pkt_sched: fq: fix pacing for small frames
[linux-2.6/btrfs-unstable.git] / net / sched / sch_tbf.c
blob68f98595819c1224f7e64ad368ad51155ff07fea
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
26 /* Simple Token Bucket Filter.
27 =======================================
29 SOURCE.
30 -------
32 None.
34 Description.
35 ------------
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
45 s_i+....+s_k <= B + R*(t_k - t_i)
47 Algorithm.
48 ----------
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
52 N(t+delta) = min{B/R, N(t) + delta}
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
58 N(t_* + 0) = N(t_* - 0) - S/R.
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
70 When TBF works in reshaping mode, latency is estimated as:
72 lat = max ((L-B)/R, (L-M)/P)
75 NOTES.
76 ------
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
86 This means, that with depth B, the maximal rate is
88 R_crit = B*HZ
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
101 struct tbf_sched_data {
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
105 s64 mtu;
106 u32 max_size;
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
109 bool peak_present;
111 /* Variables */
112 s64 tokens; /* Current number of B tokens */
113 s64 ptokens; /* Current number of P tokens */
114 s64 t_c; /* Time check-point */
115 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
116 struct qdisc_watchdog watchdog; /* Watchdog timer */
120 /* GSO packet is too big, segment it so that tbf can transmit
121 * each segment in time
123 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
125 struct tbf_sched_data *q = qdisc_priv(sch);
126 struct sk_buff *segs, *nskb;
127 netdev_features_t features = netif_skb_features(skb);
128 int ret, nb;
130 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
132 if (IS_ERR_OR_NULL(segs))
133 return qdisc_reshape_fail(skb, sch);
135 nb = 0;
136 while (segs) {
137 nskb = segs->next;
138 segs->next = NULL;
139 if (likely(segs->len <= q->max_size)) {
140 qdisc_skb_cb(segs)->pkt_len = segs->len;
141 ret = qdisc_enqueue(segs, q->qdisc);
142 } else {
143 ret = qdisc_reshape_fail(skb, sch);
145 if (ret != NET_XMIT_SUCCESS) {
146 if (net_xmit_drop_count(ret))
147 sch->qstats.drops++;
148 } else {
149 nb++;
151 segs = nskb;
153 sch->q.qlen += nb;
154 if (nb > 1)
155 qdisc_tree_decrease_qlen(sch, 1 - nb);
156 consume_skb(skb);
157 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
160 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
162 struct tbf_sched_data *q = qdisc_priv(sch);
163 int ret;
165 if (qdisc_pkt_len(skb) > q->max_size) {
166 if (skb_is_gso(skb))
167 return tbf_segment(skb, sch);
168 return qdisc_reshape_fail(skb, sch);
170 ret = qdisc_enqueue(skb, q->qdisc);
171 if (ret != NET_XMIT_SUCCESS) {
172 if (net_xmit_drop_count(ret))
173 sch->qstats.drops++;
174 return ret;
177 sch->q.qlen++;
178 return NET_XMIT_SUCCESS;
181 static unsigned int tbf_drop(struct Qdisc *sch)
183 struct tbf_sched_data *q = qdisc_priv(sch);
184 unsigned int len = 0;
186 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
187 sch->q.qlen--;
188 sch->qstats.drops++;
190 return len;
193 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
195 struct tbf_sched_data *q = qdisc_priv(sch);
196 struct sk_buff *skb;
198 skb = q->qdisc->ops->peek(q->qdisc);
200 if (skb) {
201 s64 now;
202 s64 toks;
203 s64 ptoks = 0;
204 unsigned int len = qdisc_pkt_len(skb);
206 now = ktime_to_ns(ktime_get());
207 toks = min_t(s64, now - q->t_c, q->buffer);
209 if (q->peak_present) {
210 ptoks = toks + q->ptokens;
211 if (ptoks > q->mtu)
212 ptoks = q->mtu;
213 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
215 toks += q->tokens;
216 if (toks > q->buffer)
217 toks = q->buffer;
218 toks -= (s64) psched_l2t_ns(&q->rate, len);
220 if ((toks|ptoks) >= 0) {
221 skb = qdisc_dequeue_peeked(q->qdisc);
222 if (unlikely(!skb))
223 return NULL;
225 q->t_c = now;
226 q->tokens = toks;
227 q->ptokens = ptoks;
228 sch->q.qlen--;
229 qdisc_unthrottled(sch);
230 qdisc_bstats_update(sch, skb);
231 return skb;
234 qdisc_watchdog_schedule_ns(&q->watchdog,
235 now + max_t(long, -toks, -ptoks));
237 /* Maybe we have a shorter packet in the queue,
238 which can be sent now. It sounds cool,
239 but, however, this is wrong in principle.
240 We MUST NOT reorder packets under these circumstances.
242 Really, if we split the flow into independent
243 subflows, it would be a very good solution.
244 This is the main idea of all FQ algorithms
245 (cf. CSZ, HPFQ, HFSC)
248 sch->qstats.overlimits++;
250 return NULL;
253 static void tbf_reset(struct Qdisc *sch)
255 struct tbf_sched_data *q = qdisc_priv(sch);
257 qdisc_reset(q->qdisc);
258 sch->q.qlen = 0;
259 q->t_c = ktime_to_ns(ktime_get());
260 q->tokens = q->buffer;
261 q->ptokens = q->mtu;
262 qdisc_watchdog_cancel(&q->watchdog);
265 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
266 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
267 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
268 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
269 [TCA_TBF_RATE64] = { .type = NLA_U64 },
270 [TCA_TBF_PRATE64] = { .type = NLA_U64 },
273 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
275 int err;
276 struct tbf_sched_data *q = qdisc_priv(sch);
277 struct nlattr *tb[TCA_TBF_MAX + 1];
278 struct tc_tbf_qopt *qopt;
279 struct qdisc_rate_table *rtab = NULL;
280 struct qdisc_rate_table *ptab = NULL;
281 struct Qdisc *child = NULL;
282 int max_size, n;
283 u64 rate64 = 0, prate64 = 0;
285 err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
286 if (err < 0)
287 return err;
289 err = -EINVAL;
290 if (tb[TCA_TBF_PARMS] == NULL)
291 goto done;
293 qopt = nla_data(tb[TCA_TBF_PARMS]);
294 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
295 if (rtab == NULL)
296 goto done;
298 if (qopt->peakrate.rate) {
299 if (qopt->peakrate.rate > qopt->rate.rate)
300 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
301 if (ptab == NULL)
302 goto done;
305 for (n = 0; n < 256; n++)
306 if (rtab->data[n] > qopt->buffer)
307 break;
308 max_size = (n << qopt->rate.cell_log) - 1;
309 if (ptab) {
310 int size;
312 for (n = 0; n < 256; n++)
313 if (ptab->data[n] > qopt->mtu)
314 break;
315 size = (n << qopt->peakrate.cell_log) - 1;
316 if (size < max_size)
317 max_size = size;
319 if (max_size < 0)
320 goto done;
322 if (q->qdisc != &noop_qdisc) {
323 err = fifo_set_limit(q->qdisc, qopt->limit);
324 if (err)
325 goto done;
326 } else if (qopt->limit > 0) {
327 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
328 if (IS_ERR(child)) {
329 err = PTR_ERR(child);
330 goto done;
334 sch_tree_lock(sch);
335 if (child) {
336 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
337 qdisc_destroy(q->qdisc);
338 q->qdisc = child;
340 q->limit = qopt->limit;
341 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
342 q->max_size = max_size;
343 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
344 q->tokens = q->buffer;
345 q->ptokens = q->mtu;
347 if (tb[TCA_TBF_RATE64])
348 rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
349 psched_ratecfg_precompute(&q->rate, &rtab->rate, rate64);
350 if (ptab) {
351 if (tb[TCA_TBF_PRATE64])
352 prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
353 psched_ratecfg_precompute(&q->peak, &ptab->rate, prate64);
354 q->peak_present = true;
355 } else {
356 q->peak_present = false;
359 sch_tree_unlock(sch);
360 err = 0;
361 done:
362 if (rtab)
363 qdisc_put_rtab(rtab);
364 if (ptab)
365 qdisc_put_rtab(ptab);
366 return err;
369 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
371 struct tbf_sched_data *q = qdisc_priv(sch);
373 if (opt == NULL)
374 return -EINVAL;
376 q->t_c = ktime_to_ns(ktime_get());
377 qdisc_watchdog_init(&q->watchdog, sch);
378 q->qdisc = &noop_qdisc;
380 return tbf_change(sch, opt);
383 static void tbf_destroy(struct Qdisc *sch)
385 struct tbf_sched_data *q = qdisc_priv(sch);
387 qdisc_watchdog_cancel(&q->watchdog);
388 qdisc_destroy(q->qdisc);
391 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
393 struct tbf_sched_data *q = qdisc_priv(sch);
394 struct nlattr *nest;
395 struct tc_tbf_qopt opt;
397 sch->qstats.backlog = q->qdisc->qstats.backlog;
398 nest = nla_nest_start(skb, TCA_OPTIONS);
399 if (nest == NULL)
400 goto nla_put_failure;
402 opt.limit = q->limit;
403 psched_ratecfg_getrate(&opt.rate, &q->rate);
404 if (q->peak_present)
405 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
406 else
407 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
408 opt.mtu = PSCHED_NS2TICKS(q->mtu);
409 opt.buffer = PSCHED_NS2TICKS(q->buffer);
410 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
411 goto nla_put_failure;
412 if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
413 nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps))
414 goto nla_put_failure;
415 if (q->peak_present &&
416 q->peak.rate_bytes_ps >= (1ULL << 32) &&
417 nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps))
418 goto nla_put_failure;
420 nla_nest_end(skb, nest);
421 return skb->len;
423 nla_put_failure:
424 nla_nest_cancel(skb, nest);
425 return -1;
428 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
429 struct sk_buff *skb, struct tcmsg *tcm)
431 struct tbf_sched_data *q = qdisc_priv(sch);
433 tcm->tcm_handle |= TC_H_MIN(1);
434 tcm->tcm_info = q->qdisc->handle;
436 return 0;
439 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
440 struct Qdisc **old)
442 struct tbf_sched_data *q = qdisc_priv(sch);
444 if (new == NULL)
445 new = &noop_qdisc;
447 sch_tree_lock(sch);
448 *old = q->qdisc;
449 q->qdisc = new;
450 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
451 qdisc_reset(*old);
452 sch_tree_unlock(sch);
454 return 0;
457 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
459 struct tbf_sched_data *q = qdisc_priv(sch);
460 return q->qdisc;
463 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
465 return 1;
468 static void tbf_put(struct Qdisc *sch, unsigned long arg)
472 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
474 if (!walker->stop) {
475 if (walker->count >= walker->skip)
476 if (walker->fn(sch, 1, walker) < 0) {
477 walker->stop = 1;
478 return;
480 walker->count++;
484 static const struct Qdisc_class_ops tbf_class_ops = {
485 .graft = tbf_graft,
486 .leaf = tbf_leaf,
487 .get = tbf_get,
488 .put = tbf_put,
489 .walk = tbf_walk,
490 .dump = tbf_dump_class,
493 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
494 .next = NULL,
495 .cl_ops = &tbf_class_ops,
496 .id = "tbf",
497 .priv_size = sizeof(struct tbf_sched_data),
498 .enqueue = tbf_enqueue,
499 .dequeue = tbf_dequeue,
500 .peek = qdisc_peek_dequeued,
501 .drop = tbf_drop,
502 .init = tbf_init,
503 .reset = tbf_reset,
504 .destroy = tbf_destroy,
505 .change = tbf_change,
506 .dump = tbf_dump,
507 .owner = THIS_MODULE,
510 static int __init tbf_module_init(void)
512 return register_qdisc(&tbf_qdisc_ops);
515 static void __exit tbf_module_exit(void)
517 unregister_qdisc(&tbf_qdisc_ops);
519 module_init(tbf_module_init)
520 module_exit(tbf_module_exit)
521 MODULE_LICENSE("GPL");