Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/btrfs-unstable.git] / kernel / irq / manage.c
blobdaeabd791d5896a366d7ba7b386dde76bfbc0a73
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
6 * This file contains driver APIs to the irq subsystem.
7 */
9 #define pr_fmt(fmt) "genirq: " fmt
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
23 #include "internals.h"
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
29 static int __init setup_forced_irqthreads(char *arg)
31 force_irqthreads = true;
32 return 0;
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
37 static void __synchronize_hardirq(struct irq_desc *desc)
39 bool inprogress;
41 do {
42 unsigned long flags;
45 * Wait until we're out of the critical section. This might
46 * give the wrong answer due to the lack of memory barriers.
48 while (irqd_irq_inprogress(&desc->irq_data))
49 cpu_relax();
51 /* Ok, that indicated we're done: double-check carefully. */
52 raw_spin_lock_irqsave(&desc->lock, flags);
53 inprogress = irqd_irq_inprogress(&desc->irq_data);
54 raw_spin_unlock_irqrestore(&desc->lock, flags);
56 /* Oops, that failed? */
57 } while (inprogress);
60 /**
61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62 * @irq: interrupt number to wait for
64 * This function waits for any pending hard IRQ handlers for this
65 * interrupt to complete before returning. If you use this
66 * function while holding a resource the IRQ handler may need you
67 * will deadlock. It does not take associated threaded handlers
68 * into account.
70 * Do not use this for shutdown scenarios where you must be sure
71 * that all parts (hardirq and threaded handler) have completed.
73 * Returns: false if a threaded handler is active.
75 * This function may be called - with care - from IRQ context.
77 bool synchronize_hardirq(unsigned int irq)
79 struct irq_desc *desc = irq_to_desc(irq);
81 if (desc) {
82 __synchronize_hardirq(desc);
83 return !atomic_read(&desc->threads_active);
86 return true;
88 EXPORT_SYMBOL(synchronize_hardirq);
90 /**
91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92 * @irq: interrupt number to wait for
94 * This function waits for any pending IRQ handlers for this interrupt
95 * to complete before returning. If you use this function while
96 * holding a resource the IRQ handler may need you will deadlock.
98 * This function may be called - with care - from IRQ context.
100 void synchronize_irq(unsigned int irq)
102 struct irq_desc *desc = irq_to_desc(irq);
104 if (desc) {
105 __synchronize_hardirq(desc);
107 * We made sure that no hardirq handler is
108 * running. Now verify that no threaded handlers are
109 * active.
111 wait_event(desc->wait_for_threads,
112 !atomic_read(&desc->threads_active));
115 EXPORT_SYMBOL(synchronize_irq);
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
122 if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 return false;
125 return true;
129 * irq_can_set_affinity - Check if the affinity of a given irq can be set
130 * @irq: Interrupt to check
133 int irq_can_set_affinity(unsigned int irq)
135 return __irq_can_set_affinity(irq_to_desc(irq));
139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140 * @irq: Interrupt to check
142 * Like irq_can_set_affinity() above, but additionally checks for the
143 * AFFINITY_MANAGED flag.
145 bool irq_can_set_affinity_usr(unsigned int irq)
147 struct irq_desc *desc = irq_to_desc(irq);
149 return __irq_can_set_affinity(desc) &&
150 !irqd_affinity_is_managed(&desc->irq_data);
154 * irq_set_thread_affinity - Notify irq threads to adjust affinity
155 * @desc: irq descriptor which has affitnity changed
157 * We just set IRQTF_AFFINITY and delegate the affinity setting
158 * to the interrupt thread itself. We can not call
159 * set_cpus_allowed_ptr() here as we hold desc->lock and this
160 * code can be called from hard interrupt context.
162 void irq_set_thread_affinity(struct irq_desc *desc)
164 struct irqaction *action;
166 for_each_action_of_desc(desc, action)
167 if (action->thread)
168 set_bit(IRQTF_AFFINITY, &action->thread_flags);
171 static void irq_validate_effective_affinity(struct irq_data *data)
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 struct irq_chip *chip = irq_data_get_irq_chip(data);
177 if (!cpumask_empty(m))
178 return;
179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 chip->name, data->irq);
181 #endif
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 bool force)
187 struct irq_desc *desc = irq_data_to_desc(data);
188 struct irq_chip *chip = irq_data_get_irq_chip(data);
189 int ret;
191 if (!chip || !chip->irq_set_affinity)
192 return -EINVAL;
194 ret = chip->irq_set_affinity(data, mask, force);
195 switch (ret) {
196 case IRQ_SET_MASK_OK:
197 case IRQ_SET_MASK_OK_DONE:
198 cpumask_copy(desc->irq_common_data.affinity, mask);
199 case IRQ_SET_MASK_OK_NOCOPY:
200 irq_validate_effective_affinity(data);
201 irq_set_thread_affinity(desc);
202 ret = 0;
205 return ret;
208 #ifdef CONFIG_GENERIC_PENDING_IRQ
209 static inline int irq_set_affinity_pending(struct irq_data *data,
210 const struct cpumask *dest)
212 struct irq_desc *desc = irq_data_to_desc(data);
214 irqd_set_move_pending(data);
215 irq_copy_pending(desc, dest);
216 return 0;
218 #else
219 static inline int irq_set_affinity_pending(struct irq_data *data,
220 const struct cpumask *dest)
222 return -EBUSY;
224 #endif
226 static int irq_try_set_affinity(struct irq_data *data,
227 const struct cpumask *dest, bool force)
229 int ret = irq_do_set_affinity(data, dest, force);
232 * In case that the underlying vector management is busy and the
233 * architecture supports the generic pending mechanism then utilize
234 * this to avoid returning an error to user space.
236 if (ret == -EBUSY && !force)
237 ret = irq_set_affinity_pending(data, dest);
238 return ret;
241 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
242 bool force)
244 struct irq_chip *chip = irq_data_get_irq_chip(data);
245 struct irq_desc *desc = irq_data_to_desc(data);
246 int ret = 0;
248 if (!chip || !chip->irq_set_affinity)
249 return -EINVAL;
251 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
252 ret = irq_try_set_affinity(data, mask, force);
253 } else {
254 irqd_set_move_pending(data);
255 irq_copy_pending(desc, mask);
258 if (desc->affinity_notify) {
259 kref_get(&desc->affinity_notify->kref);
260 schedule_work(&desc->affinity_notify->work);
262 irqd_set(data, IRQD_AFFINITY_SET);
264 return ret;
267 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
269 struct irq_desc *desc = irq_to_desc(irq);
270 unsigned long flags;
271 int ret;
273 if (!desc)
274 return -EINVAL;
276 raw_spin_lock_irqsave(&desc->lock, flags);
277 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
278 raw_spin_unlock_irqrestore(&desc->lock, flags);
279 return ret;
282 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
284 unsigned long flags;
285 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
287 if (!desc)
288 return -EINVAL;
289 desc->affinity_hint = m;
290 irq_put_desc_unlock(desc, flags);
291 /* set the initial affinity to prevent every interrupt being on CPU0 */
292 if (m)
293 __irq_set_affinity(irq, m, false);
294 return 0;
296 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
298 static void irq_affinity_notify(struct work_struct *work)
300 struct irq_affinity_notify *notify =
301 container_of(work, struct irq_affinity_notify, work);
302 struct irq_desc *desc = irq_to_desc(notify->irq);
303 cpumask_var_t cpumask;
304 unsigned long flags;
306 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
307 goto out;
309 raw_spin_lock_irqsave(&desc->lock, flags);
310 if (irq_move_pending(&desc->irq_data))
311 irq_get_pending(cpumask, desc);
312 else
313 cpumask_copy(cpumask, desc->irq_common_data.affinity);
314 raw_spin_unlock_irqrestore(&desc->lock, flags);
316 notify->notify(notify, cpumask);
318 free_cpumask_var(cpumask);
319 out:
320 kref_put(&notify->kref, notify->release);
324 * irq_set_affinity_notifier - control notification of IRQ affinity changes
325 * @irq: Interrupt for which to enable/disable notification
326 * @notify: Context for notification, or %NULL to disable
327 * notification. Function pointers must be initialised;
328 * the other fields will be initialised by this function.
330 * Must be called in process context. Notification may only be enabled
331 * after the IRQ is allocated and must be disabled before the IRQ is
332 * freed using free_irq().
335 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
337 struct irq_desc *desc = irq_to_desc(irq);
338 struct irq_affinity_notify *old_notify;
339 unsigned long flags;
341 /* The release function is promised process context */
342 might_sleep();
344 if (!desc)
345 return -EINVAL;
347 /* Complete initialisation of *notify */
348 if (notify) {
349 notify->irq = irq;
350 kref_init(&notify->kref);
351 INIT_WORK(&notify->work, irq_affinity_notify);
354 raw_spin_lock_irqsave(&desc->lock, flags);
355 old_notify = desc->affinity_notify;
356 desc->affinity_notify = notify;
357 raw_spin_unlock_irqrestore(&desc->lock, flags);
359 if (old_notify)
360 kref_put(&old_notify->kref, old_notify->release);
362 return 0;
364 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
366 #ifndef CONFIG_AUTO_IRQ_AFFINITY
368 * Generic version of the affinity autoselector.
370 int irq_setup_affinity(struct irq_desc *desc)
372 struct cpumask *set = irq_default_affinity;
373 int ret, node = irq_desc_get_node(desc);
374 static DEFINE_RAW_SPINLOCK(mask_lock);
375 static struct cpumask mask;
377 /* Excludes PER_CPU and NO_BALANCE interrupts */
378 if (!__irq_can_set_affinity(desc))
379 return 0;
381 raw_spin_lock(&mask_lock);
383 * Preserve the managed affinity setting and a userspace affinity
384 * setup, but make sure that one of the targets is online.
386 if (irqd_affinity_is_managed(&desc->irq_data) ||
387 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
388 if (cpumask_intersects(desc->irq_common_data.affinity,
389 cpu_online_mask))
390 set = desc->irq_common_data.affinity;
391 else
392 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
395 cpumask_and(&mask, cpu_online_mask, set);
396 if (node != NUMA_NO_NODE) {
397 const struct cpumask *nodemask = cpumask_of_node(node);
399 /* make sure at least one of the cpus in nodemask is online */
400 if (cpumask_intersects(&mask, nodemask))
401 cpumask_and(&mask, &mask, nodemask);
403 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
404 raw_spin_unlock(&mask_lock);
405 return ret;
407 #else
408 /* Wrapper for ALPHA specific affinity selector magic */
409 int irq_setup_affinity(struct irq_desc *desc)
411 return irq_select_affinity(irq_desc_get_irq(desc));
413 #endif
416 * Called when a bogus affinity is set via /proc/irq
418 int irq_select_affinity_usr(unsigned int irq)
420 struct irq_desc *desc = irq_to_desc(irq);
421 unsigned long flags;
422 int ret;
424 raw_spin_lock_irqsave(&desc->lock, flags);
425 ret = irq_setup_affinity(desc);
426 raw_spin_unlock_irqrestore(&desc->lock, flags);
427 return ret;
429 #endif
432 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
433 * @irq: interrupt number to set affinity
434 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
435 * specific data for percpu_devid interrupts
437 * This function uses the vCPU specific data to set the vCPU
438 * affinity for an irq. The vCPU specific data is passed from
439 * outside, such as KVM. One example code path is as below:
440 * KVM -> IOMMU -> irq_set_vcpu_affinity().
442 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
444 unsigned long flags;
445 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
446 struct irq_data *data;
447 struct irq_chip *chip;
448 int ret = -ENOSYS;
450 if (!desc)
451 return -EINVAL;
453 data = irq_desc_get_irq_data(desc);
454 do {
455 chip = irq_data_get_irq_chip(data);
456 if (chip && chip->irq_set_vcpu_affinity)
457 break;
458 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
459 data = data->parent_data;
460 #else
461 data = NULL;
462 #endif
463 } while (data);
465 if (data)
466 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
467 irq_put_desc_unlock(desc, flags);
469 return ret;
471 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
473 void __disable_irq(struct irq_desc *desc)
475 if (!desc->depth++)
476 irq_disable(desc);
479 static int __disable_irq_nosync(unsigned int irq)
481 unsigned long flags;
482 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
484 if (!desc)
485 return -EINVAL;
486 __disable_irq(desc);
487 irq_put_desc_busunlock(desc, flags);
488 return 0;
492 * disable_irq_nosync - disable an irq without waiting
493 * @irq: Interrupt to disable
495 * Disable the selected interrupt line. Disables and Enables are
496 * nested.
497 * Unlike disable_irq(), this function does not ensure existing
498 * instances of the IRQ handler have completed before returning.
500 * This function may be called from IRQ context.
502 void disable_irq_nosync(unsigned int irq)
504 __disable_irq_nosync(irq);
506 EXPORT_SYMBOL(disable_irq_nosync);
509 * disable_irq - disable an irq and wait for completion
510 * @irq: Interrupt to disable
512 * Disable the selected interrupt line. Enables and Disables are
513 * nested.
514 * This function waits for any pending IRQ handlers for this interrupt
515 * to complete before returning. If you use this function while
516 * holding a resource the IRQ handler may need you will deadlock.
518 * This function may be called - with care - from IRQ context.
520 void disable_irq(unsigned int irq)
522 if (!__disable_irq_nosync(irq))
523 synchronize_irq(irq);
525 EXPORT_SYMBOL(disable_irq);
528 * disable_hardirq - disables an irq and waits for hardirq completion
529 * @irq: Interrupt to disable
531 * Disable the selected interrupt line. Enables and Disables are
532 * nested.
533 * This function waits for any pending hard IRQ handlers for this
534 * interrupt to complete before returning. If you use this function while
535 * holding a resource the hard IRQ handler may need you will deadlock.
537 * When used to optimistically disable an interrupt from atomic context
538 * the return value must be checked.
540 * Returns: false if a threaded handler is active.
542 * This function may be called - with care - from IRQ context.
544 bool disable_hardirq(unsigned int irq)
546 if (!__disable_irq_nosync(irq))
547 return synchronize_hardirq(irq);
549 return false;
551 EXPORT_SYMBOL_GPL(disable_hardirq);
553 void __enable_irq(struct irq_desc *desc)
555 switch (desc->depth) {
556 case 0:
557 err_out:
558 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
559 irq_desc_get_irq(desc));
560 break;
561 case 1: {
562 if (desc->istate & IRQS_SUSPENDED)
563 goto err_out;
564 /* Prevent probing on this irq: */
565 irq_settings_set_noprobe(desc);
567 * Call irq_startup() not irq_enable() here because the
568 * interrupt might be marked NOAUTOEN. So irq_startup()
569 * needs to be invoked when it gets enabled the first
570 * time. If it was already started up, then irq_startup()
571 * will invoke irq_enable() under the hood.
573 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
574 break;
576 default:
577 desc->depth--;
582 * enable_irq - enable handling of an irq
583 * @irq: Interrupt to enable
585 * Undoes the effect of one call to disable_irq(). If this
586 * matches the last disable, processing of interrupts on this
587 * IRQ line is re-enabled.
589 * This function may be called from IRQ context only when
590 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
592 void enable_irq(unsigned int irq)
594 unsigned long flags;
595 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
597 if (!desc)
598 return;
599 if (WARN(!desc->irq_data.chip,
600 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
601 goto out;
603 __enable_irq(desc);
604 out:
605 irq_put_desc_busunlock(desc, flags);
607 EXPORT_SYMBOL(enable_irq);
609 static int set_irq_wake_real(unsigned int irq, unsigned int on)
611 struct irq_desc *desc = irq_to_desc(irq);
612 int ret = -ENXIO;
614 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
615 return 0;
617 if (desc->irq_data.chip->irq_set_wake)
618 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
620 return ret;
624 * irq_set_irq_wake - control irq power management wakeup
625 * @irq: interrupt to control
626 * @on: enable/disable power management wakeup
628 * Enable/disable power management wakeup mode, which is
629 * disabled by default. Enables and disables must match,
630 * just as they match for non-wakeup mode support.
632 * Wakeup mode lets this IRQ wake the system from sleep
633 * states like "suspend to RAM".
635 int irq_set_irq_wake(unsigned int irq, unsigned int on)
637 unsigned long flags;
638 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
639 int ret = 0;
641 if (!desc)
642 return -EINVAL;
644 /* wakeup-capable irqs can be shared between drivers that
645 * don't need to have the same sleep mode behaviors.
647 if (on) {
648 if (desc->wake_depth++ == 0) {
649 ret = set_irq_wake_real(irq, on);
650 if (ret)
651 desc->wake_depth = 0;
652 else
653 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
655 } else {
656 if (desc->wake_depth == 0) {
657 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
658 } else if (--desc->wake_depth == 0) {
659 ret = set_irq_wake_real(irq, on);
660 if (ret)
661 desc->wake_depth = 1;
662 else
663 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
666 irq_put_desc_busunlock(desc, flags);
667 return ret;
669 EXPORT_SYMBOL(irq_set_irq_wake);
672 * Internal function that tells the architecture code whether a
673 * particular irq has been exclusively allocated or is available
674 * for driver use.
676 int can_request_irq(unsigned int irq, unsigned long irqflags)
678 unsigned long flags;
679 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
680 int canrequest = 0;
682 if (!desc)
683 return 0;
685 if (irq_settings_can_request(desc)) {
686 if (!desc->action ||
687 irqflags & desc->action->flags & IRQF_SHARED)
688 canrequest = 1;
690 irq_put_desc_unlock(desc, flags);
691 return canrequest;
694 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
696 struct irq_chip *chip = desc->irq_data.chip;
697 int ret, unmask = 0;
699 if (!chip || !chip->irq_set_type) {
701 * IRQF_TRIGGER_* but the PIC does not support multiple
702 * flow-types?
704 pr_debug("No set_type function for IRQ %d (%s)\n",
705 irq_desc_get_irq(desc),
706 chip ? (chip->name ? : "unknown") : "unknown");
707 return 0;
710 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
711 if (!irqd_irq_masked(&desc->irq_data))
712 mask_irq(desc);
713 if (!irqd_irq_disabled(&desc->irq_data))
714 unmask = 1;
717 /* Mask all flags except trigger mode */
718 flags &= IRQ_TYPE_SENSE_MASK;
719 ret = chip->irq_set_type(&desc->irq_data, flags);
721 switch (ret) {
722 case IRQ_SET_MASK_OK:
723 case IRQ_SET_MASK_OK_DONE:
724 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
725 irqd_set(&desc->irq_data, flags);
727 case IRQ_SET_MASK_OK_NOCOPY:
728 flags = irqd_get_trigger_type(&desc->irq_data);
729 irq_settings_set_trigger_mask(desc, flags);
730 irqd_clear(&desc->irq_data, IRQD_LEVEL);
731 irq_settings_clr_level(desc);
732 if (flags & IRQ_TYPE_LEVEL_MASK) {
733 irq_settings_set_level(desc);
734 irqd_set(&desc->irq_data, IRQD_LEVEL);
737 ret = 0;
738 break;
739 default:
740 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
741 flags, irq_desc_get_irq(desc), chip->irq_set_type);
743 if (unmask)
744 unmask_irq(desc);
745 return ret;
748 #ifdef CONFIG_HARDIRQS_SW_RESEND
749 int irq_set_parent(int irq, int parent_irq)
751 unsigned long flags;
752 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
754 if (!desc)
755 return -EINVAL;
757 desc->parent_irq = parent_irq;
759 irq_put_desc_unlock(desc, flags);
760 return 0;
762 EXPORT_SYMBOL_GPL(irq_set_parent);
763 #endif
766 * Default primary interrupt handler for threaded interrupts. Is
767 * assigned as primary handler when request_threaded_irq is called
768 * with handler == NULL. Useful for oneshot interrupts.
770 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
772 return IRQ_WAKE_THREAD;
776 * Primary handler for nested threaded interrupts. Should never be
777 * called.
779 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
781 WARN(1, "Primary handler called for nested irq %d\n", irq);
782 return IRQ_NONE;
785 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
787 WARN(1, "Secondary action handler called for irq %d\n", irq);
788 return IRQ_NONE;
791 static int irq_wait_for_interrupt(struct irqaction *action)
793 set_current_state(TASK_INTERRUPTIBLE);
795 while (!kthread_should_stop()) {
797 if (test_and_clear_bit(IRQTF_RUNTHREAD,
798 &action->thread_flags)) {
799 __set_current_state(TASK_RUNNING);
800 return 0;
802 schedule();
803 set_current_state(TASK_INTERRUPTIBLE);
805 __set_current_state(TASK_RUNNING);
806 return -1;
810 * Oneshot interrupts keep the irq line masked until the threaded
811 * handler finished. unmask if the interrupt has not been disabled and
812 * is marked MASKED.
814 static void irq_finalize_oneshot(struct irq_desc *desc,
815 struct irqaction *action)
817 if (!(desc->istate & IRQS_ONESHOT) ||
818 action->handler == irq_forced_secondary_handler)
819 return;
820 again:
821 chip_bus_lock(desc);
822 raw_spin_lock_irq(&desc->lock);
825 * Implausible though it may be we need to protect us against
826 * the following scenario:
828 * The thread is faster done than the hard interrupt handler
829 * on the other CPU. If we unmask the irq line then the
830 * interrupt can come in again and masks the line, leaves due
831 * to IRQS_INPROGRESS and the irq line is masked forever.
833 * This also serializes the state of shared oneshot handlers
834 * versus "desc->threads_onehsot |= action->thread_mask;" in
835 * irq_wake_thread(). See the comment there which explains the
836 * serialization.
838 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
839 raw_spin_unlock_irq(&desc->lock);
840 chip_bus_sync_unlock(desc);
841 cpu_relax();
842 goto again;
846 * Now check again, whether the thread should run. Otherwise
847 * we would clear the threads_oneshot bit of this thread which
848 * was just set.
850 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
851 goto out_unlock;
853 desc->threads_oneshot &= ~action->thread_mask;
855 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
856 irqd_irq_masked(&desc->irq_data))
857 unmask_threaded_irq(desc);
859 out_unlock:
860 raw_spin_unlock_irq(&desc->lock);
861 chip_bus_sync_unlock(desc);
864 #ifdef CONFIG_SMP
866 * Check whether we need to change the affinity of the interrupt thread.
868 static void
869 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
871 cpumask_var_t mask;
872 bool valid = true;
874 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
875 return;
878 * In case we are out of memory we set IRQTF_AFFINITY again and
879 * try again next time
881 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
882 set_bit(IRQTF_AFFINITY, &action->thread_flags);
883 return;
886 raw_spin_lock_irq(&desc->lock);
888 * This code is triggered unconditionally. Check the affinity
889 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
891 if (cpumask_available(desc->irq_common_data.affinity)) {
892 const struct cpumask *m;
894 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
895 cpumask_copy(mask, m);
896 } else {
897 valid = false;
899 raw_spin_unlock_irq(&desc->lock);
901 if (valid)
902 set_cpus_allowed_ptr(current, mask);
903 free_cpumask_var(mask);
905 #else
906 static inline void
907 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
908 #endif
911 * Interrupts which are not explicitely requested as threaded
912 * interrupts rely on the implicit bh/preempt disable of the hard irq
913 * context. So we need to disable bh here to avoid deadlocks and other
914 * side effects.
916 static irqreturn_t
917 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
919 irqreturn_t ret;
921 local_bh_disable();
922 ret = action->thread_fn(action->irq, action->dev_id);
923 irq_finalize_oneshot(desc, action);
924 local_bh_enable();
925 return ret;
929 * Interrupts explicitly requested as threaded interrupts want to be
930 * preemtible - many of them need to sleep and wait for slow busses to
931 * complete.
933 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
934 struct irqaction *action)
936 irqreturn_t ret;
938 ret = action->thread_fn(action->irq, action->dev_id);
939 irq_finalize_oneshot(desc, action);
940 return ret;
943 static void wake_threads_waitq(struct irq_desc *desc)
945 if (atomic_dec_and_test(&desc->threads_active))
946 wake_up(&desc->wait_for_threads);
949 static void irq_thread_dtor(struct callback_head *unused)
951 struct task_struct *tsk = current;
952 struct irq_desc *desc;
953 struct irqaction *action;
955 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
956 return;
958 action = kthread_data(tsk);
960 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
961 tsk->comm, tsk->pid, action->irq);
964 desc = irq_to_desc(action->irq);
966 * If IRQTF_RUNTHREAD is set, we need to decrement
967 * desc->threads_active and wake possible waiters.
969 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
970 wake_threads_waitq(desc);
972 /* Prevent a stale desc->threads_oneshot */
973 irq_finalize_oneshot(desc, action);
976 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
978 struct irqaction *secondary = action->secondary;
980 if (WARN_ON_ONCE(!secondary))
981 return;
983 raw_spin_lock_irq(&desc->lock);
984 __irq_wake_thread(desc, secondary);
985 raw_spin_unlock_irq(&desc->lock);
989 * Interrupt handler thread
991 static int irq_thread(void *data)
993 struct callback_head on_exit_work;
994 struct irqaction *action = data;
995 struct irq_desc *desc = irq_to_desc(action->irq);
996 irqreturn_t (*handler_fn)(struct irq_desc *desc,
997 struct irqaction *action);
999 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1000 &action->thread_flags))
1001 handler_fn = irq_forced_thread_fn;
1002 else
1003 handler_fn = irq_thread_fn;
1005 init_task_work(&on_exit_work, irq_thread_dtor);
1006 task_work_add(current, &on_exit_work, false);
1008 irq_thread_check_affinity(desc, action);
1010 while (!irq_wait_for_interrupt(action)) {
1011 irqreturn_t action_ret;
1013 irq_thread_check_affinity(desc, action);
1015 action_ret = handler_fn(desc, action);
1016 if (action_ret == IRQ_HANDLED)
1017 atomic_inc(&desc->threads_handled);
1018 if (action_ret == IRQ_WAKE_THREAD)
1019 irq_wake_secondary(desc, action);
1021 wake_threads_waitq(desc);
1025 * This is the regular exit path. __free_irq() is stopping the
1026 * thread via kthread_stop() after calling
1027 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
1028 * oneshot mask bit can be set. We cannot verify that as we
1029 * cannot touch the oneshot mask at this point anymore as
1030 * __setup_irq() might have given out currents thread_mask
1031 * again.
1033 task_work_cancel(current, irq_thread_dtor);
1034 return 0;
1038 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1039 * @irq: Interrupt line
1040 * @dev_id: Device identity for which the thread should be woken
1043 void irq_wake_thread(unsigned int irq, void *dev_id)
1045 struct irq_desc *desc = irq_to_desc(irq);
1046 struct irqaction *action;
1047 unsigned long flags;
1049 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1050 return;
1052 raw_spin_lock_irqsave(&desc->lock, flags);
1053 for_each_action_of_desc(desc, action) {
1054 if (action->dev_id == dev_id) {
1055 if (action->thread)
1056 __irq_wake_thread(desc, action);
1057 break;
1060 raw_spin_unlock_irqrestore(&desc->lock, flags);
1062 EXPORT_SYMBOL_GPL(irq_wake_thread);
1064 static int irq_setup_forced_threading(struct irqaction *new)
1066 if (!force_irqthreads)
1067 return 0;
1068 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1069 return 0;
1071 new->flags |= IRQF_ONESHOT;
1074 * Handle the case where we have a real primary handler and a
1075 * thread handler. We force thread them as well by creating a
1076 * secondary action.
1078 if (new->handler != irq_default_primary_handler && new->thread_fn) {
1079 /* Allocate the secondary action */
1080 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1081 if (!new->secondary)
1082 return -ENOMEM;
1083 new->secondary->handler = irq_forced_secondary_handler;
1084 new->secondary->thread_fn = new->thread_fn;
1085 new->secondary->dev_id = new->dev_id;
1086 new->secondary->irq = new->irq;
1087 new->secondary->name = new->name;
1089 /* Deal with the primary handler */
1090 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1091 new->thread_fn = new->handler;
1092 new->handler = irq_default_primary_handler;
1093 return 0;
1096 static int irq_request_resources(struct irq_desc *desc)
1098 struct irq_data *d = &desc->irq_data;
1099 struct irq_chip *c = d->chip;
1101 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1104 static void irq_release_resources(struct irq_desc *desc)
1106 struct irq_data *d = &desc->irq_data;
1107 struct irq_chip *c = d->chip;
1109 if (c->irq_release_resources)
1110 c->irq_release_resources(d);
1113 static int
1114 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1116 struct task_struct *t;
1117 struct sched_param param = {
1118 .sched_priority = MAX_USER_RT_PRIO/2,
1121 if (!secondary) {
1122 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1123 new->name);
1124 } else {
1125 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1126 new->name);
1127 param.sched_priority -= 1;
1130 if (IS_ERR(t))
1131 return PTR_ERR(t);
1133 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1136 * We keep the reference to the task struct even if
1137 * the thread dies to avoid that the interrupt code
1138 * references an already freed task_struct.
1140 get_task_struct(t);
1141 new->thread = t;
1143 * Tell the thread to set its affinity. This is
1144 * important for shared interrupt handlers as we do
1145 * not invoke setup_affinity() for the secondary
1146 * handlers as everything is already set up. Even for
1147 * interrupts marked with IRQF_NO_BALANCE this is
1148 * correct as we want the thread to move to the cpu(s)
1149 * on which the requesting code placed the interrupt.
1151 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1152 return 0;
1156 * Internal function to register an irqaction - typically used to
1157 * allocate special interrupts that are part of the architecture.
1159 * Locking rules:
1161 * desc->request_mutex Provides serialization against a concurrent free_irq()
1162 * chip_bus_lock Provides serialization for slow bus operations
1163 * desc->lock Provides serialization against hard interrupts
1165 * chip_bus_lock and desc->lock are sufficient for all other management and
1166 * interrupt related functions. desc->request_mutex solely serializes
1167 * request/free_irq().
1169 static int
1170 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1172 struct irqaction *old, **old_ptr;
1173 unsigned long flags, thread_mask = 0;
1174 int ret, nested, shared = 0;
1176 if (!desc)
1177 return -EINVAL;
1179 if (desc->irq_data.chip == &no_irq_chip)
1180 return -ENOSYS;
1181 if (!try_module_get(desc->owner))
1182 return -ENODEV;
1184 new->irq = irq;
1187 * If the trigger type is not specified by the caller,
1188 * then use the default for this interrupt.
1190 if (!(new->flags & IRQF_TRIGGER_MASK))
1191 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1194 * Check whether the interrupt nests into another interrupt
1195 * thread.
1197 nested = irq_settings_is_nested_thread(desc);
1198 if (nested) {
1199 if (!new->thread_fn) {
1200 ret = -EINVAL;
1201 goto out_mput;
1204 * Replace the primary handler which was provided from
1205 * the driver for non nested interrupt handling by the
1206 * dummy function which warns when called.
1208 new->handler = irq_nested_primary_handler;
1209 } else {
1210 if (irq_settings_can_thread(desc)) {
1211 ret = irq_setup_forced_threading(new);
1212 if (ret)
1213 goto out_mput;
1218 * Create a handler thread when a thread function is supplied
1219 * and the interrupt does not nest into another interrupt
1220 * thread.
1222 if (new->thread_fn && !nested) {
1223 ret = setup_irq_thread(new, irq, false);
1224 if (ret)
1225 goto out_mput;
1226 if (new->secondary) {
1227 ret = setup_irq_thread(new->secondary, irq, true);
1228 if (ret)
1229 goto out_thread;
1234 * Drivers are often written to work w/o knowledge about the
1235 * underlying irq chip implementation, so a request for a
1236 * threaded irq without a primary hard irq context handler
1237 * requires the ONESHOT flag to be set. Some irq chips like
1238 * MSI based interrupts are per se one shot safe. Check the
1239 * chip flags, so we can avoid the unmask dance at the end of
1240 * the threaded handler for those.
1242 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1243 new->flags &= ~IRQF_ONESHOT;
1246 * Protects against a concurrent __free_irq() call which might wait
1247 * for synchronize_irq() to complete without holding the optional
1248 * chip bus lock and desc->lock.
1250 mutex_lock(&desc->request_mutex);
1253 * Acquire bus lock as the irq_request_resources() callback below
1254 * might rely on the serialization or the magic power management
1255 * functions which are abusing the irq_bus_lock() callback,
1257 chip_bus_lock(desc);
1259 /* First installed action requests resources. */
1260 if (!desc->action) {
1261 ret = irq_request_resources(desc);
1262 if (ret) {
1263 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1264 new->name, irq, desc->irq_data.chip->name);
1265 goto out_bus_unlock;
1270 * The following block of code has to be executed atomically
1271 * protected against a concurrent interrupt and any of the other
1272 * management calls which are not serialized via
1273 * desc->request_mutex or the optional bus lock.
1275 raw_spin_lock_irqsave(&desc->lock, flags);
1276 old_ptr = &desc->action;
1277 old = *old_ptr;
1278 if (old) {
1280 * Can't share interrupts unless both agree to and are
1281 * the same type (level, edge, polarity). So both flag
1282 * fields must have IRQF_SHARED set and the bits which
1283 * set the trigger type must match. Also all must
1284 * agree on ONESHOT.
1286 unsigned int oldtype;
1289 * If nobody did set the configuration before, inherit
1290 * the one provided by the requester.
1292 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1293 oldtype = irqd_get_trigger_type(&desc->irq_data);
1294 } else {
1295 oldtype = new->flags & IRQF_TRIGGER_MASK;
1296 irqd_set_trigger_type(&desc->irq_data, oldtype);
1299 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1300 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1301 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1302 goto mismatch;
1304 /* All handlers must agree on per-cpuness */
1305 if ((old->flags & IRQF_PERCPU) !=
1306 (new->flags & IRQF_PERCPU))
1307 goto mismatch;
1309 /* add new interrupt at end of irq queue */
1310 do {
1312 * Or all existing action->thread_mask bits,
1313 * so we can find the next zero bit for this
1314 * new action.
1316 thread_mask |= old->thread_mask;
1317 old_ptr = &old->next;
1318 old = *old_ptr;
1319 } while (old);
1320 shared = 1;
1324 * Setup the thread mask for this irqaction for ONESHOT. For
1325 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1326 * conditional in irq_wake_thread().
1328 if (new->flags & IRQF_ONESHOT) {
1330 * Unlikely to have 32 resp 64 irqs sharing one line,
1331 * but who knows.
1333 if (thread_mask == ~0UL) {
1334 ret = -EBUSY;
1335 goto out_unlock;
1338 * The thread_mask for the action is or'ed to
1339 * desc->thread_active to indicate that the
1340 * IRQF_ONESHOT thread handler has been woken, but not
1341 * yet finished. The bit is cleared when a thread
1342 * completes. When all threads of a shared interrupt
1343 * line have completed desc->threads_active becomes
1344 * zero and the interrupt line is unmasked. See
1345 * handle.c:irq_wake_thread() for further information.
1347 * If no thread is woken by primary (hard irq context)
1348 * interrupt handlers, then desc->threads_active is
1349 * also checked for zero to unmask the irq line in the
1350 * affected hard irq flow handlers
1351 * (handle_[fasteoi|level]_irq).
1353 * The new action gets the first zero bit of
1354 * thread_mask assigned. See the loop above which or's
1355 * all existing action->thread_mask bits.
1357 new->thread_mask = 1UL << ffz(thread_mask);
1359 } else if (new->handler == irq_default_primary_handler &&
1360 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1362 * The interrupt was requested with handler = NULL, so
1363 * we use the default primary handler for it. But it
1364 * does not have the oneshot flag set. In combination
1365 * with level interrupts this is deadly, because the
1366 * default primary handler just wakes the thread, then
1367 * the irq lines is reenabled, but the device still
1368 * has the level irq asserted. Rinse and repeat....
1370 * While this works for edge type interrupts, we play
1371 * it safe and reject unconditionally because we can't
1372 * say for sure which type this interrupt really
1373 * has. The type flags are unreliable as the
1374 * underlying chip implementation can override them.
1376 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1377 irq);
1378 ret = -EINVAL;
1379 goto out_unlock;
1382 if (!shared) {
1383 init_waitqueue_head(&desc->wait_for_threads);
1385 /* Setup the type (level, edge polarity) if configured: */
1386 if (new->flags & IRQF_TRIGGER_MASK) {
1387 ret = __irq_set_trigger(desc,
1388 new->flags & IRQF_TRIGGER_MASK);
1390 if (ret)
1391 goto out_unlock;
1395 * Activate the interrupt. That activation must happen
1396 * independently of IRQ_NOAUTOEN. request_irq() can fail
1397 * and the callers are supposed to handle
1398 * that. enable_irq() of an interrupt requested with
1399 * IRQ_NOAUTOEN is not supposed to fail. The activation
1400 * keeps it in shutdown mode, it merily associates
1401 * resources if necessary and if that's not possible it
1402 * fails. Interrupts which are in managed shutdown mode
1403 * will simply ignore that activation request.
1405 ret = irq_activate(desc);
1406 if (ret)
1407 goto out_unlock;
1409 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1410 IRQS_ONESHOT | IRQS_WAITING);
1411 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1413 if (new->flags & IRQF_PERCPU) {
1414 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1415 irq_settings_set_per_cpu(desc);
1418 if (new->flags & IRQF_ONESHOT)
1419 desc->istate |= IRQS_ONESHOT;
1421 /* Exclude IRQ from balancing if requested */
1422 if (new->flags & IRQF_NOBALANCING) {
1423 irq_settings_set_no_balancing(desc);
1424 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1427 if (irq_settings_can_autoenable(desc)) {
1428 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1429 } else {
1431 * Shared interrupts do not go well with disabling
1432 * auto enable. The sharing interrupt might request
1433 * it while it's still disabled and then wait for
1434 * interrupts forever.
1436 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1437 /* Undo nested disables: */
1438 desc->depth = 1;
1441 } else if (new->flags & IRQF_TRIGGER_MASK) {
1442 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1443 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1445 if (nmsk != omsk)
1446 /* hope the handler works with current trigger mode */
1447 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1448 irq, omsk, nmsk);
1451 *old_ptr = new;
1453 irq_pm_install_action(desc, new);
1455 /* Reset broken irq detection when installing new handler */
1456 desc->irq_count = 0;
1457 desc->irqs_unhandled = 0;
1460 * Check whether we disabled the irq via the spurious handler
1461 * before. Reenable it and give it another chance.
1463 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1464 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1465 __enable_irq(desc);
1468 raw_spin_unlock_irqrestore(&desc->lock, flags);
1469 chip_bus_sync_unlock(desc);
1470 mutex_unlock(&desc->request_mutex);
1472 irq_setup_timings(desc, new);
1475 * Strictly no need to wake it up, but hung_task complains
1476 * when no hard interrupt wakes the thread up.
1478 if (new->thread)
1479 wake_up_process(new->thread);
1480 if (new->secondary)
1481 wake_up_process(new->secondary->thread);
1483 register_irq_proc(irq, desc);
1484 new->dir = NULL;
1485 register_handler_proc(irq, new);
1486 return 0;
1488 mismatch:
1489 if (!(new->flags & IRQF_PROBE_SHARED)) {
1490 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1491 irq, new->flags, new->name, old->flags, old->name);
1492 #ifdef CONFIG_DEBUG_SHIRQ
1493 dump_stack();
1494 #endif
1496 ret = -EBUSY;
1498 out_unlock:
1499 raw_spin_unlock_irqrestore(&desc->lock, flags);
1501 if (!desc->action)
1502 irq_release_resources(desc);
1503 out_bus_unlock:
1504 chip_bus_sync_unlock(desc);
1505 mutex_unlock(&desc->request_mutex);
1507 out_thread:
1508 if (new->thread) {
1509 struct task_struct *t = new->thread;
1511 new->thread = NULL;
1512 kthread_stop(t);
1513 put_task_struct(t);
1515 if (new->secondary && new->secondary->thread) {
1516 struct task_struct *t = new->secondary->thread;
1518 new->secondary->thread = NULL;
1519 kthread_stop(t);
1520 put_task_struct(t);
1522 out_mput:
1523 module_put(desc->owner);
1524 return ret;
1528 * setup_irq - setup an interrupt
1529 * @irq: Interrupt line to setup
1530 * @act: irqaction for the interrupt
1532 * Used to statically setup interrupts in the early boot process.
1534 int setup_irq(unsigned int irq, struct irqaction *act)
1536 int retval;
1537 struct irq_desc *desc = irq_to_desc(irq);
1539 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1540 return -EINVAL;
1542 retval = irq_chip_pm_get(&desc->irq_data);
1543 if (retval < 0)
1544 return retval;
1546 retval = __setup_irq(irq, desc, act);
1548 if (retval)
1549 irq_chip_pm_put(&desc->irq_data);
1551 return retval;
1553 EXPORT_SYMBOL_GPL(setup_irq);
1556 * Internal function to unregister an irqaction - used to free
1557 * regular and special interrupts that are part of the architecture.
1559 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1561 unsigned irq = desc->irq_data.irq;
1562 struct irqaction *action, **action_ptr;
1563 unsigned long flags;
1565 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1567 if (!desc)
1568 return NULL;
1570 mutex_lock(&desc->request_mutex);
1571 chip_bus_lock(desc);
1572 raw_spin_lock_irqsave(&desc->lock, flags);
1575 * There can be multiple actions per IRQ descriptor, find the right
1576 * one based on the dev_id:
1578 action_ptr = &desc->action;
1579 for (;;) {
1580 action = *action_ptr;
1582 if (!action) {
1583 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1584 raw_spin_unlock_irqrestore(&desc->lock, flags);
1585 chip_bus_sync_unlock(desc);
1586 mutex_unlock(&desc->request_mutex);
1587 return NULL;
1590 if (action->dev_id == dev_id)
1591 break;
1592 action_ptr = &action->next;
1595 /* Found it - now remove it from the list of entries: */
1596 *action_ptr = action->next;
1598 irq_pm_remove_action(desc, action);
1600 /* If this was the last handler, shut down the IRQ line: */
1601 if (!desc->action) {
1602 irq_settings_clr_disable_unlazy(desc);
1603 irq_shutdown(desc);
1606 #ifdef CONFIG_SMP
1607 /* make sure affinity_hint is cleaned up */
1608 if (WARN_ON_ONCE(desc->affinity_hint))
1609 desc->affinity_hint = NULL;
1610 #endif
1612 raw_spin_unlock_irqrestore(&desc->lock, flags);
1614 * Drop bus_lock here so the changes which were done in the chip
1615 * callbacks above are synced out to the irq chips which hang
1616 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1618 * Aside of that the bus_lock can also be taken from the threaded
1619 * handler in irq_finalize_oneshot() which results in a deadlock
1620 * because synchronize_irq() would wait forever for the thread to
1621 * complete, which is blocked on the bus lock.
1623 * The still held desc->request_mutex() protects against a
1624 * concurrent request_irq() of this irq so the release of resources
1625 * and timing data is properly serialized.
1627 chip_bus_sync_unlock(desc);
1629 unregister_handler_proc(irq, action);
1631 /* Make sure it's not being used on another CPU: */
1632 synchronize_irq(irq);
1634 #ifdef CONFIG_DEBUG_SHIRQ
1636 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1637 * event to happen even now it's being freed, so let's make sure that
1638 * is so by doing an extra call to the handler ....
1640 * ( We do this after actually deregistering it, to make sure that a
1641 * 'real' IRQ doesn't run in * parallel with our fake. )
1643 if (action->flags & IRQF_SHARED) {
1644 local_irq_save(flags);
1645 action->handler(irq, dev_id);
1646 local_irq_restore(flags);
1648 #endif
1650 if (action->thread) {
1651 kthread_stop(action->thread);
1652 put_task_struct(action->thread);
1653 if (action->secondary && action->secondary->thread) {
1654 kthread_stop(action->secondary->thread);
1655 put_task_struct(action->secondary->thread);
1659 /* Last action releases resources */
1660 if (!desc->action) {
1662 * Reaquire bus lock as irq_release_resources() might
1663 * require it to deallocate resources over the slow bus.
1665 chip_bus_lock(desc);
1666 irq_release_resources(desc);
1667 chip_bus_sync_unlock(desc);
1668 irq_remove_timings(desc);
1671 mutex_unlock(&desc->request_mutex);
1673 irq_chip_pm_put(&desc->irq_data);
1674 module_put(desc->owner);
1675 kfree(action->secondary);
1676 return action;
1680 * remove_irq - free an interrupt
1681 * @irq: Interrupt line to free
1682 * @act: irqaction for the interrupt
1684 * Used to remove interrupts statically setup by the early boot process.
1686 void remove_irq(unsigned int irq, struct irqaction *act)
1688 struct irq_desc *desc = irq_to_desc(irq);
1690 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1691 __free_irq(desc, act->dev_id);
1693 EXPORT_SYMBOL_GPL(remove_irq);
1696 * free_irq - free an interrupt allocated with request_irq
1697 * @irq: Interrupt line to free
1698 * @dev_id: Device identity to free
1700 * Remove an interrupt handler. The handler is removed and if the
1701 * interrupt line is no longer in use by any driver it is disabled.
1702 * On a shared IRQ the caller must ensure the interrupt is disabled
1703 * on the card it drives before calling this function. The function
1704 * does not return until any executing interrupts for this IRQ
1705 * have completed.
1707 * This function must not be called from interrupt context.
1709 * Returns the devname argument passed to request_irq.
1711 const void *free_irq(unsigned int irq, void *dev_id)
1713 struct irq_desc *desc = irq_to_desc(irq);
1714 struct irqaction *action;
1715 const char *devname;
1717 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1718 return NULL;
1720 #ifdef CONFIG_SMP
1721 if (WARN_ON(desc->affinity_notify))
1722 desc->affinity_notify = NULL;
1723 #endif
1725 action = __free_irq(desc, dev_id);
1727 if (!action)
1728 return NULL;
1730 devname = action->name;
1731 kfree(action);
1732 return devname;
1734 EXPORT_SYMBOL(free_irq);
1737 * request_threaded_irq - allocate an interrupt line
1738 * @irq: Interrupt line to allocate
1739 * @handler: Function to be called when the IRQ occurs.
1740 * Primary handler for threaded interrupts
1741 * If NULL and thread_fn != NULL the default
1742 * primary handler is installed
1743 * @thread_fn: Function called from the irq handler thread
1744 * If NULL, no irq thread is created
1745 * @irqflags: Interrupt type flags
1746 * @devname: An ascii name for the claiming device
1747 * @dev_id: A cookie passed back to the handler function
1749 * This call allocates interrupt resources and enables the
1750 * interrupt line and IRQ handling. From the point this
1751 * call is made your handler function may be invoked. Since
1752 * your handler function must clear any interrupt the board
1753 * raises, you must take care both to initialise your hardware
1754 * and to set up the interrupt handler in the right order.
1756 * If you want to set up a threaded irq handler for your device
1757 * then you need to supply @handler and @thread_fn. @handler is
1758 * still called in hard interrupt context and has to check
1759 * whether the interrupt originates from the device. If yes it
1760 * needs to disable the interrupt on the device and return
1761 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1762 * @thread_fn. This split handler design is necessary to support
1763 * shared interrupts.
1765 * Dev_id must be globally unique. Normally the address of the
1766 * device data structure is used as the cookie. Since the handler
1767 * receives this value it makes sense to use it.
1769 * If your interrupt is shared you must pass a non NULL dev_id
1770 * as this is required when freeing the interrupt.
1772 * Flags:
1774 * IRQF_SHARED Interrupt is shared
1775 * IRQF_TRIGGER_* Specify active edge(s) or level
1778 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1779 irq_handler_t thread_fn, unsigned long irqflags,
1780 const char *devname, void *dev_id)
1782 struct irqaction *action;
1783 struct irq_desc *desc;
1784 int retval;
1786 if (irq == IRQ_NOTCONNECTED)
1787 return -ENOTCONN;
1790 * Sanity-check: shared interrupts must pass in a real dev-ID,
1791 * otherwise we'll have trouble later trying to figure out
1792 * which interrupt is which (messes up the interrupt freeing
1793 * logic etc).
1795 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1796 * it cannot be set along with IRQF_NO_SUSPEND.
1798 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1799 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1800 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1801 return -EINVAL;
1803 desc = irq_to_desc(irq);
1804 if (!desc)
1805 return -EINVAL;
1807 if (!irq_settings_can_request(desc) ||
1808 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1809 return -EINVAL;
1811 if (!handler) {
1812 if (!thread_fn)
1813 return -EINVAL;
1814 handler = irq_default_primary_handler;
1817 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1818 if (!action)
1819 return -ENOMEM;
1821 action->handler = handler;
1822 action->thread_fn = thread_fn;
1823 action->flags = irqflags;
1824 action->name = devname;
1825 action->dev_id = dev_id;
1827 retval = irq_chip_pm_get(&desc->irq_data);
1828 if (retval < 0) {
1829 kfree(action);
1830 return retval;
1833 retval = __setup_irq(irq, desc, action);
1835 if (retval) {
1836 irq_chip_pm_put(&desc->irq_data);
1837 kfree(action->secondary);
1838 kfree(action);
1841 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1842 if (!retval && (irqflags & IRQF_SHARED)) {
1844 * It's a shared IRQ -- the driver ought to be prepared for it
1845 * to happen immediately, so let's make sure....
1846 * We disable the irq to make sure that a 'real' IRQ doesn't
1847 * run in parallel with our fake.
1849 unsigned long flags;
1851 disable_irq(irq);
1852 local_irq_save(flags);
1854 handler(irq, dev_id);
1856 local_irq_restore(flags);
1857 enable_irq(irq);
1859 #endif
1860 return retval;
1862 EXPORT_SYMBOL(request_threaded_irq);
1865 * request_any_context_irq - allocate an interrupt line
1866 * @irq: Interrupt line to allocate
1867 * @handler: Function to be called when the IRQ occurs.
1868 * Threaded handler for threaded interrupts.
1869 * @flags: Interrupt type flags
1870 * @name: An ascii name for the claiming device
1871 * @dev_id: A cookie passed back to the handler function
1873 * This call allocates interrupt resources and enables the
1874 * interrupt line and IRQ handling. It selects either a
1875 * hardirq or threaded handling method depending on the
1876 * context.
1878 * On failure, it returns a negative value. On success,
1879 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1881 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1882 unsigned long flags, const char *name, void *dev_id)
1884 struct irq_desc *desc;
1885 int ret;
1887 if (irq == IRQ_NOTCONNECTED)
1888 return -ENOTCONN;
1890 desc = irq_to_desc(irq);
1891 if (!desc)
1892 return -EINVAL;
1894 if (irq_settings_is_nested_thread(desc)) {
1895 ret = request_threaded_irq(irq, NULL, handler,
1896 flags, name, dev_id);
1897 return !ret ? IRQC_IS_NESTED : ret;
1900 ret = request_irq(irq, handler, flags, name, dev_id);
1901 return !ret ? IRQC_IS_HARDIRQ : ret;
1903 EXPORT_SYMBOL_GPL(request_any_context_irq);
1905 void enable_percpu_irq(unsigned int irq, unsigned int type)
1907 unsigned int cpu = smp_processor_id();
1908 unsigned long flags;
1909 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1911 if (!desc)
1912 return;
1915 * If the trigger type is not specified by the caller, then
1916 * use the default for this interrupt.
1918 type &= IRQ_TYPE_SENSE_MASK;
1919 if (type == IRQ_TYPE_NONE)
1920 type = irqd_get_trigger_type(&desc->irq_data);
1922 if (type != IRQ_TYPE_NONE) {
1923 int ret;
1925 ret = __irq_set_trigger(desc, type);
1927 if (ret) {
1928 WARN(1, "failed to set type for IRQ%d\n", irq);
1929 goto out;
1933 irq_percpu_enable(desc, cpu);
1934 out:
1935 irq_put_desc_unlock(desc, flags);
1937 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1940 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1941 * @irq: Linux irq number to check for
1943 * Must be called from a non migratable context. Returns the enable
1944 * state of a per cpu interrupt on the current cpu.
1946 bool irq_percpu_is_enabled(unsigned int irq)
1948 unsigned int cpu = smp_processor_id();
1949 struct irq_desc *desc;
1950 unsigned long flags;
1951 bool is_enabled;
1953 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1954 if (!desc)
1955 return false;
1957 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1958 irq_put_desc_unlock(desc, flags);
1960 return is_enabled;
1962 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1964 void disable_percpu_irq(unsigned int irq)
1966 unsigned int cpu = smp_processor_id();
1967 unsigned long flags;
1968 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1970 if (!desc)
1971 return;
1973 irq_percpu_disable(desc, cpu);
1974 irq_put_desc_unlock(desc, flags);
1976 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1979 * Internal function to unregister a percpu irqaction.
1981 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1983 struct irq_desc *desc = irq_to_desc(irq);
1984 struct irqaction *action;
1985 unsigned long flags;
1987 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1989 if (!desc)
1990 return NULL;
1992 raw_spin_lock_irqsave(&desc->lock, flags);
1994 action = desc->action;
1995 if (!action || action->percpu_dev_id != dev_id) {
1996 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1997 goto bad;
2000 if (!cpumask_empty(desc->percpu_enabled)) {
2001 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2002 irq, cpumask_first(desc->percpu_enabled));
2003 goto bad;
2006 /* Found it - now remove it from the list of entries: */
2007 desc->action = NULL;
2009 raw_spin_unlock_irqrestore(&desc->lock, flags);
2011 unregister_handler_proc(irq, action);
2013 irq_chip_pm_put(&desc->irq_data);
2014 module_put(desc->owner);
2015 return action;
2017 bad:
2018 raw_spin_unlock_irqrestore(&desc->lock, flags);
2019 return NULL;
2023 * remove_percpu_irq - free a per-cpu interrupt
2024 * @irq: Interrupt line to free
2025 * @act: irqaction for the interrupt
2027 * Used to remove interrupts statically setup by the early boot process.
2029 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2031 struct irq_desc *desc = irq_to_desc(irq);
2033 if (desc && irq_settings_is_per_cpu_devid(desc))
2034 __free_percpu_irq(irq, act->percpu_dev_id);
2038 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2039 * @irq: Interrupt line to free
2040 * @dev_id: Device identity to free
2042 * Remove a percpu interrupt handler. The handler is removed, but
2043 * the interrupt line is not disabled. This must be done on each
2044 * CPU before calling this function. The function does not return
2045 * until any executing interrupts for this IRQ have completed.
2047 * This function must not be called from interrupt context.
2049 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2051 struct irq_desc *desc = irq_to_desc(irq);
2053 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2054 return;
2056 chip_bus_lock(desc);
2057 kfree(__free_percpu_irq(irq, dev_id));
2058 chip_bus_sync_unlock(desc);
2060 EXPORT_SYMBOL_GPL(free_percpu_irq);
2063 * setup_percpu_irq - setup a per-cpu interrupt
2064 * @irq: Interrupt line to setup
2065 * @act: irqaction for the interrupt
2067 * Used to statically setup per-cpu interrupts in the early boot process.
2069 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2071 struct irq_desc *desc = irq_to_desc(irq);
2072 int retval;
2074 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2075 return -EINVAL;
2077 retval = irq_chip_pm_get(&desc->irq_data);
2078 if (retval < 0)
2079 return retval;
2081 retval = __setup_irq(irq, desc, act);
2083 if (retval)
2084 irq_chip_pm_put(&desc->irq_data);
2086 return retval;
2090 * __request_percpu_irq - allocate a percpu interrupt line
2091 * @irq: Interrupt line to allocate
2092 * @handler: Function to be called when the IRQ occurs.
2093 * @flags: Interrupt type flags (IRQF_TIMER only)
2094 * @devname: An ascii name for the claiming device
2095 * @dev_id: A percpu cookie passed back to the handler function
2097 * This call allocates interrupt resources and enables the
2098 * interrupt on the local CPU. If the interrupt is supposed to be
2099 * enabled on other CPUs, it has to be done on each CPU using
2100 * enable_percpu_irq().
2102 * Dev_id must be globally unique. It is a per-cpu variable, and
2103 * the handler gets called with the interrupted CPU's instance of
2104 * that variable.
2106 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2107 unsigned long flags, const char *devname,
2108 void __percpu *dev_id)
2110 struct irqaction *action;
2111 struct irq_desc *desc;
2112 int retval;
2114 if (!dev_id)
2115 return -EINVAL;
2117 desc = irq_to_desc(irq);
2118 if (!desc || !irq_settings_can_request(desc) ||
2119 !irq_settings_is_per_cpu_devid(desc))
2120 return -EINVAL;
2122 if (flags && flags != IRQF_TIMER)
2123 return -EINVAL;
2125 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2126 if (!action)
2127 return -ENOMEM;
2129 action->handler = handler;
2130 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2131 action->name = devname;
2132 action->percpu_dev_id = dev_id;
2134 retval = irq_chip_pm_get(&desc->irq_data);
2135 if (retval < 0) {
2136 kfree(action);
2137 return retval;
2140 retval = __setup_irq(irq, desc, action);
2142 if (retval) {
2143 irq_chip_pm_put(&desc->irq_data);
2144 kfree(action);
2147 return retval;
2149 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2152 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2153 * @irq: Interrupt line that is forwarded to a VM
2154 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2155 * @state: a pointer to a boolean where the state is to be storeed
2157 * This call snapshots the internal irqchip state of an
2158 * interrupt, returning into @state the bit corresponding to
2159 * stage @which
2161 * This function should be called with preemption disabled if the
2162 * interrupt controller has per-cpu registers.
2164 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2165 bool *state)
2167 struct irq_desc *desc;
2168 struct irq_data *data;
2169 struct irq_chip *chip;
2170 unsigned long flags;
2171 int err = -EINVAL;
2173 desc = irq_get_desc_buslock(irq, &flags, 0);
2174 if (!desc)
2175 return err;
2177 data = irq_desc_get_irq_data(desc);
2179 do {
2180 chip = irq_data_get_irq_chip(data);
2181 if (chip->irq_get_irqchip_state)
2182 break;
2183 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2184 data = data->parent_data;
2185 #else
2186 data = NULL;
2187 #endif
2188 } while (data);
2190 if (data)
2191 err = chip->irq_get_irqchip_state(data, which, state);
2193 irq_put_desc_busunlock(desc, flags);
2194 return err;
2196 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2199 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2200 * @irq: Interrupt line that is forwarded to a VM
2201 * @which: State to be restored (one of IRQCHIP_STATE_*)
2202 * @val: Value corresponding to @which
2204 * This call sets the internal irqchip state of an interrupt,
2205 * depending on the value of @which.
2207 * This function should be called with preemption disabled if the
2208 * interrupt controller has per-cpu registers.
2210 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2211 bool val)
2213 struct irq_desc *desc;
2214 struct irq_data *data;
2215 struct irq_chip *chip;
2216 unsigned long flags;
2217 int err = -EINVAL;
2219 desc = irq_get_desc_buslock(irq, &flags, 0);
2220 if (!desc)
2221 return err;
2223 data = irq_desc_get_irq_data(desc);
2225 do {
2226 chip = irq_data_get_irq_chip(data);
2227 if (chip->irq_set_irqchip_state)
2228 break;
2229 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2230 data = data->parent_data;
2231 #else
2232 data = NULL;
2233 #endif
2234 } while (data);
2236 if (data)
2237 err = chip->irq_set_irqchip_state(data, which, val);
2239 irq_put_desc_busunlock(desc, flags);
2240 return err;
2242 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);