.
1195 rt2x00lib_remove_hw(rt2x00dev);
1198 * Free firmware image.
1200 rt2x00lib_free_firmware(rt2x00dev);
1203 * Free queue structures.
1205 rt2x00queue_free(rt2x00dev);
1207 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1210 * Device state handlers
1212 #ifdef CONFIG_PM
1213 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1215 int retval;
1217 NOTICE(rt2x00dev, "Going to sleep.\n");
1218 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1221 * Only continue if mac80211 has open interfaces.
1223 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1224 goto exit;
1225 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1228 * Disable radio and unitialize all items
1229 * that must be recreated on resume.
1231 rt2x00lib_stop(rt2x00dev);
1232 rt2x00lib_uninitialize(rt2x00dev);
1233 rt2x00debug_deregister(rt2x00dev);
1235 exit:
1237 * Set device mode to sleep for power management.
1239 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1240 if (retval)
1241 return retval;
1243 return 0;
1245 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1247 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1248 struct ieee80211_vif *vif)
1250 struct rt2x00_dev *rt2x00dev = data;
1251 struct rt2x00_intf *intf = vif_to_intf(vif);
1253 spin_lock(&intf->lock);
1255 rt2x00lib_config_intf(rt2x00dev, intf,
1256 vif->type, intf->mac, intf->bssid);
1260 * Master or Ad-hoc mode require a new beacon update.
1262 if (vif->type == IEEE80211_IF_TYPE_AP ||
1263 vif->type == IEEE80211_IF_TYPE_IBSS)
1264 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1266 spin_unlock(&intf->lock);
1269 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1271 int retval;
1273 NOTICE(rt2x00dev, "Waking up.\n");
1276 * Open the debugfs entry.
1278 rt2x00debug_register(rt2x00dev);
1281 * Only continue if mac80211 had open interfaces.
1283 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1284 return 0;
1287 * Reinitialize device and all active interfaces.
1289 retval = rt2x00lib_start(rt2x00dev);
1290 if (retval)
1291 goto exit;
1294 * Reconfigure device.
1296 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1297 if (!rt2x00dev->hw->conf.radio_enabled)
1298 rt2x00lib_disable_radio(rt2x00dev);
1301 * Iterator over each active interface to
1302 * reconfigure the hardware.
1304 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1305 rt2x00lib_resume_intf, rt2x00dev);
1308 * We are ready again to receive requests from mac80211.
1310 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1313 * It is possible that during that mac80211 has attempted
1314 * to send frames while we were suspending or resuming.
1315 * In that case we have disabled the TX queue and should
1316 * now enable it again
1318 ieee80211_start_queues(rt2x00dev->hw);
1321 * During interface iteration we might have changed the
1322 * delayed_flags, time to handles the event by calling
1323 * the work handler directly.
1325 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1327 return 0;
1329 exit:
1330 rt2x00lib_disable_radio(rt2x00dev);
1331 rt2x00lib_uninitialize(rt2x00dev);
1332 rt2x00debug_deregister(rt2x00dev);
1334 return retval;
1336 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1337 #endif /* CONFIG_PM */
1340 * rt2x00lib module information.
1342 MODULE_AUTHOR(DRV_PROJECT);
1343 MODULE_VERSION(DRV_VERSION);
1344 MODULE_DESCRIPTION("rt2x00 library");
1345 MODULE_LICENSE("GPL");