2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex
);
28 static LIST_HEAD(relay_channels
);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct
*vma
)
35 struct rchan_buf
*buf
= vma
->vm_private_data
;
36 buf
->chan
->cb
->buf_unmapped(buf
, vma
->vm_file
);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_fault
*vmf
)
45 struct rchan_buf
*buf
= vmf
->vma
->vm_private_data
;
46 pgoff_t pgoff
= vmf
->pgoff
;
51 page
= vmalloc_to_page(buf
->start
+ (pgoff
<< PAGE_SHIFT
));
53 return VM_FAULT_SIGBUS
;
61 * vm_ops for relay file mappings.
63 static const struct vm_operations_struct relay_file_mmap_ops
= {
64 .fault
= relay_buf_fault
,
65 .close
= relay_file_mmap_close
,
69 * allocate an array of pointers of struct page
71 static struct page
**relay_alloc_page_array(unsigned int n_pages
)
73 const size_t pa_size
= n_pages
* sizeof(struct page
*);
74 if (pa_size
> PAGE_SIZE
)
75 return vzalloc(pa_size
);
76 return kzalloc(pa_size
, GFP_KERNEL
);
80 * free an array of pointers of struct page
82 static void relay_free_page_array(struct page
**array
)
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
92 * Returns 0 if ok, negative on error
94 * Caller should already have grabbed mmap_sem.
96 static int relay_mmap_buf(struct rchan_buf
*buf
, struct vm_area_struct
*vma
)
98 unsigned long length
= vma
->vm_end
- vma
->vm_start
;
99 struct file
*filp
= vma
->vm_file
;
104 if (length
!= (unsigned long)buf
->chan
->alloc_size
)
107 vma
->vm_ops
= &relay_file_mmap_ops
;
108 vma
->vm_flags
|= VM_DONTEXPAND
;
109 vma
->vm_private_data
= buf
;
110 buf
->chan
->cb
->buf_mapped(buf
, filp
);
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
123 static void *relay_alloc_buf(struct rchan_buf
*buf
, size_t *size
)
126 unsigned int i
, j
, n_pages
;
128 *size
= PAGE_ALIGN(*size
);
129 n_pages
= *size
>> PAGE_SHIFT
;
131 buf
->page_array
= relay_alloc_page_array(n_pages
);
132 if (!buf
->page_array
)
135 for (i
= 0; i
< n_pages
; i
++) {
136 buf
->page_array
[i
] = alloc_page(GFP_KERNEL
);
137 if (unlikely(!buf
->page_array
[i
]))
139 set_page_private(buf
->page_array
[i
], (unsigned long)buf
);
141 mem
= vmap(buf
->page_array
, n_pages
, VM_MAP
, PAGE_KERNEL
);
145 memset(mem
, 0, *size
);
146 buf
->page_count
= n_pages
;
150 for (j
= 0; j
< i
; j
++)
151 __free_page(buf
->page_array
[j
]);
152 relay_free_page_array(buf
->page_array
);
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
160 * Returns channel buffer if successful, %NULL otherwise.
162 static struct rchan_buf
*relay_create_buf(struct rchan
*chan
)
164 struct rchan_buf
*buf
;
166 if (chan
->n_subbufs
> KMALLOC_MAX_SIZE
/ sizeof(size_t *))
169 buf
= kzalloc(sizeof(struct rchan_buf
), GFP_KERNEL
);
172 buf
->padding
= kmalloc(chan
->n_subbufs
* sizeof(size_t *), GFP_KERNEL
);
176 buf
->start
= relay_alloc_buf(buf
, &chan
->alloc_size
);
181 kref_get(&buf
->chan
->kref
);
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
194 * Should only be called from kref_put().
196 static void relay_destroy_channel(struct kref
*kref
)
198 struct rchan
*chan
= container_of(kref
, struct rchan
, kref
);
203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204 * @buf: the buffer struct
206 static void relay_destroy_buf(struct rchan_buf
*buf
)
208 struct rchan
*chan
= buf
->chan
;
211 if (likely(buf
->start
)) {
213 for (i
= 0; i
< buf
->page_count
; i
++)
214 __free_page(buf
->page_array
[i
]);
215 relay_free_page_array(buf
->page_array
);
217 *per_cpu_ptr(chan
->buf
, buf
->cpu
) = NULL
;
220 kref_put(&chan
->kref
, relay_destroy_channel
);
224 * relay_remove_buf - remove a channel buffer
225 * @kref: target kernel reference that contains the relay buffer
227 * Removes the file from the filesystem, which also frees the
228 * rchan_buf_struct and the channel buffer. Should only be called from
231 static void relay_remove_buf(struct kref
*kref
)
233 struct rchan_buf
*buf
= container_of(kref
, struct rchan_buf
, kref
);
234 relay_destroy_buf(buf
);
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
241 * Returns 1 if the buffer is empty, 0 otherwise.
243 static int relay_buf_empty(struct rchan_buf
*buf
)
245 return (buf
->subbufs_produced
- buf
->subbufs_consumed
) ? 0 : 1;
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
252 * Returns 1 if the buffer is full, 0 otherwise.
254 int relay_buf_full(struct rchan_buf
*buf
)
256 size_t ready
= buf
->subbufs_produced
- buf
->subbufs_consumed
;
257 return (ready
>= buf
->chan
->n_subbufs
) ? 1 : 0;
259 EXPORT_SYMBOL_GPL(relay_buf_full
);
262 * High-level relay kernel API and associated functions.
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
271 * subbuf_start() default callback. Does nothing.
273 static int subbuf_start_default_callback (struct rchan_buf
*buf
,
278 if (relay_buf_full(buf
))
285 * buf_mapped() default callback. Does nothing.
287 static void buf_mapped_default_callback(struct rchan_buf
*buf
,
293 * buf_unmapped() default callback. Does nothing.
295 static void buf_unmapped_default_callback(struct rchan_buf
*buf
,
301 * create_buf_file_create() default callback. Does nothing.
303 static struct dentry
*create_buf_file_default_callback(const char *filename
,
304 struct dentry
*parent
,
306 struct rchan_buf
*buf
,
313 * remove_buf_file() default callback. Does nothing.
315 static int remove_buf_file_default_callback(struct dentry
*dentry
)
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks
= {
322 .subbuf_start
= subbuf_start_default_callback
,
323 .buf_mapped
= buf_mapped_default_callback
,
324 .buf_unmapped
= buf_unmapped_default_callback
,
325 .create_buf_file
= create_buf_file_default_callback
,
326 .remove_buf_file
= remove_buf_file_default_callback
,
330 * wakeup_readers - wake up readers waiting on a channel
331 * @work: contains the channel buffer
333 * This is the function used to defer reader waking
335 static void wakeup_readers(struct irq_work
*work
)
337 struct rchan_buf
*buf
;
339 buf
= container_of(work
, struct rchan_buf
, wakeup_work
);
340 wake_up_interruptible(&buf
->read_wait
);
344 * __relay_reset - reset a channel buffer
345 * @buf: the channel buffer
346 * @init: 1 if this is a first-time initialization
348 * See relay_reset() for description of effect.
350 static void __relay_reset(struct rchan_buf
*buf
, unsigned int init
)
355 init_waitqueue_head(&buf
->read_wait
);
356 kref_init(&buf
->kref
);
357 init_irq_work(&buf
->wakeup_work
, wakeup_readers
);
359 irq_work_sync(&buf
->wakeup_work
);
362 buf
->subbufs_produced
= 0;
363 buf
->subbufs_consumed
= 0;
364 buf
->bytes_consumed
= 0;
366 buf
->data
= buf
->start
;
369 for (i
= 0; i
< buf
->chan
->n_subbufs
; i
++)
372 buf
->chan
->cb
->subbuf_start(buf
, buf
->data
, NULL
, 0);
376 * relay_reset - reset the channel
379 * This has the effect of erasing all data from all channel buffers
380 * and restarting the channel in its initial state. The buffers
381 * are not freed, so any mappings are still in effect.
383 * NOTE. Care should be taken that the channel isn't actually
384 * being used by anything when this call is made.
386 void relay_reset(struct rchan
*chan
)
388 struct rchan_buf
*buf
;
394 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0))) {
395 __relay_reset(buf
, 0);
399 mutex_lock(&relay_channels_mutex
);
400 for_each_possible_cpu(i
)
401 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
402 __relay_reset(buf
, 0);
403 mutex_unlock(&relay_channels_mutex
);
405 EXPORT_SYMBOL_GPL(relay_reset
);
407 static inline void relay_set_buf_dentry(struct rchan_buf
*buf
,
408 struct dentry
*dentry
)
410 buf
->dentry
= dentry
;
411 d_inode(buf
->dentry
)->i_size
= buf
->early_bytes
;
414 static struct dentry
*relay_create_buf_file(struct rchan
*chan
,
415 struct rchan_buf
*buf
,
418 struct dentry
*dentry
;
421 tmpname
= kzalloc(NAME_MAX
+ 1, GFP_KERNEL
);
424 snprintf(tmpname
, NAME_MAX
, "%s%d", chan
->base_filename
, cpu
);
426 /* Create file in fs */
427 dentry
= chan
->cb
->create_buf_file(tmpname
, chan
->parent
,
437 * relay_open_buf - create a new relay channel buffer
439 * used by relay_open() and CPU hotplug.
441 static struct rchan_buf
*relay_open_buf(struct rchan
*chan
, unsigned int cpu
)
443 struct rchan_buf
*buf
= NULL
;
444 struct dentry
*dentry
;
447 return *per_cpu_ptr(chan
->buf
, 0);
449 buf
= relay_create_buf(chan
);
453 if (chan
->has_base_filename
) {
454 dentry
= relay_create_buf_file(chan
, buf
, cpu
);
457 relay_set_buf_dentry(buf
, dentry
);
459 /* Only retrieve global info, nothing more, nothing less */
460 dentry
= chan
->cb
->create_buf_file(NULL
, NULL
,
468 __relay_reset(buf
, 1);
470 if(chan
->is_global
) {
471 *per_cpu_ptr(chan
->buf
, 0) = buf
;
478 relay_destroy_buf(buf
);
483 * relay_close_buf - close a channel buffer
484 * @buf: channel buffer
486 * Marks the buffer finalized and restores the default callbacks.
487 * The channel buffer and channel buffer data structure are then freed
488 * automatically when the last reference is given up.
490 static void relay_close_buf(struct rchan_buf
*buf
)
493 irq_work_sync(&buf
->wakeup_work
);
494 buf
->chan
->cb
->remove_buf_file(buf
->dentry
);
495 kref_put(&buf
->kref
, relay_remove_buf
);
498 static void setup_callbacks(struct rchan
*chan
,
499 struct rchan_callbacks
*cb
)
502 chan
->cb
= &default_channel_callbacks
;
506 if (!cb
->subbuf_start
)
507 cb
->subbuf_start
= subbuf_start_default_callback
;
509 cb
->buf_mapped
= buf_mapped_default_callback
;
510 if (!cb
->buf_unmapped
)
511 cb
->buf_unmapped
= buf_unmapped_default_callback
;
512 if (!cb
->create_buf_file
)
513 cb
->create_buf_file
= create_buf_file_default_callback
;
514 if (!cb
->remove_buf_file
)
515 cb
->remove_buf_file
= remove_buf_file_default_callback
;
519 int relay_prepare_cpu(unsigned int cpu
)
522 struct rchan_buf
*buf
;
524 mutex_lock(&relay_channels_mutex
);
525 list_for_each_entry(chan
, &relay_channels
, list
) {
526 if ((buf
= *per_cpu_ptr(chan
->buf
, cpu
)))
528 buf
= relay_open_buf(chan
, cpu
);
530 pr_err("relay: cpu %d buffer creation failed\n", cpu
);
531 mutex_unlock(&relay_channels_mutex
);
534 *per_cpu_ptr(chan
->buf
, cpu
) = buf
;
536 mutex_unlock(&relay_channels_mutex
);
541 * relay_open - create a new relay channel
542 * @base_filename: base name of files to create, %NULL for buffering only
543 * @parent: dentry of parent directory, %NULL for root directory or buffer
544 * @subbuf_size: size of sub-buffers
545 * @n_subbufs: number of sub-buffers
546 * @cb: client callback functions
547 * @private_data: user-defined data
549 * Returns channel pointer if successful, %NULL otherwise.
551 * Creates a channel buffer for each cpu using the sizes and
552 * attributes specified. The created channel buffer files
553 * will be named base_filename0...base_filenameN-1. File
554 * permissions will be %S_IRUSR.
556 * If opening a buffer (@parent = NULL) that you later wish to register
557 * in a filesystem, call relay_late_setup_files() once the @parent dentry
560 struct rchan
*relay_open(const char *base_filename
,
561 struct dentry
*parent
,
564 struct rchan_callbacks
*cb
,
569 struct rchan_buf
*buf
;
571 if (!(subbuf_size
&& n_subbufs
))
573 if (subbuf_size
> UINT_MAX
/ n_subbufs
)
576 chan
= kzalloc(sizeof(struct rchan
), GFP_KERNEL
);
580 chan
->buf
= alloc_percpu(struct rchan_buf
*);
581 chan
->version
= RELAYFS_CHANNEL_VERSION
;
582 chan
->n_subbufs
= n_subbufs
;
583 chan
->subbuf_size
= subbuf_size
;
584 chan
->alloc_size
= PAGE_ALIGN(subbuf_size
* n_subbufs
);
585 chan
->parent
= parent
;
586 chan
->private_data
= private_data
;
588 chan
->has_base_filename
= 1;
589 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
591 setup_callbacks(chan
, cb
);
592 kref_init(&chan
->kref
);
594 mutex_lock(&relay_channels_mutex
);
595 for_each_online_cpu(i
) {
596 buf
= relay_open_buf(chan
, i
);
599 *per_cpu_ptr(chan
->buf
, i
) = buf
;
601 list_add(&chan
->list
, &relay_channels
);
602 mutex_unlock(&relay_channels_mutex
);
607 for_each_possible_cpu(i
) {
608 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
609 relay_close_buf(buf
);
612 kref_put(&chan
->kref
, relay_destroy_channel
);
613 mutex_unlock(&relay_channels_mutex
);
616 EXPORT_SYMBOL_GPL(relay_open
);
618 struct rchan_percpu_buf_dispatcher
{
619 struct rchan_buf
*buf
;
620 struct dentry
*dentry
;
623 /* Called in atomic context. */
624 static void __relay_set_buf_dentry(void *info
)
626 struct rchan_percpu_buf_dispatcher
*p
= info
;
628 relay_set_buf_dentry(p
->buf
, p
->dentry
);
632 * relay_late_setup_files - triggers file creation
633 * @chan: channel to operate on
634 * @base_filename: base name of files to create
635 * @parent: dentry of parent directory, %NULL for root directory
637 * Returns 0 if successful, non-zero otherwise.
639 * Use to setup files for a previously buffer-only channel created
640 * by relay_open() with a NULL parent dentry.
642 * For example, this is useful for perfomring early tracing in kernel,
643 * before VFS is up and then exposing the early results once the dentry
646 int relay_late_setup_files(struct rchan
*chan
,
647 const char *base_filename
,
648 struct dentry
*parent
)
651 unsigned int i
, curr_cpu
;
653 struct dentry
*dentry
;
654 struct rchan_buf
*buf
;
655 struct rchan_percpu_buf_dispatcher disp
;
657 if (!chan
|| !base_filename
)
660 strlcpy(chan
->base_filename
, base_filename
, NAME_MAX
);
662 mutex_lock(&relay_channels_mutex
);
663 /* Is chan already set up? */
664 if (unlikely(chan
->has_base_filename
)) {
665 mutex_unlock(&relay_channels_mutex
);
668 chan
->has_base_filename
= 1;
669 chan
->parent
= parent
;
671 if (chan
->is_global
) {
673 buf
= *per_cpu_ptr(chan
->buf
, 0);
674 if (!WARN_ON_ONCE(!buf
)) {
675 dentry
= relay_create_buf_file(chan
, buf
, 0);
676 if (dentry
&& !WARN_ON_ONCE(!chan
->is_global
)) {
677 relay_set_buf_dentry(buf
, dentry
);
681 mutex_unlock(&relay_channels_mutex
);
685 curr_cpu
= get_cpu();
687 * The CPU hotplug notifier ran before us and created buffers with
688 * no files associated. So it's safe to call relay_setup_buf_file()
689 * on all currently online CPUs.
691 for_each_online_cpu(i
) {
692 buf
= *per_cpu_ptr(chan
->buf
, i
);
693 if (unlikely(!buf
)) {
694 WARN_ONCE(1, KERN_ERR
"CPU has no buffer!\n");
699 dentry
= relay_create_buf_file(chan
, buf
, i
);
700 if (unlikely(!dentry
)) {
706 local_irq_save(flags
);
707 relay_set_buf_dentry(buf
, dentry
);
708 local_irq_restore(flags
);
711 disp
.dentry
= dentry
;
713 /* relay_channels_mutex must be held, so wait. */
714 err
= smp_call_function_single(i
,
715 __relay_set_buf_dentry
,
722 mutex_unlock(&relay_channels_mutex
);
726 EXPORT_SYMBOL_GPL(relay_late_setup_files
);
729 * relay_switch_subbuf - switch to a new sub-buffer
730 * @buf: channel buffer
731 * @length: size of current event
733 * Returns either the length passed in or 0 if full.
735 * Performs sub-buffer-switch tasks such as invoking callbacks,
736 * updating padding counts, waking up readers, etc.
738 size_t relay_switch_subbuf(struct rchan_buf
*buf
, size_t length
)
741 size_t old_subbuf
, new_subbuf
;
743 if (unlikely(length
> buf
->chan
->subbuf_size
))
746 if (buf
->offset
!= buf
->chan
->subbuf_size
+ 1) {
747 buf
->prev_padding
= buf
->chan
->subbuf_size
- buf
->offset
;
748 old_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
749 buf
->padding
[old_subbuf
] = buf
->prev_padding
;
750 buf
->subbufs_produced
++;
752 d_inode(buf
->dentry
)->i_size
+=
753 buf
->chan
->subbuf_size
-
754 buf
->padding
[old_subbuf
];
756 buf
->early_bytes
+= buf
->chan
->subbuf_size
-
757 buf
->padding
[old_subbuf
];
759 if (waitqueue_active(&buf
->read_wait
)) {
761 * Calling wake_up_interruptible() from here
762 * will deadlock if we happen to be logging
763 * from the scheduler (trying to re-grab
764 * rq->lock), so defer it.
766 irq_work_queue(&buf
->wakeup_work
);
771 new_subbuf
= buf
->subbufs_produced
% buf
->chan
->n_subbufs
;
772 new = buf
->start
+ new_subbuf
* buf
->chan
->subbuf_size
;
774 if (!buf
->chan
->cb
->subbuf_start(buf
, new, old
, buf
->prev_padding
)) {
775 buf
->offset
= buf
->chan
->subbuf_size
+ 1;
779 buf
->padding
[new_subbuf
] = 0;
781 if (unlikely(length
+ buf
->offset
> buf
->chan
->subbuf_size
))
787 buf
->chan
->last_toobig
= length
;
790 EXPORT_SYMBOL_GPL(relay_switch_subbuf
);
793 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
795 * @cpu: the cpu associated with the channel buffer to update
796 * @subbufs_consumed: number of sub-buffers to add to current buf's count
798 * Adds to the channel buffer's consumed sub-buffer count.
799 * subbufs_consumed should be the number of sub-buffers newly consumed,
800 * not the total consumed.
802 * NOTE. Kernel clients don't need to call this function if the channel
803 * mode is 'overwrite'.
805 void relay_subbufs_consumed(struct rchan
*chan
,
807 size_t subbufs_consumed
)
809 struct rchan_buf
*buf
;
811 if (!chan
|| cpu
>= NR_CPUS
)
814 buf
= *per_cpu_ptr(chan
->buf
, cpu
);
815 if (!buf
|| subbufs_consumed
> chan
->n_subbufs
)
818 if (subbufs_consumed
> buf
->subbufs_produced
- buf
->subbufs_consumed
)
819 buf
->subbufs_consumed
= buf
->subbufs_produced
;
821 buf
->subbufs_consumed
+= subbufs_consumed
;
823 EXPORT_SYMBOL_GPL(relay_subbufs_consumed
);
826 * relay_close - close the channel
829 * Closes all channel buffers and frees the channel.
831 void relay_close(struct rchan
*chan
)
833 struct rchan_buf
*buf
;
839 mutex_lock(&relay_channels_mutex
);
840 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0)))
841 relay_close_buf(buf
);
843 for_each_possible_cpu(i
)
844 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
845 relay_close_buf(buf
);
847 if (chan
->last_toobig
)
848 printk(KERN_WARNING
"relay: one or more items not logged "
849 "[item size (%zd) > sub-buffer size (%zd)]\n",
850 chan
->last_toobig
, chan
->subbuf_size
);
852 list_del(&chan
->list
);
853 kref_put(&chan
->kref
, relay_destroy_channel
);
854 mutex_unlock(&relay_channels_mutex
);
856 EXPORT_SYMBOL_GPL(relay_close
);
859 * relay_flush - close the channel
862 * Flushes all channel buffers, i.e. forces buffer switch.
864 void relay_flush(struct rchan
*chan
)
866 struct rchan_buf
*buf
;
872 if (chan
->is_global
&& (buf
= *per_cpu_ptr(chan
->buf
, 0))) {
873 relay_switch_subbuf(buf
, 0);
877 mutex_lock(&relay_channels_mutex
);
878 for_each_possible_cpu(i
)
879 if ((buf
= *per_cpu_ptr(chan
->buf
, i
)))
880 relay_switch_subbuf(buf
, 0);
881 mutex_unlock(&relay_channels_mutex
);
883 EXPORT_SYMBOL_GPL(relay_flush
);
886 * relay_file_open - open file op for relay files
890 * Increments the channel buffer refcount.
892 static int relay_file_open(struct inode
*inode
, struct file
*filp
)
894 struct rchan_buf
*buf
= inode
->i_private
;
895 kref_get(&buf
->kref
);
896 filp
->private_data
= buf
;
898 return nonseekable_open(inode
, filp
);
902 * relay_file_mmap - mmap file op for relay files
904 * @vma: the vma describing what to map
906 * Calls upon relay_mmap_buf() to map the file into user space.
908 static int relay_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
910 struct rchan_buf
*buf
= filp
->private_data
;
911 return relay_mmap_buf(buf
, vma
);
915 * relay_file_poll - poll file op for relay files
921 static __poll_t
relay_file_poll(struct file
*filp
, poll_table
*wait
)
924 struct rchan_buf
*buf
= filp
->private_data
;
929 if (filp
->f_mode
& FMODE_READ
) {
930 poll_wait(filp
, &buf
->read_wait
, wait
);
931 if (!relay_buf_empty(buf
))
932 mask
|= EPOLLIN
| EPOLLRDNORM
;
939 * relay_file_release - release file op for relay files
943 * Decrements the channel refcount, as the filesystem is
944 * no longer using it.
946 static int relay_file_release(struct inode
*inode
, struct file
*filp
)
948 struct rchan_buf
*buf
= filp
->private_data
;
949 kref_put(&buf
->kref
, relay_remove_buf
);
955 * relay_file_read_consume - update the consumed count for the buffer
957 static void relay_file_read_consume(struct rchan_buf
*buf
,
959 size_t bytes_consumed
)
961 size_t subbuf_size
= buf
->chan
->subbuf_size
;
962 size_t n_subbufs
= buf
->chan
->n_subbufs
;
965 if (buf
->subbufs_produced
== buf
->subbufs_consumed
&&
966 buf
->offset
== buf
->bytes_consumed
)
969 if (buf
->bytes_consumed
+ bytes_consumed
> subbuf_size
) {
970 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
971 buf
->bytes_consumed
= 0;
974 buf
->bytes_consumed
+= bytes_consumed
;
976 read_subbuf
= buf
->subbufs_consumed
% n_subbufs
;
978 read_subbuf
= read_pos
/ buf
->chan
->subbuf_size
;
979 if (buf
->bytes_consumed
+ buf
->padding
[read_subbuf
] == subbuf_size
) {
980 if ((read_subbuf
== buf
->subbufs_produced
% n_subbufs
) &&
981 (buf
->offset
== subbuf_size
))
983 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
984 buf
->bytes_consumed
= 0;
989 * relay_file_read_avail - boolean, are there unconsumed bytes available?
991 static int relay_file_read_avail(struct rchan_buf
*buf
, size_t read_pos
)
993 size_t subbuf_size
= buf
->chan
->subbuf_size
;
994 size_t n_subbufs
= buf
->chan
->n_subbufs
;
995 size_t produced
= buf
->subbufs_produced
;
996 size_t consumed
= buf
->subbufs_consumed
;
998 relay_file_read_consume(buf
, read_pos
, 0);
1000 consumed
= buf
->subbufs_consumed
;
1002 if (unlikely(buf
->offset
> subbuf_size
)) {
1003 if (produced
== consumed
)
1008 if (unlikely(produced
- consumed
>= n_subbufs
)) {
1009 consumed
= produced
- n_subbufs
+ 1;
1010 buf
->subbufs_consumed
= consumed
;
1011 buf
->bytes_consumed
= 0;
1014 produced
= (produced
% n_subbufs
) * subbuf_size
+ buf
->offset
;
1015 consumed
= (consumed
% n_subbufs
) * subbuf_size
+ buf
->bytes_consumed
;
1017 if (consumed
> produced
)
1018 produced
+= n_subbufs
* subbuf_size
;
1020 if (consumed
== produced
) {
1021 if (buf
->offset
== subbuf_size
&&
1022 buf
->subbufs_produced
> buf
->subbufs_consumed
)
1031 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1032 * @read_pos: file read position
1033 * @buf: relay channel buffer
1035 static size_t relay_file_read_subbuf_avail(size_t read_pos
,
1036 struct rchan_buf
*buf
)
1038 size_t padding
, avail
= 0;
1039 size_t read_subbuf
, read_offset
, write_subbuf
, write_offset
;
1040 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1042 write_subbuf
= (buf
->data
- buf
->start
) / subbuf_size
;
1043 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
1044 read_subbuf
= read_pos
/ subbuf_size
;
1045 read_offset
= read_pos
% subbuf_size
;
1046 padding
= buf
->padding
[read_subbuf
];
1048 if (read_subbuf
== write_subbuf
) {
1049 if (read_offset
+ padding
< write_offset
)
1050 avail
= write_offset
- (read_offset
+ padding
);
1052 avail
= (subbuf_size
- padding
) - read_offset
;
1058 * relay_file_read_start_pos - find the first available byte to read
1059 * @read_pos: file read position
1060 * @buf: relay channel buffer
1062 * If the @read_pos is in the middle of padding, return the
1063 * position of the first actually available byte, otherwise
1064 * return the original value.
1066 static size_t relay_file_read_start_pos(size_t read_pos
,
1067 struct rchan_buf
*buf
)
1069 size_t read_subbuf
, padding
, padding_start
, padding_end
;
1070 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1071 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1072 size_t consumed
= buf
->subbufs_consumed
% n_subbufs
;
1075 read_pos
= consumed
* subbuf_size
+ buf
->bytes_consumed
;
1076 read_subbuf
= read_pos
/ subbuf_size
;
1077 padding
= buf
->padding
[read_subbuf
];
1078 padding_start
= (read_subbuf
+ 1) * subbuf_size
- padding
;
1079 padding_end
= (read_subbuf
+ 1) * subbuf_size
;
1080 if (read_pos
>= padding_start
&& read_pos
< padding_end
) {
1081 read_subbuf
= (read_subbuf
+ 1) % n_subbufs
;
1082 read_pos
= read_subbuf
* subbuf_size
;
1089 * relay_file_read_end_pos - return the new read position
1090 * @read_pos: file read position
1091 * @buf: relay channel buffer
1092 * @count: number of bytes to be read
1094 static size_t relay_file_read_end_pos(struct rchan_buf
*buf
,
1098 size_t read_subbuf
, padding
, end_pos
;
1099 size_t subbuf_size
= buf
->chan
->subbuf_size
;
1100 size_t n_subbufs
= buf
->chan
->n_subbufs
;
1102 read_subbuf
= read_pos
/ subbuf_size
;
1103 padding
= buf
->padding
[read_subbuf
];
1104 if (read_pos
% subbuf_size
+ count
+ padding
== subbuf_size
)
1105 end_pos
= (read_subbuf
+ 1) * subbuf_size
;
1107 end_pos
= read_pos
+ count
;
1108 if (end_pos
>= subbuf_size
* n_subbufs
)
1114 static ssize_t
relay_file_read(struct file
*filp
,
1115 char __user
*buffer
,
1119 struct rchan_buf
*buf
= filp
->private_data
;
1120 size_t read_start
, avail
;
1127 inode_lock(file_inode(filp
));
1131 if (!relay_file_read_avail(buf
, *ppos
))
1134 read_start
= relay_file_read_start_pos(*ppos
, buf
);
1135 avail
= relay_file_read_subbuf_avail(read_start
, buf
);
1139 avail
= min(count
, avail
);
1140 from
= buf
->start
+ read_start
;
1142 if (copy_to_user(buffer
, from
, avail
))
1149 relay_file_read_consume(buf
, read_start
, ret
);
1150 *ppos
= relay_file_read_end_pos(buf
, read_start
, ret
);
1152 inode_unlock(file_inode(filp
));
1157 static void relay_consume_bytes(struct rchan_buf
*rbuf
, int bytes_consumed
)
1159 rbuf
->bytes_consumed
+= bytes_consumed
;
1161 if (rbuf
->bytes_consumed
>= rbuf
->chan
->subbuf_size
) {
1162 relay_subbufs_consumed(rbuf
->chan
, rbuf
->cpu
, 1);
1163 rbuf
->bytes_consumed
%= rbuf
->chan
->subbuf_size
;
1167 static void relay_pipe_buf_release(struct pipe_inode_info
*pipe
,
1168 struct pipe_buffer
*buf
)
1170 struct rchan_buf
*rbuf
;
1172 rbuf
= (struct rchan_buf
*)page_private(buf
->page
);
1173 relay_consume_bytes(rbuf
, buf
->private);
1176 static const struct pipe_buf_operations relay_pipe_buf_ops
= {
1178 .confirm
= generic_pipe_buf_confirm
,
1179 .release
= relay_pipe_buf_release
,
1180 .steal
= generic_pipe_buf_steal
,
1181 .get
= generic_pipe_buf_get
,
1184 static void relay_page_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1189 * subbuf_splice_actor - splice up to one subbuf's worth of data
1191 static ssize_t
subbuf_splice_actor(struct file
*in
,
1193 struct pipe_inode_info
*pipe
,
1198 unsigned int pidx
, poff
, total_len
, subbuf_pages
, nr_pages
;
1199 struct rchan_buf
*rbuf
= in
->private_data
;
1200 unsigned int subbuf_size
= rbuf
->chan
->subbuf_size
;
1201 uint64_t pos
= (uint64_t) *ppos
;
1202 uint32_t alloc_size
= (uint32_t) rbuf
->chan
->alloc_size
;
1203 size_t read_start
= (size_t) do_div(pos
, alloc_size
);
1204 size_t read_subbuf
= read_start
/ subbuf_size
;
1205 size_t padding
= rbuf
->padding
[read_subbuf
];
1206 size_t nonpad_end
= read_subbuf
* subbuf_size
+ subbuf_size
- padding
;
1207 struct page
*pages
[PIPE_DEF_BUFFERS
];
1208 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1209 struct splice_pipe_desc spd
= {
1212 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1214 .ops
= &relay_pipe_buf_ops
,
1215 .spd_release
= relay_page_release
,
1219 if (rbuf
->subbufs_produced
== rbuf
->subbufs_consumed
)
1221 if (splice_grow_spd(pipe
, &spd
))
1225 * Adjust read len, if longer than what is available
1227 if (len
> (subbuf_size
- read_start
% subbuf_size
))
1228 len
= subbuf_size
- read_start
% subbuf_size
;
1230 subbuf_pages
= rbuf
->chan
->alloc_size
>> PAGE_SHIFT
;
1231 pidx
= (read_start
/ PAGE_SIZE
) % subbuf_pages
;
1232 poff
= read_start
& ~PAGE_MASK
;
1233 nr_pages
= min_t(unsigned int, subbuf_pages
, spd
.nr_pages_max
);
1235 for (total_len
= 0; spd
.nr_pages
< nr_pages
; spd
.nr_pages
++) {
1236 unsigned int this_len
, this_end
, private;
1237 unsigned int cur_pos
= read_start
+ total_len
;
1242 this_len
= min_t(unsigned long, len
, PAGE_SIZE
- poff
);
1245 spd
.pages
[spd
.nr_pages
] = rbuf
->page_array
[pidx
];
1246 spd
.partial
[spd
.nr_pages
].offset
= poff
;
1248 this_end
= cur_pos
+ this_len
;
1249 if (this_end
>= nonpad_end
) {
1250 this_len
= nonpad_end
- cur_pos
;
1251 private = this_len
+ padding
;
1253 spd
.partial
[spd
.nr_pages
].len
= this_len
;
1254 spd
.partial
[spd
.nr_pages
].private = private;
1257 total_len
+= this_len
;
1259 pidx
= (pidx
+ 1) % subbuf_pages
;
1261 if (this_end
>= nonpad_end
) {
1271 ret
= *nonpad_ret
= splice_to_pipe(pipe
, &spd
);
1272 if (ret
< 0 || ret
< total_len
)
1275 if (read_start
+ ret
== nonpad_end
)
1279 splice_shrink_spd(&spd
);
1283 static ssize_t
relay_file_splice_read(struct file
*in
,
1285 struct pipe_inode_info
*pipe
,
1296 while (len
&& !spliced
) {
1297 ret
= subbuf_splice_actor(in
, ppos
, pipe
, len
, flags
, &nonpad_ret
);
1301 if (flags
& SPLICE_F_NONBLOCK
)
1311 spliced
+= nonpad_ret
;
1321 const struct file_operations relay_file_operations
= {
1322 .open
= relay_file_open
,
1323 .poll
= relay_file_poll
,
1324 .mmap
= relay_file_mmap
,
1325 .read
= relay_file_read
,
1326 .llseek
= no_llseek
,
1327 .release
= relay_file_release
,
1328 .splice_read
= relay_file_splice_read
,
1330 EXPORT_SYMBOL_GPL(relay_file_operations
);