drm/i915: set "ret" correctly on error paths
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / intel_display.c
blob85b9e2f521a040ec0c2d2ed3c482a82fa44337eb
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
52 static bool is_mmio_work(struct intel_flip_work *work)
54 return work->mmio_work.func;
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101 struct drm_i915_gem_object *obj,
102 struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 struct intel_limit {
127 struct {
128 int min, max;
129 } dot, vco, n, m, m1, m2, p, p1;
131 struct {
132 int dot_limit;
133 int p2_slow, p2_fast;
134 } p2;
137 /* returns HPLL frequency in kHz */
138 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
140 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
142 /* Obtain SKU information */
143 mutex_lock(&dev_priv->sb_lock);
144 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
145 CCK_FUSE_HPLL_FREQ_MASK;
146 mutex_unlock(&dev_priv->sb_lock);
148 return vco_freq[hpll_freq] * 1000;
151 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
152 const char *name, u32 reg, int ref_freq)
154 u32 val;
155 int divider;
157 mutex_lock(&dev_priv->sb_lock);
158 val = vlv_cck_read(dev_priv, reg);
159 mutex_unlock(&dev_priv->sb_lock);
161 divider = val & CCK_FREQUENCY_VALUES;
163 WARN((val & CCK_FREQUENCY_STATUS) !=
164 (divider << CCK_FREQUENCY_STATUS_SHIFT),
165 "%s change in progress\n", name);
167 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
170 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
171 const char *name, u32 reg)
173 if (dev_priv->hpll_freq == 0)
174 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
176 return vlv_get_cck_clock(dev_priv, name, reg,
177 dev_priv->hpll_freq);
180 static void intel_update_czclk(struct drm_i915_private *dev_priv)
182 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
183 return;
185 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
186 CCK_CZ_CLOCK_CONTROL);
188 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
191 static inline u32 /* units of 100MHz */
192 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
193 const struct intel_crtc_state *pipe_config)
195 if (HAS_DDI(dev_priv))
196 return pipe_config->port_clock; /* SPLL */
197 else if (IS_GEN5(dev_priv))
198 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
199 else
200 return 270000;
203 static const struct intel_limit intel_limits_i8xx_dac = {
204 .dot = { .min = 25000, .max = 350000 },
205 .vco = { .min = 908000, .max = 1512000 },
206 .n = { .min = 2, .max = 16 },
207 .m = { .min = 96, .max = 140 },
208 .m1 = { .min = 18, .max = 26 },
209 .m2 = { .min = 6, .max = 16 },
210 .p = { .min = 4, .max = 128 },
211 .p1 = { .min = 2, .max = 33 },
212 .p2 = { .dot_limit = 165000,
213 .p2_slow = 4, .p2_fast = 2 },
216 static const struct intel_limit intel_limits_i8xx_dvo = {
217 .dot = { .min = 25000, .max = 350000 },
218 .vco = { .min = 908000, .max = 1512000 },
219 .n = { .min = 2, .max = 16 },
220 .m = { .min = 96, .max = 140 },
221 .m1 = { .min = 18, .max = 26 },
222 .m2 = { .min = 6, .max = 16 },
223 .p = { .min = 4, .max = 128 },
224 .p1 = { .min = 2, .max = 33 },
225 .p2 = { .dot_limit = 165000,
226 .p2_slow = 4, .p2_fast = 4 },
229 static const struct intel_limit intel_limits_i8xx_lvds = {
230 .dot = { .min = 25000, .max = 350000 },
231 .vco = { .min = 908000, .max = 1512000 },
232 .n = { .min = 2, .max = 16 },
233 .m = { .min = 96, .max = 140 },
234 .m1 = { .min = 18, .max = 26 },
235 .m2 = { .min = 6, .max = 16 },
236 .p = { .min = 4, .max = 128 },
237 .p1 = { .min = 1, .max = 6 },
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 14, .p2_fast = 7 },
242 static const struct intel_limit intel_limits_i9xx_sdvo = {
243 .dot = { .min = 20000, .max = 400000 },
244 .vco = { .min = 1400000, .max = 2800000 },
245 .n = { .min = 1, .max = 6 },
246 .m = { .min = 70, .max = 120 },
247 .m1 = { .min = 8, .max = 18 },
248 .m2 = { .min = 3, .max = 7 },
249 .p = { .min = 5, .max = 80 },
250 .p1 = { .min = 1, .max = 8 },
251 .p2 = { .dot_limit = 200000,
252 .p2_slow = 10, .p2_fast = 5 },
255 static const struct intel_limit intel_limits_i9xx_lvds = {
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1400000, .max = 2800000 },
258 .n = { .min = 1, .max = 6 },
259 .m = { .min = 70, .max = 120 },
260 .m1 = { .min = 8, .max = 18 },
261 .m2 = { .min = 3, .max = 7 },
262 .p = { .min = 7, .max = 98 },
263 .p1 = { .min = 1, .max = 8 },
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 7 },
269 static const struct intel_limit intel_limits_g4x_sdvo = {
270 .dot = { .min = 25000, .max = 270000 },
271 .vco = { .min = 1750000, .max = 3500000},
272 .n = { .min = 1, .max = 4 },
273 .m = { .min = 104, .max = 138 },
274 .m1 = { .min = 17, .max = 23 },
275 .m2 = { .min = 5, .max = 11 },
276 .p = { .min = 10, .max = 30 },
277 .p1 = { .min = 1, .max = 3},
278 .p2 = { .dot_limit = 270000,
279 .p2_slow = 10,
280 .p2_fast = 10
284 static const struct intel_limit intel_limits_g4x_hdmi = {
285 .dot = { .min = 22000, .max = 400000 },
286 .vco = { .min = 1750000, .max = 3500000},
287 .n = { .min = 1, .max = 4 },
288 .m = { .min = 104, .max = 138 },
289 .m1 = { .min = 16, .max = 23 },
290 .m2 = { .min = 5, .max = 11 },
291 .p = { .min = 5, .max = 80 },
292 .p1 = { .min = 1, .max = 8},
293 .p2 = { .dot_limit = 165000,
294 .p2_slow = 10, .p2_fast = 5 },
297 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
298 .dot = { .min = 20000, .max = 115000 },
299 .vco = { .min = 1750000, .max = 3500000 },
300 .n = { .min = 1, .max = 3 },
301 .m = { .min = 104, .max = 138 },
302 .m1 = { .min = 17, .max = 23 },
303 .m2 = { .min = 5, .max = 11 },
304 .p = { .min = 28, .max = 112 },
305 .p1 = { .min = 2, .max = 8 },
306 .p2 = { .dot_limit = 0,
307 .p2_slow = 14, .p2_fast = 14
311 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
312 .dot = { .min = 80000, .max = 224000 },
313 .vco = { .min = 1750000, .max = 3500000 },
314 .n = { .min = 1, .max = 3 },
315 .m = { .min = 104, .max = 138 },
316 .m1 = { .min = 17, .max = 23 },
317 .m2 = { .min = 5, .max = 11 },
318 .p = { .min = 14, .max = 42 },
319 .p1 = { .min = 2, .max = 6 },
320 .p2 = { .dot_limit = 0,
321 .p2_slow = 7, .p2_fast = 7
325 static const struct intel_limit intel_limits_pineview_sdvo = {
326 .dot = { .min = 20000, .max = 400000},
327 .vco = { .min = 1700000, .max = 3500000 },
328 /* Pineview's Ncounter is a ring counter */
329 .n = { .min = 3, .max = 6 },
330 .m = { .min = 2, .max = 256 },
331 /* Pineview only has one combined m divider, which we treat as m2. */
332 .m1 = { .min = 0, .max = 0 },
333 .m2 = { .min = 0, .max = 254 },
334 .p = { .min = 5, .max = 80 },
335 .p1 = { .min = 1, .max = 8 },
336 .p2 = { .dot_limit = 200000,
337 .p2_slow = 10, .p2_fast = 5 },
340 static const struct intel_limit intel_limits_pineview_lvds = {
341 .dot = { .min = 20000, .max = 400000 },
342 .vco = { .min = 1700000, .max = 3500000 },
343 .n = { .min = 3, .max = 6 },
344 .m = { .min = 2, .max = 256 },
345 .m1 = { .min = 0, .max = 0 },
346 .m2 = { .min = 0, .max = 254 },
347 .p = { .min = 7, .max = 112 },
348 .p1 = { .min = 1, .max = 8 },
349 .p2 = { .dot_limit = 112000,
350 .p2_slow = 14, .p2_fast = 14 },
353 /* Ironlake / Sandybridge
355 * We calculate clock using (register_value + 2) for N/M1/M2, so here
356 * the range value for them is (actual_value - 2).
358 static const struct intel_limit intel_limits_ironlake_dac = {
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 5 },
362 .m = { .min = 79, .max = 127 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 5, .max = 80 },
366 .p1 = { .min = 1, .max = 8 },
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 10, .p2_fast = 5 },
371 static const struct intel_limit intel_limits_ironlake_single_lvds = {
372 .dot = { .min = 25000, .max = 350000 },
373 .vco = { .min = 1760000, .max = 3510000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 79, .max = 118 },
376 .m1 = { .min = 12, .max = 22 },
377 .m2 = { .min = 5, .max = 9 },
378 .p = { .min = 28, .max = 112 },
379 .p1 = { .min = 2, .max = 8 },
380 .p2 = { .dot_limit = 225000,
381 .p2_slow = 14, .p2_fast = 14 },
384 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
385 .dot = { .min = 25000, .max = 350000 },
386 .vco = { .min = 1760000, .max = 3510000 },
387 .n = { .min = 1, .max = 3 },
388 .m = { .min = 79, .max = 127 },
389 .m1 = { .min = 12, .max = 22 },
390 .m2 = { .min = 5, .max = 9 },
391 .p = { .min = 14, .max = 56 },
392 .p1 = { .min = 2, .max = 8 },
393 .p2 = { .dot_limit = 225000,
394 .p2_slow = 7, .p2_fast = 7 },
397 /* LVDS 100mhz refclk limits. */
398 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
399 .dot = { .min = 25000, .max = 350000 },
400 .vco = { .min = 1760000, .max = 3510000 },
401 .n = { .min = 1, .max = 2 },
402 .m = { .min = 79, .max = 126 },
403 .m1 = { .min = 12, .max = 22 },
404 .m2 = { .min = 5, .max = 9 },
405 .p = { .min = 28, .max = 112 },
406 .p1 = { .min = 2, .max = 8 },
407 .p2 = { .dot_limit = 225000,
408 .p2_slow = 14, .p2_fast = 14 },
411 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
412 .dot = { .min = 25000, .max = 350000 },
413 .vco = { .min = 1760000, .max = 3510000 },
414 .n = { .min = 1, .max = 3 },
415 .m = { .min = 79, .max = 126 },
416 .m1 = { .min = 12, .max = 22 },
417 .m2 = { .min = 5, .max = 9 },
418 .p = { .min = 14, .max = 42 },
419 .p1 = { .min = 2, .max = 6 },
420 .p2 = { .dot_limit = 225000,
421 .p2_slow = 7, .p2_fast = 7 },
424 static const struct intel_limit intel_limits_vlv = {
426 * These are the data rate limits (measured in fast clocks)
427 * since those are the strictest limits we have. The fast
428 * clock and actual rate limits are more relaxed, so checking
429 * them would make no difference.
431 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
432 .vco = { .min = 4000000, .max = 6000000 },
433 .n = { .min = 1, .max = 7 },
434 .m1 = { .min = 2, .max = 3 },
435 .m2 = { .min = 11, .max = 156 },
436 .p1 = { .min = 2, .max = 3 },
437 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
440 static const struct intel_limit intel_limits_chv = {
442 * These are the data rate limits (measured in fast clocks)
443 * since those are the strictest limits we have. The fast
444 * clock and actual rate limits are more relaxed, so checking
445 * them would make no difference.
447 .dot = { .min = 25000 * 5, .max = 540000 * 5},
448 .vco = { .min = 4800000, .max = 6480000 },
449 .n = { .min = 1, .max = 1 },
450 .m1 = { .min = 2, .max = 2 },
451 .m2 = { .min = 24 << 22, .max = 175 << 22 },
452 .p1 = { .min = 2, .max = 4 },
453 .p2 = { .p2_slow = 1, .p2_fast = 14 },
456 static const struct intel_limit intel_limits_bxt = {
457 /* FIXME: find real dot limits */
458 .dot = { .min = 0, .max = INT_MAX },
459 .vco = { .min = 4800000, .max = 6700000 },
460 .n = { .min = 1, .max = 1 },
461 .m1 = { .min = 2, .max = 2 },
462 /* FIXME: find real m2 limits */
463 .m2 = { .min = 2 << 22, .max = 255 << 22 },
464 .p1 = { .min = 2, .max = 4 },
465 .p2 = { .p2_slow = 1, .p2_fast = 20 },
468 static bool
469 needs_modeset(struct drm_crtc_state *state)
471 return drm_atomic_crtc_needs_modeset(state);
475 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
476 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
477 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
478 * The helpers' return value is the rate of the clock that is fed to the
479 * display engine's pipe which can be the above fast dot clock rate or a
480 * divided-down version of it.
482 /* m1 is reserved as 0 in Pineview, n is a ring counter */
483 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
485 clock->m = clock->m2 + 2;
486 clock->p = clock->p1 * clock->p2;
487 if (WARN_ON(clock->n == 0 || clock->p == 0))
488 return 0;
489 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
490 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
492 return clock->dot;
495 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
497 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
500 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
502 clock->m = i9xx_dpll_compute_m(clock);
503 clock->p = clock->p1 * clock->p2;
504 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
505 return 0;
506 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
507 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
509 return clock->dot;
512 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
514 clock->m = clock->m1 * clock->m2;
515 clock->p = clock->p1 * clock->p2;
516 if (WARN_ON(clock->n == 0 || clock->p == 0))
517 return 0;
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
521 return clock->dot / 5;
524 int chv_calc_dpll_params(int refclk, struct dpll *clock)
526 clock->m = clock->m1 * clock->m2;
527 clock->p = clock->p1 * clock->p2;
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return 0;
530 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
531 clock->n << 22);
532 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534 return clock->dot / 5;
537 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
539 * Returns whether the given set of divisors are valid for a given refclk with
540 * the given connectors.
543 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
544 const struct intel_limit *limit,
545 const struct dpll *clock)
547 if (clock->n < limit->n.min || limit->n.max < clock->n)
548 INTELPllInvalid("n out of range\n");
549 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
550 INTELPllInvalid("p1 out of range\n");
551 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
552 INTELPllInvalid("m2 out of range\n");
553 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
554 INTELPllInvalid("m1 out of range\n");
556 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
557 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
558 if (clock->m1 <= clock->m2)
559 INTELPllInvalid("m1 <= m2\n");
561 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
562 !IS_GEN9_LP(dev_priv)) {
563 if (clock->p < limit->p.min || limit->p.max < clock->p)
564 INTELPllInvalid("p out of range\n");
565 if (clock->m < limit->m.min || limit->m.max < clock->m)
566 INTELPllInvalid("m out of range\n");
569 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
570 INTELPllInvalid("vco out of range\n");
571 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
572 * connector, etc., rather than just a single range.
574 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
575 INTELPllInvalid("dot out of range\n");
577 return true;
580 static int
581 i9xx_select_p2_div(const struct intel_limit *limit,
582 const struct intel_crtc_state *crtc_state,
583 int target)
585 struct drm_device *dev = crtc_state->base.crtc->dev;
587 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
589 * For LVDS just rely on its current settings for dual-channel.
590 * We haven't figured out how to reliably set up different
591 * single/dual channel state, if we even can.
593 if (intel_is_dual_link_lvds(dev))
594 return limit->p2.p2_fast;
595 else
596 return limit->p2.p2_slow;
597 } else {
598 if (target < limit->p2.dot_limit)
599 return limit->p2.p2_slow;
600 else
601 return limit->p2.p2_fast;
606 * Returns a set of divisors for the desired target clock with the given
607 * refclk, or FALSE. The returned values represent the clock equation:
608 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
610 * Target and reference clocks are specified in kHz.
612 * If match_clock is provided, then best_clock P divider must match the P
613 * divider from @match_clock used for LVDS downclocking.
615 static bool
616 i9xx_find_best_dpll(const struct intel_limit *limit,
617 struct intel_crtc_state *crtc_state,
618 int target, int refclk, struct dpll *match_clock,
619 struct dpll *best_clock)
621 struct drm_device *dev = crtc_state->base.crtc->dev;
622 struct dpll clock;
623 int err = target;
625 memset(best_clock, 0, sizeof(*best_clock));
627 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
633 if (clock.m2 >= clock.m1)
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
639 int this_err;
641 i9xx_calc_dpll_params(refclk, &clock);
642 if (!intel_PLL_is_valid(to_i915(dev),
643 limit,
644 &clock))
645 continue;
646 if (match_clock &&
647 clock.p != match_clock->p)
648 continue;
650 this_err = abs(clock.dot - target);
651 if (this_err < err) {
652 *best_clock = clock;
653 err = this_err;
660 return (err != target);
664 * Returns a set of divisors for the desired target clock with the given
665 * refclk, or FALSE. The returned values represent the clock equation:
666 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 * Target and reference clocks are specified in kHz.
670 * If match_clock is provided, then best_clock P divider must match the P
671 * divider from @match_clock used for LVDS downclocking.
673 static bool
674 pnv_find_best_dpll(const struct intel_limit *limit,
675 struct intel_crtc_state *crtc_state,
676 int target, int refclk, struct dpll *match_clock,
677 struct dpll *best_clock)
679 struct drm_device *dev = crtc_state->base.crtc->dev;
680 struct dpll clock;
681 int err = target;
683 memset(best_clock, 0, sizeof(*best_clock));
685 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
695 int this_err;
697 pnv_calc_dpll_params(refclk, &clock);
698 if (!intel_PLL_is_valid(to_i915(dev),
699 limit,
700 &clock))
701 continue;
702 if (match_clock &&
703 clock.p != match_clock->p)
704 continue;
706 this_err = abs(clock.dot - target);
707 if (this_err < err) {
708 *best_clock = clock;
709 err = this_err;
716 return (err != target);
720 * Returns a set of divisors for the desired target clock with the given
721 * refclk, or FALSE. The returned values represent the clock equation:
722 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
724 * Target and reference clocks are specified in kHz.
726 * If match_clock is provided, then best_clock P divider must match the P
727 * divider from @match_clock used for LVDS downclocking.
729 static bool
730 g4x_find_best_dpll(const struct intel_limit *limit,
731 struct intel_crtc_state *crtc_state,
732 int target, int refclk, struct dpll *match_clock,
733 struct dpll *best_clock)
735 struct drm_device *dev = crtc_state->base.crtc->dev;
736 struct dpll clock;
737 int max_n;
738 bool found = false;
739 /* approximately equals target * 0.00585 */
740 int err_most = (target >> 8) + (target >> 9);
742 memset(best_clock, 0, sizeof(*best_clock));
744 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746 max_n = limit->n.max;
747 /* based on hardware requirement, prefer smaller n to precision */
748 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
749 /* based on hardware requirement, prefere larger m1,m2 */
750 for (clock.m1 = limit->m1.max;
751 clock.m1 >= limit->m1.min; clock.m1--) {
752 for (clock.m2 = limit->m2.max;
753 clock.m2 >= limit->m2.min; clock.m2--) {
754 for (clock.p1 = limit->p1.max;
755 clock.p1 >= limit->p1.min; clock.p1--) {
756 int this_err;
758 i9xx_calc_dpll_params(refclk, &clock);
759 if (!intel_PLL_is_valid(to_i915(dev),
760 limit,
761 &clock))
762 continue;
764 this_err = abs(clock.dot - target);
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
775 return found;
779 * Check if the calculated PLL configuration is more optimal compared to the
780 * best configuration and error found so far. Return the calculated error.
782 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
783 const struct dpll *calculated_clock,
784 const struct dpll *best_clock,
785 unsigned int best_error_ppm,
786 unsigned int *error_ppm)
789 * For CHV ignore the error and consider only the P value.
790 * Prefer a bigger P value based on HW requirements.
792 if (IS_CHERRYVIEW(to_i915(dev))) {
793 *error_ppm = 0;
795 return calculated_clock->p > best_clock->p;
798 if (WARN_ON_ONCE(!target_freq))
799 return false;
801 *error_ppm = div_u64(1000000ULL *
802 abs(target_freq - calculated_clock->dot),
803 target_freq);
805 * Prefer a better P value over a better (smaller) error if the error
806 * is small. Ensure this preference for future configurations too by
807 * setting the error to 0.
809 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
810 *error_ppm = 0;
812 return true;
815 return *error_ppm + 10 < best_error_ppm;
819 * Returns a set of divisors for the desired target clock with the given
820 * refclk, or FALSE. The returned values represent the clock equation:
821 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
823 static bool
824 vlv_find_best_dpll(const struct intel_limit *limit,
825 struct intel_crtc_state *crtc_state,
826 int target, int refclk, struct dpll *match_clock,
827 struct dpll *best_clock)
829 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
830 struct drm_device *dev = crtc->base.dev;
831 struct dpll clock;
832 unsigned int bestppm = 1000000;
833 /* min update 19.2 MHz */
834 int max_n = min(limit->n.max, refclk / 19200);
835 bool found = false;
837 target *= 5; /* fast clock */
839 memset(best_clock, 0, sizeof(*best_clock));
841 /* based on hardware requirement, prefer smaller n to precision */
842 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
843 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
844 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
845 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
846 clock.p = clock.p1 * clock.p2;
847 /* based on hardware requirement, prefer bigger m1,m2 values */
848 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
849 unsigned int ppm;
851 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
852 refclk * clock.m1);
854 vlv_calc_dpll_params(refclk, &clock);
856 if (!intel_PLL_is_valid(to_i915(dev),
857 limit,
858 &clock))
859 continue;
861 if (!vlv_PLL_is_optimal(dev, target,
862 &clock,
863 best_clock,
864 bestppm, &ppm))
865 continue;
867 *best_clock = clock;
868 bestppm = ppm;
869 found = true;
875 return found;
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
883 static bool
884 chv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 unsigned int best_error_ppm;
892 struct dpll clock;
893 uint64_t m2;
894 int found = false;
896 memset(best_clock, 0, sizeof(*best_clock));
897 best_error_ppm = 1000000;
900 * Based on hardware doc, the n always set to 1, and m1 always
901 * set to 2. If requires to support 200Mhz refclk, we need to
902 * revisit this because n may not 1 anymore.
904 clock.n = 1, clock.m1 = 2;
905 target *= 5; /* fast clock */
907 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
908 for (clock.p2 = limit->p2.p2_fast;
909 clock.p2 >= limit->p2.p2_slow;
910 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
911 unsigned int error_ppm;
913 clock.p = clock.p1 * clock.p2;
915 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
916 clock.n) << 22, refclk * clock.m1);
918 if (m2 > INT_MAX/clock.m1)
919 continue;
921 clock.m2 = m2;
923 chv_calc_dpll_params(refclk, &clock);
925 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
926 continue;
928 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
929 best_error_ppm, &error_ppm))
930 continue;
932 *best_clock = clock;
933 best_error_ppm = error_ppm;
934 found = true;
938 return found;
941 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
942 struct dpll *best_clock)
944 int refclk = 100000;
945 const struct intel_limit *limit = &intel_limits_bxt;
947 return chv_find_best_dpll(limit, crtc_state,
948 target_clock, refclk, NULL, best_clock);
951 bool intel_crtc_active(struct intel_crtc *crtc)
953 /* Be paranoid as we can arrive here with only partial
954 * state retrieved from the hardware during setup.
956 * We can ditch the adjusted_mode.crtc_clock check as soon
957 * as Haswell has gained clock readout/fastboot support.
959 * We can ditch the crtc->primary->fb check as soon as we can
960 * properly reconstruct framebuffers.
962 * FIXME: The intel_crtc->active here should be switched to
963 * crtc->state->active once we have proper CRTC states wired up
964 * for atomic.
966 return crtc->active && crtc->base.primary->state->fb &&
967 crtc->config->base.adjusted_mode.crtc_clock;
970 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
971 enum pipe pipe)
973 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
975 return crtc->config->cpu_transcoder;
978 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
980 i915_reg_t reg = PIPEDSL(pipe);
981 u32 line1, line2;
982 u32 line_mask;
984 if (IS_GEN2(dev_priv))
985 line_mask = DSL_LINEMASK_GEN2;
986 else
987 line_mask = DSL_LINEMASK_GEN3;
989 line1 = I915_READ(reg) & line_mask;
990 msleep(5);
991 line2 = I915_READ(reg) & line_mask;
993 return line1 == line2;
997 * intel_wait_for_pipe_off - wait for pipe to turn off
998 * @crtc: crtc whose pipe to wait for
1000 * After disabling a pipe, we can't wait for vblank in the usual way,
1001 * spinning on the vblank interrupt status bit, since we won't actually
1002 * see an interrupt when the pipe is disabled.
1004 * On Gen4 and above:
1005 * wait for the pipe register state bit to turn off
1007 * Otherwise:
1008 * wait for the display line value to settle (it usually
1009 * ends up stopping at the start of the next frame).
1012 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1014 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1015 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1016 enum pipe pipe = crtc->pipe;
1018 if (INTEL_GEN(dev_priv) >= 4) {
1019 i915_reg_t reg = PIPECONF(cpu_transcoder);
1021 /* Wait for the Pipe State to go off */
1022 if (intel_wait_for_register(dev_priv,
1023 reg, I965_PIPECONF_ACTIVE, 0,
1024 100))
1025 WARN(1, "pipe_off wait timed out\n");
1026 } else {
1027 /* Wait for the display line to settle */
1028 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1029 WARN(1, "pipe_off wait timed out\n");
1033 /* Only for pre-ILK configs */
1034 void assert_pll(struct drm_i915_private *dev_priv,
1035 enum pipe pipe, bool state)
1037 u32 val;
1038 bool cur_state;
1040 val = I915_READ(DPLL(pipe));
1041 cur_state = !!(val & DPLL_VCO_ENABLE);
1042 I915_STATE_WARN(cur_state != state,
1043 "PLL state assertion failure (expected %s, current %s)\n",
1044 onoff(state), onoff(cur_state));
1047 /* XXX: the dsi pll is shared between MIPI DSI ports */
1048 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1050 u32 val;
1051 bool cur_state;
1053 mutex_lock(&dev_priv->sb_lock);
1054 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1055 mutex_unlock(&dev_priv->sb_lock);
1057 cur_state = val & DSI_PLL_VCO_EN;
1058 I915_STATE_WARN(cur_state != state,
1059 "DSI PLL state assertion failure (expected %s, current %s)\n",
1060 onoff(state), onoff(cur_state));
1063 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1064 enum pipe pipe, bool state)
1066 bool cur_state;
1067 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1068 pipe);
1070 if (HAS_DDI(dev_priv)) {
1071 /* DDI does not have a specific FDI_TX register */
1072 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1073 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1074 } else {
1075 u32 val = I915_READ(FDI_TX_CTL(pipe));
1076 cur_state = !!(val & FDI_TX_ENABLE);
1078 I915_STATE_WARN(cur_state != state,
1079 "FDI TX state assertion failure (expected %s, current %s)\n",
1080 onoff(state), onoff(cur_state));
1082 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1083 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1085 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1086 enum pipe pipe, bool state)
1088 u32 val;
1089 bool cur_state;
1091 val = I915_READ(FDI_RX_CTL(pipe));
1092 cur_state = !!(val & FDI_RX_ENABLE);
1093 I915_STATE_WARN(cur_state != state,
1094 "FDI RX state assertion failure (expected %s, current %s)\n",
1095 onoff(state), onoff(cur_state));
1097 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1098 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1100 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1101 enum pipe pipe)
1103 u32 val;
1105 /* ILK FDI PLL is always enabled */
1106 if (IS_GEN5(dev_priv))
1107 return;
1109 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1110 if (HAS_DDI(dev_priv))
1111 return;
1113 val = I915_READ(FDI_TX_CTL(pipe));
1114 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1117 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1118 enum pipe pipe, bool state)
1120 u32 val;
1121 bool cur_state;
1123 val = I915_READ(FDI_RX_CTL(pipe));
1124 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1125 I915_STATE_WARN(cur_state != state,
1126 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1127 onoff(state), onoff(cur_state));
1130 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1132 i915_reg_t pp_reg;
1133 u32 val;
1134 enum pipe panel_pipe = PIPE_A;
1135 bool locked = true;
1137 if (WARN_ON(HAS_DDI(dev_priv)))
1138 return;
1140 if (HAS_PCH_SPLIT(dev_priv)) {
1141 u32 port_sel;
1143 pp_reg = PP_CONTROL(0);
1144 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1146 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1147 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1148 panel_pipe = PIPE_B;
1149 /* XXX: else fix for eDP */
1150 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1151 /* presumably write lock depends on pipe, not port select */
1152 pp_reg = PP_CONTROL(pipe);
1153 panel_pipe = pipe;
1154 } else {
1155 pp_reg = PP_CONTROL(0);
1156 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1157 panel_pipe = PIPE_B;
1160 val = I915_READ(pp_reg);
1161 if (!(val & PANEL_POWER_ON) ||
1162 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1163 locked = false;
1165 I915_STATE_WARN(panel_pipe == pipe && locked,
1166 "panel assertion failure, pipe %c regs locked\n",
1167 pipe_name(pipe));
1170 static void assert_cursor(struct drm_i915_private *dev_priv,
1171 enum pipe pipe, bool state)
1173 bool cur_state;
1175 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1176 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1177 else
1178 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1180 I915_STATE_WARN(cur_state != state,
1181 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1182 pipe_name(pipe), onoff(state), onoff(cur_state));
1184 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1185 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1187 void assert_pipe(struct drm_i915_private *dev_priv,
1188 enum pipe pipe, bool state)
1190 bool cur_state;
1191 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192 pipe);
1193 enum intel_display_power_domain power_domain;
1195 /* if we need the pipe quirk it must be always on */
1196 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1197 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1198 state = true;
1200 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203 cur_state = !!(val & PIPECONF_ENABLE);
1205 intel_display_power_put(dev_priv, power_domain);
1206 } else {
1207 cur_state = false;
1210 I915_STATE_WARN(cur_state != state,
1211 "pipe %c assertion failure (expected %s, current %s)\n",
1212 pipe_name(pipe), onoff(state), onoff(cur_state));
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216 enum plane plane, bool state)
1218 u32 val;
1219 bool cur_state;
1221 val = I915_READ(DSPCNTR(plane));
1222 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223 I915_STATE_WARN(cur_state != state,
1224 "plane %c assertion failure (expected %s, current %s)\n",
1225 plane_name(plane), onoff(state), onoff(cur_state));
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232 enum pipe pipe)
1234 int i;
1236 /* Primary planes are fixed to pipes on gen4+ */
1237 if (INTEL_GEN(dev_priv) >= 4) {
1238 u32 val = I915_READ(DSPCNTR(pipe));
1239 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240 "plane %c assertion failure, should be disabled but not\n",
1241 plane_name(pipe));
1242 return;
1245 /* Need to check both planes against the pipe */
1246 for_each_pipe(dev_priv, i) {
1247 u32 val = I915_READ(DSPCNTR(i));
1248 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249 DISPPLANE_SEL_PIPE_SHIFT;
1250 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252 plane_name(i), pipe_name(pipe));
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe)
1259 int sprite;
1261 if (INTEL_GEN(dev_priv) >= 9) {
1262 for_each_sprite(dev_priv, pipe, sprite) {
1263 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266 sprite, pipe_name(pipe));
1268 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269 for_each_sprite(dev_priv, pipe, sprite) {
1270 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271 I915_STATE_WARN(val & SP_ENABLE,
1272 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273 sprite_name(pipe, sprite), pipe_name(pipe));
1275 } else if (INTEL_GEN(dev_priv) >= 7) {
1276 u32 val = I915_READ(SPRCTL(pipe));
1277 I915_STATE_WARN(val & SPRITE_ENABLE,
1278 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279 plane_name(pipe), pipe_name(pipe));
1280 } else if (INTEL_GEN(dev_priv) >= 5) {
1281 u32 val = I915_READ(DVSCNTR(pipe));
1282 I915_STATE_WARN(val & DVS_ENABLE,
1283 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284 plane_name(pipe), pipe_name(pipe));
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1290 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291 drm_crtc_vblank_put(crtc);
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1297 u32 val;
1298 bool enabled;
1300 val = I915_READ(PCH_TRANSCONF(pipe));
1301 enabled = !!(val & TRANS_ENABLE);
1302 I915_STATE_WARN(enabled,
1303 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304 pipe_name(pipe));
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308 enum pipe pipe, u32 port_sel, u32 val)
1310 if ((val & DP_PORT_EN) == 0)
1311 return false;
1313 if (HAS_PCH_CPT(dev_priv)) {
1314 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else if (IS_CHERRYVIEW(dev_priv)) {
1318 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319 return false;
1320 } else {
1321 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322 return false;
1324 return true;
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, u32 val)
1330 if ((val & SDVO_ENABLE) == 0)
1331 return false;
1333 if (HAS_PCH_CPT(dev_priv)) {
1334 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335 return false;
1336 } else if (IS_CHERRYVIEW(dev_priv)) {
1337 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338 return false;
1339 } else {
1340 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341 return false;
1343 return true;
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347 enum pipe pipe, u32 val)
1349 if ((val & LVDS_PORT_EN) == 0)
1350 return false;
1352 if (HAS_PCH_CPT(dev_priv)) {
1353 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354 return false;
1355 } else {
1356 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357 return false;
1359 return true;
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363 enum pipe pipe, u32 val)
1365 if ((val & ADPA_DAC_ENABLE) == 0)
1366 return false;
1367 if (HAS_PCH_CPT(dev_priv)) {
1368 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369 return false;
1370 } else {
1371 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372 return false;
1374 return true;
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378 enum pipe pipe, i915_reg_t reg,
1379 u32 port_sel)
1381 u32 val = I915_READ(reg);
1382 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384 i915_mmio_reg_offset(reg), pipe_name(pipe));
1386 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387 && (val & DP_PIPEB_SELECT),
1388 "IBX PCH dp port still using transcoder B\n");
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, i915_reg_t reg)
1394 u32 val = I915_READ(reg);
1395 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397 i915_mmio_reg_offset(reg), pipe_name(pipe));
1399 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400 && (val & SDVO_PIPE_B_SELECT),
1401 "IBX PCH hdmi port still using transcoder B\n");
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe)
1407 u32 val;
1409 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1413 val = I915_READ(PCH_ADPA);
1414 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415 "PCH VGA enabled on transcoder %c, should be disabled\n",
1416 pipe_name(pipe));
1418 val = I915_READ(PCH_LVDS);
1419 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421 pipe_name(pipe));
1423 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429 const struct intel_crtc_state *pipe_config)
1431 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432 enum pipe pipe = crtc->pipe;
1434 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435 POSTING_READ(DPLL(pipe));
1436 udelay(150);
1438 if (intel_wait_for_register(dev_priv,
1439 DPLL(pipe),
1440 DPLL_LOCK_VLV,
1441 DPLL_LOCK_VLV,
1443 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447 const struct intel_crtc_state *pipe_config)
1449 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450 enum pipe pipe = crtc->pipe;
1452 assert_pipe_disabled(dev_priv, pipe);
1454 /* PLL is protected by panel, make sure we can write it */
1455 assert_panel_unlocked(dev_priv, pipe);
1457 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458 _vlv_enable_pll(crtc, pipe_config);
1460 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461 POSTING_READ(DPLL_MD(pipe));
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466 const struct intel_crtc_state *pipe_config)
1468 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469 enum pipe pipe = crtc->pipe;
1470 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471 u32 tmp;
1473 mutex_lock(&dev_priv->sb_lock);
1475 /* Enable back the 10bit clock to display controller */
1476 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477 tmp |= DPIO_DCLKP_EN;
1478 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1480 mutex_unlock(&dev_priv->sb_lock);
1483 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1485 udelay(1);
1487 /* Enable PLL */
1488 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1490 /* Check PLL is locked */
1491 if (intel_wait_for_register(dev_priv,
1492 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1494 DRM_ERROR("PLL %d failed to lock\n", pipe);
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498 const struct intel_crtc_state *pipe_config)
1500 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501 enum pipe pipe = crtc->pipe;
1503 assert_pipe_disabled(dev_priv, pipe);
1505 /* PLL is protected by panel, make sure we can write it */
1506 assert_panel_unlocked(dev_priv, pipe);
1508 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509 _chv_enable_pll(crtc, pipe_config);
1511 if (pipe != PIPE_A) {
1513 * WaPixelRepeatModeFixForC0:chv
1515 * DPLLCMD is AWOL. Use chicken bits to propagate
1516 * the value from DPLLBMD to either pipe B or C.
1518 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520 I915_WRITE(CBR4_VLV, 0);
1521 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1524 * DPLLB VGA mode also seems to cause problems.
1525 * We should always have it disabled.
1527 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528 } else {
1529 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530 POSTING_READ(DPLL_MD(pipe));
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1536 struct intel_crtc *crtc;
1537 int count = 0;
1539 for_each_intel_crtc(&dev_priv->drm, crtc) {
1540 count += crtc->base.state->active &&
1541 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1544 return count;
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1549 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550 i915_reg_t reg = DPLL(crtc->pipe);
1551 u32 dpll = crtc->config->dpll_hw_state.dpll;
1553 assert_pipe_disabled(dev_priv, crtc->pipe);
1555 /* PLL is protected by panel, make sure we can write it */
1556 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1557 assert_panel_unlocked(dev_priv, crtc->pipe);
1559 /* Enable DVO 2x clock on both PLLs if necessary */
1560 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1562 * It appears to be important that we don't enable this
1563 * for the current pipe before otherwise configuring the
1564 * PLL. No idea how this should be handled if multiple
1565 * DVO outputs are enabled simultaneosly.
1567 dpll |= DPLL_DVO_2X_MODE;
1568 I915_WRITE(DPLL(!crtc->pipe),
1569 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1573 * Apparently we need to have VGA mode enabled prior to changing
1574 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1575 * dividers, even though the register value does change.
1577 I915_WRITE(reg, 0);
1579 I915_WRITE(reg, dpll);
1581 /* Wait for the clocks to stabilize. */
1582 POSTING_READ(reg);
1583 udelay(150);
1585 if (INTEL_GEN(dev_priv) >= 4) {
1586 I915_WRITE(DPLL_MD(crtc->pipe),
1587 crtc->config->dpll_hw_state.dpll_md);
1588 } else {
1589 /* The pixel multiplier can only be updated once the
1590 * DPLL is enabled and the clocks are stable.
1592 * So write it again.
1594 I915_WRITE(reg, dpll);
1597 /* We do this three times for luck */
1598 I915_WRITE(reg, dpll);
1599 POSTING_READ(reg);
1600 udelay(150); /* wait for warmup */
1601 I915_WRITE(reg, dpll);
1602 POSTING_READ(reg);
1603 udelay(150); /* wait for warmup */
1604 I915_WRITE(reg, dpll);
1605 POSTING_READ(reg);
1606 udelay(150); /* wait for warmup */
1610 * i9xx_disable_pll - disable a PLL
1611 * @dev_priv: i915 private structure
1612 * @pipe: pipe PLL to disable
1614 * Disable the PLL for @pipe, making sure the pipe is off first.
1616 * Note! This is for pre-ILK only.
1618 static void i9xx_disable_pll(struct intel_crtc *crtc)
1620 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1621 enum pipe pipe = crtc->pipe;
1623 /* Disable DVO 2x clock on both PLLs if necessary */
1624 if (IS_I830(dev_priv) &&
1625 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1626 !intel_num_dvo_pipes(dev_priv)) {
1627 I915_WRITE(DPLL(PIPE_B),
1628 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1629 I915_WRITE(DPLL(PIPE_A),
1630 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1633 /* Don't disable pipe or pipe PLLs if needed */
1634 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1635 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1636 return;
1638 /* Make sure the pipe isn't still relying on us */
1639 assert_pipe_disabled(dev_priv, pipe);
1641 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1642 POSTING_READ(DPLL(pipe));
1645 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1647 u32 val;
1649 /* Make sure the pipe isn't still relying on us */
1650 assert_pipe_disabled(dev_priv, pipe);
1652 val = DPLL_INTEGRATED_REF_CLK_VLV |
1653 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1654 if (pipe != PIPE_A)
1655 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1657 I915_WRITE(DPLL(pipe), val);
1658 POSTING_READ(DPLL(pipe));
1661 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1663 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1664 u32 val;
1666 /* Make sure the pipe isn't still relying on us */
1667 assert_pipe_disabled(dev_priv, pipe);
1669 val = DPLL_SSC_REF_CLK_CHV |
1670 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1671 if (pipe != PIPE_A)
1672 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1674 I915_WRITE(DPLL(pipe), val);
1675 POSTING_READ(DPLL(pipe));
1677 mutex_lock(&dev_priv->sb_lock);
1679 /* Disable 10bit clock to display controller */
1680 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1681 val &= ~DPIO_DCLKP_EN;
1682 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1684 mutex_unlock(&dev_priv->sb_lock);
1687 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1688 struct intel_digital_port *dport,
1689 unsigned int expected_mask)
1691 u32 port_mask;
1692 i915_reg_t dpll_reg;
1694 switch (dport->port) {
1695 case PORT_B:
1696 port_mask = DPLL_PORTB_READY_MASK;
1697 dpll_reg = DPLL(0);
1698 break;
1699 case PORT_C:
1700 port_mask = DPLL_PORTC_READY_MASK;
1701 dpll_reg = DPLL(0);
1702 expected_mask <<= 4;
1703 break;
1704 case PORT_D:
1705 port_mask = DPLL_PORTD_READY_MASK;
1706 dpll_reg = DPIO_PHY_STATUS;
1707 break;
1708 default:
1709 BUG();
1712 if (intel_wait_for_register(dev_priv,
1713 dpll_reg, port_mask, expected_mask,
1714 1000))
1715 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1716 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1719 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1720 enum pipe pipe)
1722 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1723 pipe);
1724 i915_reg_t reg;
1725 uint32_t val, pipeconf_val;
1727 /* Make sure PCH DPLL is enabled */
1728 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1730 /* FDI must be feeding us bits for PCH ports */
1731 assert_fdi_tx_enabled(dev_priv, pipe);
1732 assert_fdi_rx_enabled(dev_priv, pipe);
1734 if (HAS_PCH_CPT(dev_priv)) {
1735 /* Workaround: Set the timing override bit before enabling the
1736 * pch transcoder. */
1737 reg = TRANS_CHICKEN2(pipe);
1738 val = I915_READ(reg);
1739 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1740 I915_WRITE(reg, val);
1743 reg = PCH_TRANSCONF(pipe);
1744 val = I915_READ(reg);
1745 pipeconf_val = I915_READ(PIPECONF(pipe));
1747 if (HAS_PCH_IBX(dev_priv)) {
1749 * Make the BPC in transcoder be consistent with
1750 * that in pipeconf reg. For HDMI we must use 8bpc
1751 * here for both 8bpc and 12bpc.
1753 val &= ~PIPECONF_BPC_MASK;
1754 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1755 val |= PIPECONF_8BPC;
1756 else
1757 val |= pipeconf_val & PIPECONF_BPC_MASK;
1760 val &= ~TRANS_INTERLACE_MASK;
1761 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1762 if (HAS_PCH_IBX(dev_priv) &&
1763 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1764 val |= TRANS_LEGACY_INTERLACED_ILK;
1765 else
1766 val |= TRANS_INTERLACED;
1767 else
1768 val |= TRANS_PROGRESSIVE;
1770 I915_WRITE(reg, val | TRANS_ENABLE);
1771 if (intel_wait_for_register(dev_priv,
1772 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1773 100))
1774 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1777 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1778 enum transcoder cpu_transcoder)
1780 u32 val, pipeconf_val;
1782 /* FDI must be feeding us bits for PCH ports */
1783 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1784 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1786 /* Workaround: set timing override bit. */
1787 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1788 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1789 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1791 val = TRANS_ENABLE;
1792 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1794 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1795 PIPECONF_INTERLACED_ILK)
1796 val |= TRANS_INTERLACED;
1797 else
1798 val |= TRANS_PROGRESSIVE;
1800 I915_WRITE(LPT_TRANSCONF, val);
1801 if (intel_wait_for_register(dev_priv,
1802 LPT_TRANSCONF,
1803 TRANS_STATE_ENABLE,
1804 TRANS_STATE_ENABLE,
1805 100))
1806 DRM_ERROR("Failed to enable PCH transcoder\n");
1809 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1810 enum pipe pipe)
1812 i915_reg_t reg;
1813 uint32_t val;
1815 /* FDI relies on the transcoder */
1816 assert_fdi_tx_disabled(dev_priv, pipe);
1817 assert_fdi_rx_disabled(dev_priv, pipe);
1819 /* Ports must be off as well */
1820 assert_pch_ports_disabled(dev_priv, pipe);
1822 reg = PCH_TRANSCONF(pipe);
1823 val = I915_READ(reg);
1824 val &= ~TRANS_ENABLE;
1825 I915_WRITE(reg, val);
1826 /* wait for PCH transcoder off, transcoder state */
1827 if (intel_wait_for_register(dev_priv,
1828 reg, TRANS_STATE_ENABLE, 0,
1829 50))
1830 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1832 if (HAS_PCH_CPT(dev_priv)) {
1833 /* Workaround: Clear the timing override chicken bit again. */
1834 reg = TRANS_CHICKEN2(pipe);
1835 val = I915_READ(reg);
1836 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1837 I915_WRITE(reg, val);
1841 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1843 u32 val;
1845 val = I915_READ(LPT_TRANSCONF);
1846 val &= ~TRANS_ENABLE;
1847 I915_WRITE(LPT_TRANSCONF, val);
1848 /* wait for PCH transcoder off, transcoder state */
1849 if (intel_wait_for_register(dev_priv,
1850 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1851 50))
1852 DRM_ERROR("Failed to disable PCH transcoder\n");
1854 /* Workaround: clear timing override bit. */
1855 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1857 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1860 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1862 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1864 WARN_ON(!crtc->config->has_pch_encoder);
1866 if (HAS_PCH_LPT(dev_priv))
1867 return TRANSCODER_A;
1868 else
1869 return (enum transcoder) crtc->pipe;
1873 * intel_enable_pipe - enable a pipe, asserting requirements
1874 * @crtc: crtc responsible for the pipe
1876 * Enable @crtc's pipe, making sure that various hardware specific requirements
1877 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1879 static void intel_enable_pipe(struct intel_crtc *crtc)
1881 struct drm_device *dev = crtc->base.dev;
1882 struct drm_i915_private *dev_priv = to_i915(dev);
1883 enum pipe pipe = crtc->pipe;
1884 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1885 i915_reg_t reg;
1886 u32 val;
1888 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1890 assert_planes_disabled(dev_priv, pipe);
1891 assert_cursor_disabled(dev_priv, pipe);
1892 assert_sprites_disabled(dev_priv, pipe);
1895 * A pipe without a PLL won't actually be able to drive bits from
1896 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1897 * need the check.
1899 if (HAS_GMCH_DISPLAY(dev_priv)) {
1900 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1901 assert_dsi_pll_enabled(dev_priv);
1902 else
1903 assert_pll_enabled(dev_priv, pipe);
1904 } else {
1905 if (crtc->config->has_pch_encoder) {
1906 /* if driving the PCH, we need FDI enabled */
1907 assert_fdi_rx_pll_enabled(dev_priv,
1908 (enum pipe) intel_crtc_pch_transcoder(crtc));
1909 assert_fdi_tx_pll_enabled(dev_priv,
1910 (enum pipe) cpu_transcoder);
1912 /* FIXME: assert CPU port conditions for SNB+ */
1915 reg = PIPECONF(cpu_transcoder);
1916 val = I915_READ(reg);
1917 if (val & PIPECONF_ENABLE) {
1918 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1919 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1920 return;
1923 I915_WRITE(reg, val | PIPECONF_ENABLE);
1924 POSTING_READ(reg);
1927 * Until the pipe starts DSL will read as 0, which would cause
1928 * an apparent vblank timestamp jump, which messes up also the
1929 * frame count when it's derived from the timestamps. So let's
1930 * wait for the pipe to start properly before we call
1931 * drm_crtc_vblank_on()
1933 if (dev->max_vblank_count == 0 &&
1934 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1935 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1939 * intel_disable_pipe - disable a pipe, asserting requirements
1940 * @crtc: crtc whose pipes is to be disabled
1942 * Disable the pipe of @crtc, making sure that various hardware
1943 * specific requirements are met, if applicable, e.g. plane
1944 * disabled, panel fitter off, etc.
1946 * Will wait until the pipe has shut down before returning.
1948 static void intel_disable_pipe(struct intel_crtc *crtc)
1950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1951 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1952 enum pipe pipe = crtc->pipe;
1953 i915_reg_t reg;
1954 u32 val;
1956 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1959 * Make sure planes won't keep trying to pump pixels to us,
1960 * or we might hang the display.
1962 assert_planes_disabled(dev_priv, pipe);
1963 assert_cursor_disabled(dev_priv, pipe);
1964 assert_sprites_disabled(dev_priv, pipe);
1966 reg = PIPECONF(cpu_transcoder);
1967 val = I915_READ(reg);
1968 if ((val & PIPECONF_ENABLE) == 0)
1969 return;
1972 * Double wide has implications for planes
1973 * so best keep it disabled when not needed.
1975 if (crtc->config->double_wide)
1976 val &= ~PIPECONF_DOUBLE_WIDE;
1978 /* Don't disable pipe or pipe PLLs if needed */
1979 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
1980 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1981 val &= ~PIPECONF_ENABLE;
1983 I915_WRITE(reg, val);
1984 if ((val & PIPECONF_ENABLE) == 0)
1985 intel_wait_for_pipe_off(crtc);
1988 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1990 return IS_GEN2(dev_priv) ? 2048 : 4096;
1993 static unsigned int
1994 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1996 struct drm_i915_private *dev_priv = to_i915(fb->dev);
1997 unsigned int cpp = fb->format->cpp[plane];
1999 switch (fb->modifier) {
2000 case DRM_FORMAT_MOD_LINEAR:
2001 return cpp;
2002 case I915_FORMAT_MOD_X_TILED:
2003 if (IS_GEN2(dev_priv))
2004 return 128;
2005 else
2006 return 512;
2007 case I915_FORMAT_MOD_Y_TILED:
2008 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2009 return 128;
2010 else
2011 return 512;
2012 case I915_FORMAT_MOD_Yf_TILED:
2013 switch (cpp) {
2014 case 1:
2015 return 64;
2016 case 2:
2017 case 4:
2018 return 128;
2019 case 8:
2020 case 16:
2021 return 256;
2022 default:
2023 MISSING_CASE(cpp);
2024 return cpp;
2026 break;
2027 default:
2028 MISSING_CASE(fb->modifier);
2029 return cpp;
2033 static unsigned int
2034 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2036 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2037 return 1;
2038 else
2039 return intel_tile_size(to_i915(fb->dev)) /
2040 intel_tile_width_bytes(fb, plane);
2043 /* Return the tile dimensions in pixel units */
2044 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2045 unsigned int *tile_width,
2046 unsigned int *tile_height)
2048 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2049 unsigned int cpp = fb->format->cpp[plane];
2051 *tile_width = tile_width_bytes / cpp;
2052 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2055 unsigned int
2056 intel_fb_align_height(const struct drm_framebuffer *fb,
2057 int plane, unsigned int height)
2059 unsigned int tile_height = intel_tile_height(fb, plane);
2061 return ALIGN(height, tile_height);
2064 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2066 unsigned int size = 0;
2067 int i;
2069 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2070 size += rot_info->plane[i].width * rot_info->plane[i].height;
2072 return size;
2075 static void
2076 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2077 const struct drm_framebuffer *fb,
2078 unsigned int rotation)
2080 view->type = I915_GGTT_VIEW_NORMAL;
2081 if (drm_rotation_90_or_270(rotation)) {
2082 view->type = I915_GGTT_VIEW_ROTATED;
2083 view->rotated = to_intel_framebuffer(fb)->rot_info;
2087 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2089 if (INTEL_INFO(dev_priv)->gen >= 9)
2090 return 256 * 1024;
2091 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2092 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2093 return 128 * 1024;
2094 else if (INTEL_INFO(dev_priv)->gen >= 4)
2095 return 4 * 1024;
2096 else
2097 return 0;
2100 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2101 int plane)
2103 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2105 /* AUX_DIST needs only 4K alignment */
2106 if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2107 return 4096;
2109 switch (fb->modifier) {
2110 case DRM_FORMAT_MOD_LINEAR:
2111 return intel_linear_alignment(dev_priv);
2112 case I915_FORMAT_MOD_X_TILED:
2113 if (INTEL_GEN(dev_priv) >= 9)
2114 return 256 * 1024;
2115 return 0;
2116 case I915_FORMAT_MOD_Y_TILED:
2117 case I915_FORMAT_MOD_Yf_TILED:
2118 return 1 * 1024 * 1024;
2119 default:
2120 MISSING_CASE(fb->modifier);
2121 return 0;
2125 struct i915_vma *
2126 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2128 struct drm_device *dev = fb->dev;
2129 struct drm_i915_private *dev_priv = to_i915(dev);
2130 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2131 struct i915_ggtt_view view;
2132 struct i915_vma *vma;
2133 u32 alignment;
2135 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2137 alignment = intel_surf_alignment(fb, 0);
2139 intel_fill_fb_ggtt_view(&view, fb, rotation);
2141 /* Note that the w/a also requires 64 PTE of padding following the
2142 * bo. We currently fill all unused PTE with the shadow page and so
2143 * we should always have valid PTE following the scanout preventing
2144 * the VT-d warning.
2146 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2147 alignment = 256 * 1024;
2150 * Global gtt pte registers are special registers which actually forward
2151 * writes to a chunk of system memory. Which means that there is no risk
2152 * that the register values disappear as soon as we call
2153 * intel_runtime_pm_put(), so it is correct to wrap only the
2154 * pin/unpin/fence and not more.
2156 intel_runtime_pm_get(dev_priv);
2158 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2159 if (IS_ERR(vma))
2160 goto err;
2162 if (i915_vma_is_map_and_fenceable(vma)) {
2163 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2164 * fence, whereas 965+ only requires a fence if using
2165 * framebuffer compression. For simplicity, we always, when
2166 * possible, install a fence as the cost is not that onerous.
2168 * If we fail to fence the tiled scanout, then either the
2169 * modeset will reject the change (which is highly unlikely as
2170 * the affected systems, all but one, do not have unmappable
2171 * space) or we will not be able to enable full powersaving
2172 * techniques (also likely not to apply due to various limits
2173 * FBC and the like impose on the size of the buffer, which
2174 * presumably we violated anyway with this unmappable buffer).
2175 * Anyway, it is presumably better to stumble onwards with
2176 * something and try to run the system in a "less than optimal"
2177 * mode that matches the user configuration.
2179 if (i915_vma_get_fence(vma) == 0)
2180 i915_vma_pin_fence(vma);
2183 i915_vma_get(vma);
2184 err:
2185 intel_runtime_pm_put(dev_priv);
2186 return vma;
2189 void intel_unpin_fb_vma(struct i915_vma *vma)
2191 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2193 i915_vma_unpin_fence(vma);
2194 i915_gem_object_unpin_from_display_plane(vma);
2195 i915_vma_put(vma);
2198 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2199 unsigned int rotation)
2201 if (drm_rotation_90_or_270(rotation))
2202 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2203 else
2204 return fb->pitches[plane];
2208 * Convert the x/y offsets into a linear offset.
2209 * Only valid with 0/180 degree rotation, which is fine since linear
2210 * offset is only used with linear buffers on pre-hsw and tiled buffers
2211 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2213 u32 intel_fb_xy_to_linear(int x, int y,
2214 const struct intel_plane_state *state,
2215 int plane)
2217 const struct drm_framebuffer *fb = state->base.fb;
2218 unsigned int cpp = fb->format->cpp[plane];
2219 unsigned int pitch = fb->pitches[plane];
2221 return y * pitch + x * cpp;
2225 * Add the x/y offsets derived from fb->offsets[] to the user
2226 * specified plane src x/y offsets. The resulting x/y offsets
2227 * specify the start of scanout from the beginning of the gtt mapping.
2229 void intel_add_fb_offsets(int *x, int *y,
2230 const struct intel_plane_state *state,
2231 int plane)
2234 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2235 unsigned int rotation = state->base.rotation;
2237 if (drm_rotation_90_or_270(rotation)) {
2238 *x += intel_fb->rotated[plane].x;
2239 *y += intel_fb->rotated[plane].y;
2240 } else {
2241 *x += intel_fb->normal[plane].x;
2242 *y += intel_fb->normal[plane].y;
2247 * Input tile dimensions and pitch must already be
2248 * rotated to match x and y, and in pixel units.
2250 static u32 _intel_adjust_tile_offset(int *x, int *y,
2251 unsigned int tile_width,
2252 unsigned int tile_height,
2253 unsigned int tile_size,
2254 unsigned int pitch_tiles,
2255 u32 old_offset,
2256 u32 new_offset)
2258 unsigned int pitch_pixels = pitch_tiles * tile_width;
2259 unsigned int tiles;
2261 WARN_ON(old_offset & (tile_size - 1));
2262 WARN_ON(new_offset & (tile_size - 1));
2263 WARN_ON(new_offset > old_offset);
2265 tiles = (old_offset - new_offset) / tile_size;
2267 *y += tiles / pitch_tiles * tile_height;
2268 *x += tiles % pitch_tiles * tile_width;
2270 /* minimize x in case it got needlessly big */
2271 *y += *x / pitch_pixels * tile_height;
2272 *x %= pitch_pixels;
2274 return new_offset;
2278 * Adjust the tile offset by moving the difference into
2279 * the x/y offsets.
2281 static u32 intel_adjust_tile_offset(int *x, int *y,
2282 const struct intel_plane_state *state, int plane,
2283 u32 old_offset, u32 new_offset)
2285 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2286 const struct drm_framebuffer *fb = state->base.fb;
2287 unsigned int cpp = fb->format->cpp[plane];
2288 unsigned int rotation = state->base.rotation;
2289 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2291 WARN_ON(new_offset > old_offset);
2293 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2294 unsigned int tile_size, tile_width, tile_height;
2295 unsigned int pitch_tiles;
2297 tile_size = intel_tile_size(dev_priv);
2298 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2300 if (drm_rotation_90_or_270(rotation)) {
2301 pitch_tiles = pitch / tile_height;
2302 swap(tile_width, tile_height);
2303 } else {
2304 pitch_tiles = pitch / (tile_width * cpp);
2307 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2308 tile_size, pitch_tiles,
2309 old_offset, new_offset);
2310 } else {
2311 old_offset += *y * pitch + *x * cpp;
2313 *y = (old_offset - new_offset) / pitch;
2314 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2317 return new_offset;
2321 * Computes the linear offset to the base tile and adjusts
2322 * x, y. bytes per pixel is assumed to be a power-of-two.
2324 * In the 90/270 rotated case, x and y are assumed
2325 * to be already rotated to match the rotated GTT view, and
2326 * pitch is the tile_height aligned framebuffer height.
2328 * This function is used when computing the derived information
2329 * under intel_framebuffer, so using any of that information
2330 * here is not allowed. Anything under drm_framebuffer can be
2331 * used. This is why the user has to pass in the pitch since it
2332 * is specified in the rotated orientation.
2334 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2335 int *x, int *y,
2336 const struct drm_framebuffer *fb, int plane,
2337 unsigned int pitch,
2338 unsigned int rotation,
2339 u32 alignment)
2341 uint64_t fb_modifier = fb->modifier;
2342 unsigned int cpp = fb->format->cpp[plane];
2343 u32 offset, offset_aligned;
2345 if (alignment)
2346 alignment--;
2348 if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2349 unsigned int tile_size, tile_width, tile_height;
2350 unsigned int tile_rows, tiles, pitch_tiles;
2352 tile_size = intel_tile_size(dev_priv);
2353 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2355 if (drm_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2362 tile_rows = *y / tile_height;
2363 *y %= tile_height;
2365 tiles = *x / tile_width;
2366 *x %= tile_width;
2368 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2369 offset_aligned = offset & ~alignment;
2371 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2372 tile_size, pitch_tiles,
2373 offset, offset_aligned);
2374 } else {
2375 offset = *y * pitch + *x * cpp;
2376 offset_aligned = offset & ~alignment;
2378 *y = (offset & alignment) / pitch;
2379 *x = ((offset & alignment) - *y * pitch) / cpp;
2382 return offset_aligned;
2385 u32 intel_compute_tile_offset(int *x, int *y,
2386 const struct intel_plane_state *state,
2387 int plane)
2389 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2390 const struct drm_framebuffer *fb = state->base.fb;
2391 unsigned int rotation = state->base.rotation;
2392 int pitch = intel_fb_pitch(fb, plane, rotation);
2393 u32 alignment = intel_surf_alignment(fb, plane);
2395 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2396 rotation, alignment);
2399 /* Convert the fb->offset[] linear offset into x/y offsets */
2400 static void intel_fb_offset_to_xy(int *x, int *y,
2401 const struct drm_framebuffer *fb, int plane)
2403 unsigned int cpp = fb->format->cpp[plane];
2404 unsigned int pitch = fb->pitches[plane];
2405 u32 linear_offset = fb->offsets[plane];
2407 *y = linear_offset / pitch;
2408 *x = linear_offset % pitch / cpp;
2411 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2413 switch (fb_modifier) {
2414 case I915_FORMAT_MOD_X_TILED:
2415 return I915_TILING_X;
2416 case I915_FORMAT_MOD_Y_TILED:
2417 return I915_TILING_Y;
2418 default:
2419 return I915_TILING_NONE;
2423 static int
2424 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2425 struct drm_framebuffer *fb)
2427 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2428 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2429 u32 gtt_offset_rotated = 0;
2430 unsigned int max_size = 0;
2431 int i, num_planes = fb->format->num_planes;
2432 unsigned int tile_size = intel_tile_size(dev_priv);
2434 for (i = 0; i < num_planes; i++) {
2435 unsigned int width, height;
2436 unsigned int cpp, size;
2437 u32 offset;
2438 int x, y;
2440 cpp = fb->format->cpp[i];
2441 width = drm_framebuffer_plane_width(fb->width, fb, i);
2442 height = drm_framebuffer_plane_height(fb->height, fb, i);
2444 intel_fb_offset_to_xy(&x, &y, fb, i);
2447 * The fence (if used) is aligned to the start of the object
2448 * so having the framebuffer wrap around across the edge of the
2449 * fenced region doesn't really work. We have no API to configure
2450 * the fence start offset within the object (nor could we probably
2451 * on gen2/3). So it's just easier if we just require that the
2452 * fb layout agrees with the fence layout. We already check that the
2453 * fb stride matches the fence stride elsewhere.
2455 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2456 (x + width) * cpp > fb->pitches[i]) {
2457 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2458 i, fb->offsets[i]);
2459 return -EINVAL;
2463 * First pixel of the framebuffer from
2464 * the start of the normal gtt mapping.
2466 intel_fb->normal[i].x = x;
2467 intel_fb->normal[i].y = y;
2469 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2470 fb, i, fb->pitches[i],
2471 DRM_ROTATE_0, tile_size);
2472 offset /= tile_size;
2474 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2475 unsigned int tile_width, tile_height;
2476 unsigned int pitch_tiles;
2477 struct drm_rect r;
2479 intel_tile_dims(fb, i, &tile_width, &tile_height);
2481 rot_info->plane[i].offset = offset;
2482 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2483 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2484 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2486 intel_fb->rotated[i].pitch =
2487 rot_info->plane[i].height * tile_height;
2489 /* how many tiles does this plane need */
2490 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2492 * If the plane isn't horizontally tile aligned,
2493 * we need one more tile.
2495 if (x != 0)
2496 size++;
2498 /* rotate the x/y offsets to match the GTT view */
2499 r.x1 = x;
2500 r.y1 = y;
2501 r.x2 = x + width;
2502 r.y2 = y + height;
2503 drm_rect_rotate(&r,
2504 rot_info->plane[i].width * tile_width,
2505 rot_info->plane[i].height * tile_height,
2506 DRM_ROTATE_270);
2507 x = r.x1;
2508 y = r.y1;
2510 /* rotate the tile dimensions to match the GTT view */
2511 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2512 swap(tile_width, tile_height);
2515 * We only keep the x/y offsets, so push all of the
2516 * gtt offset into the x/y offsets.
2518 _intel_adjust_tile_offset(&x, &y,
2519 tile_width, tile_height,
2520 tile_size, pitch_tiles,
2521 gtt_offset_rotated * tile_size, 0);
2523 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2526 * First pixel of the framebuffer from
2527 * the start of the rotated gtt mapping.
2529 intel_fb->rotated[i].x = x;
2530 intel_fb->rotated[i].y = y;
2531 } else {
2532 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2533 x * cpp, tile_size);
2536 /* how many tiles in total needed in the bo */
2537 max_size = max(max_size, offset + size);
2540 if (max_size * tile_size > intel_fb->obj->base.size) {
2541 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2542 max_size * tile_size, intel_fb->obj->base.size);
2543 return -EINVAL;
2546 return 0;
2549 static int i9xx_format_to_fourcc(int format)
2551 switch (format) {
2552 case DISPPLANE_8BPP:
2553 return DRM_FORMAT_C8;
2554 case DISPPLANE_BGRX555:
2555 return DRM_FORMAT_XRGB1555;
2556 case DISPPLANE_BGRX565:
2557 return DRM_FORMAT_RGB565;
2558 default:
2559 case DISPPLANE_BGRX888:
2560 return DRM_FORMAT_XRGB8888;
2561 case DISPPLANE_RGBX888:
2562 return DRM_FORMAT_XBGR8888;
2563 case DISPPLANE_BGRX101010:
2564 return DRM_FORMAT_XRGB2101010;
2565 case DISPPLANE_RGBX101010:
2566 return DRM_FORMAT_XBGR2101010;
2570 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2572 switch (format) {
2573 case PLANE_CTL_FORMAT_RGB_565:
2574 return DRM_FORMAT_RGB565;
2575 default:
2576 case PLANE_CTL_FORMAT_XRGB_8888:
2577 if (rgb_order) {
2578 if (alpha)
2579 return DRM_FORMAT_ABGR8888;
2580 else
2581 return DRM_FORMAT_XBGR8888;
2582 } else {
2583 if (alpha)
2584 return DRM_FORMAT_ARGB8888;
2585 else
2586 return DRM_FORMAT_XRGB8888;
2588 case PLANE_CTL_FORMAT_XRGB_2101010:
2589 if (rgb_order)
2590 return DRM_FORMAT_XBGR2101010;
2591 else
2592 return DRM_FORMAT_XRGB2101010;
2596 static bool
2597 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2598 struct intel_initial_plane_config *plane_config)
2600 struct drm_device *dev = crtc->base.dev;
2601 struct drm_i915_private *dev_priv = to_i915(dev);
2602 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2603 struct drm_i915_gem_object *obj = NULL;
2604 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2605 struct drm_framebuffer *fb = &plane_config->fb->base;
2606 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2607 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2608 PAGE_SIZE);
2610 size_aligned -= base_aligned;
2612 if (plane_config->size == 0)
2613 return false;
2615 /* If the FB is too big, just don't use it since fbdev is not very
2616 * important and we should probably use that space with FBC or other
2617 * features. */
2618 if (size_aligned * 2 > ggtt->stolen_usable_size)
2619 return false;
2621 mutex_lock(&dev->struct_mutex);
2622 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2623 base_aligned,
2624 base_aligned,
2625 size_aligned);
2626 mutex_unlock(&dev->struct_mutex);
2627 if (!obj)
2628 return false;
2630 if (plane_config->tiling == I915_TILING_X)
2631 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2633 mode_cmd.pixel_format = fb->format->format;
2634 mode_cmd.width = fb->width;
2635 mode_cmd.height = fb->height;
2636 mode_cmd.pitches[0] = fb->pitches[0];
2637 mode_cmd.modifier[0] = fb->modifier;
2638 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2640 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2641 DRM_DEBUG_KMS("intel fb init failed\n");
2642 goto out_unref_obj;
2646 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2647 return true;
2649 out_unref_obj:
2650 i915_gem_object_put(obj);
2651 return false;
2654 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2655 static void
2656 update_state_fb(struct drm_plane *plane)
2658 if (plane->fb == plane->state->fb)
2659 return;
2661 if (plane->state->fb)
2662 drm_framebuffer_unreference(plane->state->fb);
2663 plane->state->fb = plane->fb;
2664 if (plane->state->fb)
2665 drm_framebuffer_reference(plane->state->fb);
2668 static void
2669 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2670 struct intel_plane_state *plane_state,
2671 bool visible)
2673 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2675 plane_state->base.visible = visible;
2677 /* FIXME pre-g4x don't work like this */
2678 if (visible) {
2679 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2680 crtc_state->active_planes |= BIT(plane->id);
2681 } else {
2682 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2683 crtc_state->active_planes &= ~BIT(plane->id);
2686 DRM_DEBUG_KMS("%s active planes 0x%x\n",
2687 crtc_state->base.crtc->name,
2688 crtc_state->active_planes);
2691 static void
2692 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2693 struct intel_initial_plane_config *plane_config)
2695 struct drm_device *dev = intel_crtc->base.dev;
2696 struct drm_i915_private *dev_priv = to_i915(dev);
2697 struct drm_crtc *c;
2698 struct drm_i915_gem_object *obj;
2699 struct drm_plane *primary = intel_crtc->base.primary;
2700 struct drm_plane_state *plane_state = primary->state;
2701 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2702 struct intel_plane *intel_plane = to_intel_plane(primary);
2703 struct intel_plane_state *intel_state =
2704 to_intel_plane_state(plane_state);
2705 struct drm_framebuffer *fb;
2707 if (!plane_config->fb)
2708 return;
2710 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2711 fb = &plane_config->fb->base;
2712 goto valid_fb;
2715 kfree(plane_config->fb);
2718 * Failed to alloc the obj, check to see if we should share
2719 * an fb with another CRTC instead
2721 for_each_crtc(dev, c) {
2722 struct intel_plane_state *state;
2724 if (c == &intel_crtc->base)
2725 continue;
2727 if (!to_intel_crtc(c)->active)
2728 continue;
2730 state = to_intel_plane_state(c->primary->state);
2731 if (!state->vma)
2732 continue;
2734 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2735 fb = c->primary->fb;
2736 drm_framebuffer_reference(fb);
2737 goto valid_fb;
2742 * We've failed to reconstruct the BIOS FB. Current display state
2743 * indicates that the primary plane is visible, but has a NULL FB,
2744 * which will lead to problems later if we don't fix it up. The
2745 * simplest solution is to just disable the primary plane now and
2746 * pretend the BIOS never had it enabled.
2748 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2749 to_intel_plane_state(plane_state),
2750 false);
2751 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2752 trace_intel_disable_plane(primary, intel_crtc);
2753 intel_plane->disable_plane(primary, &intel_crtc->base);
2755 return;
2757 valid_fb:
2758 mutex_lock(&dev->struct_mutex);
2759 intel_state->vma =
2760 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2761 mutex_unlock(&dev->struct_mutex);
2762 if (IS_ERR(intel_state->vma)) {
2763 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2764 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2766 intel_state->vma = NULL;
2767 drm_framebuffer_unreference(fb);
2768 return;
2771 plane_state->src_x = 0;
2772 plane_state->src_y = 0;
2773 plane_state->src_w = fb->width << 16;
2774 plane_state->src_h = fb->height << 16;
2776 plane_state->crtc_x = 0;
2777 plane_state->crtc_y = 0;
2778 plane_state->crtc_w = fb->width;
2779 plane_state->crtc_h = fb->height;
2781 intel_state->base.src = drm_plane_state_src(plane_state);
2782 intel_state->base.dst = drm_plane_state_dest(plane_state);
2784 obj = intel_fb_obj(fb);
2785 if (i915_gem_object_is_tiled(obj))
2786 dev_priv->preserve_bios_swizzle = true;
2788 drm_framebuffer_reference(fb);
2789 primary->fb = primary->state->fb = fb;
2790 primary->crtc = primary->state->crtc = &intel_crtc->base;
2792 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2793 to_intel_plane_state(plane_state),
2794 true);
2796 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2797 &obj->frontbuffer_bits);
2800 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2801 unsigned int rotation)
2803 int cpp = fb->format->cpp[plane];
2805 switch (fb->modifier) {
2806 case DRM_FORMAT_MOD_LINEAR:
2807 case I915_FORMAT_MOD_X_TILED:
2808 switch (cpp) {
2809 case 8:
2810 return 4096;
2811 case 4:
2812 case 2:
2813 case 1:
2814 return 8192;
2815 default:
2816 MISSING_CASE(cpp);
2817 break;
2819 break;
2820 case I915_FORMAT_MOD_Y_TILED:
2821 case I915_FORMAT_MOD_Yf_TILED:
2822 switch (cpp) {
2823 case 8:
2824 return 2048;
2825 case 4:
2826 return 4096;
2827 case 2:
2828 case 1:
2829 return 8192;
2830 default:
2831 MISSING_CASE(cpp);
2832 break;
2834 break;
2835 default:
2836 MISSING_CASE(fb->modifier);
2839 return 2048;
2842 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2844 const struct drm_framebuffer *fb = plane_state->base.fb;
2845 unsigned int rotation = plane_state->base.rotation;
2846 int x = plane_state->base.src.x1 >> 16;
2847 int y = plane_state->base.src.y1 >> 16;
2848 int w = drm_rect_width(&plane_state->base.src) >> 16;
2849 int h = drm_rect_height(&plane_state->base.src) >> 16;
2850 int max_width = skl_max_plane_width(fb, 0, rotation);
2851 int max_height = 4096;
2852 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2854 if (w > max_width || h > max_height) {
2855 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2856 w, h, max_width, max_height);
2857 return -EINVAL;
2860 intel_add_fb_offsets(&x, &y, plane_state, 0);
2861 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2862 alignment = intel_surf_alignment(fb, 0);
2865 * AUX surface offset is specified as the distance from the
2866 * main surface offset, and it must be non-negative. Make
2867 * sure that is what we will get.
2869 if (offset > aux_offset)
2870 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2871 offset, aux_offset & ~(alignment - 1));
2874 * When using an X-tiled surface, the plane blows up
2875 * if the x offset + width exceed the stride.
2877 * TODO: linear and Y-tiled seem fine, Yf untested,
2879 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2880 int cpp = fb->format->cpp[0];
2882 while ((x + w) * cpp > fb->pitches[0]) {
2883 if (offset == 0) {
2884 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2885 return -EINVAL;
2888 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2889 offset, offset - alignment);
2893 plane_state->main.offset = offset;
2894 plane_state->main.x = x;
2895 plane_state->main.y = y;
2897 return 0;
2900 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2902 const struct drm_framebuffer *fb = plane_state->base.fb;
2903 unsigned int rotation = plane_state->base.rotation;
2904 int max_width = skl_max_plane_width(fb, 1, rotation);
2905 int max_height = 4096;
2906 int x = plane_state->base.src.x1 >> 17;
2907 int y = plane_state->base.src.y1 >> 17;
2908 int w = drm_rect_width(&plane_state->base.src) >> 17;
2909 int h = drm_rect_height(&plane_state->base.src) >> 17;
2910 u32 offset;
2912 intel_add_fb_offsets(&x, &y, plane_state, 1);
2913 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2915 /* FIXME not quite sure how/if these apply to the chroma plane */
2916 if (w > max_width || h > max_height) {
2917 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2918 w, h, max_width, max_height);
2919 return -EINVAL;
2922 plane_state->aux.offset = offset;
2923 plane_state->aux.x = x;
2924 plane_state->aux.y = y;
2926 return 0;
2929 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2931 const struct drm_framebuffer *fb = plane_state->base.fb;
2932 unsigned int rotation = plane_state->base.rotation;
2933 int ret;
2935 if (!plane_state->base.visible)
2936 return 0;
2938 /* Rotate src coordinates to match rotated GTT view */
2939 if (drm_rotation_90_or_270(rotation))
2940 drm_rect_rotate(&plane_state->base.src,
2941 fb->width << 16, fb->height << 16,
2942 DRM_ROTATE_270);
2945 * Handle the AUX surface first since
2946 * the main surface setup depends on it.
2948 if (fb->format->format == DRM_FORMAT_NV12) {
2949 ret = skl_check_nv12_aux_surface(plane_state);
2950 if (ret)
2951 return ret;
2952 } else {
2953 plane_state->aux.offset = ~0xfff;
2954 plane_state->aux.x = 0;
2955 plane_state->aux.y = 0;
2958 ret = skl_check_main_surface(plane_state);
2959 if (ret)
2960 return ret;
2962 return 0;
2965 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2966 const struct intel_plane_state *plane_state)
2968 struct drm_i915_private *dev_priv =
2969 to_i915(plane_state->base.plane->dev);
2970 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2971 const struct drm_framebuffer *fb = plane_state->base.fb;
2972 unsigned int rotation = plane_state->base.rotation;
2973 u32 dspcntr;
2975 dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2977 if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2978 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2979 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2981 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2982 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2984 if (INTEL_GEN(dev_priv) < 4) {
2985 if (crtc->pipe == PIPE_B)
2986 dspcntr |= DISPPLANE_SEL_PIPE_B;
2989 switch (fb->format->format) {
2990 case DRM_FORMAT_C8:
2991 dspcntr |= DISPPLANE_8BPP;
2992 break;
2993 case DRM_FORMAT_XRGB1555:
2994 dspcntr |= DISPPLANE_BGRX555;
2995 break;
2996 case DRM_FORMAT_RGB565:
2997 dspcntr |= DISPPLANE_BGRX565;
2998 break;
2999 case DRM_FORMAT_XRGB8888:
3000 dspcntr |= DISPPLANE_BGRX888;
3001 break;
3002 case DRM_FORMAT_XBGR8888:
3003 dspcntr |= DISPPLANE_RGBX888;
3004 break;
3005 case DRM_FORMAT_XRGB2101010:
3006 dspcntr |= DISPPLANE_BGRX101010;
3007 break;
3008 case DRM_FORMAT_XBGR2101010:
3009 dspcntr |= DISPPLANE_RGBX101010;
3010 break;
3011 default:
3012 MISSING_CASE(fb->format->format);
3013 return 0;
3016 if (INTEL_GEN(dev_priv) >= 4 &&
3017 fb->modifier == I915_FORMAT_MOD_X_TILED)
3018 dspcntr |= DISPPLANE_TILED;
3020 if (rotation & DRM_ROTATE_180)
3021 dspcntr |= DISPPLANE_ROTATE_180;
3023 if (rotation & DRM_REFLECT_X)
3024 dspcntr |= DISPPLANE_MIRROR;
3026 return dspcntr;
3029 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3031 struct drm_i915_private *dev_priv =
3032 to_i915(plane_state->base.plane->dev);
3033 int src_x = plane_state->base.src.x1 >> 16;
3034 int src_y = plane_state->base.src.y1 >> 16;
3035 u32 offset;
3037 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3039 if (INTEL_GEN(dev_priv) >= 4)
3040 offset = intel_compute_tile_offset(&src_x, &src_y,
3041 plane_state, 0);
3042 else
3043 offset = 0;
3045 /* HSW/BDW do this automagically in hardware */
3046 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3047 unsigned int rotation = plane_state->base.rotation;
3048 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3049 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3051 if (rotation & DRM_ROTATE_180) {
3052 src_x += src_w - 1;
3053 src_y += src_h - 1;
3054 } else if (rotation & DRM_REFLECT_X) {
3055 src_x += src_w - 1;
3059 plane_state->main.offset = offset;
3060 plane_state->main.x = src_x;
3061 plane_state->main.y = src_y;
3063 return 0;
3066 static void i9xx_update_primary_plane(struct drm_plane *primary,
3067 const struct intel_crtc_state *crtc_state,
3068 const struct intel_plane_state *plane_state)
3070 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3072 struct drm_framebuffer *fb = plane_state->base.fb;
3073 int plane = intel_crtc->plane;
3074 u32 linear_offset;
3075 u32 dspcntr = plane_state->ctl;
3076 i915_reg_t reg = DSPCNTR(plane);
3077 int x = plane_state->main.x;
3078 int y = plane_state->main.y;
3079 unsigned long irqflags;
3081 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3083 if (INTEL_GEN(dev_priv) >= 4)
3084 intel_crtc->dspaddr_offset = plane_state->main.offset;
3085 else
3086 intel_crtc->dspaddr_offset = linear_offset;
3088 intel_crtc->adjusted_x = x;
3089 intel_crtc->adjusted_y = y;
3091 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3093 if (INTEL_GEN(dev_priv) < 4) {
3094 /* pipesrc and dspsize control the size that is scaled from,
3095 * which should always be the user's requested size.
3097 I915_WRITE_FW(DSPSIZE(plane),
3098 ((crtc_state->pipe_src_h - 1) << 16) |
3099 (crtc_state->pipe_src_w - 1));
3100 I915_WRITE_FW(DSPPOS(plane), 0);
3101 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3102 I915_WRITE_FW(PRIMSIZE(plane),
3103 ((crtc_state->pipe_src_h - 1) << 16) |
3104 (crtc_state->pipe_src_w - 1));
3105 I915_WRITE_FW(PRIMPOS(plane), 0);
3106 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3109 I915_WRITE_FW(reg, dspcntr);
3111 I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3112 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3113 I915_WRITE_FW(DSPSURF(plane),
3114 intel_plane_ggtt_offset(plane_state) +
3115 intel_crtc->dspaddr_offset);
3116 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3117 } else if (INTEL_GEN(dev_priv) >= 4) {
3118 I915_WRITE_FW(DSPSURF(plane),
3119 intel_plane_ggtt_offset(plane_state) +
3120 intel_crtc->dspaddr_offset);
3121 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3122 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3123 } else {
3124 I915_WRITE_FW(DSPADDR(plane),
3125 intel_plane_ggtt_offset(plane_state) +
3126 intel_crtc->dspaddr_offset);
3128 POSTING_READ_FW(reg);
3130 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3133 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3134 struct drm_crtc *crtc)
3136 struct drm_device *dev = crtc->dev;
3137 struct drm_i915_private *dev_priv = to_i915(dev);
3138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3139 int plane = intel_crtc->plane;
3140 unsigned long irqflags;
3142 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3144 I915_WRITE_FW(DSPCNTR(plane), 0);
3145 if (INTEL_INFO(dev_priv)->gen >= 4)
3146 I915_WRITE_FW(DSPSURF(plane), 0);
3147 else
3148 I915_WRITE_FW(DSPADDR(plane), 0);
3149 POSTING_READ_FW(DSPCNTR(plane));
3151 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3154 static u32
3155 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3157 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3158 return 64;
3159 else
3160 return intel_tile_width_bytes(fb, plane);
3163 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3165 struct drm_device *dev = intel_crtc->base.dev;
3166 struct drm_i915_private *dev_priv = to_i915(dev);
3168 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3169 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3170 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3174 * This function detaches (aka. unbinds) unused scalers in hardware
3176 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3178 struct intel_crtc_scaler_state *scaler_state;
3179 int i;
3181 scaler_state = &intel_crtc->config->scaler_state;
3183 /* loop through and disable scalers that aren't in use */
3184 for (i = 0; i < intel_crtc->num_scalers; i++) {
3185 if (!scaler_state->scalers[i].in_use)
3186 skl_detach_scaler(intel_crtc, i);
3190 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3191 unsigned int rotation)
3193 u32 stride;
3195 if (plane >= fb->format->num_planes)
3196 return 0;
3198 stride = intel_fb_pitch(fb, plane, rotation);
3201 * The stride is either expressed as a multiple of 64 bytes chunks for
3202 * linear buffers or in number of tiles for tiled buffers.
3204 if (drm_rotation_90_or_270(rotation))
3205 stride /= intel_tile_height(fb, plane);
3206 else
3207 stride /= intel_fb_stride_alignment(fb, plane);
3209 return stride;
3212 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3214 switch (pixel_format) {
3215 case DRM_FORMAT_C8:
3216 return PLANE_CTL_FORMAT_INDEXED;
3217 case DRM_FORMAT_RGB565:
3218 return PLANE_CTL_FORMAT_RGB_565;
3219 case DRM_FORMAT_XBGR8888:
3220 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3221 case DRM_FORMAT_XRGB8888:
3222 return PLANE_CTL_FORMAT_XRGB_8888;
3224 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3225 * to be already pre-multiplied. We need to add a knob (or a different
3226 * DRM_FORMAT) for user-space to configure that.
3228 case DRM_FORMAT_ABGR8888:
3229 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3230 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3231 case DRM_FORMAT_ARGB8888:
3232 return PLANE_CTL_FORMAT_XRGB_8888 |
3233 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3234 case DRM_FORMAT_XRGB2101010:
3235 return PLANE_CTL_FORMAT_XRGB_2101010;
3236 case DRM_FORMAT_XBGR2101010:
3237 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3238 case DRM_FORMAT_YUYV:
3239 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3240 case DRM_FORMAT_YVYU:
3241 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3242 case DRM_FORMAT_UYVY:
3243 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3244 case DRM_FORMAT_VYUY:
3245 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3246 default:
3247 MISSING_CASE(pixel_format);
3250 return 0;
3253 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3255 switch (fb_modifier) {
3256 case DRM_FORMAT_MOD_LINEAR:
3257 break;
3258 case I915_FORMAT_MOD_X_TILED:
3259 return PLANE_CTL_TILED_X;
3260 case I915_FORMAT_MOD_Y_TILED:
3261 return PLANE_CTL_TILED_Y;
3262 case I915_FORMAT_MOD_Yf_TILED:
3263 return PLANE_CTL_TILED_YF;
3264 default:
3265 MISSING_CASE(fb_modifier);
3268 return 0;
3271 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3273 switch (rotation) {
3274 case DRM_ROTATE_0:
3275 break;
3277 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3278 * while i915 HW rotation is clockwise, thats why this swapping.
3280 case DRM_ROTATE_90:
3281 return PLANE_CTL_ROTATE_270;
3282 case DRM_ROTATE_180:
3283 return PLANE_CTL_ROTATE_180;
3284 case DRM_ROTATE_270:
3285 return PLANE_CTL_ROTATE_90;
3286 default:
3287 MISSING_CASE(rotation);
3290 return 0;
3293 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3294 const struct intel_plane_state *plane_state)
3296 struct drm_i915_private *dev_priv =
3297 to_i915(plane_state->base.plane->dev);
3298 const struct drm_framebuffer *fb = plane_state->base.fb;
3299 unsigned int rotation = plane_state->base.rotation;
3300 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3301 u32 plane_ctl;
3303 plane_ctl = PLANE_CTL_ENABLE;
3305 if (!IS_GEMINILAKE(dev_priv)) {
3306 plane_ctl |=
3307 PLANE_CTL_PIPE_GAMMA_ENABLE |
3308 PLANE_CTL_PIPE_CSC_ENABLE |
3309 PLANE_CTL_PLANE_GAMMA_DISABLE;
3312 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3313 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3314 plane_ctl |= skl_plane_ctl_rotation(rotation);
3316 if (key->flags & I915_SET_COLORKEY_DESTINATION)
3317 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3318 else if (key->flags & I915_SET_COLORKEY_SOURCE)
3319 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3321 return plane_ctl;
3324 static void skylake_update_primary_plane(struct drm_plane *plane,
3325 const struct intel_crtc_state *crtc_state,
3326 const struct intel_plane_state *plane_state)
3328 struct drm_device *dev = plane->dev;
3329 struct drm_i915_private *dev_priv = to_i915(dev);
3330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3331 struct drm_framebuffer *fb = plane_state->base.fb;
3332 enum plane_id plane_id = to_intel_plane(plane)->id;
3333 enum pipe pipe = to_intel_plane(plane)->pipe;
3334 u32 plane_ctl = plane_state->ctl;
3335 unsigned int rotation = plane_state->base.rotation;
3336 u32 stride = skl_plane_stride(fb, 0, rotation);
3337 u32 surf_addr = plane_state->main.offset;
3338 int scaler_id = plane_state->scaler_id;
3339 int src_x = plane_state->main.x;
3340 int src_y = plane_state->main.y;
3341 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3342 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3343 int dst_x = plane_state->base.dst.x1;
3344 int dst_y = plane_state->base.dst.y1;
3345 int dst_w = drm_rect_width(&plane_state->base.dst);
3346 int dst_h = drm_rect_height(&plane_state->base.dst);
3347 unsigned long irqflags;
3349 /* Sizes are 0 based */
3350 src_w--;
3351 src_h--;
3352 dst_w--;
3353 dst_h--;
3355 intel_crtc->dspaddr_offset = surf_addr;
3357 intel_crtc->adjusted_x = src_x;
3358 intel_crtc->adjusted_y = src_y;
3360 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3362 if (IS_GEMINILAKE(dev_priv)) {
3363 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3364 PLANE_COLOR_PIPE_GAMMA_ENABLE |
3365 PLANE_COLOR_PIPE_CSC_ENABLE |
3366 PLANE_COLOR_PLANE_GAMMA_DISABLE);
3369 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3370 I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3371 I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3372 I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3374 if (scaler_id >= 0) {
3375 uint32_t ps_ctrl = 0;
3377 WARN_ON(!dst_w || !dst_h);
3378 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3379 crtc_state->scaler_state.scalers[scaler_id].mode;
3380 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3381 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3382 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3383 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3384 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3385 } else {
3386 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3389 I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3390 intel_plane_ggtt_offset(plane_state) + surf_addr);
3392 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3394 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3397 static void skylake_disable_primary_plane(struct drm_plane *primary,
3398 struct drm_crtc *crtc)
3400 struct drm_device *dev = crtc->dev;
3401 struct drm_i915_private *dev_priv = to_i915(dev);
3402 enum plane_id plane_id = to_intel_plane(primary)->id;
3403 enum pipe pipe = to_intel_plane(primary)->pipe;
3404 unsigned long irqflags;
3406 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3408 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3409 I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3410 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3412 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3415 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3417 struct intel_crtc *crtc;
3419 for_each_intel_crtc(&dev_priv->drm, crtc)
3420 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3423 static void intel_update_primary_planes(struct drm_device *dev)
3425 struct drm_crtc *crtc;
3427 for_each_crtc(dev, crtc) {
3428 struct intel_plane *plane = to_intel_plane(crtc->primary);
3429 struct intel_plane_state *plane_state =
3430 to_intel_plane_state(plane->base.state);
3432 if (plane_state->base.visible) {
3433 trace_intel_update_plane(&plane->base,
3434 to_intel_crtc(crtc));
3436 plane->update_plane(&plane->base,
3437 to_intel_crtc_state(crtc->state),
3438 plane_state);
3443 static int
3444 __intel_display_resume(struct drm_device *dev,
3445 struct drm_atomic_state *state,
3446 struct drm_modeset_acquire_ctx *ctx)
3448 struct drm_crtc_state *crtc_state;
3449 struct drm_crtc *crtc;
3450 int i, ret;
3452 intel_modeset_setup_hw_state(dev);
3453 i915_redisable_vga(to_i915(dev));
3455 if (!state)
3456 return 0;
3459 * We've duplicated the state, pointers to the old state are invalid.
3461 * Don't attempt to use the old state until we commit the duplicated state.
3463 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3465 * Force recalculation even if we restore
3466 * current state. With fast modeset this may not result
3467 * in a modeset when the state is compatible.
3469 crtc_state->mode_changed = true;
3472 /* ignore any reset values/BIOS leftovers in the WM registers */
3473 if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3474 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3476 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3478 WARN_ON(ret == -EDEADLK);
3479 return ret;
3482 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3484 return intel_has_gpu_reset(dev_priv) &&
3485 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3488 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3490 struct drm_device *dev = &dev_priv->drm;
3491 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3492 struct drm_atomic_state *state;
3493 int ret;
3496 * Need mode_config.mutex so that we don't
3497 * trample ongoing ->detect() and whatnot.
3499 mutex_lock(&dev->mode_config.mutex);
3500 drm_modeset_acquire_init(ctx, 0);
3501 while (1) {
3502 ret = drm_modeset_lock_all_ctx(dev, ctx);
3503 if (ret != -EDEADLK)
3504 break;
3506 drm_modeset_backoff(ctx);
3509 /* reset doesn't touch the display, but flips might get nuked anyway, */
3510 if (!i915.force_reset_modeset_test &&
3511 !gpu_reset_clobbers_display(dev_priv))
3512 return;
3515 * Disabling the crtcs gracefully seems nicer. Also the
3516 * g33 docs say we should at least disable all the planes.
3518 state = drm_atomic_helper_duplicate_state(dev, ctx);
3519 if (IS_ERR(state)) {
3520 ret = PTR_ERR(state);
3521 DRM_ERROR("Duplicating state failed with %i\n", ret);
3522 return;
3525 ret = drm_atomic_helper_disable_all(dev, ctx);
3526 if (ret) {
3527 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3528 drm_atomic_state_put(state);
3529 return;
3532 dev_priv->modeset_restore_state = state;
3533 state->acquire_ctx = ctx;
3536 void intel_finish_reset(struct drm_i915_private *dev_priv)
3538 struct drm_device *dev = &dev_priv->drm;
3539 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3540 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3541 int ret;
3544 * Flips in the rings will be nuked by the reset,
3545 * so complete all pending flips so that user space
3546 * will get its events and not get stuck.
3548 intel_complete_page_flips(dev_priv);
3550 dev_priv->modeset_restore_state = NULL;
3552 /* reset doesn't touch the display */
3553 if (!gpu_reset_clobbers_display(dev_priv)) {
3554 if (!state) {
3556 * Flips in the rings have been nuked by the reset,
3557 * so update the base address of all primary
3558 * planes to the the last fb to make sure we're
3559 * showing the correct fb after a reset.
3561 * FIXME: Atomic will make this obsolete since we won't schedule
3562 * CS-based flips (which might get lost in gpu resets) any more.
3564 intel_update_primary_planes(dev);
3565 } else {
3566 ret = __intel_display_resume(dev, state, ctx);
3567 if (ret)
3568 DRM_ERROR("Restoring old state failed with %i\n", ret);
3570 } else {
3572 * The display has been reset as well,
3573 * so need a full re-initialization.
3575 intel_runtime_pm_disable_interrupts(dev_priv);
3576 intel_runtime_pm_enable_interrupts(dev_priv);
3578 intel_pps_unlock_regs_wa(dev_priv);
3579 intel_modeset_init_hw(dev);
3581 spin_lock_irq(&dev_priv->irq_lock);
3582 if (dev_priv->display.hpd_irq_setup)
3583 dev_priv->display.hpd_irq_setup(dev_priv);
3584 spin_unlock_irq(&dev_priv->irq_lock);
3586 ret = __intel_display_resume(dev, state, ctx);
3587 if (ret)
3588 DRM_ERROR("Restoring old state failed with %i\n", ret);
3590 intel_hpd_init(dev_priv);
3593 if (state)
3594 drm_atomic_state_put(state);
3595 drm_modeset_drop_locks(ctx);
3596 drm_modeset_acquire_fini(ctx);
3597 mutex_unlock(&dev->mode_config.mutex);
3600 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3602 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3604 if (i915_reset_backoff(error))
3605 return true;
3607 if (crtc->reset_count != i915_reset_count(error))
3608 return true;
3610 return false;
3613 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3615 struct drm_device *dev = crtc->dev;
3616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617 bool pending;
3619 if (abort_flip_on_reset(intel_crtc))
3620 return false;
3622 spin_lock_irq(&dev->event_lock);
3623 pending = to_intel_crtc(crtc)->flip_work != NULL;
3624 spin_unlock_irq(&dev->event_lock);
3626 return pending;
3629 static void intel_update_pipe_config(struct intel_crtc *crtc,
3630 struct intel_crtc_state *old_crtc_state)
3632 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3633 struct intel_crtc_state *pipe_config =
3634 to_intel_crtc_state(crtc->base.state);
3636 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3637 crtc->base.mode = crtc->base.state->mode;
3640 * Update pipe size and adjust fitter if needed: the reason for this is
3641 * that in compute_mode_changes we check the native mode (not the pfit
3642 * mode) to see if we can flip rather than do a full mode set. In the
3643 * fastboot case, we'll flip, but if we don't update the pipesrc and
3644 * pfit state, we'll end up with a big fb scanned out into the wrong
3645 * sized surface.
3648 I915_WRITE(PIPESRC(crtc->pipe),
3649 ((pipe_config->pipe_src_w - 1) << 16) |
3650 (pipe_config->pipe_src_h - 1));
3652 /* on skylake this is done by detaching scalers */
3653 if (INTEL_GEN(dev_priv) >= 9) {
3654 skl_detach_scalers(crtc);
3656 if (pipe_config->pch_pfit.enabled)
3657 skylake_pfit_enable(crtc);
3658 } else if (HAS_PCH_SPLIT(dev_priv)) {
3659 if (pipe_config->pch_pfit.enabled)
3660 ironlake_pfit_enable(crtc);
3661 else if (old_crtc_state->pch_pfit.enabled)
3662 ironlake_pfit_disable(crtc, true);
3666 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3668 struct drm_device *dev = crtc->base.dev;
3669 struct drm_i915_private *dev_priv = to_i915(dev);
3670 int pipe = crtc->pipe;
3671 i915_reg_t reg;
3672 u32 temp;
3674 /* enable normal train */
3675 reg = FDI_TX_CTL(pipe);
3676 temp = I915_READ(reg);
3677 if (IS_IVYBRIDGE(dev_priv)) {
3678 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3679 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3680 } else {
3681 temp &= ~FDI_LINK_TRAIN_NONE;
3682 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3684 I915_WRITE(reg, temp);
3686 reg = FDI_RX_CTL(pipe);
3687 temp = I915_READ(reg);
3688 if (HAS_PCH_CPT(dev_priv)) {
3689 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3690 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3691 } else {
3692 temp &= ~FDI_LINK_TRAIN_NONE;
3693 temp |= FDI_LINK_TRAIN_NONE;
3695 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3697 /* wait one idle pattern time */
3698 POSTING_READ(reg);
3699 udelay(1000);
3701 /* IVB wants error correction enabled */
3702 if (IS_IVYBRIDGE(dev_priv))
3703 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3704 FDI_FE_ERRC_ENABLE);
3707 /* The FDI link training functions for ILK/Ibexpeak. */
3708 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3709 const struct intel_crtc_state *crtc_state)
3711 struct drm_device *dev = crtc->base.dev;
3712 struct drm_i915_private *dev_priv = to_i915(dev);
3713 int pipe = crtc->pipe;
3714 i915_reg_t reg;
3715 u32 temp, tries;
3717 /* FDI needs bits from pipe first */
3718 assert_pipe_enabled(dev_priv, pipe);
3720 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3721 for train result */
3722 reg = FDI_RX_IMR(pipe);
3723 temp = I915_READ(reg);
3724 temp &= ~FDI_RX_SYMBOL_LOCK;
3725 temp &= ~FDI_RX_BIT_LOCK;
3726 I915_WRITE(reg, temp);
3727 I915_READ(reg);
3728 udelay(150);
3730 /* enable CPU FDI TX and PCH FDI RX */
3731 reg = FDI_TX_CTL(pipe);
3732 temp = I915_READ(reg);
3733 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3734 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3735 temp &= ~FDI_LINK_TRAIN_NONE;
3736 temp |= FDI_LINK_TRAIN_PATTERN_1;
3737 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3739 reg = FDI_RX_CTL(pipe);
3740 temp = I915_READ(reg);
3741 temp &= ~FDI_LINK_TRAIN_NONE;
3742 temp |= FDI_LINK_TRAIN_PATTERN_1;
3743 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3745 POSTING_READ(reg);
3746 udelay(150);
3748 /* Ironlake workaround, enable clock pointer after FDI enable*/
3749 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3750 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3751 FDI_RX_PHASE_SYNC_POINTER_EN);
3753 reg = FDI_RX_IIR(pipe);
3754 for (tries = 0; tries < 5; tries++) {
3755 temp = I915_READ(reg);
3756 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3758 if ((temp & FDI_RX_BIT_LOCK)) {
3759 DRM_DEBUG_KMS("FDI train 1 done.\n");
3760 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3761 break;
3764 if (tries == 5)
3765 DRM_ERROR("FDI train 1 fail!\n");
3767 /* Train 2 */
3768 reg = FDI_TX_CTL(pipe);
3769 temp = I915_READ(reg);
3770 temp &= ~FDI_LINK_TRAIN_NONE;
3771 temp |= FDI_LINK_TRAIN_PATTERN_2;
3772 I915_WRITE(reg, temp);
3774 reg = FDI_RX_CTL(pipe);
3775 temp = I915_READ(reg);
3776 temp &= ~FDI_LINK_TRAIN_NONE;
3777 temp |= FDI_LINK_TRAIN_PATTERN_2;
3778 I915_WRITE(reg, temp);
3780 POSTING_READ(reg);
3781 udelay(150);
3783 reg = FDI_RX_IIR(pipe);
3784 for (tries = 0; tries < 5; tries++) {
3785 temp = I915_READ(reg);
3786 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3788 if (temp & FDI_RX_SYMBOL_LOCK) {
3789 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3790 DRM_DEBUG_KMS("FDI train 2 done.\n");
3791 break;
3794 if (tries == 5)
3795 DRM_ERROR("FDI train 2 fail!\n");
3797 DRM_DEBUG_KMS("FDI train done\n");
3801 static const int snb_b_fdi_train_param[] = {
3802 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3803 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3804 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3805 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3808 /* The FDI link training functions for SNB/Cougarpoint. */
3809 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3810 const struct intel_crtc_state *crtc_state)
3812 struct drm_device *dev = crtc->base.dev;
3813 struct drm_i915_private *dev_priv = to_i915(dev);
3814 int pipe = crtc->pipe;
3815 i915_reg_t reg;
3816 u32 temp, i, retry;
3818 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3819 for train result */
3820 reg = FDI_RX_IMR(pipe);
3821 temp = I915_READ(reg);
3822 temp &= ~FDI_RX_SYMBOL_LOCK;
3823 temp &= ~FDI_RX_BIT_LOCK;
3824 I915_WRITE(reg, temp);
3826 POSTING_READ(reg);
3827 udelay(150);
3829 /* enable CPU FDI TX and PCH FDI RX */
3830 reg = FDI_TX_CTL(pipe);
3831 temp = I915_READ(reg);
3832 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3833 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3834 temp &= ~FDI_LINK_TRAIN_NONE;
3835 temp |= FDI_LINK_TRAIN_PATTERN_1;
3836 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3837 /* SNB-B */
3838 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3839 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3841 I915_WRITE(FDI_RX_MISC(pipe),
3842 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3844 reg = FDI_RX_CTL(pipe);
3845 temp = I915_READ(reg);
3846 if (HAS_PCH_CPT(dev_priv)) {
3847 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3848 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3849 } else {
3850 temp &= ~FDI_LINK_TRAIN_NONE;
3851 temp |= FDI_LINK_TRAIN_PATTERN_1;
3853 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3855 POSTING_READ(reg);
3856 udelay(150);
3858 for (i = 0; i < 4; i++) {
3859 reg = FDI_TX_CTL(pipe);
3860 temp = I915_READ(reg);
3861 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3862 temp |= snb_b_fdi_train_param[i];
3863 I915_WRITE(reg, temp);
3865 POSTING_READ(reg);
3866 udelay(500);
3868 for (retry = 0; retry < 5; retry++) {
3869 reg = FDI_RX_IIR(pipe);
3870 temp = I915_READ(reg);
3871 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3872 if (temp & FDI_RX_BIT_LOCK) {
3873 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3874 DRM_DEBUG_KMS("FDI train 1 done.\n");
3875 break;
3877 udelay(50);
3879 if (retry < 5)
3880 break;
3882 if (i == 4)
3883 DRM_ERROR("FDI train 1 fail!\n");
3885 /* Train 2 */
3886 reg = FDI_TX_CTL(pipe);
3887 temp = I915_READ(reg);
3888 temp &= ~FDI_LINK_TRAIN_NONE;
3889 temp |= FDI_LINK_TRAIN_PATTERN_2;
3890 if (IS_GEN6(dev_priv)) {
3891 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3892 /* SNB-B */
3893 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3895 I915_WRITE(reg, temp);
3897 reg = FDI_RX_CTL(pipe);
3898 temp = I915_READ(reg);
3899 if (HAS_PCH_CPT(dev_priv)) {
3900 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3901 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3902 } else {
3903 temp &= ~FDI_LINK_TRAIN_NONE;
3904 temp |= FDI_LINK_TRAIN_PATTERN_2;
3906 I915_WRITE(reg, temp);
3908 POSTING_READ(reg);
3909 udelay(150);
3911 for (i = 0; i < 4; i++) {
3912 reg = FDI_TX_CTL(pipe);
3913 temp = I915_READ(reg);
3914 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3915 temp |= snb_b_fdi_train_param[i];
3916 I915_WRITE(reg, temp);
3918 POSTING_READ(reg);
3919 udelay(500);
3921 for (retry = 0; retry < 5; retry++) {
3922 reg = FDI_RX_IIR(pipe);
3923 temp = I915_READ(reg);
3924 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3925 if (temp & FDI_RX_SYMBOL_LOCK) {
3926 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3927 DRM_DEBUG_KMS("FDI train 2 done.\n");
3928 break;
3930 udelay(50);
3932 if (retry < 5)
3933 break;
3935 if (i == 4)
3936 DRM_ERROR("FDI train 2 fail!\n");
3938 DRM_DEBUG_KMS("FDI train done.\n");
3941 /* Manual link training for Ivy Bridge A0 parts */
3942 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3943 const struct intel_crtc_state *crtc_state)
3945 struct drm_device *dev = crtc->base.dev;
3946 struct drm_i915_private *dev_priv = to_i915(dev);
3947 int pipe = crtc->pipe;
3948 i915_reg_t reg;
3949 u32 temp, i, j;
3951 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3952 for train result */
3953 reg = FDI_RX_IMR(pipe);
3954 temp = I915_READ(reg);
3955 temp &= ~FDI_RX_SYMBOL_LOCK;
3956 temp &= ~FDI_RX_BIT_LOCK;
3957 I915_WRITE(reg, temp);
3959 POSTING_READ(reg);
3960 udelay(150);
3962 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3963 I915_READ(FDI_RX_IIR(pipe)));
3965 /* Try each vswing and preemphasis setting twice before moving on */
3966 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3967 /* disable first in case we need to retry */
3968 reg = FDI_TX_CTL(pipe);
3969 temp = I915_READ(reg);
3970 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3971 temp &= ~FDI_TX_ENABLE;
3972 I915_WRITE(reg, temp);
3974 reg = FDI_RX_CTL(pipe);
3975 temp = I915_READ(reg);
3976 temp &= ~FDI_LINK_TRAIN_AUTO;
3977 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3978 temp &= ~FDI_RX_ENABLE;
3979 I915_WRITE(reg, temp);
3981 /* enable CPU FDI TX and PCH FDI RX */
3982 reg = FDI_TX_CTL(pipe);
3983 temp = I915_READ(reg);
3984 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3985 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3986 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3987 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3988 temp |= snb_b_fdi_train_param[j/2];
3989 temp |= FDI_COMPOSITE_SYNC;
3990 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3992 I915_WRITE(FDI_RX_MISC(pipe),
3993 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3995 reg = FDI_RX_CTL(pipe);
3996 temp = I915_READ(reg);
3997 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3998 temp |= FDI_COMPOSITE_SYNC;
3999 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4001 POSTING_READ(reg);
4002 udelay(1); /* should be 0.5us */
4004 for (i = 0; i < 4; i++) {
4005 reg = FDI_RX_IIR(pipe);
4006 temp = I915_READ(reg);
4007 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4009 if (temp & FDI_RX_BIT_LOCK ||
4010 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4011 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4012 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4014 break;
4016 udelay(1); /* should be 0.5us */
4018 if (i == 4) {
4019 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4020 continue;
4023 /* Train 2 */
4024 reg = FDI_TX_CTL(pipe);
4025 temp = I915_READ(reg);
4026 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4027 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4028 I915_WRITE(reg, temp);
4030 reg = FDI_RX_CTL(pipe);
4031 temp = I915_READ(reg);
4032 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4033 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4034 I915_WRITE(reg, temp);
4036 POSTING_READ(reg);
4037 udelay(2); /* should be 1.5us */
4039 for (i = 0; i < 4; i++) {
4040 reg = FDI_RX_IIR(pipe);
4041 temp = I915_READ(reg);
4042 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4044 if (temp & FDI_RX_SYMBOL_LOCK ||
4045 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4046 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4047 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4049 goto train_done;
4051 udelay(2); /* should be 1.5us */
4053 if (i == 4)
4054 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4057 train_done:
4058 DRM_DEBUG_KMS("FDI train done.\n");
4061 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4063 struct drm_device *dev = intel_crtc->base.dev;
4064 struct drm_i915_private *dev_priv = to_i915(dev);
4065 int pipe = intel_crtc->pipe;
4066 i915_reg_t reg;
4067 u32 temp;
4069 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4070 reg = FDI_RX_CTL(pipe);
4071 temp = I915_READ(reg);
4072 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4073 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4074 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4075 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4077 POSTING_READ(reg);
4078 udelay(200);
4080 /* Switch from Rawclk to PCDclk */
4081 temp = I915_READ(reg);
4082 I915_WRITE(reg, temp | FDI_PCDCLK);
4084 POSTING_READ(reg);
4085 udelay(200);
4087 /* Enable CPU FDI TX PLL, always on for Ironlake */
4088 reg = FDI_TX_CTL(pipe);
4089 temp = I915_READ(reg);
4090 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4091 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4093 POSTING_READ(reg);
4094 udelay(100);
4098 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4100 struct drm_device *dev = intel_crtc->base.dev;
4101 struct drm_i915_private *dev_priv = to_i915(dev);
4102 int pipe = intel_crtc->pipe;
4103 i915_reg_t reg;
4104 u32 temp;
4106 /* Switch from PCDclk to Rawclk */
4107 reg = FDI_RX_CTL(pipe);
4108 temp = I915_READ(reg);
4109 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4111 /* Disable CPU FDI TX PLL */
4112 reg = FDI_TX_CTL(pipe);
4113 temp = I915_READ(reg);
4114 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4116 POSTING_READ(reg);
4117 udelay(100);
4119 reg = FDI_RX_CTL(pipe);
4120 temp = I915_READ(reg);
4121 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4123 /* Wait for the clocks to turn off. */
4124 POSTING_READ(reg);
4125 udelay(100);
4128 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4130 struct drm_device *dev = crtc->dev;
4131 struct drm_i915_private *dev_priv = to_i915(dev);
4132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4133 int pipe = intel_crtc->pipe;
4134 i915_reg_t reg;
4135 u32 temp;
4137 /* disable CPU FDI tx and PCH FDI rx */
4138 reg = FDI_TX_CTL(pipe);
4139 temp = I915_READ(reg);
4140 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4141 POSTING_READ(reg);
4143 reg = FDI_RX_CTL(pipe);
4144 temp = I915_READ(reg);
4145 temp &= ~(0x7 << 16);
4146 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4147 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4149 POSTING_READ(reg);
4150 udelay(100);
4152 /* Ironlake workaround, disable clock pointer after downing FDI */
4153 if (HAS_PCH_IBX(dev_priv))
4154 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4156 /* still set train pattern 1 */
4157 reg = FDI_TX_CTL(pipe);
4158 temp = I915_READ(reg);
4159 temp &= ~FDI_LINK_TRAIN_NONE;
4160 temp |= FDI_LINK_TRAIN_PATTERN_1;
4161 I915_WRITE(reg, temp);
4163 reg = FDI_RX_CTL(pipe);
4164 temp = I915_READ(reg);
4165 if (HAS_PCH_CPT(dev_priv)) {
4166 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4167 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4168 } else {
4169 temp &= ~FDI_LINK_TRAIN_NONE;
4170 temp |= FDI_LINK_TRAIN_PATTERN_1;
4172 /* BPC in FDI rx is consistent with that in PIPECONF */
4173 temp &= ~(0x07 << 16);
4174 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4175 I915_WRITE(reg, temp);
4177 POSTING_READ(reg);
4178 udelay(100);
4181 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4183 struct intel_crtc *crtc;
4185 /* Note that we don't need to be called with mode_config.lock here
4186 * as our list of CRTC objects is static for the lifetime of the
4187 * device and so cannot disappear as we iterate. Similarly, we can
4188 * happily treat the predicates as racy, atomic checks as userspace
4189 * cannot claim and pin a new fb without at least acquring the
4190 * struct_mutex and so serialising with us.
4192 for_each_intel_crtc(&dev_priv->drm, crtc) {
4193 if (atomic_read(&crtc->unpin_work_count) == 0)
4194 continue;
4196 if (crtc->flip_work)
4197 intel_wait_for_vblank(dev_priv, crtc->pipe);
4199 return true;
4202 return false;
4205 static void page_flip_completed(struct intel_crtc *intel_crtc)
4207 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4208 struct intel_flip_work *work = intel_crtc->flip_work;
4210 intel_crtc->flip_work = NULL;
4212 if (work->event)
4213 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4215 drm_crtc_vblank_put(&intel_crtc->base);
4217 wake_up_all(&dev_priv->pending_flip_queue);
4218 trace_i915_flip_complete(intel_crtc->plane,
4219 work->pending_flip_obj);
4221 queue_work(dev_priv->wq, &work->unpin_work);
4224 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4226 struct drm_device *dev = crtc->dev;
4227 struct drm_i915_private *dev_priv = to_i915(dev);
4228 long ret;
4230 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4232 ret = wait_event_interruptible_timeout(
4233 dev_priv->pending_flip_queue,
4234 !intel_crtc_has_pending_flip(crtc),
4235 60*HZ);
4237 if (ret < 0)
4238 return ret;
4240 if (ret == 0) {
4241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4242 struct intel_flip_work *work;
4244 spin_lock_irq(&dev->event_lock);
4245 work = intel_crtc->flip_work;
4246 if (work && !is_mmio_work(work)) {
4247 WARN_ONCE(1, "Removing stuck page flip\n");
4248 page_flip_completed(intel_crtc);
4250 spin_unlock_irq(&dev->event_lock);
4253 return 0;
4256 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4258 u32 temp;
4260 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4262 mutex_lock(&dev_priv->sb_lock);
4264 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4265 temp |= SBI_SSCCTL_DISABLE;
4266 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4268 mutex_unlock(&dev_priv->sb_lock);
4271 /* Program iCLKIP clock to the desired frequency */
4272 static void lpt_program_iclkip(struct intel_crtc *crtc)
4274 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4275 int clock = crtc->config->base.adjusted_mode.crtc_clock;
4276 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4277 u32 temp;
4279 lpt_disable_iclkip(dev_priv);
4281 /* The iCLK virtual clock root frequency is in MHz,
4282 * but the adjusted_mode->crtc_clock in in KHz. To get the
4283 * divisors, it is necessary to divide one by another, so we
4284 * convert the virtual clock precision to KHz here for higher
4285 * precision.
4287 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4288 u32 iclk_virtual_root_freq = 172800 * 1000;
4289 u32 iclk_pi_range = 64;
4290 u32 desired_divisor;
4292 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4293 clock << auxdiv);
4294 divsel = (desired_divisor / iclk_pi_range) - 2;
4295 phaseinc = desired_divisor % iclk_pi_range;
4298 * Near 20MHz is a corner case which is
4299 * out of range for the 7-bit divisor
4301 if (divsel <= 0x7f)
4302 break;
4305 /* This should not happen with any sane values */
4306 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4307 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4308 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4309 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4311 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4312 clock,
4313 auxdiv,
4314 divsel,
4315 phasedir,
4316 phaseinc);
4318 mutex_lock(&dev_priv->sb_lock);
4320 /* Program SSCDIVINTPHASE6 */
4321 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4322 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4323 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4324 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4325 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4326 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4327 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4328 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4330 /* Program SSCAUXDIV */
4331 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4332 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4333 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4334 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4336 /* Enable modulator and associated divider */
4337 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4338 temp &= ~SBI_SSCCTL_DISABLE;
4339 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4341 mutex_unlock(&dev_priv->sb_lock);
4343 /* Wait for initialization time */
4344 udelay(24);
4346 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4349 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4351 u32 divsel, phaseinc, auxdiv;
4352 u32 iclk_virtual_root_freq = 172800 * 1000;
4353 u32 iclk_pi_range = 64;
4354 u32 desired_divisor;
4355 u32 temp;
4357 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4358 return 0;
4360 mutex_lock(&dev_priv->sb_lock);
4362 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4363 if (temp & SBI_SSCCTL_DISABLE) {
4364 mutex_unlock(&dev_priv->sb_lock);
4365 return 0;
4368 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4369 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4370 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4371 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4372 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4374 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4375 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4376 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4378 mutex_unlock(&dev_priv->sb_lock);
4380 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4382 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4383 desired_divisor << auxdiv);
4386 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4387 enum pipe pch_transcoder)
4389 struct drm_device *dev = crtc->base.dev;
4390 struct drm_i915_private *dev_priv = to_i915(dev);
4391 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4393 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4394 I915_READ(HTOTAL(cpu_transcoder)));
4395 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4396 I915_READ(HBLANK(cpu_transcoder)));
4397 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4398 I915_READ(HSYNC(cpu_transcoder)));
4400 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4401 I915_READ(VTOTAL(cpu_transcoder)));
4402 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4403 I915_READ(VBLANK(cpu_transcoder)));
4404 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4405 I915_READ(VSYNC(cpu_transcoder)));
4406 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4407 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4410 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4412 struct drm_i915_private *dev_priv = to_i915(dev);
4413 uint32_t temp;
4415 temp = I915_READ(SOUTH_CHICKEN1);
4416 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4417 return;
4419 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4420 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4422 temp &= ~FDI_BC_BIFURCATION_SELECT;
4423 if (enable)
4424 temp |= FDI_BC_BIFURCATION_SELECT;
4426 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4427 I915_WRITE(SOUTH_CHICKEN1, temp);
4428 POSTING_READ(SOUTH_CHICKEN1);
4431 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4433 struct drm_device *dev = intel_crtc->base.dev;
4435 switch (intel_crtc->pipe) {
4436 case PIPE_A:
4437 break;
4438 case PIPE_B:
4439 if (intel_crtc->config->fdi_lanes > 2)
4440 cpt_set_fdi_bc_bifurcation(dev, false);
4441 else
4442 cpt_set_fdi_bc_bifurcation(dev, true);
4444 break;
4445 case PIPE_C:
4446 cpt_set_fdi_bc_bifurcation(dev, true);
4448 break;
4449 default:
4450 BUG();
4454 /* Return which DP Port should be selected for Transcoder DP control */
4455 static enum port
4456 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4458 struct drm_device *dev = crtc->base.dev;
4459 struct intel_encoder *encoder;
4461 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4462 if (encoder->type == INTEL_OUTPUT_DP ||
4463 encoder->type == INTEL_OUTPUT_EDP)
4464 return enc_to_dig_port(&encoder->base)->port;
4467 return -1;
4471 * Enable PCH resources required for PCH ports:
4472 * - PCH PLLs
4473 * - FDI training & RX/TX
4474 * - update transcoder timings
4475 * - DP transcoding bits
4476 * - transcoder
4478 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4480 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4481 struct drm_device *dev = crtc->base.dev;
4482 struct drm_i915_private *dev_priv = to_i915(dev);
4483 int pipe = crtc->pipe;
4484 u32 temp;
4486 assert_pch_transcoder_disabled(dev_priv, pipe);
4488 if (IS_IVYBRIDGE(dev_priv))
4489 ivybridge_update_fdi_bc_bifurcation(crtc);
4491 /* Write the TU size bits before fdi link training, so that error
4492 * detection works. */
4493 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4494 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4496 /* For PCH output, training FDI link */
4497 dev_priv->display.fdi_link_train(crtc, crtc_state);
4499 /* We need to program the right clock selection before writing the pixel
4500 * mutliplier into the DPLL. */
4501 if (HAS_PCH_CPT(dev_priv)) {
4502 u32 sel;
4504 temp = I915_READ(PCH_DPLL_SEL);
4505 temp |= TRANS_DPLL_ENABLE(pipe);
4506 sel = TRANS_DPLLB_SEL(pipe);
4507 if (crtc_state->shared_dpll ==
4508 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4509 temp |= sel;
4510 else
4511 temp &= ~sel;
4512 I915_WRITE(PCH_DPLL_SEL, temp);
4515 /* XXX: pch pll's can be enabled any time before we enable the PCH
4516 * transcoder, and we actually should do this to not upset any PCH
4517 * transcoder that already use the clock when we share it.
4519 * Note that enable_shared_dpll tries to do the right thing, but
4520 * get_shared_dpll unconditionally resets the pll - we need that to have
4521 * the right LVDS enable sequence. */
4522 intel_enable_shared_dpll(crtc);
4524 /* set transcoder timing, panel must allow it */
4525 assert_panel_unlocked(dev_priv, pipe);
4526 ironlake_pch_transcoder_set_timings(crtc, pipe);
4528 intel_fdi_normal_train(crtc);
4530 /* For PCH DP, enable TRANS_DP_CTL */
4531 if (HAS_PCH_CPT(dev_priv) &&
4532 intel_crtc_has_dp_encoder(crtc_state)) {
4533 const struct drm_display_mode *adjusted_mode =
4534 &crtc_state->base.adjusted_mode;
4535 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4536 i915_reg_t reg = TRANS_DP_CTL(pipe);
4537 temp = I915_READ(reg);
4538 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4539 TRANS_DP_SYNC_MASK |
4540 TRANS_DP_BPC_MASK);
4541 temp |= TRANS_DP_OUTPUT_ENABLE;
4542 temp |= bpc << 9; /* same format but at 11:9 */
4544 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4545 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4546 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4547 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4549 switch (intel_trans_dp_port_sel(crtc)) {
4550 case PORT_B:
4551 temp |= TRANS_DP_PORT_SEL_B;
4552 break;
4553 case PORT_C:
4554 temp |= TRANS_DP_PORT_SEL_C;
4555 break;
4556 case PORT_D:
4557 temp |= TRANS_DP_PORT_SEL_D;
4558 break;
4559 default:
4560 BUG();
4563 I915_WRITE(reg, temp);
4566 ironlake_enable_pch_transcoder(dev_priv, pipe);
4569 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4571 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4572 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4573 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4575 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4577 lpt_program_iclkip(crtc);
4579 /* Set transcoder timing. */
4580 ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4582 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4585 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4587 struct drm_i915_private *dev_priv = to_i915(dev);
4588 i915_reg_t dslreg = PIPEDSL(pipe);
4589 u32 temp;
4591 temp = I915_READ(dslreg);
4592 udelay(500);
4593 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4594 if (wait_for(I915_READ(dslreg) != temp, 5))
4595 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4599 static int
4600 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4601 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4602 int src_w, int src_h, int dst_w, int dst_h)
4604 struct intel_crtc_scaler_state *scaler_state =
4605 &crtc_state->scaler_state;
4606 struct intel_crtc *intel_crtc =
4607 to_intel_crtc(crtc_state->base.crtc);
4608 int need_scaling;
4610 need_scaling = drm_rotation_90_or_270(rotation) ?
4611 (src_h != dst_w || src_w != dst_h):
4612 (src_w != dst_w || src_h != dst_h);
4615 * if plane is being disabled or scaler is no more required or force detach
4616 * - free scaler binded to this plane/crtc
4617 * - in order to do this, update crtc->scaler_usage
4619 * Here scaler state in crtc_state is set free so that
4620 * scaler can be assigned to other user. Actual register
4621 * update to free the scaler is done in plane/panel-fit programming.
4622 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4624 if (force_detach || !need_scaling) {
4625 if (*scaler_id >= 0) {
4626 scaler_state->scaler_users &= ~(1 << scaler_user);
4627 scaler_state->scalers[*scaler_id].in_use = 0;
4629 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4630 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4631 intel_crtc->pipe, scaler_user, *scaler_id,
4632 scaler_state->scaler_users);
4633 *scaler_id = -1;
4635 return 0;
4638 /* range checks */
4639 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4640 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4642 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4643 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4644 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4645 "size is out of scaler range\n",
4646 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4647 return -EINVAL;
4650 /* mark this plane as a scaler user in crtc_state */
4651 scaler_state->scaler_users |= (1 << scaler_user);
4652 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4653 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4654 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4655 scaler_state->scaler_users);
4657 return 0;
4661 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4663 * @state: crtc's scaler state
4665 * Return
4666 * 0 - scaler_usage updated successfully
4667 * error - requested scaling cannot be supported or other error condition
4669 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4671 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4673 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4674 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4675 state->pipe_src_w, state->pipe_src_h,
4676 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4680 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4682 * @state: crtc's scaler state
4683 * @plane_state: atomic plane state to update
4685 * Return
4686 * 0 - scaler_usage updated successfully
4687 * error - requested scaling cannot be supported or other error condition
4689 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4690 struct intel_plane_state *plane_state)
4693 struct intel_plane *intel_plane =
4694 to_intel_plane(plane_state->base.plane);
4695 struct drm_framebuffer *fb = plane_state->base.fb;
4696 int ret;
4698 bool force_detach = !fb || !plane_state->base.visible;
4700 ret = skl_update_scaler(crtc_state, force_detach,
4701 drm_plane_index(&intel_plane->base),
4702 &plane_state->scaler_id,
4703 plane_state->base.rotation,
4704 drm_rect_width(&plane_state->base.src) >> 16,
4705 drm_rect_height(&plane_state->base.src) >> 16,
4706 drm_rect_width(&plane_state->base.dst),
4707 drm_rect_height(&plane_state->base.dst));
4709 if (ret || plane_state->scaler_id < 0)
4710 return ret;
4712 /* check colorkey */
4713 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4714 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4715 intel_plane->base.base.id,
4716 intel_plane->base.name);
4717 return -EINVAL;
4720 /* Check src format */
4721 switch (fb->format->format) {
4722 case DRM_FORMAT_RGB565:
4723 case DRM_FORMAT_XBGR8888:
4724 case DRM_FORMAT_XRGB8888:
4725 case DRM_FORMAT_ABGR8888:
4726 case DRM_FORMAT_ARGB8888:
4727 case DRM_FORMAT_XRGB2101010:
4728 case DRM_FORMAT_XBGR2101010:
4729 case DRM_FORMAT_YUYV:
4730 case DRM_FORMAT_YVYU:
4731 case DRM_FORMAT_UYVY:
4732 case DRM_FORMAT_VYUY:
4733 break;
4734 default:
4735 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4736 intel_plane->base.base.id, intel_plane->base.name,
4737 fb->base.id, fb->format->format);
4738 return -EINVAL;
4741 return 0;
4744 static void skylake_scaler_disable(struct intel_crtc *crtc)
4746 int i;
4748 for (i = 0; i < crtc->num_scalers; i++)
4749 skl_detach_scaler(crtc, i);
4752 static void skylake_pfit_enable(struct intel_crtc *crtc)
4754 struct drm_device *dev = crtc->base.dev;
4755 struct drm_i915_private *dev_priv = to_i915(dev);
4756 int pipe = crtc->pipe;
4757 struct intel_crtc_scaler_state *scaler_state =
4758 &crtc->config->scaler_state;
4760 if (crtc->config->pch_pfit.enabled) {
4761 int id;
4763 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4764 return;
4766 id = scaler_state->scaler_id;
4767 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4768 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4769 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4770 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4774 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4776 struct drm_device *dev = crtc->base.dev;
4777 struct drm_i915_private *dev_priv = to_i915(dev);
4778 int pipe = crtc->pipe;
4780 if (crtc->config->pch_pfit.enabled) {
4781 /* Force use of hard-coded filter coefficients
4782 * as some pre-programmed values are broken,
4783 * e.g. x201.
4785 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4786 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4787 PF_PIPE_SEL_IVB(pipe));
4788 else
4789 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4790 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4791 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4795 void hsw_enable_ips(struct intel_crtc *crtc)
4797 struct drm_device *dev = crtc->base.dev;
4798 struct drm_i915_private *dev_priv = to_i915(dev);
4800 if (!crtc->config->ips_enabled)
4801 return;
4804 * We can only enable IPS after we enable a plane and wait for a vblank
4805 * This function is called from post_plane_update, which is run after
4806 * a vblank wait.
4809 assert_plane_enabled(dev_priv, crtc->plane);
4810 if (IS_BROADWELL(dev_priv)) {
4811 mutex_lock(&dev_priv->rps.hw_lock);
4812 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4813 mutex_unlock(&dev_priv->rps.hw_lock);
4814 /* Quoting Art Runyan: "its not safe to expect any particular
4815 * value in IPS_CTL bit 31 after enabling IPS through the
4816 * mailbox." Moreover, the mailbox may return a bogus state,
4817 * so we need to just enable it and continue on.
4819 } else {
4820 I915_WRITE(IPS_CTL, IPS_ENABLE);
4821 /* The bit only becomes 1 in the next vblank, so this wait here
4822 * is essentially intel_wait_for_vblank. If we don't have this
4823 * and don't wait for vblanks until the end of crtc_enable, then
4824 * the HW state readout code will complain that the expected
4825 * IPS_CTL value is not the one we read. */
4826 if (intel_wait_for_register(dev_priv,
4827 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4828 50))
4829 DRM_ERROR("Timed out waiting for IPS enable\n");
4833 void hsw_disable_ips(struct intel_crtc *crtc)
4835 struct drm_device *dev = crtc->base.dev;
4836 struct drm_i915_private *dev_priv = to_i915(dev);
4838 if (!crtc->config->ips_enabled)
4839 return;
4841 assert_plane_enabled(dev_priv, crtc->plane);
4842 if (IS_BROADWELL(dev_priv)) {
4843 mutex_lock(&dev_priv->rps.hw_lock);
4844 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4845 mutex_unlock(&dev_priv->rps.hw_lock);
4846 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4847 if (intel_wait_for_register(dev_priv,
4848 IPS_CTL, IPS_ENABLE, 0,
4849 42))
4850 DRM_ERROR("Timed out waiting for IPS disable\n");
4851 } else {
4852 I915_WRITE(IPS_CTL, 0);
4853 POSTING_READ(IPS_CTL);
4856 /* We need to wait for a vblank before we can disable the plane. */
4857 intel_wait_for_vblank(dev_priv, crtc->pipe);
4860 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4862 if (intel_crtc->overlay) {
4863 struct drm_device *dev = intel_crtc->base.dev;
4865 mutex_lock(&dev->struct_mutex);
4866 (void) intel_overlay_switch_off(intel_crtc->overlay);
4867 mutex_unlock(&dev->struct_mutex);
4870 /* Let userspace switch the overlay on again. In most cases userspace
4871 * has to recompute where to put it anyway.
4876 * intel_post_enable_primary - Perform operations after enabling primary plane
4877 * @crtc: the CRTC whose primary plane was just enabled
4879 * Performs potentially sleeping operations that must be done after the primary
4880 * plane is enabled, such as updating FBC and IPS. Note that this may be
4881 * called due to an explicit primary plane update, or due to an implicit
4882 * re-enable that is caused when a sprite plane is updated to no longer
4883 * completely hide the primary plane.
4885 static void
4886 intel_post_enable_primary(struct drm_crtc *crtc)
4888 struct drm_device *dev = crtc->dev;
4889 struct drm_i915_private *dev_priv = to_i915(dev);
4890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4891 int pipe = intel_crtc->pipe;
4894 * FIXME IPS should be fine as long as one plane is
4895 * enabled, but in practice it seems to have problems
4896 * when going from primary only to sprite only and vice
4897 * versa.
4899 hsw_enable_ips(intel_crtc);
4902 * Gen2 reports pipe underruns whenever all planes are disabled.
4903 * So don't enable underrun reporting before at least some planes
4904 * are enabled.
4905 * FIXME: Need to fix the logic to work when we turn off all planes
4906 * but leave the pipe running.
4908 if (IS_GEN2(dev_priv))
4909 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4911 /* Underruns don't always raise interrupts, so check manually. */
4912 intel_check_cpu_fifo_underruns(dev_priv);
4913 intel_check_pch_fifo_underruns(dev_priv);
4916 /* FIXME move all this to pre_plane_update() with proper state tracking */
4917 static void
4918 intel_pre_disable_primary(struct drm_crtc *crtc)
4920 struct drm_device *dev = crtc->dev;
4921 struct drm_i915_private *dev_priv = to_i915(dev);
4922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4923 int pipe = intel_crtc->pipe;
4926 * Gen2 reports pipe underruns whenever all planes are disabled.
4927 * So diasble underrun reporting before all the planes get disabled.
4928 * FIXME: Need to fix the logic to work when we turn off all planes
4929 * but leave the pipe running.
4931 if (IS_GEN2(dev_priv))
4932 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4935 * FIXME IPS should be fine as long as one plane is
4936 * enabled, but in practice it seems to have problems
4937 * when going from primary only to sprite only and vice
4938 * versa.
4940 hsw_disable_ips(intel_crtc);
4943 /* FIXME get rid of this and use pre_plane_update */
4944 static void
4945 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4947 struct drm_device *dev = crtc->dev;
4948 struct drm_i915_private *dev_priv = to_i915(dev);
4949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4950 int pipe = intel_crtc->pipe;
4952 intel_pre_disable_primary(crtc);
4955 * Vblank time updates from the shadow to live plane control register
4956 * are blocked if the memory self-refresh mode is active at that
4957 * moment. So to make sure the plane gets truly disabled, disable
4958 * first the self-refresh mode. The self-refresh enable bit in turn
4959 * will be checked/applied by the HW only at the next frame start
4960 * event which is after the vblank start event, so we need to have a
4961 * wait-for-vblank between disabling the plane and the pipe.
4963 if (HAS_GMCH_DISPLAY(dev_priv) &&
4964 intel_set_memory_cxsr(dev_priv, false))
4965 intel_wait_for_vblank(dev_priv, pipe);
4968 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4970 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4971 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4972 struct intel_crtc_state *pipe_config =
4973 to_intel_crtc_state(crtc->base.state);
4974 struct drm_plane *primary = crtc->base.primary;
4975 struct drm_plane_state *old_pri_state =
4976 drm_atomic_get_existing_plane_state(old_state, primary);
4978 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4980 if (pipe_config->update_wm_post && pipe_config->base.active)
4981 intel_update_watermarks(crtc);
4983 if (old_pri_state) {
4984 struct intel_plane_state *primary_state =
4985 to_intel_plane_state(primary->state);
4986 struct intel_plane_state *old_primary_state =
4987 to_intel_plane_state(old_pri_state);
4989 intel_fbc_post_update(crtc);
4991 if (primary_state->base.visible &&
4992 (needs_modeset(&pipe_config->base) ||
4993 !old_primary_state->base.visible))
4994 intel_post_enable_primary(&crtc->base);
4998 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
4999 struct intel_crtc_state *pipe_config)
5001 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5002 struct drm_device *dev = crtc->base.dev;
5003 struct drm_i915_private *dev_priv = to_i915(dev);
5004 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5005 struct drm_plane *primary = crtc->base.primary;
5006 struct drm_plane_state *old_pri_state =
5007 drm_atomic_get_existing_plane_state(old_state, primary);
5008 bool modeset = needs_modeset(&pipe_config->base);
5009 struct intel_atomic_state *old_intel_state =
5010 to_intel_atomic_state(old_state);
5012 if (old_pri_state) {
5013 struct intel_plane_state *primary_state =
5014 to_intel_plane_state(primary->state);
5015 struct intel_plane_state *old_primary_state =
5016 to_intel_plane_state(old_pri_state);
5018 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5020 if (old_primary_state->base.visible &&
5021 (modeset || !primary_state->base.visible))
5022 intel_pre_disable_primary(&crtc->base);
5026 * Vblank time updates from the shadow to live plane control register
5027 * are blocked if the memory self-refresh mode is active at that
5028 * moment. So to make sure the plane gets truly disabled, disable
5029 * first the self-refresh mode. The self-refresh enable bit in turn
5030 * will be checked/applied by the HW only at the next frame start
5031 * event which is after the vblank start event, so we need to have a
5032 * wait-for-vblank between disabling the plane and the pipe.
5034 if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5035 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5036 intel_wait_for_vblank(dev_priv, crtc->pipe);
5039 * IVB workaround: must disable low power watermarks for at least
5040 * one frame before enabling scaling. LP watermarks can be re-enabled
5041 * when scaling is disabled.
5043 * WaCxSRDisabledForSpriteScaling:ivb
5045 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5046 intel_wait_for_vblank(dev_priv, crtc->pipe);
5049 * If we're doing a modeset, we're done. No need to do any pre-vblank
5050 * watermark programming here.
5052 if (needs_modeset(&pipe_config->base))
5053 return;
5056 * For platforms that support atomic watermarks, program the
5057 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5058 * will be the intermediate values that are safe for both pre- and
5059 * post- vblank; when vblank happens, the 'active' values will be set
5060 * to the final 'target' values and we'll do this again to get the
5061 * optimal watermarks. For gen9+ platforms, the values we program here
5062 * will be the final target values which will get automatically latched
5063 * at vblank time; no further programming will be necessary.
5065 * If a platform hasn't been transitioned to atomic watermarks yet,
5066 * we'll continue to update watermarks the old way, if flags tell
5067 * us to.
5069 if (dev_priv->display.initial_watermarks != NULL)
5070 dev_priv->display.initial_watermarks(old_intel_state,
5071 pipe_config);
5072 else if (pipe_config->update_wm_pre)
5073 intel_update_watermarks(crtc);
5076 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5078 struct drm_device *dev = crtc->dev;
5079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5080 struct drm_plane *p;
5081 int pipe = intel_crtc->pipe;
5083 intel_crtc_dpms_overlay_disable(intel_crtc);
5085 drm_for_each_plane_mask(p, dev, plane_mask)
5086 to_intel_plane(p)->disable_plane(p, crtc);
5089 * FIXME: Once we grow proper nuclear flip support out of this we need
5090 * to compute the mask of flip planes precisely. For the time being
5091 * consider this a flip to a NULL plane.
5093 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5096 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5097 struct intel_crtc_state *crtc_state,
5098 struct drm_atomic_state *old_state)
5100 struct drm_connector_state *conn_state;
5101 struct drm_connector *conn;
5102 int i;
5104 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5105 struct intel_encoder *encoder =
5106 to_intel_encoder(conn_state->best_encoder);
5108 if (conn_state->crtc != crtc)
5109 continue;
5111 if (encoder->pre_pll_enable)
5112 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5116 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5117 struct intel_crtc_state *crtc_state,
5118 struct drm_atomic_state *old_state)
5120 struct drm_connector_state *conn_state;
5121 struct drm_connector *conn;
5122 int i;
5124 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5125 struct intel_encoder *encoder =
5126 to_intel_encoder(conn_state->best_encoder);
5128 if (conn_state->crtc != crtc)
5129 continue;
5131 if (encoder->pre_enable)
5132 encoder->pre_enable(encoder, crtc_state, conn_state);
5136 static void intel_encoders_enable(struct drm_crtc *crtc,
5137 struct intel_crtc_state *crtc_state,
5138 struct drm_atomic_state *old_state)
5140 struct drm_connector_state *conn_state;
5141 struct drm_connector *conn;
5142 int i;
5144 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5145 struct intel_encoder *encoder =
5146 to_intel_encoder(conn_state->best_encoder);
5148 if (conn_state->crtc != crtc)
5149 continue;
5151 encoder->enable(encoder, crtc_state, conn_state);
5152 intel_opregion_notify_encoder(encoder, true);
5156 static void intel_encoders_disable(struct drm_crtc *crtc,
5157 struct intel_crtc_state *old_crtc_state,
5158 struct drm_atomic_state *old_state)
5160 struct drm_connector_state *old_conn_state;
5161 struct drm_connector *conn;
5162 int i;
5164 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5165 struct intel_encoder *encoder =
5166 to_intel_encoder(old_conn_state->best_encoder);
5168 if (old_conn_state->crtc != crtc)
5169 continue;
5171 intel_opregion_notify_encoder(encoder, false);
5172 encoder->disable(encoder, old_crtc_state, old_conn_state);
5176 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5177 struct intel_crtc_state *old_crtc_state,
5178 struct drm_atomic_state *old_state)
5180 struct drm_connector_state *old_conn_state;
5181 struct drm_connector *conn;
5182 int i;
5184 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5185 struct intel_encoder *encoder =
5186 to_intel_encoder(old_conn_state->best_encoder);
5188 if (old_conn_state->crtc != crtc)
5189 continue;
5191 if (encoder->post_disable)
5192 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5196 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5197 struct intel_crtc_state *old_crtc_state,
5198 struct drm_atomic_state *old_state)
5200 struct drm_connector_state *old_conn_state;
5201 struct drm_connector *conn;
5202 int i;
5204 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5205 struct intel_encoder *encoder =
5206 to_intel_encoder(old_conn_state->best_encoder);
5208 if (old_conn_state->crtc != crtc)
5209 continue;
5211 if (encoder->post_pll_disable)
5212 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5216 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5217 struct drm_atomic_state *old_state)
5219 struct drm_crtc *crtc = pipe_config->base.crtc;
5220 struct drm_device *dev = crtc->dev;
5221 struct drm_i915_private *dev_priv = to_i915(dev);
5222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5223 int pipe = intel_crtc->pipe;
5224 struct intel_atomic_state *old_intel_state =
5225 to_intel_atomic_state(old_state);
5227 if (WARN_ON(intel_crtc->active))
5228 return;
5231 * Sometimes spurious CPU pipe underruns happen during FDI
5232 * training, at least with VGA+HDMI cloning. Suppress them.
5234 * On ILK we get an occasional spurious CPU pipe underruns
5235 * between eDP port A enable and vdd enable. Also PCH port
5236 * enable seems to result in the occasional CPU pipe underrun.
5238 * Spurious PCH underruns also occur during PCH enabling.
5240 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5241 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5242 if (intel_crtc->config->has_pch_encoder)
5243 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5245 if (intel_crtc->config->has_pch_encoder)
5246 intel_prepare_shared_dpll(intel_crtc);
5248 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5249 intel_dp_set_m_n(intel_crtc, M1_N1);
5251 intel_set_pipe_timings(intel_crtc);
5252 intel_set_pipe_src_size(intel_crtc);
5254 if (intel_crtc->config->has_pch_encoder) {
5255 intel_cpu_transcoder_set_m_n(intel_crtc,
5256 &intel_crtc->config->fdi_m_n, NULL);
5259 ironlake_set_pipeconf(crtc);
5261 intel_crtc->active = true;
5263 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5265 if (intel_crtc->config->has_pch_encoder) {
5266 /* Note: FDI PLL enabling _must_ be done before we enable the
5267 * cpu pipes, hence this is separate from all the other fdi/pch
5268 * enabling. */
5269 ironlake_fdi_pll_enable(intel_crtc);
5270 } else {
5271 assert_fdi_tx_disabled(dev_priv, pipe);
5272 assert_fdi_rx_disabled(dev_priv, pipe);
5275 ironlake_pfit_enable(intel_crtc);
5278 * On ILK+ LUT must be loaded before the pipe is running but with
5279 * clocks enabled
5281 intel_color_load_luts(&pipe_config->base);
5283 if (dev_priv->display.initial_watermarks != NULL)
5284 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5285 intel_enable_pipe(intel_crtc);
5287 if (intel_crtc->config->has_pch_encoder)
5288 ironlake_pch_enable(pipe_config);
5290 assert_vblank_disabled(crtc);
5291 drm_crtc_vblank_on(crtc);
5293 intel_encoders_enable(crtc, pipe_config, old_state);
5295 if (HAS_PCH_CPT(dev_priv))
5296 cpt_verify_modeset(dev, intel_crtc->pipe);
5298 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5299 if (intel_crtc->config->has_pch_encoder)
5300 intel_wait_for_vblank(dev_priv, pipe);
5301 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5302 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5305 /* IPS only exists on ULT machines and is tied to pipe A. */
5306 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5308 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5311 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5312 struct drm_atomic_state *old_state)
5314 struct drm_crtc *crtc = pipe_config->base.crtc;
5315 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5317 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5318 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5319 struct intel_atomic_state *old_intel_state =
5320 to_intel_atomic_state(old_state);
5322 if (WARN_ON(intel_crtc->active))
5323 return;
5325 if (intel_crtc->config->has_pch_encoder)
5326 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5327 false);
5329 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5331 if (intel_crtc->config->shared_dpll)
5332 intel_enable_shared_dpll(intel_crtc);
5334 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5335 intel_dp_set_m_n(intel_crtc, M1_N1);
5337 if (!transcoder_is_dsi(cpu_transcoder))
5338 intel_set_pipe_timings(intel_crtc);
5340 intel_set_pipe_src_size(intel_crtc);
5342 if (cpu_transcoder != TRANSCODER_EDP &&
5343 !transcoder_is_dsi(cpu_transcoder)) {
5344 I915_WRITE(PIPE_MULT(cpu_transcoder),
5345 intel_crtc->config->pixel_multiplier - 1);
5348 if (intel_crtc->config->has_pch_encoder) {
5349 intel_cpu_transcoder_set_m_n(intel_crtc,
5350 &intel_crtc->config->fdi_m_n, NULL);
5353 if (!transcoder_is_dsi(cpu_transcoder))
5354 haswell_set_pipeconf(crtc);
5356 haswell_set_pipemisc(crtc);
5358 intel_color_set_csc(&pipe_config->base);
5360 intel_crtc->active = true;
5362 if (intel_crtc->config->has_pch_encoder)
5363 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5364 else
5365 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5367 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5369 if (intel_crtc->config->has_pch_encoder)
5370 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5372 if (!transcoder_is_dsi(cpu_transcoder))
5373 intel_ddi_enable_pipe_clock(pipe_config);
5375 if (INTEL_GEN(dev_priv) >= 9)
5376 skylake_pfit_enable(intel_crtc);
5377 else
5378 ironlake_pfit_enable(intel_crtc);
5381 * On ILK+ LUT must be loaded before the pipe is running but with
5382 * clocks enabled
5384 intel_color_load_luts(&pipe_config->base);
5386 intel_ddi_set_pipe_settings(pipe_config);
5387 if (!transcoder_is_dsi(cpu_transcoder))
5388 intel_ddi_enable_transcoder_func(pipe_config);
5390 if (dev_priv->display.initial_watermarks != NULL)
5391 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5393 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5394 if (!transcoder_is_dsi(cpu_transcoder))
5395 intel_enable_pipe(intel_crtc);
5397 if (intel_crtc->config->has_pch_encoder)
5398 lpt_pch_enable(pipe_config);
5400 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5401 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5403 assert_vblank_disabled(crtc);
5404 drm_crtc_vblank_on(crtc);
5406 intel_encoders_enable(crtc, pipe_config, old_state);
5408 if (intel_crtc->config->has_pch_encoder) {
5409 intel_wait_for_vblank(dev_priv, pipe);
5410 intel_wait_for_vblank(dev_priv, pipe);
5411 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5412 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5413 true);
5416 /* If we change the relative order between pipe/planes enabling, we need
5417 * to change the workaround. */
5418 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5419 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5420 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5421 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5425 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5427 struct drm_device *dev = crtc->base.dev;
5428 struct drm_i915_private *dev_priv = to_i915(dev);
5429 int pipe = crtc->pipe;
5431 /* To avoid upsetting the power well on haswell only disable the pfit if
5432 * it's in use. The hw state code will make sure we get this right. */
5433 if (force || crtc->config->pch_pfit.enabled) {
5434 I915_WRITE(PF_CTL(pipe), 0);
5435 I915_WRITE(PF_WIN_POS(pipe), 0);
5436 I915_WRITE(PF_WIN_SZ(pipe), 0);
5440 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5441 struct drm_atomic_state *old_state)
5443 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5444 struct drm_device *dev = crtc->dev;
5445 struct drm_i915_private *dev_priv = to_i915(dev);
5446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5447 int pipe = intel_crtc->pipe;
5450 * Sometimes spurious CPU pipe underruns happen when the
5451 * pipe is already disabled, but FDI RX/TX is still enabled.
5452 * Happens at least with VGA+HDMI cloning. Suppress them.
5454 if (intel_crtc->config->has_pch_encoder) {
5455 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5456 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5459 intel_encoders_disable(crtc, old_crtc_state, old_state);
5461 drm_crtc_vblank_off(crtc);
5462 assert_vblank_disabled(crtc);
5464 intel_disable_pipe(intel_crtc);
5466 ironlake_pfit_disable(intel_crtc, false);
5468 if (intel_crtc->config->has_pch_encoder)
5469 ironlake_fdi_disable(crtc);
5471 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5473 if (intel_crtc->config->has_pch_encoder) {
5474 ironlake_disable_pch_transcoder(dev_priv, pipe);
5476 if (HAS_PCH_CPT(dev_priv)) {
5477 i915_reg_t reg;
5478 u32 temp;
5480 /* disable TRANS_DP_CTL */
5481 reg = TRANS_DP_CTL(pipe);
5482 temp = I915_READ(reg);
5483 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5484 TRANS_DP_PORT_SEL_MASK);
5485 temp |= TRANS_DP_PORT_SEL_NONE;
5486 I915_WRITE(reg, temp);
5488 /* disable DPLL_SEL */
5489 temp = I915_READ(PCH_DPLL_SEL);
5490 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5491 I915_WRITE(PCH_DPLL_SEL, temp);
5494 ironlake_fdi_pll_disable(intel_crtc);
5497 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5498 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5501 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5502 struct drm_atomic_state *old_state)
5504 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5505 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5507 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5509 if (intel_crtc->config->has_pch_encoder)
5510 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5511 false);
5513 intel_encoders_disable(crtc, old_crtc_state, old_state);
5515 drm_crtc_vblank_off(crtc);
5516 assert_vblank_disabled(crtc);
5518 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5519 if (!transcoder_is_dsi(cpu_transcoder))
5520 intel_disable_pipe(intel_crtc);
5522 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5523 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5525 if (!transcoder_is_dsi(cpu_transcoder))
5526 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5528 if (INTEL_GEN(dev_priv) >= 9)
5529 skylake_scaler_disable(intel_crtc);
5530 else
5531 ironlake_pfit_disable(intel_crtc, false);
5533 if (!transcoder_is_dsi(cpu_transcoder))
5534 intel_ddi_disable_pipe_clock(intel_crtc->config);
5536 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5538 if (old_crtc_state->has_pch_encoder)
5539 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5540 true);
5543 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5545 struct drm_device *dev = crtc->base.dev;
5546 struct drm_i915_private *dev_priv = to_i915(dev);
5547 struct intel_crtc_state *pipe_config = crtc->config;
5549 if (!pipe_config->gmch_pfit.control)
5550 return;
5553 * The panel fitter should only be adjusted whilst the pipe is disabled,
5554 * according to register description and PRM.
5556 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5557 assert_pipe_disabled(dev_priv, crtc->pipe);
5559 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5560 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5562 /* Border color in case we don't scale up to the full screen. Black by
5563 * default, change to something else for debugging. */
5564 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5567 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5569 switch (port) {
5570 case PORT_A:
5571 return POWER_DOMAIN_PORT_DDI_A_LANES;
5572 case PORT_B:
5573 return POWER_DOMAIN_PORT_DDI_B_LANES;
5574 case PORT_C:
5575 return POWER_DOMAIN_PORT_DDI_C_LANES;
5576 case PORT_D:
5577 return POWER_DOMAIN_PORT_DDI_D_LANES;
5578 case PORT_E:
5579 return POWER_DOMAIN_PORT_DDI_E_LANES;
5580 default:
5581 MISSING_CASE(port);
5582 return POWER_DOMAIN_PORT_OTHER;
5586 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5587 struct intel_crtc_state *crtc_state)
5589 struct drm_device *dev = crtc->dev;
5590 struct drm_i915_private *dev_priv = to_i915(dev);
5591 struct drm_encoder *encoder;
5592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5593 enum pipe pipe = intel_crtc->pipe;
5594 u64 mask;
5595 enum transcoder transcoder = crtc_state->cpu_transcoder;
5597 if (!crtc_state->base.active)
5598 return 0;
5600 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5601 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5602 if (crtc_state->pch_pfit.enabled ||
5603 crtc_state->pch_pfit.force_thru)
5604 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5606 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5607 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5609 mask |= BIT_ULL(intel_encoder->power_domain);
5612 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5613 mask |= BIT(POWER_DOMAIN_AUDIO);
5615 if (crtc_state->shared_dpll)
5616 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5618 return mask;
5621 static u64
5622 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5623 struct intel_crtc_state *crtc_state)
5625 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5627 enum intel_display_power_domain domain;
5628 u64 domains, new_domains, old_domains;
5630 old_domains = intel_crtc->enabled_power_domains;
5631 intel_crtc->enabled_power_domains = new_domains =
5632 get_crtc_power_domains(crtc, crtc_state);
5634 domains = new_domains & ~old_domains;
5636 for_each_power_domain(domain, domains)
5637 intel_display_power_get(dev_priv, domain);
5639 return old_domains & ~new_domains;
5642 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5643 u64 domains)
5645 enum intel_display_power_domain domain;
5647 for_each_power_domain(domain, domains)
5648 intel_display_power_put(dev_priv, domain);
5651 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5652 struct drm_atomic_state *old_state)
5654 struct intel_atomic_state *old_intel_state =
5655 to_intel_atomic_state(old_state);
5656 struct drm_crtc *crtc = pipe_config->base.crtc;
5657 struct drm_device *dev = crtc->dev;
5658 struct drm_i915_private *dev_priv = to_i915(dev);
5659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5660 int pipe = intel_crtc->pipe;
5662 if (WARN_ON(intel_crtc->active))
5663 return;
5665 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5666 intel_dp_set_m_n(intel_crtc, M1_N1);
5668 intel_set_pipe_timings(intel_crtc);
5669 intel_set_pipe_src_size(intel_crtc);
5671 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5672 struct drm_i915_private *dev_priv = to_i915(dev);
5674 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5675 I915_WRITE(CHV_CANVAS(pipe), 0);
5678 i9xx_set_pipeconf(intel_crtc);
5680 intel_crtc->active = true;
5682 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5684 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5686 if (IS_CHERRYVIEW(dev_priv)) {
5687 chv_prepare_pll(intel_crtc, intel_crtc->config);
5688 chv_enable_pll(intel_crtc, intel_crtc->config);
5689 } else {
5690 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5691 vlv_enable_pll(intel_crtc, intel_crtc->config);
5694 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5696 i9xx_pfit_enable(intel_crtc);
5698 intel_color_load_luts(&pipe_config->base);
5700 dev_priv->display.initial_watermarks(old_intel_state,
5701 pipe_config);
5702 intel_enable_pipe(intel_crtc);
5704 assert_vblank_disabled(crtc);
5705 drm_crtc_vblank_on(crtc);
5707 intel_encoders_enable(crtc, pipe_config, old_state);
5710 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5712 struct drm_device *dev = crtc->base.dev;
5713 struct drm_i915_private *dev_priv = to_i915(dev);
5715 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5716 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5719 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5720 struct drm_atomic_state *old_state)
5722 struct drm_crtc *crtc = pipe_config->base.crtc;
5723 struct drm_device *dev = crtc->dev;
5724 struct drm_i915_private *dev_priv = to_i915(dev);
5725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5726 enum pipe pipe = intel_crtc->pipe;
5728 if (WARN_ON(intel_crtc->active))
5729 return;
5731 i9xx_set_pll_dividers(intel_crtc);
5733 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5734 intel_dp_set_m_n(intel_crtc, M1_N1);
5736 intel_set_pipe_timings(intel_crtc);
5737 intel_set_pipe_src_size(intel_crtc);
5739 i9xx_set_pipeconf(intel_crtc);
5741 intel_crtc->active = true;
5743 if (!IS_GEN2(dev_priv))
5744 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5746 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5748 i9xx_enable_pll(intel_crtc);
5750 i9xx_pfit_enable(intel_crtc);
5752 intel_color_load_luts(&pipe_config->base);
5754 intel_update_watermarks(intel_crtc);
5755 intel_enable_pipe(intel_crtc);
5757 assert_vblank_disabled(crtc);
5758 drm_crtc_vblank_on(crtc);
5760 intel_encoders_enable(crtc, pipe_config, old_state);
5763 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5765 struct drm_device *dev = crtc->base.dev;
5766 struct drm_i915_private *dev_priv = to_i915(dev);
5768 if (!crtc->config->gmch_pfit.control)
5769 return;
5771 assert_pipe_disabled(dev_priv, crtc->pipe);
5773 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5774 I915_READ(PFIT_CONTROL));
5775 I915_WRITE(PFIT_CONTROL, 0);
5778 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5779 struct drm_atomic_state *old_state)
5781 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5782 struct drm_device *dev = crtc->dev;
5783 struct drm_i915_private *dev_priv = to_i915(dev);
5784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5785 int pipe = intel_crtc->pipe;
5788 * On gen2 planes are double buffered but the pipe isn't, so we must
5789 * wait for planes to fully turn off before disabling the pipe.
5791 if (IS_GEN2(dev_priv))
5792 intel_wait_for_vblank(dev_priv, pipe);
5794 intel_encoders_disable(crtc, old_crtc_state, old_state);
5796 drm_crtc_vblank_off(crtc);
5797 assert_vblank_disabled(crtc);
5799 intel_disable_pipe(intel_crtc);
5801 i9xx_pfit_disable(intel_crtc);
5803 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5805 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5806 if (IS_CHERRYVIEW(dev_priv))
5807 chv_disable_pll(dev_priv, pipe);
5808 else if (IS_VALLEYVIEW(dev_priv))
5809 vlv_disable_pll(dev_priv, pipe);
5810 else
5811 i9xx_disable_pll(intel_crtc);
5814 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5816 if (!IS_GEN2(dev_priv))
5817 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5819 if (!dev_priv->display.initial_watermarks)
5820 intel_update_watermarks(intel_crtc);
5823 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
5825 struct intel_encoder *encoder;
5826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5827 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5828 enum intel_display_power_domain domain;
5829 u64 domains;
5830 struct drm_atomic_state *state;
5831 struct intel_crtc_state *crtc_state;
5832 int ret;
5834 if (!intel_crtc->active)
5835 return;
5837 if (crtc->primary->state->visible) {
5838 WARN_ON(intel_crtc->flip_work);
5840 intel_pre_disable_primary_noatomic(crtc);
5842 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5843 crtc->primary->state->visible = false;
5846 state = drm_atomic_state_alloc(crtc->dev);
5847 if (!state) {
5848 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5849 crtc->base.id, crtc->name);
5850 return;
5853 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
5855 /* Everything's already locked, -EDEADLK can't happen. */
5856 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5857 ret = drm_atomic_add_affected_connectors(state, crtc);
5859 WARN_ON(IS_ERR(crtc_state) || ret);
5861 dev_priv->display.crtc_disable(crtc_state, state);
5863 drm_atomic_state_put(state);
5865 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5866 crtc->base.id, crtc->name);
5868 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5869 crtc->state->active = false;
5870 intel_crtc->active = false;
5871 crtc->enabled = false;
5872 crtc->state->connector_mask = 0;
5873 crtc->state->encoder_mask = 0;
5875 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5876 encoder->base.crtc = NULL;
5878 intel_fbc_disable(intel_crtc);
5879 intel_update_watermarks(intel_crtc);
5880 intel_disable_shared_dpll(intel_crtc);
5882 domains = intel_crtc->enabled_power_domains;
5883 for_each_power_domain(domain, domains)
5884 intel_display_power_put(dev_priv, domain);
5885 intel_crtc->enabled_power_domains = 0;
5887 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5888 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5892 * turn all crtc's off, but do not adjust state
5893 * This has to be paired with a call to intel_modeset_setup_hw_state.
5895 int intel_display_suspend(struct drm_device *dev)
5897 struct drm_i915_private *dev_priv = to_i915(dev);
5898 struct drm_atomic_state *state;
5899 int ret;
5901 state = drm_atomic_helper_suspend(dev);
5902 ret = PTR_ERR_OR_ZERO(state);
5903 if (ret)
5904 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5905 else
5906 dev_priv->modeset_restore_state = state;
5907 return ret;
5910 void intel_encoder_destroy(struct drm_encoder *encoder)
5912 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5914 drm_encoder_cleanup(encoder);
5915 kfree(intel_encoder);
5918 /* Cross check the actual hw state with our own modeset state tracking (and it's
5919 * internal consistency). */
5920 static void intel_connector_verify_state(struct intel_connector *connector)
5922 struct drm_crtc *crtc = connector->base.state->crtc;
5924 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5925 connector->base.base.id,
5926 connector->base.name);
5928 if (connector->get_hw_state(connector)) {
5929 struct intel_encoder *encoder = connector->encoder;
5930 struct drm_connector_state *conn_state = connector->base.state;
5932 I915_STATE_WARN(!crtc,
5933 "connector enabled without attached crtc\n");
5935 if (!crtc)
5936 return;
5938 I915_STATE_WARN(!crtc->state->active,
5939 "connector is active, but attached crtc isn't\n");
5941 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5942 return;
5944 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5945 "atomic encoder doesn't match attached encoder\n");
5947 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5948 "attached encoder crtc differs from connector crtc\n");
5949 } else {
5950 I915_STATE_WARN(crtc && crtc->state->active,
5951 "attached crtc is active, but connector isn't\n");
5952 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
5953 "best encoder set without crtc!\n");
5957 int intel_connector_init(struct intel_connector *connector)
5959 drm_atomic_helper_connector_reset(&connector->base);
5961 if (!connector->base.state)
5962 return -ENOMEM;
5964 return 0;
5967 struct intel_connector *intel_connector_alloc(void)
5969 struct intel_connector *connector;
5971 connector = kzalloc(sizeof *connector, GFP_KERNEL);
5972 if (!connector)
5973 return NULL;
5975 if (intel_connector_init(connector) < 0) {
5976 kfree(connector);
5977 return NULL;
5980 return connector;
5983 /* Simple connector->get_hw_state implementation for encoders that support only
5984 * one connector and no cloning and hence the encoder state determines the state
5985 * of the connector. */
5986 bool intel_connector_get_hw_state(struct intel_connector *connector)
5988 enum pipe pipe = 0;
5989 struct intel_encoder *encoder = connector->encoder;
5991 return encoder->get_hw_state(encoder, &pipe);
5994 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
5996 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
5997 return crtc_state->fdi_lanes;
5999 return 0;
6002 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6003 struct intel_crtc_state *pipe_config)
6005 struct drm_i915_private *dev_priv = to_i915(dev);
6006 struct drm_atomic_state *state = pipe_config->base.state;
6007 struct intel_crtc *other_crtc;
6008 struct intel_crtc_state *other_crtc_state;
6010 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6011 pipe_name(pipe), pipe_config->fdi_lanes);
6012 if (pipe_config->fdi_lanes > 4) {
6013 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6014 pipe_name(pipe), pipe_config->fdi_lanes);
6015 return -EINVAL;
6018 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6019 if (pipe_config->fdi_lanes > 2) {
6020 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6021 pipe_config->fdi_lanes);
6022 return -EINVAL;
6023 } else {
6024 return 0;
6028 if (INTEL_INFO(dev_priv)->num_pipes == 2)
6029 return 0;
6031 /* Ivybridge 3 pipe is really complicated */
6032 switch (pipe) {
6033 case PIPE_A:
6034 return 0;
6035 case PIPE_B:
6036 if (pipe_config->fdi_lanes <= 2)
6037 return 0;
6039 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6040 other_crtc_state =
6041 intel_atomic_get_crtc_state(state, other_crtc);
6042 if (IS_ERR(other_crtc_state))
6043 return PTR_ERR(other_crtc_state);
6045 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6046 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6047 pipe_name(pipe), pipe_config->fdi_lanes);
6048 return -EINVAL;
6050 return 0;
6051 case PIPE_C:
6052 if (pipe_config->fdi_lanes > 2) {
6053 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6054 pipe_name(pipe), pipe_config->fdi_lanes);
6055 return -EINVAL;
6058 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6059 other_crtc_state =
6060 intel_atomic_get_crtc_state(state, other_crtc);
6061 if (IS_ERR(other_crtc_state))
6062 return PTR_ERR(other_crtc_state);
6064 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6065 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6066 return -EINVAL;
6068 return 0;
6069 default:
6070 BUG();
6074 #define RETRY 1
6075 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6076 struct intel_crtc_state *pipe_config)
6078 struct drm_device *dev = intel_crtc->base.dev;
6079 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6080 int lane, link_bw, fdi_dotclock, ret;
6081 bool needs_recompute = false;
6083 retry:
6084 /* FDI is a binary signal running at ~2.7GHz, encoding
6085 * each output octet as 10 bits. The actual frequency
6086 * is stored as a divider into a 100MHz clock, and the
6087 * mode pixel clock is stored in units of 1KHz.
6088 * Hence the bw of each lane in terms of the mode signal
6089 * is:
6091 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6093 fdi_dotclock = adjusted_mode->crtc_clock;
6095 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6096 pipe_config->pipe_bpp);
6098 pipe_config->fdi_lanes = lane;
6100 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6101 link_bw, &pipe_config->fdi_m_n);
6103 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6104 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6105 pipe_config->pipe_bpp -= 2*3;
6106 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6107 pipe_config->pipe_bpp);
6108 needs_recompute = true;
6109 pipe_config->bw_constrained = true;
6111 goto retry;
6114 if (needs_recompute)
6115 return RETRY;
6117 return ret;
6120 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6121 struct intel_crtc_state *pipe_config)
6123 if (pipe_config->pipe_bpp > 24)
6124 return false;
6126 /* HSW can handle pixel rate up to cdclk? */
6127 if (IS_HASWELL(dev_priv))
6128 return true;
6131 * We compare against max which means we must take
6132 * the increased cdclk requirement into account when
6133 * calculating the new cdclk.
6135 * Should measure whether using a lower cdclk w/o IPS
6137 return pipe_config->pixel_rate <=
6138 dev_priv->max_cdclk_freq * 95 / 100;
6141 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6142 struct intel_crtc_state *pipe_config)
6144 struct drm_device *dev = crtc->base.dev;
6145 struct drm_i915_private *dev_priv = to_i915(dev);
6147 pipe_config->ips_enabled = i915.enable_ips &&
6148 hsw_crtc_supports_ips(crtc) &&
6149 pipe_config_supports_ips(dev_priv, pipe_config);
6152 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6154 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6156 /* GDG double wide on either pipe, otherwise pipe A only */
6157 return INTEL_INFO(dev_priv)->gen < 4 &&
6158 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6161 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6163 uint32_t pixel_rate;
6165 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6168 * We only use IF-ID interlacing. If we ever use
6169 * PF-ID we'll need to adjust the pixel_rate here.
6172 if (pipe_config->pch_pfit.enabled) {
6173 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6174 uint32_t pfit_size = pipe_config->pch_pfit.size;
6176 pipe_w = pipe_config->pipe_src_w;
6177 pipe_h = pipe_config->pipe_src_h;
6179 pfit_w = (pfit_size >> 16) & 0xFFFF;
6180 pfit_h = pfit_size & 0xFFFF;
6181 if (pipe_w < pfit_w)
6182 pipe_w = pfit_w;
6183 if (pipe_h < pfit_h)
6184 pipe_h = pfit_h;
6186 if (WARN_ON(!pfit_w || !pfit_h))
6187 return pixel_rate;
6189 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6190 pfit_w * pfit_h);
6193 return pixel_rate;
6196 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6198 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6200 if (HAS_GMCH_DISPLAY(dev_priv))
6201 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6202 crtc_state->pixel_rate =
6203 crtc_state->base.adjusted_mode.crtc_clock;
6204 else
6205 crtc_state->pixel_rate =
6206 ilk_pipe_pixel_rate(crtc_state);
6209 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6210 struct intel_crtc_state *pipe_config)
6212 struct drm_device *dev = crtc->base.dev;
6213 struct drm_i915_private *dev_priv = to_i915(dev);
6214 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6215 int clock_limit = dev_priv->max_dotclk_freq;
6217 if (INTEL_GEN(dev_priv) < 4) {
6218 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6221 * Enable double wide mode when the dot clock
6222 * is > 90% of the (display) core speed.
6224 if (intel_crtc_supports_double_wide(crtc) &&
6225 adjusted_mode->crtc_clock > clock_limit) {
6226 clock_limit = dev_priv->max_dotclk_freq;
6227 pipe_config->double_wide = true;
6231 if (adjusted_mode->crtc_clock > clock_limit) {
6232 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6233 adjusted_mode->crtc_clock, clock_limit,
6234 yesno(pipe_config->double_wide));
6235 return -EINVAL;
6239 * Pipe horizontal size must be even in:
6240 * - DVO ganged mode
6241 * - LVDS dual channel mode
6242 * - Double wide pipe
6244 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6245 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6246 pipe_config->pipe_src_w &= ~1;
6248 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6249 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6251 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6252 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6253 return -EINVAL;
6255 intel_crtc_compute_pixel_rate(pipe_config);
6257 if (HAS_IPS(dev_priv))
6258 hsw_compute_ips_config(crtc, pipe_config);
6260 if (pipe_config->has_pch_encoder)
6261 return ironlake_fdi_compute_config(crtc, pipe_config);
6263 return 0;
6266 static void
6267 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6269 while (*num > DATA_LINK_M_N_MASK ||
6270 *den > DATA_LINK_M_N_MASK) {
6271 *num >>= 1;
6272 *den >>= 1;
6276 static void compute_m_n(unsigned int m, unsigned int n,
6277 uint32_t *ret_m, uint32_t *ret_n)
6280 * Reduce M/N as much as possible without loss in precision. Several DP
6281 * dongles in particular seem to be fussy about too large *link* M/N
6282 * values. The passed in values are more likely to have the least
6283 * significant bits zero than M after rounding below, so do this first.
6285 while ((m & 1) == 0 && (n & 1) == 0) {
6286 m >>= 1;
6287 n >>= 1;
6290 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6291 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6292 intel_reduce_m_n_ratio(ret_m, ret_n);
6295 void
6296 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6297 int pixel_clock, int link_clock,
6298 struct intel_link_m_n *m_n)
6300 m_n->tu = 64;
6302 compute_m_n(bits_per_pixel * pixel_clock,
6303 link_clock * nlanes * 8,
6304 &m_n->gmch_m, &m_n->gmch_n);
6306 compute_m_n(pixel_clock, link_clock,
6307 &m_n->link_m, &m_n->link_n);
6310 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6312 if (i915.panel_use_ssc >= 0)
6313 return i915.panel_use_ssc != 0;
6314 return dev_priv->vbt.lvds_use_ssc
6315 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6318 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6320 return (1 << dpll->n) << 16 | dpll->m2;
6323 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6325 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6328 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6329 struct intel_crtc_state *crtc_state,
6330 struct dpll *reduced_clock)
6332 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6333 u32 fp, fp2 = 0;
6335 if (IS_PINEVIEW(dev_priv)) {
6336 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6337 if (reduced_clock)
6338 fp2 = pnv_dpll_compute_fp(reduced_clock);
6339 } else {
6340 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6341 if (reduced_clock)
6342 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6345 crtc_state->dpll_hw_state.fp0 = fp;
6347 crtc->lowfreq_avail = false;
6348 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6349 reduced_clock) {
6350 crtc_state->dpll_hw_state.fp1 = fp2;
6351 crtc->lowfreq_avail = true;
6352 } else {
6353 crtc_state->dpll_hw_state.fp1 = fp;
6357 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6358 pipe)
6360 u32 reg_val;
6363 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6364 * and set it to a reasonable value instead.
6366 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6367 reg_val &= 0xffffff00;
6368 reg_val |= 0x00000030;
6369 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6371 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6372 reg_val &= 0x8cffffff;
6373 reg_val = 0x8c000000;
6374 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6376 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6377 reg_val &= 0xffffff00;
6378 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6380 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6381 reg_val &= 0x00ffffff;
6382 reg_val |= 0xb0000000;
6383 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6386 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6387 struct intel_link_m_n *m_n)
6389 struct drm_device *dev = crtc->base.dev;
6390 struct drm_i915_private *dev_priv = to_i915(dev);
6391 int pipe = crtc->pipe;
6393 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6394 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6395 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6396 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6399 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6400 struct intel_link_m_n *m_n,
6401 struct intel_link_m_n *m2_n2)
6403 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6404 int pipe = crtc->pipe;
6405 enum transcoder transcoder = crtc->config->cpu_transcoder;
6407 if (INTEL_GEN(dev_priv) >= 5) {
6408 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6409 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6410 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6411 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6412 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6413 * for gen < 8) and if DRRS is supported (to make sure the
6414 * registers are not unnecessarily accessed).
6416 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6417 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6418 I915_WRITE(PIPE_DATA_M2(transcoder),
6419 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6420 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6421 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6422 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6424 } else {
6425 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6426 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6427 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6428 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6432 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6434 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6436 if (m_n == M1_N1) {
6437 dp_m_n = &crtc->config->dp_m_n;
6438 dp_m2_n2 = &crtc->config->dp_m2_n2;
6439 } else if (m_n == M2_N2) {
6442 * M2_N2 registers are not supported. Hence m2_n2 divider value
6443 * needs to be programmed into M1_N1.
6445 dp_m_n = &crtc->config->dp_m2_n2;
6446 } else {
6447 DRM_ERROR("Unsupported divider value\n");
6448 return;
6451 if (crtc->config->has_pch_encoder)
6452 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6453 else
6454 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6457 static void vlv_compute_dpll(struct intel_crtc *crtc,
6458 struct intel_crtc_state *pipe_config)
6460 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6461 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6462 if (crtc->pipe != PIPE_A)
6463 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6465 /* DPLL not used with DSI, but still need the rest set up */
6466 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6467 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6468 DPLL_EXT_BUFFER_ENABLE_VLV;
6470 pipe_config->dpll_hw_state.dpll_md =
6471 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6474 static void chv_compute_dpll(struct intel_crtc *crtc,
6475 struct intel_crtc_state *pipe_config)
6477 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6478 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6479 if (crtc->pipe != PIPE_A)
6480 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6482 /* DPLL not used with DSI, but still need the rest set up */
6483 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6484 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6486 pipe_config->dpll_hw_state.dpll_md =
6487 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6490 static void vlv_prepare_pll(struct intel_crtc *crtc,
6491 const struct intel_crtc_state *pipe_config)
6493 struct drm_device *dev = crtc->base.dev;
6494 struct drm_i915_private *dev_priv = to_i915(dev);
6495 enum pipe pipe = crtc->pipe;
6496 u32 mdiv;
6497 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6498 u32 coreclk, reg_val;
6500 /* Enable Refclk */
6501 I915_WRITE(DPLL(pipe),
6502 pipe_config->dpll_hw_state.dpll &
6503 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6505 /* No need to actually set up the DPLL with DSI */
6506 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6507 return;
6509 mutex_lock(&dev_priv->sb_lock);
6511 bestn = pipe_config->dpll.n;
6512 bestm1 = pipe_config->dpll.m1;
6513 bestm2 = pipe_config->dpll.m2;
6514 bestp1 = pipe_config->dpll.p1;
6515 bestp2 = pipe_config->dpll.p2;
6517 /* See eDP HDMI DPIO driver vbios notes doc */
6519 /* PLL B needs special handling */
6520 if (pipe == PIPE_B)
6521 vlv_pllb_recal_opamp(dev_priv, pipe);
6523 /* Set up Tx target for periodic Rcomp update */
6524 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6526 /* Disable target IRef on PLL */
6527 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6528 reg_val &= 0x00ffffff;
6529 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6531 /* Disable fast lock */
6532 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6534 /* Set idtafcrecal before PLL is enabled */
6535 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6536 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6537 mdiv |= ((bestn << DPIO_N_SHIFT));
6538 mdiv |= (1 << DPIO_K_SHIFT);
6541 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6542 * but we don't support that).
6543 * Note: don't use the DAC post divider as it seems unstable.
6545 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6546 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6548 mdiv |= DPIO_ENABLE_CALIBRATION;
6549 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6551 /* Set HBR and RBR LPF coefficients */
6552 if (pipe_config->port_clock == 162000 ||
6553 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6554 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6555 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6556 0x009f0003);
6557 else
6558 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6559 0x00d0000f);
6561 if (intel_crtc_has_dp_encoder(pipe_config)) {
6562 /* Use SSC source */
6563 if (pipe == PIPE_A)
6564 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6565 0x0df40000);
6566 else
6567 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6568 0x0df70000);
6569 } else { /* HDMI or VGA */
6570 /* Use bend source */
6571 if (pipe == PIPE_A)
6572 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6573 0x0df70000);
6574 else
6575 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6576 0x0df40000);
6579 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6580 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6581 if (intel_crtc_has_dp_encoder(crtc->config))
6582 coreclk |= 0x01000000;
6583 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6585 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6586 mutex_unlock(&dev_priv->sb_lock);
6589 static void chv_prepare_pll(struct intel_crtc *crtc,
6590 const struct intel_crtc_state *pipe_config)
6592 struct drm_device *dev = crtc->base.dev;
6593 struct drm_i915_private *dev_priv = to_i915(dev);
6594 enum pipe pipe = crtc->pipe;
6595 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6596 u32 loopfilter, tribuf_calcntr;
6597 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6598 u32 dpio_val;
6599 int vco;
6601 /* Enable Refclk and SSC */
6602 I915_WRITE(DPLL(pipe),
6603 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6605 /* No need to actually set up the DPLL with DSI */
6606 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6607 return;
6609 bestn = pipe_config->dpll.n;
6610 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6611 bestm1 = pipe_config->dpll.m1;
6612 bestm2 = pipe_config->dpll.m2 >> 22;
6613 bestp1 = pipe_config->dpll.p1;
6614 bestp2 = pipe_config->dpll.p2;
6615 vco = pipe_config->dpll.vco;
6616 dpio_val = 0;
6617 loopfilter = 0;
6619 mutex_lock(&dev_priv->sb_lock);
6621 /* p1 and p2 divider */
6622 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6623 5 << DPIO_CHV_S1_DIV_SHIFT |
6624 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6625 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6626 1 << DPIO_CHV_K_DIV_SHIFT);
6628 /* Feedback post-divider - m2 */
6629 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6631 /* Feedback refclk divider - n and m1 */
6632 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6633 DPIO_CHV_M1_DIV_BY_2 |
6634 1 << DPIO_CHV_N_DIV_SHIFT);
6636 /* M2 fraction division */
6637 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6639 /* M2 fraction division enable */
6640 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6641 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6642 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6643 if (bestm2_frac)
6644 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6645 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6647 /* Program digital lock detect threshold */
6648 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6649 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6650 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6651 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6652 if (!bestm2_frac)
6653 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6654 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6656 /* Loop filter */
6657 if (vco == 5400000) {
6658 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6659 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6660 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6661 tribuf_calcntr = 0x9;
6662 } else if (vco <= 6200000) {
6663 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6664 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6665 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6666 tribuf_calcntr = 0x9;
6667 } else if (vco <= 6480000) {
6668 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6669 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6670 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6671 tribuf_calcntr = 0x8;
6672 } else {
6673 /* Not supported. Apply the same limits as in the max case */
6674 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6675 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6676 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6677 tribuf_calcntr = 0;
6679 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6681 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6682 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6683 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6684 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6686 /* AFC Recal */
6687 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6688 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6689 DPIO_AFC_RECAL);
6691 mutex_unlock(&dev_priv->sb_lock);
6695 * vlv_force_pll_on - forcibly enable just the PLL
6696 * @dev_priv: i915 private structure
6697 * @pipe: pipe PLL to enable
6698 * @dpll: PLL configuration
6700 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6701 * in cases where we need the PLL enabled even when @pipe is not going to
6702 * be enabled.
6704 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6705 const struct dpll *dpll)
6707 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6708 struct intel_crtc_state *pipe_config;
6710 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6711 if (!pipe_config)
6712 return -ENOMEM;
6714 pipe_config->base.crtc = &crtc->base;
6715 pipe_config->pixel_multiplier = 1;
6716 pipe_config->dpll = *dpll;
6718 if (IS_CHERRYVIEW(dev_priv)) {
6719 chv_compute_dpll(crtc, pipe_config);
6720 chv_prepare_pll(crtc, pipe_config);
6721 chv_enable_pll(crtc, pipe_config);
6722 } else {
6723 vlv_compute_dpll(crtc, pipe_config);
6724 vlv_prepare_pll(crtc, pipe_config);
6725 vlv_enable_pll(crtc, pipe_config);
6728 kfree(pipe_config);
6730 return 0;
6734 * vlv_force_pll_off - forcibly disable just the PLL
6735 * @dev_priv: i915 private structure
6736 * @pipe: pipe PLL to disable
6738 * Disable the PLL for @pipe. To be used in cases where we need
6739 * the PLL enabled even when @pipe is not going to be enabled.
6741 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6743 if (IS_CHERRYVIEW(dev_priv))
6744 chv_disable_pll(dev_priv, pipe);
6745 else
6746 vlv_disable_pll(dev_priv, pipe);
6749 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6750 struct intel_crtc_state *crtc_state,
6751 struct dpll *reduced_clock)
6753 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6754 u32 dpll;
6755 struct dpll *clock = &crtc_state->dpll;
6757 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6759 dpll = DPLL_VGA_MODE_DIS;
6761 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6762 dpll |= DPLLB_MODE_LVDS;
6763 else
6764 dpll |= DPLLB_MODE_DAC_SERIAL;
6766 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6767 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6768 dpll |= (crtc_state->pixel_multiplier - 1)
6769 << SDVO_MULTIPLIER_SHIFT_HIRES;
6772 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6773 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6774 dpll |= DPLL_SDVO_HIGH_SPEED;
6776 if (intel_crtc_has_dp_encoder(crtc_state))
6777 dpll |= DPLL_SDVO_HIGH_SPEED;
6779 /* compute bitmask from p1 value */
6780 if (IS_PINEVIEW(dev_priv))
6781 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6782 else {
6783 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6784 if (IS_G4X(dev_priv) && reduced_clock)
6785 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6787 switch (clock->p2) {
6788 case 5:
6789 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6790 break;
6791 case 7:
6792 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6793 break;
6794 case 10:
6795 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6796 break;
6797 case 14:
6798 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6799 break;
6801 if (INTEL_GEN(dev_priv) >= 4)
6802 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6804 if (crtc_state->sdvo_tv_clock)
6805 dpll |= PLL_REF_INPUT_TVCLKINBC;
6806 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6807 intel_panel_use_ssc(dev_priv))
6808 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6809 else
6810 dpll |= PLL_REF_INPUT_DREFCLK;
6812 dpll |= DPLL_VCO_ENABLE;
6813 crtc_state->dpll_hw_state.dpll = dpll;
6815 if (INTEL_GEN(dev_priv) >= 4) {
6816 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6817 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6818 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6822 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6823 struct intel_crtc_state *crtc_state,
6824 struct dpll *reduced_clock)
6826 struct drm_device *dev = crtc->base.dev;
6827 struct drm_i915_private *dev_priv = to_i915(dev);
6828 u32 dpll;
6829 struct dpll *clock = &crtc_state->dpll;
6831 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6833 dpll = DPLL_VGA_MODE_DIS;
6835 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6836 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6837 } else {
6838 if (clock->p1 == 2)
6839 dpll |= PLL_P1_DIVIDE_BY_TWO;
6840 else
6841 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6842 if (clock->p2 == 4)
6843 dpll |= PLL_P2_DIVIDE_BY_4;
6846 if (!IS_I830(dev_priv) &&
6847 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6848 dpll |= DPLL_DVO_2X_MODE;
6850 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6851 intel_panel_use_ssc(dev_priv))
6852 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6853 else
6854 dpll |= PLL_REF_INPUT_DREFCLK;
6856 dpll |= DPLL_VCO_ENABLE;
6857 crtc_state->dpll_hw_state.dpll = dpll;
6860 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6862 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6863 enum pipe pipe = intel_crtc->pipe;
6864 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6865 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6866 uint32_t crtc_vtotal, crtc_vblank_end;
6867 int vsyncshift = 0;
6869 /* We need to be careful not to changed the adjusted mode, for otherwise
6870 * the hw state checker will get angry at the mismatch. */
6871 crtc_vtotal = adjusted_mode->crtc_vtotal;
6872 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6874 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6875 /* the chip adds 2 halflines automatically */
6876 crtc_vtotal -= 1;
6877 crtc_vblank_end -= 1;
6879 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6880 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6881 else
6882 vsyncshift = adjusted_mode->crtc_hsync_start -
6883 adjusted_mode->crtc_htotal / 2;
6884 if (vsyncshift < 0)
6885 vsyncshift += adjusted_mode->crtc_htotal;
6888 if (INTEL_GEN(dev_priv) > 3)
6889 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6891 I915_WRITE(HTOTAL(cpu_transcoder),
6892 (adjusted_mode->crtc_hdisplay - 1) |
6893 ((adjusted_mode->crtc_htotal - 1) << 16));
6894 I915_WRITE(HBLANK(cpu_transcoder),
6895 (adjusted_mode->crtc_hblank_start - 1) |
6896 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6897 I915_WRITE(HSYNC(cpu_transcoder),
6898 (adjusted_mode->crtc_hsync_start - 1) |
6899 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6901 I915_WRITE(VTOTAL(cpu_transcoder),
6902 (adjusted_mode->crtc_vdisplay - 1) |
6903 ((crtc_vtotal - 1) << 16));
6904 I915_WRITE(VBLANK(cpu_transcoder),
6905 (adjusted_mode->crtc_vblank_start - 1) |
6906 ((crtc_vblank_end - 1) << 16));
6907 I915_WRITE(VSYNC(cpu_transcoder),
6908 (adjusted_mode->crtc_vsync_start - 1) |
6909 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6911 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6912 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6913 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6914 * bits. */
6915 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6916 (pipe == PIPE_B || pipe == PIPE_C))
6917 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6921 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6923 struct drm_device *dev = intel_crtc->base.dev;
6924 struct drm_i915_private *dev_priv = to_i915(dev);
6925 enum pipe pipe = intel_crtc->pipe;
6927 /* pipesrc controls the size that is scaled from, which should
6928 * always be the user's requested size.
6930 I915_WRITE(PIPESRC(pipe),
6931 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6932 (intel_crtc->config->pipe_src_h - 1));
6935 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6936 struct intel_crtc_state *pipe_config)
6938 struct drm_device *dev = crtc->base.dev;
6939 struct drm_i915_private *dev_priv = to_i915(dev);
6940 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6941 uint32_t tmp;
6943 tmp = I915_READ(HTOTAL(cpu_transcoder));
6944 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6945 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6946 tmp = I915_READ(HBLANK(cpu_transcoder));
6947 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6948 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6949 tmp = I915_READ(HSYNC(cpu_transcoder));
6950 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6951 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6953 tmp = I915_READ(VTOTAL(cpu_transcoder));
6954 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6955 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6956 tmp = I915_READ(VBLANK(cpu_transcoder));
6957 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6958 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6959 tmp = I915_READ(VSYNC(cpu_transcoder));
6960 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6961 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6963 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6964 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6965 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6966 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6970 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
6971 struct intel_crtc_state *pipe_config)
6973 struct drm_device *dev = crtc->base.dev;
6974 struct drm_i915_private *dev_priv = to_i915(dev);
6975 u32 tmp;
6977 tmp = I915_READ(PIPESRC(crtc->pipe));
6978 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6979 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6981 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6982 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6985 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6986 struct intel_crtc_state *pipe_config)
6988 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6989 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6990 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6991 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6993 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6994 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6995 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6996 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6998 mode->flags = pipe_config->base.adjusted_mode.flags;
6999 mode->type = DRM_MODE_TYPE_DRIVER;
7001 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7003 mode->hsync = drm_mode_hsync(mode);
7004 mode->vrefresh = drm_mode_vrefresh(mode);
7005 drm_mode_set_name(mode);
7008 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7010 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7011 uint32_t pipeconf;
7013 pipeconf = 0;
7015 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7016 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7017 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7019 if (intel_crtc->config->double_wide)
7020 pipeconf |= PIPECONF_DOUBLE_WIDE;
7022 /* only g4x and later have fancy bpc/dither controls */
7023 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7024 IS_CHERRYVIEW(dev_priv)) {
7025 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7026 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7027 pipeconf |= PIPECONF_DITHER_EN |
7028 PIPECONF_DITHER_TYPE_SP;
7030 switch (intel_crtc->config->pipe_bpp) {
7031 case 18:
7032 pipeconf |= PIPECONF_6BPC;
7033 break;
7034 case 24:
7035 pipeconf |= PIPECONF_8BPC;
7036 break;
7037 case 30:
7038 pipeconf |= PIPECONF_10BPC;
7039 break;
7040 default:
7041 /* Case prevented by intel_choose_pipe_bpp_dither. */
7042 BUG();
7046 if (HAS_PIPE_CXSR(dev_priv)) {
7047 if (intel_crtc->lowfreq_avail) {
7048 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7049 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7050 } else {
7051 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7055 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7056 if (INTEL_GEN(dev_priv) < 4 ||
7057 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7058 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7059 else
7060 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7061 } else
7062 pipeconf |= PIPECONF_PROGRESSIVE;
7064 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7065 intel_crtc->config->limited_color_range)
7066 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7068 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7069 POSTING_READ(PIPECONF(intel_crtc->pipe));
7072 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7073 struct intel_crtc_state *crtc_state)
7075 struct drm_device *dev = crtc->base.dev;
7076 struct drm_i915_private *dev_priv = to_i915(dev);
7077 const struct intel_limit *limit;
7078 int refclk = 48000;
7080 memset(&crtc_state->dpll_hw_state, 0,
7081 sizeof(crtc_state->dpll_hw_state));
7083 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7084 if (intel_panel_use_ssc(dev_priv)) {
7085 refclk = dev_priv->vbt.lvds_ssc_freq;
7086 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7089 limit = &intel_limits_i8xx_lvds;
7090 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7091 limit = &intel_limits_i8xx_dvo;
7092 } else {
7093 limit = &intel_limits_i8xx_dac;
7096 if (!crtc_state->clock_set &&
7097 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7098 refclk, NULL, &crtc_state->dpll)) {
7099 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7100 return -EINVAL;
7103 i8xx_compute_dpll(crtc, crtc_state, NULL);
7105 return 0;
7108 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7109 struct intel_crtc_state *crtc_state)
7111 struct drm_device *dev = crtc->base.dev;
7112 struct drm_i915_private *dev_priv = to_i915(dev);
7113 const struct intel_limit *limit;
7114 int refclk = 96000;
7116 memset(&crtc_state->dpll_hw_state, 0,
7117 sizeof(crtc_state->dpll_hw_state));
7119 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7120 if (intel_panel_use_ssc(dev_priv)) {
7121 refclk = dev_priv->vbt.lvds_ssc_freq;
7122 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7125 if (intel_is_dual_link_lvds(dev))
7126 limit = &intel_limits_g4x_dual_channel_lvds;
7127 else
7128 limit = &intel_limits_g4x_single_channel_lvds;
7129 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7130 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7131 limit = &intel_limits_g4x_hdmi;
7132 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7133 limit = &intel_limits_g4x_sdvo;
7134 } else {
7135 /* The option is for other outputs */
7136 limit = &intel_limits_i9xx_sdvo;
7139 if (!crtc_state->clock_set &&
7140 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7141 refclk, NULL, &crtc_state->dpll)) {
7142 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7143 return -EINVAL;
7146 i9xx_compute_dpll(crtc, crtc_state, NULL);
7148 return 0;
7151 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7152 struct intel_crtc_state *crtc_state)
7154 struct drm_device *dev = crtc->base.dev;
7155 struct drm_i915_private *dev_priv = to_i915(dev);
7156 const struct intel_limit *limit;
7157 int refclk = 96000;
7159 memset(&crtc_state->dpll_hw_state, 0,
7160 sizeof(crtc_state->dpll_hw_state));
7162 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7163 if (intel_panel_use_ssc(dev_priv)) {
7164 refclk = dev_priv->vbt.lvds_ssc_freq;
7165 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7168 limit = &intel_limits_pineview_lvds;
7169 } else {
7170 limit = &intel_limits_pineview_sdvo;
7173 if (!crtc_state->clock_set &&
7174 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7175 refclk, NULL, &crtc_state->dpll)) {
7176 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7177 return -EINVAL;
7180 i9xx_compute_dpll(crtc, crtc_state, NULL);
7182 return 0;
7185 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7186 struct intel_crtc_state *crtc_state)
7188 struct drm_device *dev = crtc->base.dev;
7189 struct drm_i915_private *dev_priv = to_i915(dev);
7190 const struct intel_limit *limit;
7191 int refclk = 96000;
7193 memset(&crtc_state->dpll_hw_state, 0,
7194 sizeof(crtc_state->dpll_hw_state));
7196 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7197 if (intel_panel_use_ssc(dev_priv)) {
7198 refclk = dev_priv->vbt.lvds_ssc_freq;
7199 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7202 limit = &intel_limits_i9xx_lvds;
7203 } else {
7204 limit = &intel_limits_i9xx_sdvo;
7207 if (!crtc_state->clock_set &&
7208 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7209 refclk, NULL, &crtc_state->dpll)) {
7210 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7211 return -EINVAL;
7214 i9xx_compute_dpll(crtc, crtc_state, NULL);
7216 return 0;
7219 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7220 struct intel_crtc_state *crtc_state)
7222 int refclk = 100000;
7223 const struct intel_limit *limit = &intel_limits_chv;
7225 memset(&crtc_state->dpll_hw_state, 0,
7226 sizeof(crtc_state->dpll_hw_state));
7228 if (!crtc_state->clock_set &&
7229 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7230 refclk, NULL, &crtc_state->dpll)) {
7231 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7232 return -EINVAL;
7235 chv_compute_dpll(crtc, crtc_state);
7237 return 0;
7240 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7241 struct intel_crtc_state *crtc_state)
7243 int refclk = 100000;
7244 const struct intel_limit *limit = &intel_limits_vlv;
7246 memset(&crtc_state->dpll_hw_state, 0,
7247 sizeof(crtc_state->dpll_hw_state));
7249 if (!crtc_state->clock_set &&
7250 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7251 refclk, NULL, &crtc_state->dpll)) {
7252 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7253 return -EINVAL;
7256 vlv_compute_dpll(crtc, crtc_state);
7258 return 0;
7261 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7262 struct intel_crtc_state *pipe_config)
7264 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7265 uint32_t tmp;
7267 if (INTEL_GEN(dev_priv) <= 3 &&
7268 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7269 return;
7271 tmp = I915_READ(PFIT_CONTROL);
7272 if (!(tmp & PFIT_ENABLE))
7273 return;
7275 /* Check whether the pfit is attached to our pipe. */
7276 if (INTEL_GEN(dev_priv) < 4) {
7277 if (crtc->pipe != PIPE_B)
7278 return;
7279 } else {
7280 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7281 return;
7284 pipe_config->gmch_pfit.control = tmp;
7285 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7288 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7289 struct intel_crtc_state *pipe_config)
7291 struct drm_device *dev = crtc->base.dev;
7292 struct drm_i915_private *dev_priv = to_i915(dev);
7293 int pipe = pipe_config->cpu_transcoder;
7294 struct dpll clock;
7295 u32 mdiv;
7296 int refclk = 100000;
7298 /* In case of DSI, DPLL will not be used */
7299 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7300 return;
7302 mutex_lock(&dev_priv->sb_lock);
7303 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7304 mutex_unlock(&dev_priv->sb_lock);
7306 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7307 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7308 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7309 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7310 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7312 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7315 static void
7316 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7317 struct intel_initial_plane_config *plane_config)
7319 struct drm_device *dev = crtc->base.dev;
7320 struct drm_i915_private *dev_priv = to_i915(dev);
7321 u32 val, base, offset;
7322 int pipe = crtc->pipe, plane = crtc->plane;
7323 int fourcc, pixel_format;
7324 unsigned int aligned_height;
7325 struct drm_framebuffer *fb;
7326 struct intel_framebuffer *intel_fb;
7328 val = I915_READ(DSPCNTR(plane));
7329 if (!(val & DISPLAY_PLANE_ENABLE))
7330 return;
7332 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7333 if (!intel_fb) {
7334 DRM_DEBUG_KMS("failed to alloc fb\n");
7335 return;
7338 fb = &intel_fb->base;
7340 fb->dev = dev;
7342 if (INTEL_GEN(dev_priv) >= 4) {
7343 if (val & DISPPLANE_TILED) {
7344 plane_config->tiling = I915_TILING_X;
7345 fb->modifier = I915_FORMAT_MOD_X_TILED;
7349 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7350 fourcc = i9xx_format_to_fourcc(pixel_format);
7351 fb->format = drm_format_info(fourcc);
7353 if (INTEL_GEN(dev_priv) >= 4) {
7354 if (plane_config->tiling)
7355 offset = I915_READ(DSPTILEOFF(plane));
7356 else
7357 offset = I915_READ(DSPLINOFF(plane));
7358 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7359 } else {
7360 base = I915_READ(DSPADDR(plane));
7362 plane_config->base = base;
7364 val = I915_READ(PIPESRC(pipe));
7365 fb->width = ((val >> 16) & 0xfff) + 1;
7366 fb->height = ((val >> 0) & 0xfff) + 1;
7368 val = I915_READ(DSPSTRIDE(pipe));
7369 fb->pitches[0] = val & 0xffffffc0;
7371 aligned_height = intel_fb_align_height(fb, 0, fb->height);
7373 plane_config->size = fb->pitches[0] * aligned_height;
7375 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7376 pipe_name(pipe), plane, fb->width, fb->height,
7377 fb->format->cpp[0] * 8, base, fb->pitches[0],
7378 plane_config->size);
7380 plane_config->fb = intel_fb;
7383 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7384 struct intel_crtc_state *pipe_config)
7386 struct drm_device *dev = crtc->base.dev;
7387 struct drm_i915_private *dev_priv = to_i915(dev);
7388 int pipe = pipe_config->cpu_transcoder;
7389 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7390 struct dpll clock;
7391 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7392 int refclk = 100000;
7394 /* In case of DSI, DPLL will not be used */
7395 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7396 return;
7398 mutex_lock(&dev_priv->sb_lock);
7399 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7400 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7401 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7402 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7403 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7404 mutex_unlock(&dev_priv->sb_lock);
7406 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7407 clock.m2 = (pll_dw0 & 0xff) << 22;
7408 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7409 clock.m2 |= pll_dw2 & 0x3fffff;
7410 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7411 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7412 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7414 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7417 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7418 struct intel_crtc_state *pipe_config)
7420 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7421 enum intel_display_power_domain power_domain;
7422 uint32_t tmp;
7423 bool ret;
7425 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7426 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7427 return false;
7429 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7430 pipe_config->shared_dpll = NULL;
7432 ret = false;
7434 tmp = I915_READ(PIPECONF(crtc->pipe));
7435 if (!(tmp & PIPECONF_ENABLE))
7436 goto out;
7438 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7439 IS_CHERRYVIEW(dev_priv)) {
7440 switch (tmp & PIPECONF_BPC_MASK) {
7441 case PIPECONF_6BPC:
7442 pipe_config->pipe_bpp = 18;
7443 break;
7444 case PIPECONF_8BPC:
7445 pipe_config->pipe_bpp = 24;
7446 break;
7447 case PIPECONF_10BPC:
7448 pipe_config->pipe_bpp = 30;
7449 break;
7450 default:
7451 break;
7455 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7456 (tmp & PIPECONF_COLOR_RANGE_SELECT))
7457 pipe_config->limited_color_range = true;
7459 if (INTEL_GEN(dev_priv) < 4)
7460 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7462 intel_get_pipe_timings(crtc, pipe_config);
7463 intel_get_pipe_src_size(crtc, pipe_config);
7465 i9xx_get_pfit_config(crtc, pipe_config);
7467 if (INTEL_GEN(dev_priv) >= 4) {
7468 /* No way to read it out on pipes B and C */
7469 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7470 tmp = dev_priv->chv_dpll_md[crtc->pipe];
7471 else
7472 tmp = I915_READ(DPLL_MD(crtc->pipe));
7473 pipe_config->pixel_multiplier =
7474 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7475 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7476 pipe_config->dpll_hw_state.dpll_md = tmp;
7477 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7478 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7479 tmp = I915_READ(DPLL(crtc->pipe));
7480 pipe_config->pixel_multiplier =
7481 ((tmp & SDVO_MULTIPLIER_MASK)
7482 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7483 } else {
7484 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7485 * port and will be fixed up in the encoder->get_config
7486 * function. */
7487 pipe_config->pixel_multiplier = 1;
7489 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7490 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7492 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7493 * on 830. Filter it out here so that we don't
7494 * report errors due to that.
7496 if (IS_I830(dev_priv))
7497 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7499 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7500 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7501 } else {
7502 /* Mask out read-only status bits. */
7503 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7504 DPLL_PORTC_READY_MASK |
7505 DPLL_PORTB_READY_MASK);
7508 if (IS_CHERRYVIEW(dev_priv))
7509 chv_crtc_clock_get(crtc, pipe_config);
7510 else if (IS_VALLEYVIEW(dev_priv))
7511 vlv_crtc_clock_get(crtc, pipe_config);
7512 else
7513 i9xx_crtc_clock_get(crtc, pipe_config);
7516 * Normally the dotclock is filled in by the encoder .get_config()
7517 * but in case the pipe is enabled w/o any ports we need a sane
7518 * default.
7520 pipe_config->base.adjusted_mode.crtc_clock =
7521 pipe_config->port_clock / pipe_config->pixel_multiplier;
7523 ret = true;
7525 out:
7526 intel_display_power_put(dev_priv, power_domain);
7528 return ret;
7531 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7533 struct intel_encoder *encoder;
7534 int i;
7535 u32 val, final;
7536 bool has_lvds = false;
7537 bool has_cpu_edp = false;
7538 bool has_panel = false;
7539 bool has_ck505 = false;
7540 bool can_ssc = false;
7541 bool using_ssc_source = false;
7543 /* We need to take the global config into account */
7544 for_each_intel_encoder(&dev_priv->drm, encoder) {
7545 switch (encoder->type) {
7546 case INTEL_OUTPUT_LVDS:
7547 has_panel = true;
7548 has_lvds = true;
7549 break;
7550 case INTEL_OUTPUT_EDP:
7551 has_panel = true;
7552 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7553 has_cpu_edp = true;
7554 break;
7555 default:
7556 break;
7560 if (HAS_PCH_IBX(dev_priv)) {
7561 has_ck505 = dev_priv->vbt.display_clock_mode;
7562 can_ssc = has_ck505;
7563 } else {
7564 has_ck505 = false;
7565 can_ssc = true;
7568 /* Check if any DPLLs are using the SSC source */
7569 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7570 u32 temp = I915_READ(PCH_DPLL(i));
7572 if (!(temp & DPLL_VCO_ENABLE))
7573 continue;
7575 if ((temp & PLL_REF_INPUT_MASK) ==
7576 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7577 using_ssc_source = true;
7578 break;
7582 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7583 has_panel, has_lvds, has_ck505, using_ssc_source);
7585 /* Ironlake: try to setup display ref clock before DPLL
7586 * enabling. This is only under driver's control after
7587 * PCH B stepping, previous chipset stepping should be
7588 * ignoring this setting.
7590 val = I915_READ(PCH_DREF_CONTROL);
7592 /* As we must carefully and slowly disable/enable each source in turn,
7593 * compute the final state we want first and check if we need to
7594 * make any changes at all.
7596 final = val;
7597 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7598 if (has_ck505)
7599 final |= DREF_NONSPREAD_CK505_ENABLE;
7600 else
7601 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7603 final &= ~DREF_SSC_SOURCE_MASK;
7604 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7605 final &= ~DREF_SSC1_ENABLE;
7607 if (has_panel) {
7608 final |= DREF_SSC_SOURCE_ENABLE;
7610 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7611 final |= DREF_SSC1_ENABLE;
7613 if (has_cpu_edp) {
7614 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7615 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7616 else
7617 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7618 } else
7619 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7620 } else if (using_ssc_source) {
7621 final |= DREF_SSC_SOURCE_ENABLE;
7622 final |= DREF_SSC1_ENABLE;
7625 if (final == val)
7626 return;
7628 /* Always enable nonspread source */
7629 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7631 if (has_ck505)
7632 val |= DREF_NONSPREAD_CK505_ENABLE;
7633 else
7634 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7636 if (has_panel) {
7637 val &= ~DREF_SSC_SOURCE_MASK;
7638 val |= DREF_SSC_SOURCE_ENABLE;
7640 /* SSC must be turned on before enabling the CPU output */
7641 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7642 DRM_DEBUG_KMS("Using SSC on panel\n");
7643 val |= DREF_SSC1_ENABLE;
7644 } else
7645 val &= ~DREF_SSC1_ENABLE;
7647 /* Get SSC going before enabling the outputs */
7648 I915_WRITE(PCH_DREF_CONTROL, val);
7649 POSTING_READ(PCH_DREF_CONTROL);
7650 udelay(200);
7652 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7654 /* Enable CPU source on CPU attached eDP */
7655 if (has_cpu_edp) {
7656 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7657 DRM_DEBUG_KMS("Using SSC on eDP\n");
7658 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7659 } else
7660 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7661 } else
7662 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7664 I915_WRITE(PCH_DREF_CONTROL, val);
7665 POSTING_READ(PCH_DREF_CONTROL);
7666 udelay(200);
7667 } else {
7668 DRM_DEBUG_KMS("Disabling CPU source output\n");
7670 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7672 /* Turn off CPU output */
7673 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7675 I915_WRITE(PCH_DREF_CONTROL, val);
7676 POSTING_READ(PCH_DREF_CONTROL);
7677 udelay(200);
7679 if (!using_ssc_source) {
7680 DRM_DEBUG_KMS("Disabling SSC source\n");
7682 /* Turn off the SSC source */
7683 val &= ~DREF_SSC_SOURCE_MASK;
7684 val |= DREF_SSC_SOURCE_DISABLE;
7686 /* Turn off SSC1 */
7687 val &= ~DREF_SSC1_ENABLE;
7689 I915_WRITE(PCH_DREF_CONTROL, val);
7690 POSTING_READ(PCH_DREF_CONTROL);
7691 udelay(200);
7695 BUG_ON(val != final);
7698 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7700 uint32_t tmp;
7702 tmp = I915_READ(SOUTH_CHICKEN2);
7703 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7704 I915_WRITE(SOUTH_CHICKEN2, tmp);
7706 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7707 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7708 DRM_ERROR("FDI mPHY reset assert timeout\n");
7710 tmp = I915_READ(SOUTH_CHICKEN2);
7711 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7712 I915_WRITE(SOUTH_CHICKEN2, tmp);
7714 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7715 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7716 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7719 /* WaMPhyProgramming:hsw */
7720 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7722 uint32_t tmp;
7724 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7725 tmp &= ~(0xFF << 24);
7726 tmp |= (0x12 << 24);
7727 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7729 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7730 tmp |= (1 << 11);
7731 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7733 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7734 tmp |= (1 << 11);
7735 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7737 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7738 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7739 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7741 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7742 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7743 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7745 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7746 tmp &= ~(7 << 13);
7747 tmp |= (5 << 13);
7748 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7750 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7751 tmp &= ~(7 << 13);
7752 tmp |= (5 << 13);
7753 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7755 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7756 tmp &= ~0xFF;
7757 tmp |= 0x1C;
7758 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7760 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7761 tmp &= ~0xFF;
7762 tmp |= 0x1C;
7763 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7765 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7766 tmp &= ~(0xFF << 16);
7767 tmp |= (0x1C << 16);
7768 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7770 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7771 tmp &= ~(0xFF << 16);
7772 tmp |= (0x1C << 16);
7773 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7775 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7776 tmp |= (1 << 27);
7777 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7779 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7780 tmp |= (1 << 27);
7781 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7783 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7784 tmp &= ~(0xF << 28);
7785 tmp |= (4 << 28);
7786 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7788 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7789 tmp &= ~(0xF << 28);
7790 tmp |= (4 << 28);
7791 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7794 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7795 * Programming" based on the parameters passed:
7796 * - Sequence to enable CLKOUT_DP
7797 * - Sequence to enable CLKOUT_DP without spread
7798 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7800 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7801 bool with_spread, bool with_fdi)
7803 uint32_t reg, tmp;
7805 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7806 with_spread = true;
7807 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7808 with_fdi, "LP PCH doesn't have FDI\n"))
7809 with_fdi = false;
7811 mutex_lock(&dev_priv->sb_lock);
7813 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7814 tmp &= ~SBI_SSCCTL_DISABLE;
7815 tmp |= SBI_SSCCTL_PATHALT;
7816 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7818 udelay(24);
7820 if (with_spread) {
7821 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7822 tmp &= ~SBI_SSCCTL_PATHALT;
7823 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7825 if (with_fdi) {
7826 lpt_reset_fdi_mphy(dev_priv);
7827 lpt_program_fdi_mphy(dev_priv);
7831 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7832 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7833 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7834 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7836 mutex_unlock(&dev_priv->sb_lock);
7839 /* Sequence to disable CLKOUT_DP */
7840 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7842 uint32_t reg, tmp;
7844 mutex_lock(&dev_priv->sb_lock);
7846 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7847 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7848 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7849 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7851 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7852 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7853 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7854 tmp |= SBI_SSCCTL_PATHALT;
7855 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7856 udelay(32);
7858 tmp |= SBI_SSCCTL_DISABLE;
7859 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7862 mutex_unlock(&dev_priv->sb_lock);
7865 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7867 static const uint16_t sscdivintphase[] = {
7868 [BEND_IDX( 50)] = 0x3B23,
7869 [BEND_IDX( 45)] = 0x3B23,
7870 [BEND_IDX( 40)] = 0x3C23,
7871 [BEND_IDX( 35)] = 0x3C23,
7872 [BEND_IDX( 30)] = 0x3D23,
7873 [BEND_IDX( 25)] = 0x3D23,
7874 [BEND_IDX( 20)] = 0x3E23,
7875 [BEND_IDX( 15)] = 0x3E23,
7876 [BEND_IDX( 10)] = 0x3F23,
7877 [BEND_IDX( 5)] = 0x3F23,
7878 [BEND_IDX( 0)] = 0x0025,
7879 [BEND_IDX( -5)] = 0x0025,
7880 [BEND_IDX(-10)] = 0x0125,
7881 [BEND_IDX(-15)] = 0x0125,
7882 [BEND_IDX(-20)] = 0x0225,
7883 [BEND_IDX(-25)] = 0x0225,
7884 [BEND_IDX(-30)] = 0x0325,
7885 [BEND_IDX(-35)] = 0x0325,
7886 [BEND_IDX(-40)] = 0x0425,
7887 [BEND_IDX(-45)] = 0x0425,
7888 [BEND_IDX(-50)] = 0x0525,
7892 * Bend CLKOUT_DP
7893 * steps -50 to 50 inclusive, in steps of 5
7894 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7895 * change in clock period = -(steps / 10) * 5.787 ps
7897 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7899 uint32_t tmp;
7900 int idx = BEND_IDX(steps);
7902 if (WARN_ON(steps % 5 != 0))
7903 return;
7905 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7906 return;
7908 mutex_lock(&dev_priv->sb_lock);
7910 if (steps % 10 != 0)
7911 tmp = 0xAAAAAAAB;
7912 else
7913 tmp = 0x00000000;
7914 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7916 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7917 tmp &= 0xffff0000;
7918 tmp |= sscdivintphase[idx];
7919 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7921 mutex_unlock(&dev_priv->sb_lock);
7924 #undef BEND_IDX
7926 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7928 struct intel_encoder *encoder;
7929 bool has_vga = false;
7931 for_each_intel_encoder(&dev_priv->drm, encoder) {
7932 switch (encoder->type) {
7933 case INTEL_OUTPUT_ANALOG:
7934 has_vga = true;
7935 break;
7936 default:
7937 break;
7941 if (has_vga) {
7942 lpt_bend_clkout_dp(dev_priv, 0);
7943 lpt_enable_clkout_dp(dev_priv, true, true);
7944 } else {
7945 lpt_disable_clkout_dp(dev_priv);
7950 * Initialize reference clocks when the driver loads
7952 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7954 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7955 ironlake_init_pch_refclk(dev_priv);
7956 else if (HAS_PCH_LPT(dev_priv))
7957 lpt_init_pch_refclk(dev_priv);
7960 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7962 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7964 int pipe = intel_crtc->pipe;
7965 uint32_t val;
7967 val = 0;
7969 switch (intel_crtc->config->pipe_bpp) {
7970 case 18:
7971 val |= PIPECONF_6BPC;
7972 break;
7973 case 24:
7974 val |= PIPECONF_8BPC;
7975 break;
7976 case 30:
7977 val |= PIPECONF_10BPC;
7978 break;
7979 case 36:
7980 val |= PIPECONF_12BPC;
7981 break;
7982 default:
7983 /* Case prevented by intel_choose_pipe_bpp_dither. */
7984 BUG();
7987 if (intel_crtc->config->dither)
7988 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7990 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7991 val |= PIPECONF_INTERLACED_ILK;
7992 else
7993 val |= PIPECONF_PROGRESSIVE;
7995 if (intel_crtc->config->limited_color_range)
7996 val |= PIPECONF_COLOR_RANGE_SELECT;
7998 I915_WRITE(PIPECONF(pipe), val);
7999 POSTING_READ(PIPECONF(pipe));
8002 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8004 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8006 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8007 u32 val = 0;
8009 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8010 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8012 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8013 val |= PIPECONF_INTERLACED_ILK;
8014 else
8015 val |= PIPECONF_PROGRESSIVE;
8017 I915_WRITE(PIPECONF(cpu_transcoder), val);
8018 POSTING_READ(PIPECONF(cpu_transcoder));
8021 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8023 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8026 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8027 u32 val = 0;
8029 switch (intel_crtc->config->pipe_bpp) {
8030 case 18:
8031 val |= PIPEMISC_DITHER_6_BPC;
8032 break;
8033 case 24:
8034 val |= PIPEMISC_DITHER_8_BPC;
8035 break;
8036 case 30:
8037 val |= PIPEMISC_DITHER_10_BPC;
8038 break;
8039 case 36:
8040 val |= PIPEMISC_DITHER_12_BPC;
8041 break;
8042 default:
8043 /* Case prevented by pipe_config_set_bpp. */
8044 BUG();
8047 if (intel_crtc->config->dither)
8048 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8050 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8054 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8057 * Account for spread spectrum to avoid
8058 * oversubscribing the link. Max center spread
8059 * is 2.5%; use 5% for safety's sake.
8061 u32 bps = target_clock * bpp * 21 / 20;
8062 return DIV_ROUND_UP(bps, link_bw * 8);
8065 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8067 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8070 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8071 struct intel_crtc_state *crtc_state,
8072 struct dpll *reduced_clock)
8074 struct drm_crtc *crtc = &intel_crtc->base;
8075 struct drm_device *dev = crtc->dev;
8076 struct drm_i915_private *dev_priv = to_i915(dev);
8077 u32 dpll, fp, fp2;
8078 int factor;
8080 /* Enable autotuning of the PLL clock (if permissible) */
8081 factor = 21;
8082 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8083 if ((intel_panel_use_ssc(dev_priv) &&
8084 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8085 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8086 factor = 25;
8087 } else if (crtc_state->sdvo_tv_clock)
8088 factor = 20;
8090 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8092 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8093 fp |= FP_CB_TUNE;
8095 if (reduced_clock) {
8096 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8098 if (reduced_clock->m < factor * reduced_clock->n)
8099 fp2 |= FP_CB_TUNE;
8100 } else {
8101 fp2 = fp;
8104 dpll = 0;
8106 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8107 dpll |= DPLLB_MODE_LVDS;
8108 else
8109 dpll |= DPLLB_MODE_DAC_SERIAL;
8111 dpll |= (crtc_state->pixel_multiplier - 1)
8112 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8114 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8115 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8116 dpll |= DPLL_SDVO_HIGH_SPEED;
8118 if (intel_crtc_has_dp_encoder(crtc_state))
8119 dpll |= DPLL_SDVO_HIGH_SPEED;
8122 * The high speed IO clock is only really required for
8123 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8124 * possible to share the DPLL between CRT and HDMI. Enabling
8125 * the clock needlessly does no real harm, except use up a
8126 * bit of power potentially.
8128 * We'll limit this to IVB with 3 pipes, since it has only two
8129 * DPLLs and so DPLL sharing is the only way to get three pipes
8130 * driving PCH ports at the same time. On SNB we could do this,
8131 * and potentially avoid enabling the second DPLL, but it's not
8132 * clear if it''s a win or loss power wise. No point in doing
8133 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8135 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8136 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8137 dpll |= DPLL_SDVO_HIGH_SPEED;
8139 /* compute bitmask from p1 value */
8140 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8141 /* also FPA1 */
8142 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8144 switch (crtc_state->dpll.p2) {
8145 case 5:
8146 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8147 break;
8148 case 7:
8149 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8150 break;
8151 case 10:
8152 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8153 break;
8154 case 14:
8155 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8156 break;
8159 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8160 intel_panel_use_ssc(dev_priv))
8161 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8162 else
8163 dpll |= PLL_REF_INPUT_DREFCLK;
8165 dpll |= DPLL_VCO_ENABLE;
8167 crtc_state->dpll_hw_state.dpll = dpll;
8168 crtc_state->dpll_hw_state.fp0 = fp;
8169 crtc_state->dpll_hw_state.fp1 = fp2;
8172 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8173 struct intel_crtc_state *crtc_state)
8175 struct drm_device *dev = crtc->base.dev;
8176 struct drm_i915_private *dev_priv = to_i915(dev);
8177 struct dpll reduced_clock;
8178 bool has_reduced_clock = false;
8179 struct intel_shared_dpll *pll;
8180 const struct intel_limit *limit;
8181 int refclk = 120000;
8183 memset(&crtc_state->dpll_hw_state, 0,
8184 sizeof(crtc_state->dpll_hw_state));
8186 crtc->lowfreq_avail = false;
8188 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8189 if (!crtc_state->has_pch_encoder)
8190 return 0;
8192 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8193 if (intel_panel_use_ssc(dev_priv)) {
8194 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8195 dev_priv->vbt.lvds_ssc_freq);
8196 refclk = dev_priv->vbt.lvds_ssc_freq;
8199 if (intel_is_dual_link_lvds(dev)) {
8200 if (refclk == 100000)
8201 limit = &intel_limits_ironlake_dual_lvds_100m;
8202 else
8203 limit = &intel_limits_ironlake_dual_lvds;
8204 } else {
8205 if (refclk == 100000)
8206 limit = &intel_limits_ironlake_single_lvds_100m;
8207 else
8208 limit = &intel_limits_ironlake_single_lvds;
8210 } else {
8211 limit = &intel_limits_ironlake_dac;
8214 if (!crtc_state->clock_set &&
8215 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8216 refclk, NULL, &crtc_state->dpll)) {
8217 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8218 return -EINVAL;
8221 ironlake_compute_dpll(crtc, crtc_state,
8222 has_reduced_clock ? &reduced_clock : NULL);
8224 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8225 if (pll == NULL) {
8226 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8227 pipe_name(crtc->pipe));
8228 return -EINVAL;
8231 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8232 has_reduced_clock)
8233 crtc->lowfreq_avail = true;
8235 return 0;
8238 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8239 struct intel_link_m_n *m_n)
8241 struct drm_device *dev = crtc->base.dev;
8242 struct drm_i915_private *dev_priv = to_i915(dev);
8243 enum pipe pipe = crtc->pipe;
8245 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8246 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8247 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8248 & ~TU_SIZE_MASK;
8249 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8250 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8251 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8254 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8255 enum transcoder transcoder,
8256 struct intel_link_m_n *m_n,
8257 struct intel_link_m_n *m2_n2)
8259 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8260 enum pipe pipe = crtc->pipe;
8262 if (INTEL_GEN(dev_priv) >= 5) {
8263 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8264 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8265 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8266 & ~TU_SIZE_MASK;
8267 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8268 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8269 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8270 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8271 * gen < 8) and if DRRS is supported (to make sure the
8272 * registers are not unnecessarily read).
8274 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8275 crtc->config->has_drrs) {
8276 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8277 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8278 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8279 & ~TU_SIZE_MASK;
8280 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8281 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8282 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8284 } else {
8285 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8286 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8287 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8288 & ~TU_SIZE_MASK;
8289 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8290 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8291 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8295 void intel_dp_get_m_n(struct intel_crtc *crtc,
8296 struct intel_crtc_state *pipe_config)
8298 if (pipe_config->has_pch_encoder)
8299 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8300 else
8301 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8302 &pipe_config->dp_m_n,
8303 &pipe_config->dp_m2_n2);
8306 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8307 struct intel_crtc_state *pipe_config)
8309 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8310 &pipe_config->fdi_m_n, NULL);
8313 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8314 struct intel_crtc_state *pipe_config)
8316 struct drm_device *dev = crtc->base.dev;
8317 struct drm_i915_private *dev_priv = to_i915(dev);
8318 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8319 uint32_t ps_ctrl = 0;
8320 int id = -1;
8321 int i;
8323 /* find scaler attached to this pipe */
8324 for (i = 0; i < crtc->num_scalers; i++) {
8325 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8326 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8327 id = i;
8328 pipe_config->pch_pfit.enabled = true;
8329 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8330 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8331 break;
8335 scaler_state->scaler_id = id;
8336 if (id >= 0) {
8337 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8338 } else {
8339 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8343 static void
8344 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8345 struct intel_initial_plane_config *plane_config)
8347 struct drm_device *dev = crtc->base.dev;
8348 struct drm_i915_private *dev_priv = to_i915(dev);
8349 u32 val, base, offset, stride_mult, tiling;
8350 int pipe = crtc->pipe;
8351 int fourcc, pixel_format;
8352 unsigned int aligned_height;
8353 struct drm_framebuffer *fb;
8354 struct intel_framebuffer *intel_fb;
8356 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8357 if (!intel_fb) {
8358 DRM_DEBUG_KMS("failed to alloc fb\n");
8359 return;
8362 fb = &intel_fb->base;
8364 fb->dev = dev;
8366 val = I915_READ(PLANE_CTL(pipe, 0));
8367 if (!(val & PLANE_CTL_ENABLE))
8368 goto error;
8370 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8371 fourcc = skl_format_to_fourcc(pixel_format,
8372 val & PLANE_CTL_ORDER_RGBX,
8373 val & PLANE_CTL_ALPHA_MASK);
8374 fb->format = drm_format_info(fourcc);
8376 tiling = val & PLANE_CTL_TILED_MASK;
8377 switch (tiling) {
8378 case PLANE_CTL_TILED_LINEAR:
8379 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8380 break;
8381 case PLANE_CTL_TILED_X:
8382 plane_config->tiling = I915_TILING_X;
8383 fb->modifier = I915_FORMAT_MOD_X_TILED;
8384 break;
8385 case PLANE_CTL_TILED_Y:
8386 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8387 break;
8388 case PLANE_CTL_TILED_YF:
8389 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8390 break;
8391 default:
8392 MISSING_CASE(tiling);
8393 goto error;
8396 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8397 plane_config->base = base;
8399 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8401 val = I915_READ(PLANE_SIZE(pipe, 0));
8402 fb->height = ((val >> 16) & 0xfff) + 1;
8403 fb->width = ((val >> 0) & 0x1fff) + 1;
8405 val = I915_READ(PLANE_STRIDE(pipe, 0));
8406 stride_mult = intel_fb_stride_alignment(fb, 0);
8407 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8409 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8411 plane_config->size = fb->pitches[0] * aligned_height;
8413 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8414 pipe_name(pipe), fb->width, fb->height,
8415 fb->format->cpp[0] * 8, base, fb->pitches[0],
8416 plane_config->size);
8418 plane_config->fb = intel_fb;
8419 return;
8421 error:
8422 kfree(intel_fb);
8425 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8426 struct intel_crtc_state *pipe_config)
8428 struct drm_device *dev = crtc->base.dev;
8429 struct drm_i915_private *dev_priv = to_i915(dev);
8430 uint32_t tmp;
8432 tmp = I915_READ(PF_CTL(crtc->pipe));
8434 if (tmp & PF_ENABLE) {
8435 pipe_config->pch_pfit.enabled = true;
8436 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8437 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8439 /* We currently do not free assignements of panel fitters on
8440 * ivb/hsw (since we don't use the higher upscaling modes which
8441 * differentiates them) so just WARN about this case for now. */
8442 if (IS_GEN7(dev_priv)) {
8443 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8444 PF_PIPE_SEL_IVB(crtc->pipe));
8449 static void
8450 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8451 struct intel_initial_plane_config *plane_config)
8453 struct drm_device *dev = crtc->base.dev;
8454 struct drm_i915_private *dev_priv = to_i915(dev);
8455 u32 val, base, offset;
8456 int pipe = crtc->pipe;
8457 int fourcc, pixel_format;
8458 unsigned int aligned_height;
8459 struct drm_framebuffer *fb;
8460 struct intel_framebuffer *intel_fb;
8462 val = I915_READ(DSPCNTR(pipe));
8463 if (!(val & DISPLAY_PLANE_ENABLE))
8464 return;
8466 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8467 if (!intel_fb) {
8468 DRM_DEBUG_KMS("failed to alloc fb\n");
8469 return;
8472 fb = &intel_fb->base;
8474 fb->dev = dev;
8476 if (INTEL_GEN(dev_priv) >= 4) {
8477 if (val & DISPPLANE_TILED) {
8478 plane_config->tiling = I915_TILING_X;
8479 fb->modifier = I915_FORMAT_MOD_X_TILED;
8483 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8484 fourcc = i9xx_format_to_fourcc(pixel_format);
8485 fb->format = drm_format_info(fourcc);
8487 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8488 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8489 offset = I915_READ(DSPOFFSET(pipe));
8490 } else {
8491 if (plane_config->tiling)
8492 offset = I915_READ(DSPTILEOFF(pipe));
8493 else
8494 offset = I915_READ(DSPLINOFF(pipe));
8496 plane_config->base = base;
8498 val = I915_READ(PIPESRC(pipe));
8499 fb->width = ((val >> 16) & 0xfff) + 1;
8500 fb->height = ((val >> 0) & 0xfff) + 1;
8502 val = I915_READ(DSPSTRIDE(pipe));
8503 fb->pitches[0] = val & 0xffffffc0;
8505 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8507 plane_config->size = fb->pitches[0] * aligned_height;
8509 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8510 pipe_name(pipe), fb->width, fb->height,
8511 fb->format->cpp[0] * 8, base, fb->pitches[0],
8512 plane_config->size);
8514 plane_config->fb = intel_fb;
8517 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8518 struct intel_crtc_state *pipe_config)
8520 struct drm_device *dev = crtc->base.dev;
8521 struct drm_i915_private *dev_priv = to_i915(dev);
8522 enum intel_display_power_domain power_domain;
8523 uint32_t tmp;
8524 bool ret;
8526 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8527 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8528 return false;
8530 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8531 pipe_config->shared_dpll = NULL;
8533 ret = false;
8534 tmp = I915_READ(PIPECONF(crtc->pipe));
8535 if (!(tmp & PIPECONF_ENABLE))
8536 goto out;
8538 switch (tmp & PIPECONF_BPC_MASK) {
8539 case PIPECONF_6BPC:
8540 pipe_config->pipe_bpp = 18;
8541 break;
8542 case PIPECONF_8BPC:
8543 pipe_config->pipe_bpp = 24;
8544 break;
8545 case PIPECONF_10BPC:
8546 pipe_config->pipe_bpp = 30;
8547 break;
8548 case PIPECONF_12BPC:
8549 pipe_config->pipe_bpp = 36;
8550 break;
8551 default:
8552 break;
8555 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8556 pipe_config->limited_color_range = true;
8558 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8559 struct intel_shared_dpll *pll;
8560 enum intel_dpll_id pll_id;
8562 pipe_config->has_pch_encoder = true;
8564 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8565 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8566 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8568 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8570 if (HAS_PCH_IBX(dev_priv)) {
8572 * The pipe->pch transcoder and pch transcoder->pll
8573 * mapping is fixed.
8575 pll_id = (enum intel_dpll_id) crtc->pipe;
8576 } else {
8577 tmp = I915_READ(PCH_DPLL_SEL);
8578 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8579 pll_id = DPLL_ID_PCH_PLL_B;
8580 else
8581 pll_id= DPLL_ID_PCH_PLL_A;
8584 pipe_config->shared_dpll =
8585 intel_get_shared_dpll_by_id(dev_priv, pll_id);
8586 pll = pipe_config->shared_dpll;
8588 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8589 &pipe_config->dpll_hw_state));
8591 tmp = pipe_config->dpll_hw_state.dpll;
8592 pipe_config->pixel_multiplier =
8593 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8594 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8596 ironlake_pch_clock_get(crtc, pipe_config);
8597 } else {
8598 pipe_config->pixel_multiplier = 1;
8601 intel_get_pipe_timings(crtc, pipe_config);
8602 intel_get_pipe_src_size(crtc, pipe_config);
8604 ironlake_get_pfit_config(crtc, pipe_config);
8606 ret = true;
8608 out:
8609 intel_display_power_put(dev_priv, power_domain);
8611 return ret;
8614 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8616 struct drm_device *dev = &dev_priv->drm;
8617 struct intel_crtc *crtc;
8619 for_each_intel_crtc(dev, crtc)
8620 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8621 pipe_name(crtc->pipe));
8623 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8624 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8625 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8626 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8627 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8628 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8629 "CPU PWM1 enabled\n");
8630 if (IS_HASWELL(dev_priv))
8631 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8632 "CPU PWM2 enabled\n");
8633 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8634 "PCH PWM1 enabled\n");
8635 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8636 "Utility pin enabled\n");
8637 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8640 * In theory we can still leave IRQs enabled, as long as only the HPD
8641 * interrupts remain enabled. We used to check for that, but since it's
8642 * gen-specific and since we only disable LCPLL after we fully disable
8643 * the interrupts, the check below should be enough.
8645 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8648 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8650 if (IS_HASWELL(dev_priv))
8651 return I915_READ(D_COMP_HSW);
8652 else
8653 return I915_READ(D_COMP_BDW);
8656 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8658 if (IS_HASWELL(dev_priv)) {
8659 mutex_lock(&dev_priv->rps.hw_lock);
8660 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8661 val))
8662 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8663 mutex_unlock(&dev_priv->rps.hw_lock);
8664 } else {
8665 I915_WRITE(D_COMP_BDW, val);
8666 POSTING_READ(D_COMP_BDW);
8671 * This function implements pieces of two sequences from BSpec:
8672 * - Sequence for display software to disable LCPLL
8673 * - Sequence for display software to allow package C8+
8674 * The steps implemented here are just the steps that actually touch the LCPLL
8675 * register. Callers should take care of disabling all the display engine
8676 * functions, doing the mode unset, fixing interrupts, etc.
8678 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8679 bool switch_to_fclk, bool allow_power_down)
8681 uint32_t val;
8683 assert_can_disable_lcpll(dev_priv);
8685 val = I915_READ(LCPLL_CTL);
8687 if (switch_to_fclk) {
8688 val |= LCPLL_CD_SOURCE_FCLK;
8689 I915_WRITE(LCPLL_CTL, val);
8691 if (wait_for_us(I915_READ(LCPLL_CTL) &
8692 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8693 DRM_ERROR("Switching to FCLK failed\n");
8695 val = I915_READ(LCPLL_CTL);
8698 val |= LCPLL_PLL_DISABLE;
8699 I915_WRITE(LCPLL_CTL, val);
8700 POSTING_READ(LCPLL_CTL);
8702 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8703 DRM_ERROR("LCPLL still locked\n");
8705 val = hsw_read_dcomp(dev_priv);
8706 val |= D_COMP_COMP_DISABLE;
8707 hsw_write_dcomp(dev_priv, val);
8708 ndelay(100);
8710 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8712 DRM_ERROR("D_COMP RCOMP still in progress\n");
8714 if (allow_power_down) {
8715 val = I915_READ(LCPLL_CTL);
8716 val |= LCPLL_POWER_DOWN_ALLOW;
8717 I915_WRITE(LCPLL_CTL, val);
8718 POSTING_READ(LCPLL_CTL);
8723 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8724 * source.
8726 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8728 uint32_t val;
8730 val = I915_READ(LCPLL_CTL);
8732 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8733 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8734 return;
8737 * Make sure we're not on PC8 state before disabling PC8, otherwise
8738 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8740 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8742 if (val & LCPLL_POWER_DOWN_ALLOW) {
8743 val &= ~LCPLL_POWER_DOWN_ALLOW;
8744 I915_WRITE(LCPLL_CTL, val);
8745 POSTING_READ(LCPLL_CTL);
8748 val = hsw_read_dcomp(dev_priv);
8749 val |= D_COMP_COMP_FORCE;
8750 val &= ~D_COMP_COMP_DISABLE;
8751 hsw_write_dcomp(dev_priv, val);
8753 val = I915_READ(LCPLL_CTL);
8754 val &= ~LCPLL_PLL_DISABLE;
8755 I915_WRITE(LCPLL_CTL, val);
8757 if (intel_wait_for_register(dev_priv,
8758 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8760 DRM_ERROR("LCPLL not locked yet\n");
8762 if (val & LCPLL_CD_SOURCE_FCLK) {
8763 val = I915_READ(LCPLL_CTL);
8764 val &= ~LCPLL_CD_SOURCE_FCLK;
8765 I915_WRITE(LCPLL_CTL, val);
8767 if (wait_for_us((I915_READ(LCPLL_CTL) &
8768 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8769 DRM_ERROR("Switching back to LCPLL failed\n");
8772 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8773 intel_update_cdclk(dev_priv);
8777 * Package states C8 and deeper are really deep PC states that can only be
8778 * reached when all the devices on the system allow it, so even if the graphics
8779 * device allows PC8+, it doesn't mean the system will actually get to these
8780 * states. Our driver only allows PC8+ when going into runtime PM.
8782 * The requirements for PC8+ are that all the outputs are disabled, the power
8783 * well is disabled and most interrupts are disabled, and these are also
8784 * requirements for runtime PM. When these conditions are met, we manually do
8785 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8786 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8787 * hang the machine.
8789 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8790 * the state of some registers, so when we come back from PC8+ we need to
8791 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8792 * need to take care of the registers kept by RC6. Notice that this happens even
8793 * if we don't put the device in PCI D3 state (which is what currently happens
8794 * because of the runtime PM support).
8796 * For more, read "Display Sequences for Package C8" on the hardware
8797 * documentation.
8799 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8801 uint32_t val;
8803 DRM_DEBUG_KMS("Enabling package C8+\n");
8805 if (HAS_PCH_LPT_LP(dev_priv)) {
8806 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8807 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8808 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8811 lpt_disable_clkout_dp(dev_priv);
8812 hsw_disable_lcpll(dev_priv, true, true);
8815 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8817 uint32_t val;
8819 DRM_DEBUG_KMS("Disabling package C8+\n");
8821 hsw_restore_lcpll(dev_priv);
8822 lpt_init_pch_refclk(dev_priv);
8824 if (HAS_PCH_LPT_LP(dev_priv)) {
8825 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8826 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8827 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8831 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8832 struct intel_crtc_state *crtc_state)
8834 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8835 struct intel_encoder *encoder =
8836 intel_ddi_get_crtc_new_encoder(crtc_state);
8838 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8839 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8840 pipe_name(crtc->pipe));
8841 return -EINVAL;
8845 crtc->lowfreq_avail = false;
8847 return 0;
8850 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8851 enum port port,
8852 struct intel_crtc_state *pipe_config)
8854 enum intel_dpll_id id;
8856 switch (port) {
8857 case PORT_A:
8858 id = DPLL_ID_SKL_DPLL0;
8859 break;
8860 case PORT_B:
8861 id = DPLL_ID_SKL_DPLL1;
8862 break;
8863 case PORT_C:
8864 id = DPLL_ID_SKL_DPLL2;
8865 break;
8866 default:
8867 DRM_ERROR("Incorrect port type\n");
8868 return;
8871 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8874 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8875 enum port port,
8876 struct intel_crtc_state *pipe_config)
8878 enum intel_dpll_id id;
8879 u32 temp;
8881 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8882 id = temp >> (port * 3 + 1);
8884 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8885 return;
8887 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8890 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8891 enum port port,
8892 struct intel_crtc_state *pipe_config)
8894 enum intel_dpll_id id;
8895 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8897 switch (ddi_pll_sel) {
8898 case PORT_CLK_SEL_WRPLL1:
8899 id = DPLL_ID_WRPLL1;
8900 break;
8901 case PORT_CLK_SEL_WRPLL2:
8902 id = DPLL_ID_WRPLL2;
8903 break;
8904 case PORT_CLK_SEL_SPLL:
8905 id = DPLL_ID_SPLL;
8906 break;
8907 case PORT_CLK_SEL_LCPLL_810:
8908 id = DPLL_ID_LCPLL_810;
8909 break;
8910 case PORT_CLK_SEL_LCPLL_1350:
8911 id = DPLL_ID_LCPLL_1350;
8912 break;
8913 case PORT_CLK_SEL_LCPLL_2700:
8914 id = DPLL_ID_LCPLL_2700;
8915 break;
8916 default:
8917 MISSING_CASE(ddi_pll_sel);
8918 /* fall through */
8919 case PORT_CLK_SEL_NONE:
8920 return;
8923 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8926 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8927 struct intel_crtc_state *pipe_config,
8928 u64 *power_domain_mask)
8930 struct drm_device *dev = crtc->base.dev;
8931 struct drm_i915_private *dev_priv = to_i915(dev);
8932 enum intel_display_power_domain power_domain;
8933 u32 tmp;
8936 * The pipe->transcoder mapping is fixed with the exception of the eDP
8937 * transcoder handled below.
8939 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8942 * XXX: Do intel_display_power_get_if_enabled before reading this (for
8943 * consistency and less surprising code; it's in always on power).
8945 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8946 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8947 enum pipe trans_edp_pipe;
8948 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8949 default:
8950 WARN(1, "unknown pipe linked to edp transcoder\n");
8951 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8952 case TRANS_DDI_EDP_INPUT_A_ON:
8953 trans_edp_pipe = PIPE_A;
8954 break;
8955 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8956 trans_edp_pipe = PIPE_B;
8957 break;
8958 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8959 trans_edp_pipe = PIPE_C;
8960 break;
8963 if (trans_edp_pipe == crtc->pipe)
8964 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8967 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
8968 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8969 return false;
8970 *power_domain_mask |= BIT_ULL(power_domain);
8972 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8974 return tmp & PIPECONF_ENABLE;
8977 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
8978 struct intel_crtc_state *pipe_config,
8979 u64 *power_domain_mask)
8981 struct drm_device *dev = crtc->base.dev;
8982 struct drm_i915_private *dev_priv = to_i915(dev);
8983 enum intel_display_power_domain power_domain;
8984 enum port port;
8985 enum transcoder cpu_transcoder;
8986 u32 tmp;
8988 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
8989 if (port == PORT_A)
8990 cpu_transcoder = TRANSCODER_DSI_A;
8991 else
8992 cpu_transcoder = TRANSCODER_DSI_C;
8994 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
8995 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8996 continue;
8997 *power_domain_mask |= BIT_ULL(power_domain);
9000 * The PLL needs to be enabled with a valid divider
9001 * configuration, otherwise accessing DSI registers will hang
9002 * the machine. See BSpec North Display Engine
9003 * registers/MIPI[BXT]. We can break out here early, since we
9004 * need the same DSI PLL to be enabled for both DSI ports.
9006 if (!intel_dsi_pll_is_enabled(dev_priv))
9007 break;
9009 /* XXX: this works for video mode only */
9010 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9011 if (!(tmp & DPI_ENABLE))
9012 continue;
9014 tmp = I915_READ(MIPI_CTRL(port));
9015 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9016 continue;
9018 pipe_config->cpu_transcoder = cpu_transcoder;
9019 break;
9022 return transcoder_is_dsi(pipe_config->cpu_transcoder);
9025 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9026 struct intel_crtc_state *pipe_config)
9028 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9029 struct intel_shared_dpll *pll;
9030 enum port port;
9031 uint32_t tmp;
9033 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9035 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9037 if (IS_GEN9_BC(dev_priv))
9038 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9039 else if (IS_GEN9_LP(dev_priv))
9040 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9041 else
9042 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9044 pll = pipe_config->shared_dpll;
9045 if (pll) {
9046 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9047 &pipe_config->dpll_hw_state));
9051 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9052 * DDI E. So just check whether this pipe is wired to DDI E and whether
9053 * the PCH transcoder is on.
9055 if (INTEL_GEN(dev_priv) < 9 &&
9056 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9057 pipe_config->has_pch_encoder = true;
9059 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9060 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9061 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9063 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9067 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9068 struct intel_crtc_state *pipe_config)
9070 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9071 enum intel_display_power_domain power_domain;
9072 u64 power_domain_mask;
9073 bool active;
9075 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9076 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9077 return false;
9078 power_domain_mask = BIT_ULL(power_domain);
9080 pipe_config->shared_dpll = NULL;
9082 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9084 if (IS_GEN9_LP(dev_priv) &&
9085 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9086 WARN_ON(active);
9087 active = true;
9090 if (!active)
9091 goto out;
9093 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9094 haswell_get_ddi_port_state(crtc, pipe_config);
9095 intel_get_pipe_timings(crtc, pipe_config);
9098 intel_get_pipe_src_size(crtc, pipe_config);
9100 pipe_config->gamma_mode =
9101 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9103 if (INTEL_GEN(dev_priv) >= 9) {
9104 intel_crtc_init_scalers(crtc, pipe_config);
9106 pipe_config->scaler_state.scaler_id = -1;
9107 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9110 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9111 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9112 power_domain_mask |= BIT_ULL(power_domain);
9113 if (INTEL_GEN(dev_priv) >= 9)
9114 skylake_get_pfit_config(crtc, pipe_config);
9115 else
9116 ironlake_get_pfit_config(crtc, pipe_config);
9119 if (IS_HASWELL(dev_priv))
9120 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9121 (I915_READ(IPS_CTL) & IPS_ENABLE);
9123 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9124 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9125 pipe_config->pixel_multiplier =
9126 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9127 } else {
9128 pipe_config->pixel_multiplier = 1;
9131 out:
9132 for_each_power_domain(power_domain, power_domain_mask)
9133 intel_display_power_put(dev_priv, power_domain);
9135 return active;
9138 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9139 const struct intel_plane_state *plane_state)
9141 unsigned int width = plane_state->base.crtc_w;
9142 unsigned int stride = roundup_pow_of_two(width) * 4;
9144 switch (stride) {
9145 default:
9146 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9147 width, stride);
9148 stride = 256;
9149 /* fallthrough */
9150 case 256:
9151 case 512:
9152 case 1024:
9153 case 2048:
9154 break;
9157 return CURSOR_ENABLE |
9158 CURSOR_GAMMA_ENABLE |
9159 CURSOR_FORMAT_ARGB |
9160 CURSOR_STRIDE(stride);
9163 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
9164 const struct intel_plane_state *plane_state)
9166 struct drm_device *dev = crtc->dev;
9167 struct drm_i915_private *dev_priv = to_i915(dev);
9168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9169 uint32_t cntl = 0, size = 0;
9171 if (plane_state && plane_state->base.visible) {
9172 unsigned int width = plane_state->base.crtc_w;
9173 unsigned int height = plane_state->base.crtc_h;
9175 cntl = plane_state->ctl;
9176 size = (height << 12) | width;
9179 if (intel_crtc->cursor_cntl != 0 &&
9180 (intel_crtc->cursor_base != base ||
9181 intel_crtc->cursor_size != size ||
9182 intel_crtc->cursor_cntl != cntl)) {
9183 /* On these chipsets we can only modify the base/size/stride
9184 * whilst the cursor is disabled.
9186 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9187 POSTING_READ_FW(CURCNTR(PIPE_A));
9188 intel_crtc->cursor_cntl = 0;
9191 if (intel_crtc->cursor_base != base) {
9192 I915_WRITE_FW(CURBASE(PIPE_A), base);
9193 intel_crtc->cursor_base = base;
9196 if (intel_crtc->cursor_size != size) {
9197 I915_WRITE_FW(CURSIZE, size);
9198 intel_crtc->cursor_size = size;
9201 if (intel_crtc->cursor_cntl != cntl) {
9202 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9203 POSTING_READ_FW(CURCNTR(PIPE_A));
9204 intel_crtc->cursor_cntl = cntl;
9208 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9209 const struct intel_plane_state *plane_state)
9211 struct drm_i915_private *dev_priv =
9212 to_i915(plane_state->base.plane->dev);
9213 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9214 enum pipe pipe = crtc->pipe;
9215 u32 cntl;
9217 cntl = MCURSOR_GAMMA_ENABLE;
9219 if (HAS_DDI(dev_priv))
9220 cntl |= CURSOR_PIPE_CSC_ENABLE;
9222 cntl |= pipe << 28; /* Connect to correct pipe */
9224 switch (plane_state->base.crtc_w) {
9225 case 64:
9226 cntl |= CURSOR_MODE_64_ARGB_AX;
9227 break;
9228 case 128:
9229 cntl |= CURSOR_MODE_128_ARGB_AX;
9230 break;
9231 case 256:
9232 cntl |= CURSOR_MODE_256_ARGB_AX;
9233 break;
9234 default:
9235 MISSING_CASE(plane_state->base.crtc_w);
9236 return 0;
9239 if (plane_state->base.rotation & DRM_ROTATE_180)
9240 cntl |= CURSOR_ROTATE_180;
9242 return cntl;
9245 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
9246 const struct intel_plane_state *plane_state)
9248 struct drm_device *dev = crtc->dev;
9249 struct drm_i915_private *dev_priv = to_i915(dev);
9250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9251 int pipe = intel_crtc->pipe;
9252 uint32_t cntl = 0;
9254 if (plane_state && plane_state->base.visible)
9255 cntl = plane_state->ctl;
9257 if (intel_crtc->cursor_cntl != cntl) {
9258 I915_WRITE_FW(CURCNTR(pipe), cntl);
9259 POSTING_READ_FW(CURCNTR(pipe));
9260 intel_crtc->cursor_cntl = cntl;
9263 /* and commit changes on next vblank */
9264 I915_WRITE_FW(CURBASE(pipe), base);
9265 POSTING_READ_FW(CURBASE(pipe));
9267 intel_crtc->cursor_base = base;
9270 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9271 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9272 const struct intel_plane_state *plane_state)
9274 struct drm_device *dev = crtc->dev;
9275 struct drm_i915_private *dev_priv = to_i915(dev);
9276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9277 int pipe = intel_crtc->pipe;
9278 u32 base = intel_crtc->cursor_addr;
9279 unsigned long irqflags;
9280 u32 pos = 0;
9282 if (plane_state) {
9283 int x = plane_state->base.crtc_x;
9284 int y = plane_state->base.crtc_y;
9286 if (x < 0) {
9287 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9288 x = -x;
9290 pos |= x << CURSOR_X_SHIFT;
9292 if (y < 0) {
9293 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9294 y = -y;
9296 pos |= y << CURSOR_Y_SHIFT;
9298 /* ILK+ do this automagically */
9299 if (HAS_GMCH_DISPLAY(dev_priv) &&
9300 plane_state->base.rotation & DRM_ROTATE_180) {
9301 base += (plane_state->base.crtc_h *
9302 plane_state->base.crtc_w - 1) * 4;
9306 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9308 I915_WRITE_FW(CURPOS(pipe), pos);
9310 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
9311 i845_update_cursor(crtc, base, plane_state);
9312 else
9313 i9xx_update_cursor(crtc, base, plane_state);
9315 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9318 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
9319 uint32_t width, uint32_t height)
9321 if (width == 0 || height == 0)
9322 return false;
9325 * 845g/865g are special in that they are only limited by
9326 * the width of their cursors, the height is arbitrary up to
9327 * the precision of the register. Everything else requires
9328 * square cursors, limited to a few power-of-two sizes.
9330 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
9331 if ((width & 63) != 0)
9332 return false;
9334 if (width > (IS_I845G(dev_priv) ? 64 : 512))
9335 return false;
9337 if (height > 1023)
9338 return false;
9339 } else {
9340 switch (width | height) {
9341 case 256:
9342 case 128:
9343 if (IS_GEN2(dev_priv))
9344 return false;
9345 case 64:
9346 break;
9347 default:
9348 return false;
9352 return true;
9355 /* VESA 640x480x72Hz mode to set on the pipe */
9356 static struct drm_display_mode load_detect_mode = {
9357 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9358 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9361 struct drm_framebuffer *
9362 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9363 struct drm_mode_fb_cmd2 *mode_cmd)
9365 struct intel_framebuffer *intel_fb;
9366 int ret;
9368 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9369 if (!intel_fb)
9370 return ERR_PTR(-ENOMEM);
9372 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9373 if (ret)
9374 goto err;
9376 return &intel_fb->base;
9378 err:
9379 kfree(intel_fb);
9380 return ERR_PTR(ret);
9383 static u32
9384 intel_framebuffer_pitch_for_width(int width, int bpp)
9386 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9387 return ALIGN(pitch, 64);
9390 static u32
9391 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9393 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9394 return PAGE_ALIGN(pitch * mode->vdisplay);
9397 static struct drm_framebuffer *
9398 intel_framebuffer_create_for_mode(struct drm_device *dev,
9399 struct drm_display_mode *mode,
9400 int depth, int bpp)
9402 struct drm_framebuffer *fb;
9403 struct drm_i915_gem_object *obj;
9404 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9406 obj = i915_gem_object_create(to_i915(dev),
9407 intel_framebuffer_size_for_mode(mode, bpp));
9408 if (IS_ERR(obj))
9409 return ERR_CAST(obj);
9411 mode_cmd.width = mode->hdisplay;
9412 mode_cmd.height = mode->vdisplay;
9413 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9414 bpp);
9415 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9417 fb = intel_framebuffer_create(obj, &mode_cmd);
9418 if (IS_ERR(fb))
9419 i915_gem_object_put(obj);
9421 return fb;
9424 static struct drm_framebuffer *
9425 mode_fits_in_fbdev(struct drm_device *dev,
9426 struct drm_display_mode *mode)
9428 #ifdef CONFIG_DRM_FBDEV_EMULATION
9429 struct drm_i915_private *dev_priv = to_i915(dev);
9430 struct drm_i915_gem_object *obj;
9431 struct drm_framebuffer *fb;
9433 if (!dev_priv->fbdev)
9434 return NULL;
9436 if (!dev_priv->fbdev->fb)
9437 return NULL;
9439 obj = dev_priv->fbdev->fb->obj;
9440 BUG_ON(!obj);
9442 fb = &dev_priv->fbdev->fb->base;
9443 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9444 fb->format->cpp[0] * 8))
9445 return NULL;
9447 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9448 return NULL;
9450 drm_framebuffer_reference(fb);
9451 return fb;
9452 #else
9453 return NULL;
9454 #endif
9457 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9458 struct drm_crtc *crtc,
9459 struct drm_display_mode *mode,
9460 struct drm_framebuffer *fb,
9461 int x, int y)
9463 struct drm_plane_state *plane_state;
9464 int hdisplay, vdisplay;
9465 int ret;
9467 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9468 if (IS_ERR(plane_state))
9469 return PTR_ERR(plane_state);
9471 if (mode)
9472 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9473 else
9474 hdisplay = vdisplay = 0;
9476 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9477 if (ret)
9478 return ret;
9479 drm_atomic_set_fb_for_plane(plane_state, fb);
9480 plane_state->crtc_x = 0;
9481 plane_state->crtc_y = 0;
9482 plane_state->crtc_w = hdisplay;
9483 plane_state->crtc_h = vdisplay;
9484 plane_state->src_x = x << 16;
9485 plane_state->src_y = y << 16;
9486 plane_state->src_w = hdisplay << 16;
9487 plane_state->src_h = vdisplay << 16;
9489 return 0;
9492 int intel_get_load_detect_pipe(struct drm_connector *connector,
9493 struct drm_display_mode *mode,
9494 struct intel_load_detect_pipe *old,
9495 struct drm_modeset_acquire_ctx *ctx)
9497 struct intel_crtc *intel_crtc;
9498 struct intel_encoder *intel_encoder =
9499 intel_attached_encoder(connector);
9500 struct drm_crtc *possible_crtc;
9501 struct drm_encoder *encoder = &intel_encoder->base;
9502 struct drm_crtc *crtc = NULL;
9503 struct drm_device *dev = encoder->dev;
9504 struct drm_i915_private *dev_priv = to_i915(dev);
9505 struct drm_framebuffer *fb;
9506 struct drm_mode_config *config = &dev->mode_config;
9507 struct drm_atomic_state *state = NULL, *restore_state = NULL;
9508 struct drm_connector_state *connector_state;
9509 struct intel_crtc_state *crtc_state;
9510 int ret, i = -1;
9512 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9513 connector->base.id, connector->name,
9514 encoder->base.id, encoder->name);
9516 old->restore_state = NULL;
9518 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9521 * Algorithm gets a little messy:
9523 * - if the connector already has an assigned crtc, use it (but make
9524 * sure it's on first)
9526 * - try to find the first unused crtc that can drive this connector,
9527 * and use that if we find one
9530 /* See if we already have a CRTC for this connector */
9531 if (connector->state->crtc) {
9532 crtc = connector->state->crtc;
9534 ret = drm_modeset_lock(&crtc->mutex, ctx);
9535 if (ret)
9536 goto fail;
9538 /* Make sure the crtc and connector are running */
9539 goto found;
9542 /* Find an unused one (if possible) */
9543 for_each_crtc(dev, possible_crtc) {
9544 i++;
9545 if (!(encoder->possible_crtcs & (1 << i)))
9546 continue;
9548 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9549 if (ret)
9550 goto fail;
9552 if (possible_crtc->state->enable) {
9553 drm_modeset_unlock(&possible_crtc->mutex);
9554 continue;
9557 crtc = possible_crtc;
9558 break;
9562 * If we didn't find an unused CRTC, don't use any.
9564 if (!crtc) {
9565 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9566 ret = -ENODEV;
9567 goto fail;
9570 found:
9571 intel_crtc = to_intel_crtc(crtc);
9573 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9574 if (ret)
9575 goto fail;
9577 state = drm_atomic_state_alloc(dev);
9578 restore_state = drm_atomic_state_alloc(dev);
9579 if (!state || !restore_state) {
9580 ret = -ENOMEM;
9581 goto fail;
9584 state->acquire_ctx = ctx;
9585 restore_state->acquire_ctx = ctx;
9587 connector_state = drm_atomic_get_connector_state(state, connector);
9588 if (IS_ERR(connector_state)) {
9589 ret = PTR_ERR(connector_state);
9590 goto fail;
9593 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9594 if (ret)
9595 goto fail;
9597 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9598 if (IS_ERR(crtc_state)) {
9599 ret = PTR_ERR(crtc_state);
9600 goto fail;
9603 crtc_state->base.active = crtc_state->base.enable = true;
9605 if (!mode)
9606 mode = &load_detect_mode;
9608 /* We need a framebuffer large enough to accommodate all accesses
9609 * that the plane may generate whilst we perform load detection.
9610 * We can not rely on the fbcon either being present (we get called
9611 * during its initialisation to detect all boot displays, or it may
9612 * not even exist) or that it is large enough to satisfy the
9613 * requested mode.
9615 fb = mode_fits_in_fbdev(dev, mode);
9616 if (fb == NULL) {
9617 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9618 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9619 } else
9620 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9621 if (IS_ERR(fb)) {
9622 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9623 ret = PTR_ERR(fb);
9624 goto fail;
9627 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9628 if (ret)
9629 goto fail;
9631 drm_framebuffer_unreference(fb);
9633 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9634 if (ret)
9635 goto fail;
9637 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9638 if (!ret)
9639 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9640 if (!ret)
9641 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9642 if (ret) {
9643 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9644 goto fail;
9647 ret = drm_atomic_commit(state);
9648 if (ret) {
9649 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9650 goto fail;
9653 old->restore_state = restore_state;
9654 drm_atomic_state_put(state);
9656 /* let the connector get through one full cycle before testing */
9657 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9658 return true;
9660 fail:
9661 if (state) {
9662 drm_atomic_state_put(state);
9663 state = NULL;
9665 if (restore_state) {
9666 drm_atomic_state_put(restore_state);
9667 restore_state = NULL;
9670 if (ret == -EDEADLK)
9671 return ret;
9673 return false;
9676 void intel_release_load_detect_pipe(struct drm_connector *connector,
9677 struct intel_load_detect_pipe *old,
9678 struct drm_modeset_acquire_ctx *ctx)
9680 struct intel_encoder *intel_encoder =
9681 intel_attached_encoder(connector);
9682 struct drm_encoder *encoder = &intel_encoder->base;
9683 struct drm_atomic_state *state = old->restore_state;
9684 int ret;
9686 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9687 connector->base.id, connector->name,
9688 encoder->base.id, encoder->name);
9690 if (!state)
9691 return;
9693 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9694 if (ret)
9695 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9696 drm_atomic_state_put(state);
9699 static int i9xx_pll_refclk(struct drm_device *dev,
9700 const struct intel_crtc_state *pipe_config)
9702 struct drm_i915_private *dev_priv = to_i915(dev);
9703 u32 dpll = pipe_config->dpll_hw_state.dpll;
9705 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9706 return dev_priv->vbt.lvds_ssc_freq;
9707 else if (HAS_PCH_SPLIT(dev_priv))
9708 return 120000;
9709 else if (!IS_GEN2(dev_priv))
9710 return 96000;
9711 else
9712 return 48000;
9715 /* Returns the clock of the currently programmed mode of the given pipe. */
9716 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9717 struct intel_crtc_state *pipe_config)
9719 struct drm_device *dev = crtc->base.dev;
9720 struct drm_i915_private *dev_priv = to_i915(dev);
9721 int pipe = pipe_config->cpu_transcoder;
9722 u32 dpll = pipe_config->dpll_hw_state.dpll;
9723 u32 fp;
9724 struct dpll clock;
9725 int port_clock;
9726 int refclk = i9xx_pll_refclk(dev, pipe_config);
9728 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9729 fp = pipe_config->dpll_hw_state.fp0;
9730 else
9731 fp = pipe_config->dpll_hw_state.fp1;
9733 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9734 if (IS_PINEVIEW(dev_priv)) {
9735 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9736 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9737 } else {
9738 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9739 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9742 if (!IS_GEN2(dev_priv)) {
9743 if (IS_PINEVIEW(dev_priv))
9744 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9745 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9746 else
9747 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9748 DPLL_FPA01_P1_POST_DIV_SHIFT);
9750 switch (dpll & DPLL_MODE_MASK) {
9751 case DPLLB_MODE_DAC_SERIAL:
9752 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9753 5 : 10;
9754 break;
9755 case DPLLB_MODE_LVDS:
9756 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9757 7 : 14;
9758 break;
9759 default:
9760 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9761 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9762 return;
9765 if (IS_PINEVIEW(dev_priv))
9766 port_clock = pnv_calc_dpll_params(refclk, &clock);
9767 else
9768 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9769 } else {
9770 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9771 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9773 if (is_lvds) {
9774 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9775 DPLL_FPA01_P1_POST_DIV_SHIFT);
9777 if (lvds & LVDS_CLKB_POWER_UP)
9778 clock.p2 = 7;
9779 else
9780 clock.p2 = 14;
9781 } else {
9782 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9783 clock.p1 = 2;
9784 else {
9785 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9786 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9788 if (dpll & PLL_P2_DIVIDE_BY_4)
9789 clock.p2 = 4;
9790 else
9791 clock.p2 = 2;
9794 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9798 * This value includes pixel_multiplier. We will use
9799 * port_clock to compute adjusted_mode.crtc_clock in the
9800 * encoder's get_config() function.
9802 pipe_config->port_clock = port_clock;
9805 int intel_dotclock_calculate(int link_freq,
9806 const struct intel_link_m_n *m_n)
9809 * The calculation for the data clock is:
9810 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9811 * But we want to avoid losing precison if possible, so:
9812 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9814 * and the link clock is simpler:
9815 * link_clock = (m * link_clock) / n
9818 if (!m_n->link_n)
9819 return 0;
9821 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9824 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9825 struct intel_crtc_state *pipe_config)
9827 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9829 /* read out port_clock from the DPLL */
9830 i9xx_crtc_clock_get(crtc, pipe_config);
9833 * In case there is an active pipe without active ports,
9834 * we may need some idea for the dotclock anyway.
9835 * Calculate one based on the FDI configuration.
9837 pipe_config->base.adjusted_mode.crtc_clock =
9838 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
9839 &pipe_config->fdi_m_n);
9842 /** Returns the currently programmed mode of the given pipe. */
9843 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9844 struct drm_crtc *crtc)
9846 struct drm_i915_private *dev_priv = to_i915(dev);
9847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9848 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9849 struct drm_display_mode *mode;
9850 struct intel_crtc_state *pipe_config;
9851 int htot = I915_READ(HTOTAL(cpu_transcoder));
9852 int hsync = I915_READ(HSYNC(cpu_transcoder));
9853 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9854 int vsync = I915_READ(VSYNC(cpu_transcoder));
9855 enum pipe pipe = intel_crtc->pipe;
9857 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9858 if (!mode)
9859 return NULL;
9861 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9862 if (!pipe_config) {
9863 kfree(mode);
9864 return NULL;
9868 * Construct a pipe_config sufficient for getting the clock info
9869 * back out of crtc_clock_get.
9871 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9872 * to use a real value here instead.
9874 pipe_config->cpu_transcoder = (enum transcoder) pipe;
9875 pipe_config->pixel_multiplier = 1;
9876 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9877 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9878 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9879 i9xx_crtc_clock_get(intel_crtc, pipe_config);
9881 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
9882 mode->hdisplay = (htot & 0xffff) + 1;
9883 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9884 mode->hsync_start = (hsync & 0xffff) + 1;
9885 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9886 mode->vdisplay = (vtot & 0xffff) + 1;
9887 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9888 mode->vsync_start = (vsync & 0xffff) + 1;
9889 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9891 drm_mode_set_name(mode);
9893 kfree(pipe_config);
9895 return mode;
9898 static void intel_crtc_destroy(struct drm_crtc *crtc)
9900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9901 struct drm_device *dev = crtc->dev;
9902 struct intel_flip_work *work;
9904 spin_lock_irq(&dev->event_lock);
9905 work = intel_crtc->flip_work;
9906 intel_crtc->flip_work = NULL;
9907 spin_unlock_irq(&dev->event_lock);
9909 if (work) {
9910 cancel_work_sync(&work->mmio_work);
9911 cancel_work_sync(&work->unpin_work);
9912 kfree(work);
9915 drm_crtc_cleanup(crtc);
9917 kfree(intel_crtc);
9920 static void intel_unpin_work_fn(struct work_struct *__work)
9922 struct intel_flip_work *work =
9923 container_of(__work, struct intel_flip_work, unpin_work);
9924 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
9925 struct drm_device *dev = crtc->base.dev;
9926 struct drm_plane *primary = crtc->base.primary;
9928 if (is_mmio_work(work))
9929 flush_work(&work->mmio_work);
9931 mutex_lock(&dev->struct_mutex);
9932 intel_unpin_fb_vma(work->old_vma);
9933 i915_gem_object_put(work->pending_flip_obj);
9934 mutex_unlock(&dev->struct_mutex);
9936 i915_gem_request_put(work->flip_queued_req);
9938 intel_frontbuffer_flip_complete(to_i915(dev),
9939 to_intel_plane(primary)->frontbuffer_bit);
9940 intel_fbc_post_update(crtc);
9941 drm_framebuffer_unreference(work->old_fb);
9943 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
9944 atomic_dec(&crtc->unpin_work_count);
9946 kfree(work);
9949 /* Is 'a' after or equal to 'b'? */
9950 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9952 return !((a - b) & 0x80000000);
9955 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
9956 struct intel_flip_work *work)
9958 struct drm_device *dev = crtc->base.dev;
9959 struct drm_i915_private *dev_priv = to_i915(dev);
9961 if (abort_flip_on_reset(crtc))
9962 return true;
9965 * The relevant registers doen't exist on pre-ctg.
9966 * As the flip done interrupt doesn't trigger for mmio
9967 * flips on gmch platforms, a flip count check isn't
9968 * really needed there. But since ctg has the registers,
9969 * include it in the check anyway.
9971 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
9972 return true;
9975 * BDW signals flip done immediately if the plane
9976 * is disabled, even if the plane enable is already
9977 * armed to occur at the next vblank :(
9981 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9982 * used the same base address. In that case the mmio flip might
9983 * have completed, but the CS hasn't even executed the flip yet.
9985 * A flip count check isn't enough as the CS might have updated
9986 * the base address just after start of vblank, but before we
9987 * managed to process the interrupt. This means we'd complete the
9988 * CS flip too soon.
9990 * Combining both checks should get us a good enough result. It may
9991 * still happen that the CS flip has been executed, but has not
9992 * yet actually completed. But in case the base address is the same
9993 * anyway, we don't really care.
9995 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9996 crtc->flip_work->gtt_offset &&
9997 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
9998 crtc->flip_work->flip_count);
10001 static bool
10002 __pageflip_finished_mmio(struct intel_crtc *crtc,
10003 struct intel_flip_work *work)
10006 * MMIO work completes when vblank is different from
10007 * flip_queued_vblank.
10009 * Reset counter value doesn't matter, this is handled by
10010 * i915_wait_request finishing early, so no need to handle
10011 * reset here.
10013 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10017 static bool pageflip_finished(struct intel_crtc *crtc,
10018 struct intel_flip_work *work)
10020 if (!atomic_read(&work->pending))
10021 return false;
10023 smp_rmb();
10025 if (is_mmio_work(work))
10026 return __pageflip_finished_mmio(crtc, work);
10027 else
10028 return __pageflip_finished_cs(crtc, work);
10031 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10033 struct drm_device *dev = &dev_priv->drm;
10034 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10035 struct intel_flip_work *work;
10036 unsigned long flags;
10038 /* Ignore early vblank irqs */
10039 if (!crtc)
10040 return;
10043 * This is called both by irq handlers and the reset code (to complete
10044 * lost pageflips) so needs the full irqsave spinlocks.
10046 spin_lock_irqsave(&dev->event_lock, flags);
10047 work = crtc->flip_work;
10049 if (work != NULL &&
10050 !is_mmio_work(work) &&
10051 pageflip_finished(crtc, work))
10052 page_flip_completed(crtc);
10054 spin_unlock_irqrestore(&dev->event_lock, flags);
10057 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10059 struct drm_device *dev = &dev_priv->drm;
10060 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10061 struct intel_flip_work *work;
10062 unsigned long flags;
10064 /* Ignore early vblank irqs */
10065 if (!crtc)
10066 return;
10069 * This is called both by irq handlers and the reset code (to complete
10070 * lost pageflips) so needs the full irqsave spinlocks.
10072 spin_lock_irqsave(&dev->event_lock, flags);
10073 work = crtc->flip_work;
10075 if (work != NULL &&
10076 is_mmio_work(work) &&
10077 pageflip_finished(crtc, work))
10078 page_flip_completed(crtc);
10080 spin_unlock_irqrestore(&dev->event_lock, flags);
10083 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10084 struct intel_flip_work *work)
10086 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10088 /* Ensure that the work item is consistent when activating it ... */
10089 smp_mb__before_atomic();
10090 atomic_set(&work->pending, 1);
10093 static int intel_gen2_queue_flip(struct drm_device *dev,
10094 struct drm_crtc *crtc,
10095 struct drm_framebuffer *fb,
10096 struct drm_i915_gem_object *obj,
10097 struct drm_i915_gem_request *req,
10098 uint32_t flags)
10100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10101 u32 flip_mask, *cs;
10103 cs = intel_ring_begin(req, 6);
10104 if (IS_ERR(cs))
10105 return PTR_ERR(cs);
10107 /* Can't queue multiple flips, so wait for the previous
10108 * one to finish before executing the next.
10110 if (intel_crtc->plane)
10111 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10112 else
10113 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10114 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10115 *cs++ = MI_NOOP;
10116 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10117 *cs++ = fb->pitches[0];
10118 *cs++ = intel_crtc->flip_work->gtt_offset;
10119 *cs++ = 0; /* aux display base address, unused */
10121 return 0;
10124 static int intel_gen3_queue_flip(struct drm_device *dev,
10125 struct drm_crtc *crtc,
10126 struct drm_framebuffer *fb,
10127 struct drm_i915_gem_object *obj,
10128 struct drm_i915_gem_request *req,
10129 uint32_t flags)
10131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10132 u32 flip_mask, *cs;
10134 cs = intel_ring_begin(req, 6);
10135 if (IS_ERR(cs))
10136 return PTR_ERR(cs);
10138 if (intel_crtc->plane)
10139 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10140 else
10141 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10142 *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10143 *cs++ = MI_NOOP;
10144 *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10145 *cs++ = fb->pitches[0];
10146 *cs++ = intel_crtc->flip_work->gtt_offset;
10147 *cs++ = MI_NOOP;
10149 return 0;
10152 static int intel_gen4_queue_flip(struct drm_device *dev,
10153 struct drm_crtc *crtc,
10154 struct drm_framebuffer *fb,
10155 struct drm_i915_gem_object *obj,
10156 struct drm_i915_gem_request *req,
10157 uint32_t flags)
10159 struct drm_i915_private *dev_priv = to_i915(dev);
10160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10161 u32 pf, pipesrc, *cs;
10163 cs = intel_ring_begin(req, 4);
10164 if (IS_ERR(cs))
10165 return PTR_ERR(cs);
10167 /* i965+ uses the linear or tiled offsets from the
10168 * Display Registers (which do not change across a page-flip)
10169 * so we need only reprogram the base address.
10171 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10172 *cs++ = fb->pitches[0];
10173 *cs++ = intel_crtc->flip_work->gtt_offset |
10174 intel_fb_modifier_to_tiling(fb->modifier);
10176 /* XXX Enabling the panel-fitter across page-flip is so far
10177 * untested on non-native modes, so ignore it for now.
10178 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10180 pf = 0;
10181 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10182 *cs++ = pf | pipesrc;
10184 return 0;
10187 static int intel_gen6_queue_flip(struct drm_device *dev,
10188 struct drm_crtc *crtc,
10189 struct drm_framebuffer *fb,
10190 struct drm_i915_gem_object *obj,
10191 struct drm_i915_gem_request *req,
10192 uint32_t flags)
10194 struct drm_i915_private *dev_priv = to_i915(dev);
10195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10196 u32 pf, pipesrc, *cs;
10198 cs = intel_ring_begin(req, 4);
10199 if (IS_ERR(cs))
10200 return PTR_ERR(cs);
10202 *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10203 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10204 *cs++ = intel_crtc->flip_work->gtt_offset;
10206 /* Contrary to the suggestions in the documentation,
10207 * "Enable Panel Fitter" does not seem to be required when page
10208 * flipping with a non-native mode, and worse causes a normal
10209 * modeset to fail.
10210 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10212 pf = 0;
10213 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10214 *cs++ = pf | pipesrc;
10216 return 0;
10219 static int intel_gen7_queue_flip(struct drm_device *dev,
10220 struct drm_crtc *crtc,
10221 struct drm_framebuffer *fb,
10222 struct drm_i915_gem_object *obj,
10223 struct drm_i915_gem_request *req,
10224 uint32_t flags)
10226 struct drm_i915_private *dev_priv = to_i915(dev);
10227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10228 u32 *cs, plane_bit = 0;
10229 int len, ret;
10231 switch (intel_crtc->plane) {
10232 case PLANE_A:
10233 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10234 break;
10235 case PLANE_B:
10236 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10237 break;
10238 case PLANE_C:
10239 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10240 break;
10241 default:
10242 WARN_ONCE(1, "unknown plane in flip command\n");
10243 return -ENODEV;
10246 len = 4;
10247 if (req->engine->id == RCS) {
10248 len += 6;
10250 * On Gen 8, SRM is now taking an extra dword to accommodate
10251 * 48bits addresses, and we need a NOOP for the batch size to
10252 * stay even.
10254 if (IS_GEN8(dev_priv))
10255 len += 2;
10259 * BSpec MI_DISPLAY_FLIP for IVB:
10260 * "The full packet must be contained within the same cache line."
10262 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10263 * cacheline, if we ever start emitting more commands before
10264 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10265 * then do the cacheline alignment, and finally emit the
10266 * MI_DISPLAY_FLIP.
10268 ret = intel_ring_cacheline_align(req);
10269 if (ret)
10270 return ret;
10272 cs = intel_ring_begin(req, len);
10273 if (IS_ERR(cs))
10274 return PTR_ERR(cs);
10276 /* Unmask the flip-done completion message. Note that the bspec says that
10277 * we should do this for both the BCS and RCS, and that we must not unmask
10278 * more than one flip event at any time (or ensure that one flip message
10279 * can be sent by waiting for flip-done prior to queueing new flips).
10280 * Experimentation says that BCS works despite DERRMR masking all
10281 * flip-done completion events and that unmasking all planes at once
10282 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10283 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10285 if (req->engine->id == RCS) {
10286 *cs++ = MI_LOAD_REGISTER_IMM(1);
10287 *cs++ = i915_mmio_reg_offset(DERRMR);
10288 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10289 DERRMR_PIPEB_PRI_FLIP_DONE |
10290 DERRMR_PIPEC_PRI_FLIP_DONE);
10291 if (IS_GEN8(dev_priv))
10292 *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10293 MI_SRM_LRM_GLOBAL_GTT;
10294 else
10295 *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10296 *cs++ = i915_mmio_reg_offset(DERRMR);
10297 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10298 if (IS_GEN8(dev_priv)) {
10299 *cs++ = 0;
10300 *cs++ = MI_NOOP;
10304 *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10305 *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10306 *cs++ = intel_crtc->flip_work->gtt_offset;
10307 *cs++ = MI_NOOP;
10309 return 0;
10312 static bool use_mmio_flip(struct intel_engine_cs *engine,
10313 struct drm_i915_gem_object *obj)
10316 * This is not being used for older platforms, because
10317 * non-availability of flip done interrupt forces us to use
10318 * CS flips. Older platforms derive flip done using some clever
10319 * tricks involving the flip_pending status bits and vblank irqs.
10320 * So using MMIO flips there would disrupt this mechanism.
10323 if (engine == NULL)
10324 return true;
10326 if (INTEL_GEN(engine->i915) < 5)
10327 return false;
10329 if (i915.use_mmio_flip < 0)
10330 return false;
10331 else if (i915.use_mmio_flip > 0)
10332 return true;
10333 else if (i915.enable_execlists)
10334 return true;
10336 return engine != i915_gem_object_last_write_engine(obj);
10339 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10340 unsigned int rotation,
10341 struct intel_flip_work *work)
10343 struct drm_device *dev = intel_crtc->base.dev;
10344 struct drm_i915_private *dev_priv = to_i915(dev);
10345 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10346 const enum pipe pipe = intel_crtc->pipe;
10347 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10349 ctl = I915_READ(PLANE_CTL(pipe, 0));
10350 ctl &= ~PLANE_CTL_TILED_MASK;
10351 switch (fb->modifier) {
10352 case DRM_FORMAT_MOD_LINEAR:
10353 break;
10354 case I915_FORMAT_MOD_X_TILED:
10355 ctl |= PLANE_CTL_TILED_X;
10356 break;
10357 case I915_FORMAT_MOD_Y_TILED:
10358 ctl |= PLANE_CTL_TILED_Y;
10359 break;
10360 case I915_FORMAT_MOD_Yf_TILED:
10361 ctl |= PLANE_CTL_TILED_YF;
10362 break;
10363 default:
10364 MISSING_CASE(fb->modifier);
10368 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10369 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10371 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10372 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10374 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10375 POSTING_READ(PLANE_SURF(pipe, 0));
10378 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10379 struct intel_flip_work *work)
10381 struct drm_device *dev = intel_crtc->base.dev;
10382 struct drm_i915_private *dev_priv = to_i915(dev);
10383 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10384 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10385 u32 dspcntr;
10387 dspcntr = I915_READ(reg);
10389 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10390 dspcntr |= DISPPLANE_TILED;
10391 else
10392 dspcntr &= ~DISPPLANE_TILED;
10394 I915_WRITE(reg, dspcntr);
10396 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10397 POSTING_READ(DSPSURF(intel_crtc->plane));
10400 static void intel_mmio_flip_work_func(struct work_struct *w)
10402 struct intel_flip_work *work =
10403 container_of(w, struct intel_flip_work, mmio_work);
10404 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10405 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10406 struct intel_framebuffer *intel_fb =
10407 to_intel_framebuffer(crtc->base.primary->fb);
10408 struct drm_i915_gem_object *obj = intel_fb->obj;
10410 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10412 intel_pipe_update_start(crtc);
10414 if (INTEL_GEN(dev_priv) >= 9)
10415 skl_do_mmio_flip(crtc, work->rotation, work);
10416 else
10417 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10418 ilk_do_mmio_flip(crtc, work);
10420 intel_pipe_update_end(crtc, work);
10423 static int intel_default_queue_flip(struct drm_device *dev,
10424 struct drm_crtc *crtc,
10425 struct drm_framebuffer *fb,
10426 struct drm_i915_gem_object *obj,
10427 struct drm_i915_gem_request *req,
10428 uint32_t flags)
10430 return -ENODEV;
10433 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10434 struct intel_crtc *intel_crtc,
10435 struct intel_flip_work *work)
10437 u32 addr, vblank;
10439 if (!atomic_read(&work->pending))
10440 return false;
10442 smp_rmb();
10444 vblank = intel_crtc_get_vblank_counter(intel_crtc);
10445 if (work->flip_ready_vblank == 0) {
10446 if (work->flip_queued_req &&
10447 !i915_gem_request_completed(work->flip_queued_req))
10448 return false;
10450 work->flip_ready_vblank = vblank;
10453 if (vblank - work->flip_ready_vblank < 3)
10454 return false;
10456 /* Potential stall - if we see that the flip has happened,
10457 * assume a missed interrupt. */
10458 if (INTEL_GEN(dev_priv) >= 4)
10459 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10460 else
10461 addr = I915_READ(DSPADDR(intel_crtc->plane));
10463 /* There is a potential issue here with a false positive after a flip
10464 * to the same address. We could address this by checking for a
10465 * non-incrementing frame counter.
10467 return addr == work->gtt_offset;
10470 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10472 struct drm_device *dev = &dev_priv->drm;
10473 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10474 struct intel_flip_work *work;
10476 WARN_ON(!in_interrupt());
10478 if (crtc == NULL)
10479 return;
10481 spin_lock(&dev->event_lock);
10482 work = crtc->flip_work;
10484 if (work != NULL && !is_mmio_work(work) &&
10485 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10486 WARN_ONCE(1,
10487 "Kicking stuck page flip: queued at %d, now %d\n",
10488 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10489 page_flip_completed(crtc);
10490 work = NULL;
10493 if (work != NULL && !is_mmio_work(work) &&
10494 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10495 intel_queue_rps_boost_for_request(work->flip_queued_req);
10496 spin_unlock(&dev->event_lock);
10499 __maybe_unused
10500 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10501 struct drm_framebuffer *fb,
10502 struct drm_pending_vblank_event *event,
10503 uint32_t page_flip_flags)
10505 struct drm_device *dev = crtc->dev;
10506 struct drm_i915_private *dev_priv = to_i915(dev);
10507 struct drm_framebuffer *old_fb = crtc->primary->fb;
10508 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10509 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10510 struct drm_plane *primary = crtc->primary;
10511 enum pipe pipe = intel_crtc->pipe;
10512 struct intel_flip_work *work;
10513 struct intel_engine_cs *engine;
10514 bool mmio_flip;
10515 struct drm_i915_gem_request *request;
10516 struct i915_vma *vma;
10517 int ret;
10520 * drm_mode_page_flip_ioctl() should already catch this, but double
10521 * check to be safe. In the future we may enable pageflipping from
10522 * a disabled primary plane.
10524 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10525 return -EBUSY;
10527 /* Can't change pixel format via MI display flips. */
10528 if (fb->format != crtc->primary->fb->format)
10529 return -EINVAL;
10532 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10533 * Note that pitch changes could also affect these register.
10535 if (INTEL_GEN(dev_priv) > 3 &&
10536 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10537 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10538 return -EINVAL;
10540 if (i915_terminally_wedged(&dev_priv->gpu_error))
10541 goto out_hang;
10543 work = kzalloc(sizeof(*work), GFP_KERNEL);
10544 if (work == NULL)
10545 return -ENOMEM;
10547 work->event = event;
10548 work->crtc = crtc;
10549 work->old_fb = old_fb;
10550 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10552 ret = drm_crtc_vblank_get(crtc);
10553 if (ret)
10554 goto free_work;
10556 /* We borrow the event spin lock for protecting flip_work */
10557 spin_lock_irq(&dev->event_lock);
10558 if (intel_crtc->flip_work) {
10559 /* Before declaring the flip queue wedged, check if
10560 * the hardware completed the operation behind our backs.
10562 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10563 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10564 page_flip_completed(intel_crtc);
10565 } else {
10566 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10567 spin_unlock_irq(&dev->event_lock);
10569 drm_crtc_vblank_put(crtc);
10570 kfree(work);
10571 return -EBUSY;
10574 intel_crtc->flip_work = work;
10575 spin_unlock_irq(&dev->event_lock);
10577 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10578 flush_workqueue(dev_priv->wq);
10580 /* Reference the objects for the scheduled work. */
10581 drm_framebuffer_reference(work->old_fb);
10583 crtc->primary->fb = fb;
10584 update_state_fb(crtc->primary);
10586 work->pending_flip_obj = i915_gem_object_get(obj);
10588 ret = i915_mutex_lock_interruptible(dev);
10589 if (ret)
10590 goto cleanup;
10592 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10593 if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10594 ret = -EIO;
10595 goto unlock;
10598 atomic_inc(&intel_crtc->unpin_work_count);
10600 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10601 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10603 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10604 engine = dev_priv->engine[BCS];
10605 if (fb->modifier != old_fb->modifier)
10606 /* vlv: DISPLAY_FLIP fails to change tiling */
10607 engine = NULL;
10608 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10609 engine = dev_priv->engine[BCS];
10610 } else if (INTEL_GEN(dev_priv) >= 7) {
10611 engine = i915_gem_object_last_write_engine(obj);
10612 if (engine == NULL || engine->id != RCS)
10613 engine = dev_priv->engine[BCS];
10614 } else {
10615 engine = dev_priv->engine[RCS];
10618 mmio_flip = use_mmio_flip(engine, obj);
10620 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10621 if (IS_ERR(vma)) {
10622 ret = PTR_ERR(vma);
10623 goto cleanup_pending;
10626 work->old_vma = to_intel_plane_state(primary->state)->vma;
10627 to_intel_plane_state(primary->state)->vma = vma;
10629 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10630 work->rotation = crtc->primary->state->rotation;
10633 * There's the potential that the next frame will not be compatible with
10634 * FBC, so we want to call pre_update() before the actual page flip.
10635 * The problem is that pre_update() caches some information about the fb
10636 * object, so we want to do this only after the object is pinned. Let's
10637 * be on the safe side and do this immediately before scheduling the
10638 * flip.
10640 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10641 to_intel_plane_state(primary->state));
10643 if (mmio_flip) {
10644 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10645 queue_work(system_unbound_wq, &work->mmio_work);
10646 } else {
10647 request = i915_gem_request_alloc(engine,
10648 dev_priv->kernel_context);
10649 if (IS_ERR(request)) {
10650 ret = PTR_ERR(request);
10651 goto cleanup_unpin;
10654 ret = i915_gem_request_await_object(request, obj, false);
10655 if (ret)
10656 goto cleanup_request;
10658 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10659 page_flip_flags);
10660 if (ret)
10661 goto cleanup_request;
10663 intel_mark_page_flip_active(intel_crtc, work);
10665 work->flip_queued_req = i915_gem_request_get(request);
10666 i915_add_request(request);
10669 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10670 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10671 to_intel_plane(primary)->frontbuffer_bit);
10672 mutex_unlock(&dev->struct_mutex);
10674 intel_frontbuffer_flip_prepare(to_i915(dev),
10675 to_intel_plane(primary)->frontbuffer_bit);
10677 trace_i915_flip_request(intel_crtc->plane, obj);
10679 return 0;
10681 cleanup_request:
10682 i915_add_request(request);
10683 cleanup_unpin:
10684 to_intel_plane_state(primary->state)->vma = work->old_vma;
10685 intel_unpin_fb_vma(vma);
10686 cleanup_pending:
10687 atomic_dec(&intel_crtc->unpin_work_count);
10688 unlock:
10689 mutex_unlock(&dev->struct_mutex);
10690 cleanup:
10691 crtc->primary->fb = old_fb;
10692 update_state_fb(crtc->primary);
10694 i915_gem_object_put(obj);
10695 drm_framebuffer_unreference(work->old_fb);
10697 spin_lock_irq(&dev->event_lock);
10698 intel_crtc->flip_work = NULL;
10699 spin_unlock_irq(&dev->event_lock);
10701 drm_crtc_vblank_put(crtc);
10702 free_work:
10703 kfree(work);
10705 if (ret == -EIO) {
10706 struct drm_atomic_state *state;
10707 struct drm_plane_state *plane_state;
10709 out_hang:
10710 state = drm_atomic_state_alloc(dev);
10711 if (!state)
10712 return -ENOMEM;
10713 state->acquire_ctx = dev->mode_config.acquire_ctx;
10715 retry:
10716 plane_state = drm_atomic_get_plane_state(state, primary);
10717 ret = PTR_ERR_OR_ZERO(plane_state);
10718 if (!ret) {
10719 drm_atomic_set_fb_for_plane(plane_state, fb);
10721 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10722 if (!ret)
10723 ret = drm_atomic_commit(state);
10726 if (ret == -EDEADLK) {
10727 drm_modeset_backoff(state->acquire_ctx);
10728 drm_atomic_state_clear(state);
10729 goto retry;
10732 drm_atomic_state_put(state);
10734 if (ret == 0 && event) {
10735 spin_lock_irq(&dev->event_lock);
10736 drm_crtc_send_vblank_event(crtc, event);
10737 spin_unlock_irq(&dev->event_lock);
10740 return ret;
10745 * intel_wm_need_update - Check whether watermarks need updating
10746 * @plane: drm plane
10747 * @state: new plane state
10749 * Check current plane state versus the new one to determine whether
10750 * watermarks need to be recalculated.
10752 * Returns true or false.
10754 static bool intel_wm_need_update(struct drm_plane *plane,
10755 struct drm_plane_state *state)
10757 struct intel_plane_state *new = to_intel_plane_state(state);
10758 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10760 /* Update watermarks on tiling or size changes. */
10761 if (new->base.visible != cur->base.visible)
10762 return true;
10764 if (!cur->base.fb || !new->base.fb)
10765 return false;
10767 if (cur->base.fb->modifier != new->base.fb->modifier ||
10768 cur->base.rotation != new->base.rotation ||
10769 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10770 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10771 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10772 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10773 return true;
10775 return false;
10778 static bool needs_scaling(struct intel_plane_state *state)
10780 int src_w = drm_rect_width(&state->base.src) >> 16;
10781 int src_h = drm_rect_height(&state->base.src) >> 16;
10782 int dst_w = drm_rect_width(&state->base.dst);
10783 int dst_h = drm_rect_height(&state->base.dst);
10785 return (src_w != dst_w || src_h != dst_h);
10788 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
10789 struct drm_plane_state *plane_state)
10791 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10792 struct drm_crtc *crtc = crtc_state->crtc;
10793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10794 struct intel_plane *plane = to_intel_plane(plane_state->plane);
10795 struct drm_device *dev = crtc->dev;
10796 struct drm_i915_private *dev_priv = to_i915(dev);
10797 struct intel_plane_state *old_plane_state =
10798 to_intel_plane_state(plane->base.state);
10799 bool mode_changed = needs_modeset(crtc_state);
10800 bool was_crtc_enabled = crtc->state->active;
10801 bool is_crtc_enabled = crtc_state->active;
10802 bool turn_off, turn_on, visible, was_visible;
10803 struct drm_framebuffer *fb = plane_state->fb;
10804 int ret;
10806 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10807 ret = skl_update_scaler_plane(
10808 to_intel_crtc_state(crtc_state),
10809 to_intel_plane_state(plane_state));
10810 if (ret)
10811 return ret;
10814 was_visible = old_plane_state->base.visible;
10815 visible = plane_state->visible;
10817 if (!was_crtc_enabled && WARN_ON(was_visible))
10818 was_visible = false;
10821 * Visibility is calculated as if the crtc was on, but
10822 * after scaler setup everything depends on it being off
10823 * when the crtc isn't active.
10825 * FIXME this is wrong for watermarks. Watermarks should also
10826 * be computed as if the pipe would be active. Perhaps move
10827 * per-plane wm computation to the .check_plane() hook, and
10828 * only combine the results from all planes in the current place?
10830 if (!is_crtc_enabled) {
10831 plane_state->visible = visible = false;
10832 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10835 if (!was_visible && !visible)
10836 return 0;
10838 if (fb != old_plane_state->base.fb)
10839 pipe_config->fb_changed = true;
10841 turn_off = was_visible && (!visible || mode_changed);
10842 turn_on = visible && (!was_visible || mode_changed);
10844 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10845 intel_crtc->base.base.id, intel_crtc->base.name,
10846 plane->base.base.id, plane->base.name,
10847 fb ? fb->base.id : -1);
10849 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10850 plane->base.base.id, plane->base.name,
10851 was_visible, visible,
10852 turn_off, turn_on, mode_changed);
10854 if (turn_on) {
10855 if (INTEL_GEN(dev_priv) < 5)
10856 pipe_config->update_wm_pre = true;
10858 /* must disable cxsr around plane enable/disable */
10859 if (plane->id != PLANE_CURSOR)
10860 pipe_config->disable_cxsr = true;
10861 } else if (turn_off) {
10862 if (INTEL_GEN(dev_priv) < 5)
10863 pipe_config->update_wm_post = true;
10865 /* must disable cxsr around plane enable/disable */
10866 if (plane->id != PLANE_CURSOR)
10867 pipe_config->disable_cxsr = true;
10868 } else if (intel_wm_need_update(&plane->base, plane_state)) {
10869 if (INTEL_GEN(dev_priv) < 5) {
10870 /* FIXME bollocks */
10871 pipe_config->update_wm_pre = true;
10872 pipe_config->update_wm_post = true;
10876 if (visible || was_visible)
10877 pipe_config->fb_bits |= plane->frontbuffer_bit;
10880 * WaCxSRDisabledForSpriteScaling:ivb
10882 * cstate->update_wm was already set above, so this flag will
10883 * take effect when we commit and program watermarks.
10885 if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10886 needs_scaling(to_intel_plane_state(plane_state)) &&
10887 !needs_scaling(old_plane_state))
10888 pipe_config->disable_lp_wm = true;
10890 return 0;
10893 static bool encoders_cloneable(const struct intel_encoder *a,
10894 const struct intel_encoder *b)
10896 /* masks could be asymmetric, so check both ways */
10897 return a == b || (a->cloneable & (1 << b->type) &&
10898 b->cloneable & (1 << a->type));
10901 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10902 struct intel_crtc *crtc,
10903 struct intel_encoder *encoder)
10905 struct intel_encoder *source_encoder;
10906 struct drm_connector *connector;
10907 struct drm_connector_state *connector_state;
10908 int i;
10910 for_each_new_connector_in_state(state, connector, connector_state, i) {
10911 if (connector_state->crtc != &crtc->base)
10912 continue;
10914 source_encoder =
10915 to_intel_encoder(connector_state->best_encoder);
10916 if (!encoders_cloneable(encoder, source_encoder))
10917 return false;
10920 return true;
10923 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10924 struct drm_crtc_state *crtc_state)
10926 struct drm_device *dev = crtc->dev;
10927 struct drm_i915_private *dev_priv = to_i915(dev);
10928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10929 struct intel_crtc_state *pipe_config =
10930 to_intel_crtc_state(crtc_state);
10931 struct drm_atomic_state *state = crtc_state->state;
10932 int ret;
10933 bool mode_changed = needs_modeset(crtc_state);
10935 if (mode_changed && !crtc_state->active)
10936 pipe_config->update_wm_post = true;
10938 if (mode_changed && crtc_state->enable &&
10939 dev_priv->display.crtc_compute_clock &&
10940 !WARN_ON(pipe_config->shared_dpll)) {
10941 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10942 pipe_config);
10943 if (ret)
10944 return ret;
10947 if (crtc_state->color_mgmt_changed) {
10948 ret = intel_color_check(crtc, crtc_state);
10949 if (ret)
10950 return ret;
10953 * Changing color management on Intel hardware is
10954 * handled as part of planes update.
10956 crtc_state->planes_changed = true;
10959 ret = 0;
10960 if (dev_priv->display.compute_pipe_wm) {
10961 ret = dev_priv->display.compute_pipe_wm(pipe_config);
10962 if (ret) {
10963 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10964 return ret;
10968 if (dev_priv->display.compute_intermediate_wm &&
10969 !to_intel_atomic_state(state)->skip_intermediate_wm) {
10970 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10971 return 0;
10974 * Calculate 'intermediate' watermarks that satisfy both the
10975 * old state and the new state. We can program these
10976 * immediately.
10978 ret = dev_priv->display.compute_intermediate_wm(dev,
10979 intel_crtc,
10980 pipe_config);
10981 if (ret) {
10982 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10983 return ret;
10985 } else if (dev_priv->display.compute_intermediate_wm) {
10986 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10987 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10990 if (INTEL_GEN(dev_priv) >= 9) {
10991 if (mode_changed)
10992 ret = skl_update_scaler_crtc(pipe_config);
10994 if (!ret)
10995 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10996 pipe_config);
10999 return ret;
11002 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11003 .atomic_begin = intel_begin_crtc_commit,
11004 .atomic_flush = intel_finish_crtc_commit,
11005 .atomic_check = intel_crtc_atomic_check,
11008 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11010 struct intel_connector *connector;
11011 struct drm_connector_list_iter conn_iter;
11013 drm_connector_list_iter_begin(dev, &conn_iter);
11014 for_each_intel_connector_iter(connector, &conn_iter) {
11015 if (connector->base.state->crtc)
11016 drm_connector_unreference(&connector->base);
11018 if (connector->base.encoder) {
11019 connector->base.state->best_encoder =
11020 connector->base.encoder;
11021 connector->base.state->crtc =
11022 connector->base.encoder->crtc;
11024 drm_connector_reference(&connector->base);
11025 } else {
11026 connector->base.state->best_encoder = NULL;
11027 connector->base.state->crtc = NULL;
11030 drm_connector_list_iter_end(&conn_iter);
11033 static void
11034 connected_sink_compute_bpp(struct intel_connector *connector,
11035 struct intel_crtc_state *pipe_config)
11037 const struct drm_display_info *info = &connector->base.display_info;
11038 int bpp = pipe_config->pipe_bpp;
11040 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11041 connector->base.base.id,
11042 connector->base.name);
11044 /* Don't use an invalid EDID bpc value */
11045 if (info->bpc != 0 && info->bpc * 3 < bpp) {
11046 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11047 bpp, info->bpc * 3);
11048 pipe_config->pipe_bpp = info->bpc * 3;
11051 /* Clamp bpp to 8 on screens without EDID 1.4 */
11052 if (info->bpc == 0 && bpp > 24) {
11053 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11054 bpp);
11055 pipe_config->pipe_bpp = 24;
11059 static int
11060 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11061 struct intel_crtc_state *pipe_config)
11063 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11064 struct drm_atomic_state *state;
11065 struct drm_connector *connector;
11066 struct drm_connector_state *connector_state;
11067 int bpp, i;
11069 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11070 IS_CHERRYVIEW(dev_priv)))
11071 bpp = 10*3;
11072 else if (INTEL_GEN(dev_priv) >= 5)
11073 bpp = 12*3;
11074 else
11075 bpp = 8*3;
11078 pipe_config->pipe_bpp = bpp;
11080 state = pipe_config->base.state;
11082 /* Clamp display bpp to EDID value */
11083 for_each_new_connector_in_state(state, connector, connector_state, i) {
11084 if (connector_state->crtc != &crtc->base)
11085 continue;
11087 connected_sink_compute_bpp(to_intel_connector(connector),
11088 pipe_config);
11091 return bpp;
11094 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11096 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11097 "type: 0x%x flags: 0x%x\n",
11098 mode->crtc_clock,
11099 mode->crtc_hdisplay, mode->crtc_hsync_start,
11100 mode->crtc_hsync_end, mode->crtc_htotal,
11101 mode->crtc_vdisplay, mode->crtc_vsync_start,
11102 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11105 static inline void
11106 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11107 unsigned int lane_count, struct intel_link_m_n *m_n)
11109 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11110 id, lane_count,
11111 m_n->gmch_m, m_n->gmch_n,
11112 m_n->link_m, m_n->link_n, m_n->tu);
11115 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11116 struct intel_crtc_state *pipe_config,
11117 const char *context)
11119 struct drm_device *dev = crtc->base.dev;
11120 struct drm_i915_private *dev_priv = to_i915(dev);
11121 struct drm_plane *plane;
11122 struct intel_plane *intel_plane;
11123 struct intel_plane_state *state;
11124 struct drm_framebuffer *fb;
11126 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11127 crtc->base.base.id, crtc->base.name, context);
11129 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11130 transcoder_name(pipe_config->cpu_transcoder),
11131 pipe_config->pipe_bpp, pipe_config->dither);
11133 if (pipe_config->has_pch_encoder)
11134 intel_dump_m_n_config(pipe_config, "fdi",
11135 pipe_config->fdi_lanes,
11136 &pipe_config->fdi_m_n);
11138 if (intel_crtc_has_dp_encoder(pipe_config)) {
11139 intel_dump_m_n_config(pipe_config, "dp m_n",
11140 pipe_config->lane_count, &pipe_config->dp_m_n);
11141 if (pipe_config->has_drrs)
11142 intel_dump_m_n_config(pipe_config, "dp m2_n2",
11143 pipe_config->lane_count,
11144 &pipe_config->dp_m2_n2);
11147 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11148 pipe_config->has_audio, pipe_config->has_infoframe);
11150 DRM_DEBUG_KMS("requested mode:\n");
11151 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11152 DRM_DEBUG_KMS("adjusted mode:\n");
11153 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11154 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11155 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11156 pipe_config->port_clock,
11157 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11158 pipe_config->pixel_rate);
11160 if (INTEL_GEN(dev_priv) >= 9)
11161 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11162 crtc->num_scalers,
11163 pipe_config->scaler_state.scaler_users,
11164 pipe_config->scaler_state.scaler_id);
11166 if (HAS_GMCH_DISPLAY(dev_priv))
11167 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11168 pipe_config->gmch_pfit.control,
11169 pipe_config->gmch_pfit.pgm_ratios,
11170 pipe_config->gmch_pfit.lvds_border_bits);
11171 else
11172 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11173 pipe_config->pch_pfit.pos,
11174 pipe_config->pch_pfit.size,
11175 enableddisabled(pipe_config->pch_pfit.enabled));
11177 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11178 pipe_config->ips_enabled, pipe_config->double_wide);
11180 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11182 DRM_DEBUG_KMS("planes on this crtc\n");
11183 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11184 struct drm_format_name_buf format_name;
11185 intel_plane = to_intel_plane(plane);
11186 if (intel_plane->pipe != crtc->pipe)
11187 continue;
11189 state = to_intel_plane_state(plane->state);
11190 fb = state->base.fb;
11191 if (!fb) {
11192 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11193 plane->base.id, plane->name, state->scaler_id);
11194 continue;
11197 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11198 plane->base.id, plane->name,
11199 fb->base.id, fb->width, fb->height,
11200 drm_get_format_name(fb->format->format, &format_name));
11201 if (INTEL_GEN(dev_priv) >= 9)
11202 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11203 state->scaler_id,
11204 state->base.src.x1 >> 16,
11205 state->base.src.y1 >> 16,
11206 drm_rect_width(&state->base.src) >> 16,
11207 drm_rect_height(&state->base.src) >> 16,
11208 state->base.dst.x1, state->base.dst.y1,
11209 drm_rect_width(&state->base.dst),
11210 drm_rect_height(&state->base.dst));
11214 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11216 struct drm_device *dev = state->dev;
11217 struct drm_connector *connector;
11218 unsigned int used_ports = 0;
11219 unsigned int used_mst_ports = 0;
11222 * Walk the connector list instead of the encoder
11223 * list to detect the problem on ddi platforms
11224 * where there's just one encoder per digital port.
11226 drm_for_each_connector(connector, dev) {
11227 struct drm_connector_state *connector_state;
11228 struct intel_encoder *encoder;
11230 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11231 if (!connector_state)
11232 connector_state = connector->state;
11234 if (!connector_state->best_encoder)
11235 continue;
11237 encoder = to_intel_encoder(connector_state->best_encoder);
11239 WARN_ON(!connector_state->crtc);
11241 switch (encoder->type) {
11242 unsigned int port_mask;
11243 case INTEL_OUTPUT_UNKNOWN:
11244 if (WARN_ON(!HAS_DDI(to_i915(dev))))
11245 break;
11246 case INTEL_OUTPUT_DP:
11247 case INTEL_OUTPUT_HDMI:
11248 case INTEL_OUTPUT_EDP:
11249 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11251 /* the same port mustn't appear more than once */
11252 if (used_ports & port_mask)
11253 return false;
11255 used_ports |= port_mask;
11256 break;
11257 case INTEL_OUTPUT_DP_MST:
11258 used_mst_ports |=
11259 1 << enc_to_mst(&encoder->base)->primary->port;
11260 break;
11261 default:
11262 break;
11266 /* can't mix MST and SST/HDMI on the same port */
11267 if (used_ports & used_mst_ports)
11268 return false;
11270 return true;
11273 static void
11274 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11276 struct drm_i915_private *dev_priv =
11277 to_i915(crtc_state->base.crtc->dev);
11278 struct intel_crtc_scaler_state scaler_state;
11279 struct intel_dpll_hw_state dpll_hw_state;
11280 struct intel_shared_dpll *shared_dpll;
11281 struct intel_crtc_wm_state wm_state;
11282 bool force_thru;
11284 /* FIXME: before the switch to atomic started, a new pipe_config was
11285 * kzalloc'd. Code that depends on any field being zero should be
11286 * fixed, so that the crtc_state can be safely duplicated. For now,
11287 * only fields that are know to not cause problems are preserved. */
11289 scaler_state = crtc_state->scaler_state;
11290 shared_dpll = crtc_state->shared_dpll;
11291 dpll_hw_state = crtc_state->dpll_hw_state;
11292 force_thru = crtc_state->pch_pfit.force_thru;
11293 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11294 wm_state = crtc_state->wm;
11296 /* Keep base drm_crtc_state intact, only clear our extended struct */
11297 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11298 memset(&crtc_state->base + 1, 0,
11299 sizeof(*crtc_state) - sizeof(crtc_state->base));
11301 crtc_state->scaler_state = scaler_state;
11302 crtc_state->shared_dpll = shared_dpll;
11303 crtc_state->dpll_hw_state = dpll_hw_state;
11304 crtc_state->pch_pfit.force_thru = force_thru;
11305 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11306 crtc_state->wm = wm_state;
11309 static int
11310 intel_modeset_pipe_config(struct drm_crtc *crtc,
11311 struct intel_crtc_state *pipe_config)
11313 struct drm_atomic_state *state = pipe_config->base.state;
11314 struct intel_encoder *encoder;
11315 struct drm_connector *connector;
11316 struct drm_connector_state *connector_state;
11317 int base_bpp, ret = -EINVAL;
11318 int i;
11319 bool retry = true;
11321 clear_intel_crtc_state(pipe_config);
11323 pipe_config->cpu_transcoder =
11324 (enum transcoder) to_intel_crtc(crtc)->pipe;
11327 * Sanitize sync polarity flags based on requested ones. If neither
11328 * positive or negative polarity is requested, treat this as meaning
11329 * negative polarity.
11331 if (!(pipe_config->base.adjusted_mode.flags &
11332 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11333 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11335 if (!(pipe_config->base.adjusted_mode.flags &
11336 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11337 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11339 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11340 pipe_config);
11341 if (base_bpp < 0)
11342 goto fail;
11345 * Determine the real pipe dimensions. Note that stereo modes can
11346 * increase the actual pipe size due to the frame doubling and
11347 * insertion of additional space for blanks between the frame. This
11348 * is stored in the crtc timings. We use the requested mode to do this
11349 * computation to clearly distinguish it from the adjusted mode, which
11350 * can be changed by the connectors in the below retry loop.
11352 drm_mode_get_hv_timing(&pipe_config->base.mode,
11353 &pipe_config->pipe_src_w,
11354 &pipe_config->pipe_src_h);
11356 for_each_new_connector_in_state(state, connector, connector_state, i) {
11357 if (connector_state->crtc != crtc)
11358 continue;
11360 encoder = to_intel_encoder(connector_state->best_encoder);
11362 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11363 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11364 goto fail;
11368 * Determine output_types before calling the .compute_config()
11369 * hooks so that the hooks can use this information safely.
11371 pipe_config->output_types |= 1 << encoder->type;
11374 encoder_retry:
11375 /* Ensure the port clock defaults are reset when retrying. */
11376 pipe_config->port_clock = 0;
11377 pipe_config->pixel_multiplier = 1;
11379 /* Fill in default crtc timings, allow encoders to overwrite them. */
11380 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11381 CRTC_STEREO_DOUBLE);
11383 /* Pass our mode to the connectors and the CRTC to give them a chance to
11384 * adjust it according to limitations or connector properties, and also
11385 * a chance to reject the mode entirely.
11387 for_each_new_connector_in_state(state, connector, connector_state, i) {
11388 if (connector_state->crtc != crtc)
11389 continue;
11391 encoder = to_intel_encoder(connector_state->best_encoder);
11393 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11394 DRM_DEBUG_KMS("Encoder config failure\n");
11395 goto fail;
11399 /* Set default port clock if not overwritten by the encoder. Needs to be
11400 * done afterwards in case the encoder adjusts the mode. */
11401 if (!pipe_config->port_clock)
11402 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11403 * pipe_config->pixel_multiplier;
11405 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11406 if (ret < 0) {
11407 DRM_DEBUG_KMS("CRTC fixup failed\n");
11408 goto fail;
11411 if (ret == RETRY) {
11412 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11413 ret = -EINVAL;
11414 goto fail;
11417 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11418 retry = false;
11419 goto encoder_retry;
11422 /* Dithering seems to not pass-through bits correctly when it should, so
11423 * only enable it on 6bpc panels and when its not a compliance
11424 * test requesting 6bpc video pattern.
11426 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11427 !pipe_config->dither_force_disable;
11428 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11429 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11431 fail:
11432 return ret;
11435 static void
11436 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11438 struct drm_crtc *crtc;
11439 struct drm_crtc_state *new_crtc_state;
11440 int i;
11442 /* Double check state. */
11443 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11444 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11446 /* Update hwmode for vblank functions */
11447 if (new_crtc_state->active)
11448 crtc->hwmode = new_crtc_state->adjusted_mode;
11449 else
11450 crtc->hwmode.crtc_clock = 0;
11453 * Update legacy state to satisfy fbc code. This can
11454 * be removed when fbc uses the atomic state.
11456 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11457 struct drm_plane_state *plane_state = crtc->primary->state;
11459 crtc->primary->fb = plane_state->fb;
11460 crtc->x = plane_state->src_x >> 16;
11461 crtc->y = plane_state->src_y >> 16;
11466 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11468 int diff;
11470 if (clock1 == clock2)
11471 return true;
11473 if (!clock1 || !clock2)
11474 return false;
11476 diff = abs(clock1 - clock2);
11478 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11479 return true;
11481 return false;
11484 static bool
11485 intel_compare_m_n(unsigned int m, unsigned int n,
11486 unsigned int m2, unsigned int n2,
11487 bool exact)
11489 if (m == m2 && n == n2)
11490 return true;
11492 if (exact || !m || !n || !m2 || !n2)
11493 return false;
11495 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11497 if (n > n2) {
11498 while (n > n2) {
11499 m2 <<= 1;
11500 n2 <<= 1;
11502 } else if (n < n2) {
11503 while (n < n2) {
11504 m <<= 1;
11505 n <<= 1;
11509 if (n != n2)
11510 return false;
11512 return intel_fuzzy_clock_check(m, m2);
11515 static bool
11516 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11517 struct intel_link_m_n *m2_n2,
11518 bool adjust)
11520 if (m_n->tu == m2_n2->tu &&
11521 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11522 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11523 intel_compare_m_n(m_n->link_m, m_n->link_n,
11524 m2_n2->link_m, m2_n2->link_n, !adjust)) {
11525 if (adjust)
11526 *m2_n2 = *m_n;
11528 return true;
11531 return false;
11534 static void __printf(3, 4)
11535 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11537 char *level;
11538 unsigned int category;
11539 struct va_format vaf;
11540 va_list args;
11542 if (adjust) {
11543 level = KERN_DEBUG;
11544 category = DRM_UT_KMS;
11545 } else {
11546 level = KERN_ERR;
11547 category = DRM_UT_NONE;
11550 va_start(args, format);
11551 vaf.fmt = format;
11552 vaf.va = &args;
11554 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11556 va_end(args);
11559 static bool
11560 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11561 struct intel_crtc_state *current_config,
11562 struct intel_crtc_state *pipe_config,
11563 bool adjust)
11565 bool ret = true;
11567 #define PIPE_CONF_CHECK_X(name) \
11568 if (current_config->name != pipe_config->name) { \
11569 pipe_config_err(adjust, __stringify(name), \
11570 "(expected 0x%08x, found 0x%08x)\n", \
11571 current_config->name, \
11572 pipe_config->name); \
11573 ret = false; \
11576 #define PIPE_CONF_CHECK_I(name) \
11577 if (current_config->name != pipe_config->name) { \
11578 pipe_config_err(adjust, __stringify(name), \
11579 "(expected %i, found %i)\n", \
11580 current_config->name, \
11581 pipe_config->name); \
11582 ret = false; \
11585 #define PIPE_CONF_CHECK_P(name) \
11586 if (current_config->name != pipe_config->name) { \
11587 pipe_config_err(adjust, __stringify(name), \
11588 "(expected %p, found %p)\n", \
11589 current_config->name, \
11590 pipe_config->name); \
11591 ret = false; \
11594 #define PIPE_CONF_CHECK_M_N(name) \
11595 if (!intel_compare_link_m_n(&current_config->name, \
11596 &pipe_config->name,\
11597 adjust)) { \
11598 pipe_config_err(adjust, __stringify(name), \
11599 "(expected tu %i gmch %i/%i link %i/%i, " \
11600 "found tu %i, gmch %i/%i link %i/%i)\n", \
11601 current_config->name.tu, \
11602 current_config->name.gmch_m, \
11603 current_config->name.gmch_n, \
11604 current_config->name.link_m, \
11605 current_config->name.link_n, \
11606 pipe_config->name.tu, \
11607 pipe_config->name.gmch_m, \
11608 pipe_config->name.gmch_n, \
11609 pipe_config->name.link_m, \
11610 pipe_config->name.link_n); \
11611 ret = false; \
11614 /* This is required for BDW+ where there is only one set of registers for
11615 * switching between high and low RR.
11616 * This macro can be used whenever a comparison has to be made between one
11617 * hw state and multiple sw state variables.
11619 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11620 if (!intel_compare_link_m_n(&current_config->name, \
11621 &pipe_config->name, adjust) && \
11622 !intel_compare_link_m_n(&current_config->alt_name, \
11623 &pipe_config->name, adjust)) { \
11624 pipe_config_err(adjust, __stringify(name), \
11625 "(expected tu %i gmch %i/%i link %i/%i, " \
11626 "or tu %i gmch %i/%i link %i/%i, " \
11627 "found tu %i, gmch %i/%i link %i/%i)\n", \
11628 current_config->name.tu, \
11629 current_config->name.gmch_m, \
11630 current_config->name.gmch_n, \
11631 current_config->name.link_m, \
11632 current_config->name.link_n, \
11633 current_config->alt_name.tu, \
11634 current_config->alt_name.gmch_m, \
11635 current_config->alt_name.gmch_n, \
11636 current_config->alt_name.link_m, \
11637 current_config->alt_name.link_n, \
11638 pipe_config->name.tu, \
11639 pipe_config->name.gmch_m, \
11640 pipe_config->name.gmch_n, \
11641 pipe_config->name.link_m, \
11642 pipe_config->name.link_n); \
11643 ret = false; \
11646 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11647 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11648 pipe_config_err(adjust, __stringify(name), \
11649 "(%x) (expected %i, found %i)\n", \
11650 (mask), \
11651 current_config->name & (mask), \
11652 pipe_config->name & (mask)); \
11653 ret = false; \
11656 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11657 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11658 pipe_config_err(adjust, __stringify(name), \
11659 "(expected %i, found %i)\n", \
11660 current_config->name, \
11661 pipe_config->name); \
11662 ret = false; \
11665 #define PIPE_CONF_QUIRK(quirk) \
11666 ((current_config->quirks | pipe_config->quirks) & (quirk))
11668 PIPE_CONF_CHECK_I(cpu_transcoder);
11670 PIPE_CONF_CHECK_I(has_pch_encoder);
11671 PIPE_CONF_CHECK_I(fdi_lanes);
11672 PIPE_CONF_CHECK_M_N(fdi_m_n);
11674 PIPE_CONF_CHECK_I(lane_count);
11675 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11677 if (INTEL_GEN(dev_priv) < 8) {
11678 PIPE_CONF_CHECK_M_N(dp_m_n);
11680 if (current_config->has_drrs)
11681 PIPE_CONF_CHECK_M_N(dp_m2_n2);
11682 } else
11683 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11685 PIPE_CONF_CHECK_X(output_types);
11687 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11688 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11689 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11690 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11691 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11692 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11694 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11695 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11696 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11697 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11698 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11699 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11701 PIPE_CONF_CHECK_I(pixel_multiplier);
11702 PIPE_CONF_CHECK_I(has_hdmi_sink);
11703 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11704 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11705 PIPE_CONF_CHECK_I(limited_color_range);
11707 PIPE_CONF_CHECK_I(hdmi_scrambling);
11708 PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11709 PIPE_CONF_CHECK_I(has_infoframe);
11711 PIPE_CONF_CHECK_I(has_audio);
11713 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11714 DRM_MODE_FLAG_INTERLACE);
11716 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11717 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11718 DRM_MODE_FLAG_PHSYNC);
11719 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11720 DRM_MODE_FLAG_NHSYNC);
11721 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11722 DRM_MODE_FLAG_PVSYNC);
11723 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11724 DRM_MODE_FLAG_NVSYNC);
11727 PIPE_CONF_CHECK_X(gmch_pfit.control);
11728 /* pfit ratios are autocomputed by the hw on gen4+ */
11729 if (INTEL_GEN(dev_priv) < 4)
11730 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11731 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11733 if (!adjust) {
11734 PIPE_CONF_CHECK_I(pipe_src_w);
11735 PIPE_CONF_CHECK_I(pipe_src_h);
11737 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11738 if (current_config->pch_pfit.enabled) {
11739 PIPE_CONF_CHECK_X(pch_pfit.pos);
11740 PIPE_CONF_CHECK_X(pch_pfit.size);
11743 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11744 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11747 /* BDW+ don't expose a synchronous way to read the state */
11748 if (IS_HASWELL(dev_priv))
11749 PIPE_CONF_CHECK_I(ips_enabled);
11751 PIPE_CONF_CHECK_I(double_wide);
11753 PIPE_CONF_CHECK_P(shared_dpll);
11754 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11755 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11756 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11757 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11758 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11759 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11760 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11761 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11762 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11764 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11765 PIPE_CONF_CHECK_X(dsi_pll.div);
11767 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11768 PIPE_CONF_CHECK_I(pipe_bpp);
11770 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11771 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11773 #undef PIPE_CONF_CHECK_X
11774 #undef PIPE_CONF_CHECK_I
11775 #undef PIPE_CONF_CHECK_P
11776 #undef PIPE_CONF_CHECK_FLAGS
11777 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11778 #undef PIPE_CONF_QUIRK
11780 return ret;
11783 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11784 const struct intel_crtc_state *pipe_config)
11786 if (pipe_config->has_pch_encoder) {
11787 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11788 &pipe_config->fdi_m_n);
11789 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11792 * FDI already provided one idea for the dotclock.
11793 * Yell if the encoder disagrees.
11795 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11796 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11797 fdi_dotclock, dotclock);
11801 static void verify_wm_state(struct drm_crtc *crtc,
11802 struct drm_crtc_state *new_state)
11804 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11805 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11806 struct skl_pipe_wm hw_wm, *sw_wm;
11807 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11808 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11810 const enum pipe pipe = intel_crtc->pipe;
11811 int plane, level, max_level = ilk_wm_max_level(dev_priv);
11813 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11814 return;
11816 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11817 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11819 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11820 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11822 /* planes */
11823 for_each_universal_plane(dev_priv, pipe, plane) {
11824 hw_plane_wm = &hw_wm.planes[plane];
11825 sw_plane_wm = &sw_wm->planes[plane];
11827 /* Watermarks */
11828 for (level = 0; level <= max_level; level++) {
11829 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11830 &sw_plane_wm->wm[level]))
11831 continue;
11833 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11834 pipe_name(pipe), plane + 1, level,
11835 sw_plane_wm->wm[level].plane_en,
11836 sw_plane_wm->wm[level].plane_res_b,
11837 sw_plane_wm->wm[level].plane_res_l,
11838 hw_plane_wm->wm[level].plane_en,
11839 hw_plane_wm->wm[level].plane_res_b,
11840 hw_plane_wm->wm[level].plane_res_l);
11843 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11844 &sw_plane_wm->trans_wm)) {
11845 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11846 pipe_name(pipe), plane + 1,
11847 sw_plane_wm->trans_wm.plane_en,
11848 sw_plane_wm->trans_wm.plane_res_b,
11849 sw_plane_wm->trans_wm.plane_res_l,
11850 hw_plane_wm->trans_wm.plane_en,
11851 hw_plane_wm->trans_wm.plane_res_b,
11852 hw_plane_wm->trans_wm.plane_res_l);
11855 /* DDB */
11856 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11857 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11859 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11860 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11861 pipe_name(pipe), plane + 1,
11862 sw_ddb_entry->start, sw_ddb_entry->end,
11863 hw_ddb_entry->start, hw_ddb_entry->end);
11868 * cursor
11869 * If the cursor plane isn't active, we may not have updated it's ddb
11870 * allocation. In that case since the ddb allocation will be updated
11871 * once the plane becomes visible, we can skip this check
11873 if (intel_crtc->cursor_addr) {
11874 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11875 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11877 /* Watermarks */
11878 for (level = 0; level <= max_level; level++) {
11879 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11880 &sw_plane_wm->wm[level]))
11881 continue;
11883 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11884 pipe_name(pipe), level,
11885 sw_plane_wm->wm[level].plane_en,
11886 sw_plane_wm->wm[level].plane_res_b,
11887 sw_plane_wm->wm[level].plane_res_l,
11888 hw_plane_wm->wm[level].plane_en,
11889 hw_plane_wm->wm[level].plane_res_b,
11890 hw_plane_wm->wm[level].plane_res_l);
11893 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11894 &sw_plane_wm->trans_wm)) {
11895 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11896 pipe_name(pipe),
11897 sw_plane_wm->trans_wm.plane_en,
11898 sw_plane_wm->trans_wm.plane_res_b,
11899 sw_plane_wm->trans_wm.plane_res_l,
11900 hw_plane_wm->trans_wm.plane_en,
11901 hw_plane_wm->trans_wm.plane_res_b,
11902 hw_plane_wm->trans_wm.plane_res_l);
11905 /* DDB */
11906 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11907 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11909 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11910 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11911 pipe_name(pipe),
11912 sw_ddb_entry->start, sw_ddb_entry->end,
11913 hw_ddb_entry->start, hw_ddb_entry->end);
11918 static void
11919 verify_connector_state(struct drm_device *dev,
11920 struct drm_atomic_state *state,
11921 struct drm_crtc *crtc)
11923 struct drm_connector *connector;
11924 struct drm_connector_state *new_conn_state;
11925 int i;
11927 for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11928 struct drm_encoder *encoder = connector->encoder;
11930 if (new_conn_state->crtc != crtc)
11931 continue;
11933 intel_connector_verify_state(to_intel_connector(connector));
11935 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11936 "connector's atomic encoder doesn't match legacy encoder\n");
11940 static void
11941 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11943 struct intel_encoder *encoder;
11944 struct drm_connector *connector;
11945 struct drm_connector_state *old_conn_state, *new_conn_state;
11946 int i;
11948 for_each_intel_encoder(dev, encoder) {
11949 bool enabled = false, found = false;
11950 enum pipe pipe;
11952 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11953 encoder->base.base.id,
11954 encoder->base.name);
11956 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11957 new_conn_state, i) {
11958 if (old_conn_state->best_encoder == &encoder->base)
11959 found = true;
11961 if (new_conn_state->best_encoder != &encoder->base)
11962 continue;
11963 found = enabled = true;
11965 I915_STATE_WARN(new_conn_state->crtc !=
11966 encoder->base.crtc,
11967 "connector's crtc doesn't match encoder crtc\n");
11970 if (!found)
11971 continue;
11973 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11974 "encoder's enabled state mismatch "
11975 "(expected %i, found %i)\n",
11976 !!encoder->base.crtc, enabled);
11978 if (!encoder->base.crtc) {
11979 bool active;
11981 active = encoder->get_hw_state(encoder, &pipe);
11982 I915_STATE_WARN(active,
11983 "encoder detached but still enabled on pipe %c.\n",
11984 pipe_name(pipe));
11989 static void
11990 verify_crtc_state(struct drm_crtc *crtc,
11991 struct drm_crtc_state *old_crtc_state,
11992 struct drm_crtc_state *new_crtc_state)
11994 struct drm_device *dev = crtc->dev;
11995 struct drm_i915_private *dev_priv = to_i915(dev);
11996 struct intel_encoder *encoder;
11997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11998 struct intel_crtc_state *pipe_config, *sw_config;
11999 struct drm_atomic_state *old_state;
12000 bool active;
12002 old_state = old_crtc_state->state;
12003 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12004 pipe_config = to_intel_crtc_state(old_crtc_state);
12005 memset(pipe_config, 0, sizeof(*pipe_config));
12006 pipe_config->base.crtc = crtc;
12007 pipe_config->base.state = old_state;
12009 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12011 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12013 /* hw state is inconsistent with the pipe quirk */
12014 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12015 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12016 active = new_crtc_state->active;
12018 I915_STATE_WARN(new_crtc_state->active != active,
12019 "crtc active state doesn't match with hw state "
12020 "(expected %i, found %i)\n", new_crtc_state->active, active);
12022 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12023 "transitional active state does not match atomic hw state "
12024 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12026 for_each_encoder_on_crtc(dev, crtc, encoder) {
12027 enum pipe pipe;
12029 active = encoder->get_hw_state(encoder, &pipe);
12030 I915_STATE_WARN(active != new_crtc_state->active,
12031 "[ENCODER:%i] active %i with crtc active %i\n",
12032 encoder->base.base.id, active, new_crtc_state->active);
12034 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12035 "Encoder connected to wrong pipe %c\n",
12036 pipe_name(pipe));
12038 if (active) {
12039 pipe_config->output_types |= 1 << encoder->type;
12040 encoder->get_config(encoder, pipe_config);
12044 intel_crtc_compute_pixel_rate(pipe_config);
12046 if (!new_crtc_state->active)
12047 return;
12049 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12051 sw_config = to_intel_crtc_state(crtc->state);
12052 if (!intel_pipe_config_compare(dev_priv, sw_config,
12053 pipe_config, false)) {
12054 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12055 intel_dump_pipe_config(intel_crtc, pipe_config,
12056 "[hw state]");
12057 intel_dump_pipe_config(intel_crtc, sw_config,
12058 "[sw state]");
12062 static void
12063 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12064 struct intel_shared_dpll *pll,
12065 struct drm_crtc *crtc,
12066 struct drm_crtc_state *new_state)
12068 struct intel_dpll_hw_state dpll_hw_state;
12069 unsigned crtc_mask;
12070 bool active;
12072 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12074 DRM_DEBUG_KMS("%s\n", pll->name);
12076 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12078 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12079 I915_STATE_WARN(!pll->on && pll->active_mask,
12080 "pll in active use but not on in sw tracking\n");
12081 I915_STATE_WARN(pll->on && !pll->active_mask,
12082 "pll is on but not used by any active crtc\n");
12083 I915_STATE_WARN(pll->on != active,
12084 "pll on state mismatch (expected %i, found %i)\n",
12085 pll->on, active);
12088 if (!crtc) {
12089 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12090 "more active pll users than references: %x vs %x\n",
12091 pll->active_mask, pll->state.crtc_mask);
12093 return;
12096 crtc_mask = 1 << drm_crtc_index(crtc);
12098 if (new_state->active)
12099 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12100 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12101 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12102 else
12103 I915_STATE_WARN(pll->active_mask & crtc_mask,
12104 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12105 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12107 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12108 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12109 crtc_mask, pll->state.crtc_mask);
12111 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12112 &dpll_hw_state,
12113 sizeof(dpll_hw_state)),
12114 "pll hw state mismatch\n");
12117 static void
12118 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12119 struct drm_crtc_state *old_crtc_state,
12120 struct drm_crtc_state *new_crtc_state)
12122 struct drm_i915_private *dev_priv = to_i915(dev);
12123 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12124 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12126 if (new_state->shared_dpll)
12127 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12129 if (old_state->shared_dpll &&
12130 old_state->shared_dpll != new_state->shared_dpll) {
12131 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12132 struct intel_shared_dpll *pll = old_state->shared_dpll;
12134 I915_STATE_WARN(pll->active_mask & crtc_mask,
12135 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12136 pipe_name(drm_crtc_index(crtc)));
12137 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12138 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12139 pipe_name(drm_crtc_index(crtc)));
12143 static void
12144 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12145 struct drm_atomic_state *state,
12146 struct drm_crtc_state *old_state,
12147 struct drm_crtc_state *new_state)
12149 if (!needs_modeset(new_state) &&
12150 !to_intel_crtc_state(new_state)->update_pipe)
12151 return;
12153 verify_wm_state(crtc, new_state);
12154 verify_connector_state(crtc->dev, state, crtc);
12155 verify_crtc_state(crtc, old_state, new_state);
12156 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12159 static void
12160 verify_disabled_dpll_state(struct drm_device *dev)
12162 struct drm_i915_private *dev_priv = to_i915(dev);
12163 int i;
12165 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12166 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12169 static void
12170 intel_modeset_verify_disabled(struct drm_device *dev,
12171 struct drm_atomic_state *state)
12173 verify_encoder_state(dev, state);
12174 verify_connector_state(dev, state, NULL);
12175 verify_disabled_dpll_state(dev);
12178 static void update_scanline_offset(struct intel_crtc *crtc)
12180 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12183 * The scanline counter increments at the leading edge of hsync.
12185 * On most platforms it starts counting from vtotal-1 on the
12186 * first active line. That means the scanline counter value is
12187 * always one less than what we would expect. Ie. just after
12188 * start of vblank, which also occurs at start of hsync (on the
12189 * last active line), the scanline counter will read vblank_start-1.
12191 * On gen2 the scanline counter starts counting from 1 instead
12192 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12193 * to keep the value positive), instead of adding one.
12195 * On HSW+ the behaviour of the scanline counter depends on the output
12196 * type. For DP ports it behaves like most other platforms, but on HDMI
12197 * there's an extra 1 line difference. So we need to add two instead of
12198 * one to the value.
12200 if (IS_GEN2(dev_priv)) {
12201 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12202 int vtotal;
12204 vtotal = adjusted_mode->crtc_vtotal;
12205 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12206 vtotal /= 2;
12208 crtc->scanline_offset = vtotal - 1;
12209 } else if (HAS_DDI(dev_priv) &&
12210 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12211 crtc->scanline_offset = 2;
12212 } else
12213 crtc->scanline_offset = 1;
12216 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12218 struct drm_device *dev = state->dev;
12219 struct drm_i915_private *dev_priv = to_i915(dev);
12220 struct drm_crtc *crtc;
12221 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12222 int i;
12224 if (!dev_priv->display.crtc_compute_clock)
12225 return;
12227 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12229 struct intel_shared_dpll *old_dpll =
12230 to_intel_crtc_state(old_crtc_state)->shared_dpll;
12232 if (!needs_modeset(new_crtc_state))
12233 continue;
12235 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12237 if (!old_dpll)
12238 continue;
12240 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12245 * This implements the workaround described in the "notes" section of the mode
12246 * set sequence documentation. When going from no pipes or single pipe to
12247 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12248 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12250 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12252 struct drm_crtc_state *crtc_state;
12253 struct intel_crtc *intel_crtc;
12254 struct drm_crtc *crtc;
12255 struct intel_crtc_state *first_crtc_state = NULL;
12256 struct intel_crtc_state *other_crtc_state = NULL;
12257 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12258 int i;
12260 /* look at all crtc's that are going to be enabled in during modeset */
12261 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12262 intel_crtc = to_intel_crtc(crtc);
12264 if (!crtc_state->active || !needs_modeset(crtc_state))
12265 continue;
12267 if (first_crtc_state) {
12268 other_crtc_state = to_intel_crtc_state(crtc_state);
12269 break;
12270 } else {
12271 first_crtc_state = to_intel_crtc_state(crtc_state);
12272 first_pipe = intel_crtc->pipe;
12276 /* No workaround needed? */
12277 if (!first_crtc_state)
12278 return 0;
12280 /* w/a possibly needed, check how many crtc's are already enabled. */
12281 for_each_intel_crtc(state->dev, intel_crtc) {
12282 struct intel_crtc_state *pipe_config;
12284 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12285 if (IS_ERR(pipe_config))
12286 return PTR_ERR(pipe_config);
12288 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12290 if (!pipe_config->base.active ||
12291 needs_modeset(&pipe_config->base))
12292 continue;
12294 /* 2 or more enabled crtcs means no need for w/a */
12295 if (enabled_pipe != INVALID_PIPE)
12296 return 0;
12298 enabled_pipe = intel_crtc->pipe;
12301 if (enabled_pipe != INVALID_PIPE)
12302 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12303 else if (other_crtc_state)
12304 other_crtc_state->hsw_workaround_pipe = first_pipe;
12306 return 0;
12309 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12311 struct drm_crtc *crtc;
12313 /* Add all pipes to the state */
12314 for_each_crtc(state->dev, crtc) {
12315 struct drm_crtc_state *crtc_state;
12317 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12318 if (IS_ERR(crtc_state))
12319 return PTR_ERR(crtc_state);
12322 return 0;
12325 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12327 struct drm_crtc *crtc;
12330 * Add all pipes to the state, and force
12331 * a modeset on all the active ones.
12333 for_each_crtc(state->dev, crtc) {
12334 struct drm_crtc_state *crtc_state;
12335 int ret;
12337 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12338 if (IS_ERR(crtc_state))
12339 return PTR_ERR(crtc_state);
12341 if (!crtc_state->active || needs_modeset(crtc_state))
12342 continue;
12344 crtc_state->mode_changed = true;
12346 ret = drm_atomic_add_affected_connectors(state, crtc);
12347 if (ret)
12348 return ret;
12350 ret = drm_atomic_add_affected_planes(state, crtc);
12351 if (ret)
12352 return ret;
12355 return 0;
12358 static int intel_modeset_checks(struct drm_atomic_state *state)
12360 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12361 struct drm_i915_private *dev_priv = to_i915(state->dev);
12362 struct drm_crtc *crtc;
12363 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12364 int ret = 0, i;
12366 if (!check_digital_port_conflicts(state)) {
12367 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12368 return -EINVAL;
12371 intel_state->modeset = true;
12372 intel_state->active_crtcs = dev_priv->active_crtcs;
12373 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12374 intel_state->cdclk.actual = dev_priv->cdclk.actual;
12376 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12377 if (new_crtc_state->active)
12378 intel_state->active_crtcs |= 1 << i;
12379 else
12380 intel_state->active_crtcs &= ~(1 << i);
12382 if (old_crtc_state->active != new_crtc_state->active)
12383 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12387 * See if the config requires any additional preparation, e.g.
12388 * to adjust global state with pipes off. We need to do this
12389 * here so we can get the modeset_pipe updated config for the new
12390 * mode set on this crtc. For other crtcs we need to use the
12391 * adjusted_mode bits in the crtc directly.
12393 if (dev_priv->display.modeset_calc_cdclk) {
12394 ret = dev_priv->display.modeset_calc_cdclk(state);
12395 if (ret < 0)
12396 return ret;
12399 * Writes to dev_priv->cdclk.logical must protected by
12400 * holding all the crtc locks, even if we don't end up
12401 * touching the hardware
12403 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12404 &intel_state->cdclk.logical)) {
12405 ret = intel_lock_all_pipes(state);
12406 if (ret < 0)
12407 return ret;
12410 /* All pipes must be switched off while we change the cdclk. */
12411 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12412 &intel_state->cdclk.actual)) {
12413 ret = intel_modeset_all_pipes(state);
12414 if (ret < 0)
12415 return ret;
12418 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12419 intel_state->cdclk.logical.cdclk,
12420 intel_state->cdclk.actual.cdclk);
12421 } else {
12422 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12425 intel_modeset_clear_plls(state);
12427 if (IS_HASWELL(dev_priv))
12428 return haswell_mode_set_planes_workaround(state);
12430 return 0;
12434 * Handle calculation of various watermark data at the end of the atomic check
12435 * phase. The code here should be run after the per-crtc and per-plane 'check'
12436 * handlers to ensure that all derived state has been updated.
12438 static int calc_watermark_data(struct drm_atomic_state *state)
12440 struct drm_device *dev = state->dev;
12441 struct drm_i915_private *dev_priv = to_i915(dev);
12443 /* Is there platform-specific watermark information to calculate? */
12444 if (dev_priv->display.compute_global_watermarks)
12445 return dev_priv->display.compute_global_watermarks(state);
12447 return 0;
12451 * intel_atomic_check - validate state object
12452 * @dev: drm device
12453 * @state: state to validate
12455 static int intel_atomic_check(struct drm_device *dev,
12456 struct drm_atomic_state *state)
12458 struct drm_i915_private *dev_priv = to_i915(dev);
12459 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12460 struct drm_crtc *crtc;
12461 struct drm_crtc_state *old_crtc_state, *crtc_state;
12462 int ret, i;
12463 bool any_ms = false;
12465 ret = drm_atomic_helper_check_modeset(dev, state);
12466 if (ret)
12467 return ret;
12469 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12470 struct intel_crtc_state *pipe_config =
12471 to_intel_crtc_state(crtc_state);
12473 /* Catch I915_MODE_FLAG_INHERITED */
12474 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12475 crtc_state->mode_changed = true;
12477 if (!needs_modeset(crtc_state))
12478 continue;
12480 if (!crtc_state->enable) {
12481 any_ms = true;
12482 continue;
12485 /* FIXME: For only active_changed we shouldn't need to do any
12486 * state recomputation at all. */
12488 ret = drm_atomic_add_affected_connectors(state, crtc);
12489 if (ret)
12490 return ret;
12492 ret = intel_modeset_pipe_config(crtc, pipe_config);
12493 if (ret) {
12494 intel_dump_pipe_config(to_intel_crtc(crtc),
12495 pipe_config, "[failed]");
12496 return ret;
12499 if (i915.fastboot &&
12500 intel_pipe_config_compare(dev_priv,
12501 to_intel_crtc_state(old_crtc_state),
12502 pipe_config, true)) {
12503 crtc_state->mode_changed = false;
12504 pipe_config->update_pipe = true;
12507 if (needs_modeset(crtc_state))
12508 any_ms = true;
12510 ret = drm_atomic_add_affected_planes(state, crtc);
12511 if (ret)
12512 return ret;
12514 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12515 needs_modeset(crtc_state) ?
12516 "[modeset]" : "[fastset]");
12519 if (any_ms) {
12520 ret = intel_modeset_checks(state);
12522 if (ret)
12523 return ret;
12524 } else {
12525 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12528 ret = drm_atomic_helper_check_planes(dev, state);
12529 if (ret)
12530 return ret;
12532 intel_fbc_choose_crtc(dev_priv, state);
12533 return calc_watermark_data(state);
12536 static int intel_atomic_prepare_commit(struct drm_device *dev,
12537 struct drm_atomic_state *state)
12539 struct drm_i915_private *dev_priv = to_i915(dev);
12540 struct drm_crtc_state *crtc_state;
12541 struct drm_crtc *crtc;
12542 int i, ret;
12544 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12545 if (state->legacy_cursor_update)
12546 continue;
12548 ret = intel_crtc_wait_for_pending_flips(crtc);
12549 if (ret)
12550 return ret;
12552 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12553 flush_workqueue(dev_priv->wq);
12556 ret = mutex_lock_interruptible(&dev->struct_mutex);
12557 if (ret)
12558 return ret;
12560 ret = drm_atomic_helper_prepare_planes(dev, state);
12561 mutex_unlock(&dev->struct_mutex);
12563 return ret;
12566 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12568 struct drm_device *dev = crtc->base.dev;
12570 if (!dev->max_vblank_count)
12571 return drm_accurate_vblank_count(&crtc->base);
12573 return dev->driver->get_vblank_counter(dev, crtc->pipe);
12576 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12577 struct drm_i915_private *dev_priv,
12578 unsigned crtc_mask)
12580 unsigned last_vblank_count[I915_MAX_PIPES];
12581 enum pipe pipe;
12582 int ret;
12584 if (!crtc_mask)
12585 return;
12587 for_each_pipe(dev_priv, pipe) {
12588 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12589 pipe);
12591 if (!((1 << pipe) & crtc_mask))
12592 continue;
12594 ret = drm_crtc_vblank_get(&crtc->base);
12595 if (WARN_ON(ret != 0)) {
12596 crtc_mask &= ~(1 << pipe);
12597 continue;
12600 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12603 for_each_pipe(dev_priv, pipe) {
12604 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12605 pipe);
12606 long lret;
12608 if (!((1 << pipe) & crtc_mask))
12609 continue;
12611 lret = wait_event_timeout(dev->vblank[pipe].queue,
12612 last_vblank_count[pipe] !=
12613 drm_crtc_vblank_count(&crtc->base),
12614 msecs_to_jiffies(50));
12616 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12618 drm_crtc_vblank_put(&crtc->base);
12622 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12624 /* fb updated, need to unpin old fb */
12625 if (crtc_state->fb_changed)
12626 return true;
12628 /* wm changes, need vblank before final wm's */
12629 if (crtc_state->update_wm_post)
12630 return true;
12632 if (crtc_state->wm.need_postvbl_update)
12633 return true;
12635 return false;
12638 static void intel_update_crtc(struct drm_crtc *crtc,
12639 struct drm_atomic_state *state,
12640 struct drm_crtc_state *old_crtc_state,
12641 struct drm_crtc_state *new_crtc_state,
12642 unsigned int *crtc_vblank_mask)
12644 struct drm_device *dev = crtc->dev;
12645 struct drm_i915_private *dev_priv = to_i915(dev);
12646 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12647 struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12648 bool modeset = needs_modeset(new_crtc_state);
12650 if (modeset) {
12651 update_scanline_offset(intel_crtc);
12652 dev_priv->display.crtc_enable(pipe_config, state);
12653 } else {
12654 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12655 pipe_config);
12658 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12659 intel_fbc_enable(
12660 intel_crtc, pipe_config,
12661 to_intel_plane_state(crtc->primary->state));
12664 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12666 if (needs_vblank_wait(pipe_config))
12667 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12670 static void intel_update_crtcs(struct drm_atomic_state *state,
12671 unsigned int *crtc_vblank_mask)
12673 struct drm_crtc *crtc;
12674 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12675 int i;
12677 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12678 if (!new_crtc_state->active)
12679 continue;
12681 intel_update_crtc(crtc, state, old_crtc_state,
12682 new_crtc_state, crtc_vblank_mask);
12686 static void skl_update_crtcs(struct drm_atomic_state *state,
12687 unsigned int *crtc_vblank_mask)
12689 struct drm_i915_private *dev_priv = to_i915(state->dev);
12690 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12691 struct drm_crtc *crtc;
12692 struct intel_crtc *intel_crtc;
12693 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12694 struct intel_crtc_state *cstate;
12695 unsigned int updated = 0;
12696 bool progress;
12697 enum pipe pipe;
12698 int i;
12700 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12702 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12703 /* ignore allocations for crtc's that have been turned off. */
12704 if (new_crtc_state->active)
12705 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12708 * Whenever the number of active pipes changes, we need to make sure we
12709 * update the pipes in the right order so that their ddb allocations
12710 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12711 * cause pipe underruns and other bad stuff.
12713 do {
12714 progress = false;
12716 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12717 bool vbl_wait = false;
12718 unsigned int cmask = drm_crtc_mask(crtc);
12720 intel_crtc = to_intel_crtc(crtc);
12721 cstate = to_intel_crtc_state(crtc->state);
12722 pipe = intel_crtc->pipe;
12724 if (updated & cmask || !cstate->base.active)
12725 continue;
12727 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12728 continue;
12730 updated |= cmask;
12731 entries[i] = &cstate->wm.skl.ddb;
12734 * If this is an already active pipe, it's DDB changed,
12735 * and this isn't the last pipe that needs updating
12736 * then we need to wait for a vblank to pass for the
12737 * new ddb allocation to take effect.
12739 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12740 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12741 !new_crtc_state->active_changed &&
12742 intel_state->wm_results.dirty_pipes != updated)
12743 vbl_wait = true;
12745 intel_update_crtc(crtc, state, old_crtc_state,
12746 new_crtc_state, crtc_vblank_mask);
12748 if (vbl_wait)
12749 intel_wait_for_vblank(dev_priv, pipe);
12751 progress = true;
12753 } while (progress);
12756 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12758 struct intel_atomic_state *state, *next;
12759 struct llist_node *freed;
12761 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12762 llist_for_each_entry_safe(state, next, freed, freed)
12763 drm_atomic_state_put(&state->base);
12766 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12768 struct drm_i915_private *dev_priv =
12769 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12771 intel_atomic_helper_free_state(dev_priv);
12774 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12776 struct drm_device *dev = state->dev;
12777 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12778 struct drm_i915_private *dev_priv = to_i915(dev);
12779 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12780 struct drm_crtc *crtc;
12781 struct intel_crtc_state *intel_cstate;
12782 bool hw_check = intel_state->modeset;
12783 u64 put_domains[I915_MAX_PIPES] = {};
12784 unsigned crtc_vblank_mask = 0;
12785 int i;
12787 drm_atomic_helper_wait_for_dependencies(state);
12789 if (intel_state->modeset)
12790 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12792 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12795 if (needs_modeset(new_crtc_state) ||
12796 to_intel_crtc_state(new_crtc_state)->update_pipe) {
12797 hw_check = true;
12799 put_domains[to_intel_crtc(crtc)->pipe] =
12800 modeset_get_crtc_power_domains(crtc,
12801 to_intel_crtc_state(new_crtc_state));
12804 if (!needs_modeset(new_crtc_state))
12805 continue;
12807 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12808 to_intel_crtc_state(new_crtc_state));
12810 if (old_crtc_state->active) {
12811 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12812 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12813 intel_crtc->active = false;
12814 intel_fbc_disable(intel_crtc);
12815 intel_disable_shared_dpll(intel_crtc);
12818 * Underruns don't always raise
12819 * interrupts, so check manually.
12821 intel_check_cpu_fifo_underruns(dev_priv);
12822 intel_check_pch_fifo_underruns(dev_priv);
12824 if (!crtc->state->active) {
12826 * Make sure we don't call initial_watermarks
12827 * for ILK-style watermark updates.
12829 * No clue what this is supposed to achieve.
12831 if (INTEL_GEN(dev_priv) >= 9)
12832 dev_priv->display.initial_watermarks(intel_state,
12833 to_intel_crtc_state(crtc->state));
12838 /* Only after disabling all output pipelines that will be changed can we
12839 * update the the output configuration. */
12840 intel_modeset_update_crtc_state(state);
12842 if (intel_state->modeset) {
12843 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12845 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12848 * SKL workaround: bspec recommends we disable the SAGV when we
12849 * have more then one pipe enabled
12851 if (!intel_can_enable_sagv(state))
12852 intel_disable_sagv(dev_priv);
12854 intel_modeset_verify_disabled(dev, state);
12857 /* Complete the events for pipes that have now been disabled */
12858 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12859 bool modeset = needs_modeset(new_crtc_state);
12861 /* Complete events for now disable pipes here. */
12862 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12863 spin_lock_irq(&dev->event_lock);
12864 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12865 spin_unlock_irq(&dev->event_lock);
12867 new_crtc_state->event = NULL;
12871 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12872 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
12874 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12875 * already, but still need the state for the delayed optimization. To
12876 * fix this:
12877 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12878 * - schedule that vblank worker _before_ calling hw_done
12879 * - at the start of commit_tail, cancel it _synchrously
12880 * - switch over to the vblank wait helper in the core after that since
12881 * we don't need out special handling any more.
12883 if (!state->legacy_cursor_update)
12884 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
12887 * Now that the vblank has passed, we can go ahead and program the
12888 * optimal watermarks on platforms that need two-step watermark
12889 * programming.
12891 * TODO: Move this (and other cleanup) to an async worker eventually.
12893 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12894 intel_cstate = to_intel_crtc_state(new_crtc_state);
12896 if (dev_priv->display.optimize_watermarks)
12897 dev_priv->display.optimize_watermarks(intel_state,
12898 intel_cstate);
12901 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12902 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12904 if (put_domains[i])
12905 modeset_put_power_domains(dev_priv, put_domains[i]);
12907 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12910 if (intel_state->modeset && intel_can_enable_sagv(state))
12911 intel_enable_sagv(dev_priv);
12913 drm_atomic_helper_commit_hw_done(state);
12915 if (intel_state->modeset)
12916 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12918 mutex_lock(&dev->struct_mutex);
12919 drm_atomic_helper_cleanup_planes(dev, state);
12920 mutex_unlock(&dev->struct_mutex);
12922 drm_atomic_helper_commit_cleanup_done(state);
12924 drm_atomic_state_put(state);
12926 /* As one of the primary mmio accessors, KMS has a high likelihood
12927 * of triggering bugs in unclaimed access. After we finish
12928 * modesetting, see if an error has been flagged, and if so
12929 * enable debugging for the next modeset - and hope we catch
12930 * the culprit.
12932 * XXX note that we assume display power is on at this point.
12933 * This might hold true now but we need to add pm helper to check
12934 * unclaimed only when the hardware is on, as atomic commits
12935 * can happen also when the device is completely off.
12937 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12939 intel_atomic_helper_free_state(dev_priv);
12942 static void intel_atomic_commit_work(struct work_struct *work)
12944 struct drm_atomic_state *state =
12945 container_of(work, struct drm_atomic_state, commit_work);
12947 intel_atomic_commit_tail(state);
12950 static int __i915_sw_fence_call
12951 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12952 enum i915_sw_fence_notify notify)
12954 struct intel_atomic_state *state =
12955 container_of(fence, struct intel_atomic_state, commit_ready);
12957 switch (notify) {
12958 case FENCE_COMPLETE:
12959 if (state->base.commit_work.func)
12960 queue_work(system_unbound_wq, &state->base.commit_work);
12961 break;
12963 case FENCE_FREE:
12965 struct intel_atomic_helper *helper =
12966 &to_i915(state->base.dev)->atomic_helper;
12968 if (llist_add(&state->freed, &helper->free_list))
12969 schedule_work(&helper->free_work);
12970 break;
12974 return NOTIFY_DONE;
12977 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12979 struct drm_plane_state *old_plane_state, *new_plane_state;
12980 struct drm_plane *plane;
12981 int i;
12983 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
12984 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12985 intel_fb_obj(new_plane_state->fb),
12986 to_intel_plane(plane)->frontbuffer_bit);
12990 * intel_atomic_commit - commit validated state object
12991 * @dev: DRM device
12992 * @state: the top-level driver state object
12993 * @nonblock: nonblocking commit
12995 * This function commits a top-level state object that has been validated
12996 * with drm_atomic_helper_check().
12998 * RETURNS
12999 * Zero for success or -errno.
13001 static int intel_atomic_commit(struct drm_device *dev,
13002 struct drm_atomic_state *state,
13003 bool nonblock)
13005 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13006 struct drm_i915_private *dev_priv = to_i915(dev);
13007 int ret = 0;
13009 ret = drm_atomic_helper_setup_commit(state, nonblock);
13010 if (ret)
13011 return ret;
13013 drm_atomic_state_get(state);
13014 i915_sw_fence_init(&intel_state->commit_ready,
13015 intel_atomic_commit_ready);
13017 ret = intel_atomic_prepare_commit(dev, state);
13018 if (ret) {
13019 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13020 i915_sw_fence_commit(&intel_state->commit_ready);
13021 return ret;
13025 * The intel_legacy_cursor_update() fast path takes care
13026 * of avoiding the vblank waits for simple cursor
13027 * movement and flips. For cursor on/off and size changes,
13028 * we want to perform the vblank waits so that watermark
13029 * updates happen during the correct frames. Gen9+ have
13030 * double buffered watermarks and so shouldn't need this.
13032 * Do this after drm_atomic_helper_setup_commit() and
13033 * intel_atomic_prepare_commit() because we still want
13034 * to skip the flip and fb cleanup waits. Although that
13035 * does risk yanking the mapping from under the display
13036 * engine.
13038 * FIXME doing watermarks and fb cleanup from a vblank worker
13039 * (assuming we had any) would solve these problems.
13041 if (INTEL_GEN(dev_priv) < 9)
13042 state->legacy_cursor_update = false;
13044 drm_atomic_helper_swap_state(state, true);
13045 dev_priv->wm.distrust_bios_wm = false;
13046 intel_shared_dpll_swap_state(state);
13047 intel_atomic_track_fbs(state);
13049 if (intel_state->modeset) {
13050 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13051 sizeof(intel_state->min_pixclk));
13052 dev_priv->active_crtcs = intel_state->active_crtcs;
13053 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13054 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13057 drm_atomic_state_get(state);
13058 INIT_WORK(&state->commit_work,
13059 nonblock ? intel_atomic_commit_work : NULL);
13061 i915_sw_fence_commit(&intel_state->commit_ready);
13062 if (!nonblock) {
13063 i915_sw_fence_wait(&intel_state->commit_ready);
13064 intel_atomic_commit_tail(state);
13067 return 0;
13070 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13072 struct drm_device *dev = crtc->dev;
13073 struct drm_atomic_state *state;
13074 struct drm_crtc_state *crtc_state;
13075 int ret;
13077 state = drm_atomic_state_alloc(dev);
13078 if (!state) {
13079 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13080 crtc->base.id, crtc->name);
13081 return;
13084 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
13086 retry:
13087 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13088 ret = PTR_ERR_OR_ZERO(crtc_state);
13089 if (!ret) {
13090 if (!crtc_state->active)
13091 goto out;
13093 crtc_state->mode_changed = true;
13094 ret = drm_atomic_commit(state);
13097 if (ret == -EDEADLK) {
13098 drm_atomic_state_clear(state);
13099 drm_modeset_backoff(state->acquire_ctx);
13100 goto retry;
13103 out:
13104 drm_atomic_state_put(state);
13107 static const struct drm_crtc_funcs intel_crtc_funcs = {
13108 .gamma_set = drm_atomic_helper_legacy_gamma_set,
13109 .set_config = drm_atomic_helper_set_config,
13110 .set_property = drm_atomic_helper_crtc_set_property,
13111 .destroy = intel_crtc_destroy,
13112 .page_flip = drm_atomic_helper_page_flip,
13113 .atomic_duplicate_state = intel_crtc_duplicate_state,
13114 .atomic_destroy_state = intel_crtc_destroy_state,
13115 .set_crc_source = intel_crtc_set_crc_source,
13119 * intel_prepare_plane_fb - Prepare fb for usage on plane
13120 * @plane: drm plane to prepare for
13121 * @fb: framebuffer to prepare for presentation
13123 * Prepares a framebuffer for usage on a display plane. Generally this
13124 * involves pinning the underlying object and updating the frontbuffer tracking
13125 * bits. Some older platforms need special physical address handling for
13126 * cursor planes.
13128 * Must be called with struct_mutex held.
13130 * Returns 0 on success, negative error code on failure.
13133 intel_prepare_plane_fb(struct drm_plane *plane,
13134 struct drm_plane_state *new_state)
13136 struct intel_atomic_state *intel_state =
13137 to_intel_atomic_state(new_state->state);
13138 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13139 struct drm_framebuffer *fb = new_state->fb;
13140 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13141 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13142 int ret;
13144 if (obj) {
13145 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13146 INTEL_INFO(dev_priv)->cursor_needs_physical) {
13147 const int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13149 ret = i915_gem_object_attach_phys(obj, align);
13150 if (ret) {
13151 DRM_DEBUG_KMS("failed to attach phys object\n");
13152 return ret;
13154 } else {
13155 struct i915_vma *vma;
13157 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13158 if (IS_ERR(vma)) {
13159 DRM_DEBUG_KMS("failed to pin object\n");
13160 return PTR_ERR(vma);
13163 to_intel_plane_state(new_state)->vma = vma;
13167 if (!obj && !old_obj)
13168 return 0;
13170 if (old_obj) {
13171 struct drm_crtc_state *crtc_state =
13172 drm_atomic_get_existing_crtc_state(new_state->state,
13173 plane->state->crtc);
13175 /* Big Hammer, we also need to ensure that any pending
13176 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13177 * current scanout is retired before unpinning the old
13178 * framebuffer. Note that we rely on userspace rendering
13179 * into the buffer attached to the pipe they are waiting
13180 * on. If not, userspace generates a GPU hang with IPEHR
13181 * point to the MI_WAIT_FOR_EVENT.
13183 * This should only fail upon a hung GPU, in which case we
13184 * can safely continue.
13186 if (needs_modeset(crtc_state)) {
13187 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13188 old_obj->resv, NULL,
13189 false, 0,
13190 GFP_KERNEL);
13191 if (ret < 0)
13192 return ret;
13196 if (new_state->fence) { /* explicit fencing */
13197 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13198 new_state->fence,
13199 I915_FENCE_TIMEOUT,
13200 GFP_KERNEL);
13201 if (ret < 0)
13202 return ret;
13205 if (!obj)
13206 return 0;
13208 if (!new_state->fence) { /* implicit fencing */
13209 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13210 obj->resv, NULL,
13211 false, I915_FENCE_TIMEOUT,
13212 GFP_KERNEL);
13213 if (ret < 0)
13214 return ret;
13216 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13219 return 0;
13223 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13224 * @plane: drm plane to clean up for
13225 * @fb: old framebuffer that was on plane
13227 * Cleans up a framebuffer that has just been removed from a plane.
13229 * Must be called with struct_mutex held.
13231 void
13232 intel_cleanup_plane_fb(struct drm_plane *plane,
13233 struct drm_plane_state *old_state)
13235 struct i915_vma *vma;
13237 /* Should only be called after a successful intel_prepare_plane_fb()! */
13238 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13239 if (vma)
13240 intel_unpin_fb_vma(vma);
13244 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13246 struct drm_i915_private *dev_priv;
13247 int max_scale;
13248 int crtc_clock, max_dotclk;
13250 if (!intel_crtc || !crtc_state->base.enable)
13251 return DRM_PLANE_HELPER_NO_SCALING;
13253 dev_priv = to_i915(intel_crtc->base.dev);
13255 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13256 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13258 if (IS_GEMINILAKE(dev_priv))
13259 max_dotclk *= 2;
13261 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13262 return DRM_PLANE_HELPER_NO_SCALING;
13265 * skl max scale is lower of:
13266 * close to 3 but not 3, -1 is for that purpose
13267 * or
13268 * cdclk/crtc_clock
13270 max_scale = min((1 << 16) * 3 - 1,
13271 (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13273 return max_scale;
13276 static int
13277 intel_check_primary_plane(struct drm_plane *plane,
13278 struct intel_crtc_state *crtc_state,
13279 struct intel_plane_state *state)
13281 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13282 struct drm_crtc *crtc = state->base.crtc;
13283 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13284 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13285 bool can_position = false;
13286 int ret;
13288 if (INTEL_GEN(dev_priv) >= 9) {
13289 /* use scaler when colorkey is not required */
13290 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13291 min_scale = 1;
13292 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13294 can_position = true;
13297 ret = drm_plane_helper_check_state(&state->base,
13298 &state->clip,
13299 min_scale, max_scale,
13300 can_position, true);
13301 if (ret)
13302 return ret;
13304 if (!state->base.fb)
13305 return 0;
13307 if (INTEL_GEN(dev_priv) >= 9) {
13308 ret = skl_check_plane_surface(state);
13309 if (ret)
13310 return ret;
13312 state->ctl = skl_plane_ctl(crtc_state, state);
13313 } else {
13314 ret = i9xx_check_plane_surface(state);
13315 if (ret)
13316 return ret;
13318 state->ctl = i9xx_plane_ctl(crtc_state, state);
13321 return 0;
13324 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13325 struct drm_crtc_state *old_crtc_state)
13327 struct drm_device *dev = crtc->dev;
13328 struct drm_i915_private *dev_priv = to_i915(dev);
13329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13330 struct intel_crtc_state *intel_cstate =
13331 to_intel_crtc_state(crtc->state);
13332 struct intel_crtc_state *old_intel_cstate =
13333 to_intel_crtc_state(old_crtc_state);
13334 struct intel_atomic_state *old_intel_state =
13335 to_intel_atomic_state(old_crtc_state->state);
13336 bool modeset = needs_modeset(crtc->state);
13338 if (!modeset &&
13339 (intel_cstate->base.color_mgmt_changed ||
13340 intel_cstate->update_pipe)) {
13341 intel_color_set_csc(crtc->state);
13342 intel_color_load_luts(crtc->state);
13345 /* Perform vblank evasion around commit operation */
13346 intel_pipe_update_start(intel_crtc);
13348 if (modeset)
13349 goto out;
13351 if (intel_cstate->update_pipe)
13352 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13353 else if (INTEL_GEN(dev_priv) >= 9)
13354 skl_detach_scalers(intel_crtc);
13356 out:
13357 if (dev_priv->display.atomic_update_watermarks)
13358 dev_priv->display.atomic_update_watermarks(old_intel_state,
13359 intel_cstate);
13362 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13363 struct drm_crtc_state *old_crtc_state)
13365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13367 intel_pipe_update_end(intel_crtc, NULL);
13371 * intel_plane_destroy - destroy a plane
13372 * @plane: plane to destroy
13374 * Common destruction function for all types of planes (primary, cursor,
13375 * sprite).
13377 void intel_plane_destroy(struct drm_plane *plane)
13379 drm_plane_cleanup(plane);
13380 kfree(to_intel_plane(plane));
13383 const struct drm_plane_funcs intel_plane_funcs = {
13384 .update_plane = drm_atomic_helper_update_plane,
13385 .disable_plane = drm_atomic_helper_disable_plane,
13386 .destroy = intel_plane_destroy,
13387 .set_property = drm_atomic_helper_plane_set_property,
13388 .atomic_get_property = intel_plane_atomic_get_property,
13389 .atomic_set_property = intel_plane_atomic_set_property,
13390 .atomic_duplicate_state = intel_plane_duplicate_state,
13391 .atomic_destroy_state = intel_plane_destroy_state,
13394 static int
13395 intel_legacy_cursor_update(struct drm_plane *plane,
13396 struct drm_crtc *crtc,
13397 struct drm_framebuffer *fb,
13398 int crtc_x, int crtc_y,
13399 unsigned int crtc_w, unsigned int crtc_h,
13400 uint32_t src_x, uint32_t src_y,
13401 uint32_t src_w, uint32_t src_h,
13402 struct drm_modeset_acquire_ctx *ctx)
13404 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13405 int ret;
13406 struct drm_plane_state *old_plane_state, *new_plane_state;
13407 struct intel_plane *intel_plane = to_intel_plane(plane);
13408 struct drm_framebuffer *old_fb;
13409 struct drm_crtc_state *crtc_state = crtc->state;
13410 struct i915_vma *old_vma;
13413 * When crtc is inactive or there is a modeset pending,
13414 * wait for it to complete in the slowpath
13416 if (!crtc_state->active || needs_modeset(crtc_state) ||
13417 to_intel_crtc_state(crtc_state)->update_pipe)
13418 goto slow;
13420 old_plane_state = plane->state;
13423 * If any parameters change that may affect watermarks,
13424 * take the slowpath. Only changing fb or position should be
13425 * in the fastpath.
13427 if (old_plane_state->crtc != crtc ||
13428 old_plane_state->src_w != src_w ||
13429 old_plane_state->src_h != src_h ||
13430 old_plane_state->crtc_w != crtc_w ||
13431 old_plane_state->crtc_h != crtc_h ||
13432 !old_plane_state->fb != !fb)
13433 goto slow;
13435 new_plane_state = intel_plane_duplicate_state(plane);
13436 if (!new_plane_state)
13437 return -ENOMEM;
13439 drm_atomic_set_fb_for_plane(new_plane_state, fb);
13441 new_plane_state->src_x = src_x;
13442 new_plane_state->src_y = src_y;
13443 new_plane_state->src_w = src_w;
13444 new_plane_state->src_h = src_h;
13445 new_plane_state->crtc_x = crtc_x;
13446 new_plane_state->crtc_y = crtc_y;
13447 new_plane_state->crtc_w = crtc_w;
13448 new_plane_state->crtc_h = crtc_h;
13450 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13451 to_intel_plane_state(new_plane_state));
13452 if (ret)
13453 goto out_free;
13455 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13456 if (ret)
13457 goto out_free;
13459 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13460 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
13462 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13463 if (ret) {
13464 DRM_DEBUG_KMS("failed to attach phys object\n");
13465 goto out_unlock;
13467 } else {
13468 struct i915_vma *vma;
13470 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13471 if (IS_ERR(vma)) {
13472 DRM_DEBUG_KMS("failed to pin object\n");
13474 ret = PTR_ERR(vma);
13475 goto out_unlock;
13478 to_intel_plane_state(new_plane_state)->vma = vma;
13481 old_fb = old_plane_state->fb;
13482 old_vma = to_intel_plane_state(old_plane_state)->vma;
13484 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13485 intel_plane->frontbuffer_bit);
13487 /* Swap plane state */
13488 new_plane_state->fence = old_plane_state->fence;
13489 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13490 new_plane_state->fence = NULL;
13491 new_plane_state->fb = old_fb;
13492 to_intel_plane_state(new_plane_state)->vma = old_vma;
13494 if (plane->state->visible) {
13495 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13496 intel_plane->update_plane(plane,
13497 to_intel_crtc_state(crtc->state),
13498 to_intel_plane_state(plane->state));
13499 } else {
13500 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13501 intel_plane->disable_plane(plane, crtc);
13504 intel_cleanup_plane_fb(plane, new_plane_state);
13506 out_unlock:
13507 mutex_unlock(&dev_priv->drm.struct_mutex);
13508 out_free:
13509 intel_plane_destroy_state(plane, new_plane_state);
13510 return ret;
13512 slow:
13513 return drm_atomic_helper_update_plane(plane, crtc, fb,
13514 crtc_x, crtc_y, crtc_w, crtc_h,
13515 src_x, src_y, src_w, src_h, ctx);
13518 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13519 .update_plane = intel_legacy_cursor_update,
13520 .disable_plane = drm_atomic_helper_disable_plane,
13521 .destroy = intel_plane_destroy,
13522 .set_property = drm_atomic_helper_plane_set_property,
13523 .atomic_get_property = intel_plane_atomic_get_property,
13524 .atomic_set_property = intel_plane_atomic_set_property,
13525 .atomic_duplicate_state = intel_plane_duplicate_state,
13526 .atomic_destroy_state = intel_plane_destroy_state,
13529 static struct intel_plane *
13530 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13532 struct intel_plane *primary = NULL;
13533 struct intel_plane_state *state = NULL;
13534 const uint32_t *intel_primary_formats;
13535 unsigned int supported_rotations;
13536 unsigned int num_formats;
13537 int ret;
13539 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13540 if (!primary) {
13541 ret = -ENOMEM;
13542 goto fail;
13545 state = intel_create_plane_state(&primary->base);
13546 if (!state) {
13547 ret = -ENOMEM;
13548 goto fail;
13551 primary->base.state = &state->base;
13553 primary->can_scale = false;
13554 primary->max_downscale = 1;
13555 if (INTEL_GEN(dev_priv) >= 9) {
13556 primary->can_scale = true;
13557 state->scaler_id = -1;
13559 primary->pipe = pipe;
13561 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13562 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13564 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13565 primary->plane = (enum plane) !pipe;
13566 else
13567 primary->plane = (enum plane) pipe;
13568 primary->id = PLANE_PRIMARY;
13569 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13570 primary->check_plane = intel_check_primary_plane;
13572 if (INTEL_GEN(dev_priv) >= 9) {
13573 intel_primary_formats = skl_primary_formats;
13574 num_formats = ARRAY_SIZE(skl_primary_formats);
13576 primary->update_plane = skylake_update_primary_plane;
13577 primary->disable_plane = skylake_disable_primary_plane;
13578 } else if (INTEL_GEN(dev_priv) >= 4) {
13579 intel_primary_formats = i965_primary_formats;
13580 num_formats = ARRAY_SIZE(i965_primary_formats);
13582 primary->update_plane = i9xx_update_primary_plane;
13583 primary->disable_plane = i9xx_disable_primary_plane;
13584 } else {
13585 intel_primary_formats = i8xx_primary_formats;
13586 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13588 primary->update_plane = i9xx_update_primary_plane;
13589 primary->disable_plane = i9xx_disable_primary_plane;
13592 if (INTEL_GEN(dev_priv) >= 9)
13593 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13594 0, &intel_plane_funcs,
13595 intel_primary_formats, num_formats,
13596 DRM_PLANE_TYPE_PRIMARY,
13597 "plane 1%c", pipe_name(pipe));
13598 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13599 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13600 0, &intel_plane_funcs,
13601 intel_primary_formats, num_formats,
13602 DRM_PLANE_TYPE_PRIMARY,
13603 "primary %c", pipe_name(pipe));
13604 else
13605 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13606 0, &intel_plane_funcs,
13607 intel_primary_formats, num_formats,
13608 DRM_PLANE_TYPE_PRIMARY,
13609 "plane %c", plane_name(primary->plane));
13610 if (ret)
13611 goto fail;
13613 if (INTEL_GEN(dev_priv) >= 9) {
13614 supported_rotations =
13615 DRM_ROTATE_0 | DRM_ROTATE_90 |
13616 DRM_ROTATE_180 | DRM_ROTATE_270;
13617 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13618 supported_rotations =
13619 DRM_ROTATE_0 | DRM_ROTATE_180 |
13620 DRM_REFLECT_X;
13621 } else if (INTEL_GEN(dev_priv) >= 4) {
13622 supported_rotations =
13623 DRM_ROTATE_0 | DRM_ROTATE_180;
13624 } else {
13625 supported_rotations = DRM_ROTATE_0;
13628 if (INTEL_GEN(dev_priv) >= 4)
13629 drm_plane_create_rotation_property(&primary->base,
13630 DRM_ROTATE_0,
13631 supported_rotations);
13633 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13635 return primary;
13637 fail:
13638 kfree(state);
13639 kfree(primary);
13641 return ERR_PTR(ret);
13644 static int
13645 intel_check_cursor_plane(struct drm_plane *plane,
13646 struct intel_crtc_state *crtc_state,
13647 struct intel_plane_state *state)
13649 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13650 struct drm_framebuffer *fb = state->base.fb;
13651 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13652 enum pipe pipe = to_intel_plane(plane)->pipe;
13653 unsigned stride;
13654 int ret;
13656 ret = drm_plane_helper_check_state(&state->base,
13657 &state->clip,
13658 DRM_PLANE_HELPER_NO_SCALING,
13659 DRM_PLANE_HELPER_NO_SCALING,
13660 true, true);
13661 if (ret)
13662 return ret;
13664 /* if we want to turn off the cursor ignore width and height */
13665 if (!obj)
13666 return 0;
13668 /* Check for which cursor types we support */
13669 if (!cursor_size_ok(dev_priv, state->base.crtc_w,
13670 state->base.crtc_h)) {
13671 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13672 state->base.crtc_w, state->base.crtc_h);
13673 return -EINVAL;
13676 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13677 if (obj->base.size < stride * state->base.crtc_h) {
13678 DRM_DEBUG_KMS("buffer is too small\n");
13679 return -ENOMEM;
13682 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
13683 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13684 return -EINVAL;
13688 * There's something wrong with the cursor on CHV pipe C.
13689 * If it straddles the left edge of the screen then
13690 * moving it away from the edge or disabling it often
13691 * results in a pipe underrun, and often that can lead to
13692 * dead pipe (constant underrun reported, and it scans
13693 * out just a solid color). To recover from that, the
13694 * display power well must be turned off and on again.
13695 * Refuse the put the cursor into that compromised position.
13697 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
13698 state->base.visible && state->base.crtc_x < 0) {
13699 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
13700 return -EINVAL;
13703 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
13704 state->ctl = i845_cursor_ctl(crtc_state, state);
13705 else
13706 state->ctl = i9xx_cursor_ctl(crtc_state, state);
13708 return 0;
13711 static void
13712 intel_disable_cursor_plane(struct drm_plane *plane,
13713 struct drm_crtc *crtc)
13715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13717 intel_crtc->cursor_addr = 0;
13718 intel_crtc_update_cursor(crtc, NULL);
13721 static void
13722 intel_update_cursor_plane(struct drm_plane *plane,
13723 const struct intel_crtc_state *crtc_state,
13724 const struct intel_plane_state *state)
13726 struct drm_crtc *crtc = crtc_state->base.crtc;
13727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13728 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13729 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13730 uint32_t addr;
13732 if (!obj)
13733 addr = 0;
13734 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
13735 addr = intel_plane_ggtt_offset(state);
13736 else
13737 addr = obj->phys_handle->busaddr;
13739 intel_crtc->cursor_addr = addr;
13740 intel_crtc_update_cursor(crtc, state);
13743 static struct intel_plane *
13744 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13746 struct intel_plane *cursor = NULL;
13747 struct intel_plane_state *state = NULL;
13748 int ret;
13750 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13751 if (!cursor) {
13752 ret = -ENOMEM;
13753 goto fail;
13756 state = intel_create_plane_state(&cursor->base);
13757 if (!state) {
13758 ret = -ENOMEM;
13759 goto fail;
13762 cursor->base.state = &state->base;
13764 cursor->can_scale = false;
13765 cursor->max_downscale = 1;
13766 cursor->pipe = pipe;
13767 cursor->plane = pipe;
13768 cursor->id = PLANE_CURSOR;
13769 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13770 cursor->check_plane = intel_check_cursor_plane;
13771 cursor->update_plane = intel_update_cursor_plane;
13772 cursor->disable_plane = intel_disable_cursor_plane;
13774 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13775 0, &intel_cursor_plane_funcs,
13776 intel_cursor_formats,
13777 ARRAY_SIZE(intel_cursor_formats),
13778 DRM_PLANE_TYPE_CURSOR,
13779 "cursor %c", pipe_name(pipe));
13780 if (ret)
13781 goto fail;
13783 if (INTEL_GEN(dev_priv) >= 4)
13784 drm_plane_create_rotation_property(&cursor->base,
13785 DRM_ROTATE_0,
13786 DRM_ROTATE_0 |
13787 DRM_ROTATE_180);
13789 if (INTEL_GEN(dev_priv) >= 9)
13790 state->scaler_id = -1;
13792 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13794 return cursor;
13796 fail:
13797 kfree(state);
13798 kfree(cursor);
13800 return ERR_PTR(ret);
13803 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13804 struct intel_crtc_state *crtc_state)
13806 struct intel_crtc_scaler_state *scaler_state =
13807 &crtc_state->scaler_state;
13808 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13809 int i;
13811 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13812 if (!crtc->num_scalers)
13813 return;
13815 for (i = 0; i < crtc->num_scalers; i++) {
13816 struct intel_scaler *scaler = &scaler_state->scalers[i];
13818 scaler->in_use = 0;
13819 scaler->mode = PS_SCALER_MODE_DYN;
13822 scaler_state->scaler_id = -1;
13825 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13827 struct intel_crtc *intel_crtc;
13828 struct intel_crtc_state *crtc_state = NULL;
13829 struct intel_plane *primary = NULL;
13830 struct intel_plane *cursor = NULL;
13831 int sprite, ret;
13833 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13834 if (!intel_crtc)
13835 return -ENOMEM;
13837 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13838 if (!crtc_state) {
13839 ret = -ENOMEM;
13840 goto fail;
13842 intel_crtc->config = crtc_state;
13843 intel_crtc->base.state = &crtc_state->base;
13844 crtc_state->base.crtc = &intel_crtc->base;
13846 primary = intel_primary_plane_create(dev_priv, pipe);
13847 if (IS_ERR(primary)) {
13848 ret = PTR_ERR(primary);
13849 goto fail;
13851 intel_crtc->plane_ids_mask |= BIT(primary->id);
13853 for_each_sprite(dev_priv, pipe, sprite) {
13854 struct intel_plane *plane;
13856 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13857 if (IS_ERR(plane)) {
13858 ret = PTR_ERR(plane);
13859 goto fail;
13861 intel_crtc->plane_ids_mask |= BIT(plane->id);
13864 cursor = intel_cursor_plane_create(dev_priv, pipe);
13865 if (IS_ERR(cursor)) {
13866 ret = PTR_ERR(cursor);
13867 goto fail;
13869 intel_crtc->plane_ids_mask |= BIT(cursor->id);
13871 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13872 &primary->base, &cursor->base,
13873 &intel_crtc_funcs,
13874 "pipe %c", pipe_name(pipe));
13875 if (ret)
13876 goto fail;
13878 intel_crtc->pipe = pipe;
13879 intel_crtc->plane = primary->plane;
13881 intel_crtc->cursor_base = ~0;
13882 intel_crtc->cursor_cntl = ~0;
13883 intel_crtc->cursor_size = ~0;
13885 /* initialize shared scalers */
13886 intel_crtc_init_scalers(intel_crtc, crtc_state);
13888 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13889 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13890 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13891 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13893 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13895 intel_color_init(&intel_crtc->base);
13897 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13899 return 0;
13901 fail:
13903 * drm_mode_config_cleanup() will free up any
13904 * crtcs/planes already initialized.
13906 kfree(crtc_state);
13907 kfree(intel_crtc);
13909 return ret;
13912 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13914 struct drm_device *dev = connector->base.dev;
13916 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13918 if (!connector->base.state->crtc)
13919 return INVALID_PIPE;
13921 return to_intel_crtc(connector->base.state->crtc)->pipe;
13924 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13925 struct drm_file *file)
13927 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13928 struct drm_crtc *drmmode_crtc;
13929 struct intel_crtc *crtc;
13931 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13932 if (!drmmode_crtc)
13933 return -ENOENT;
13935 crtc = to_intel_crtc(drmmode_crtc);
13936 pipe_from_crtc_id->pipe = crtc->pipe;
13938 return 0;
13941 static int intel_encoder_clones(struct intel_encoder *encoder)
13943 struct drm_device *dev = encoder->base.dev;
13944 struct intel_encoder *source_encoder;
13945 int index_mask = 0;
13946 int entry = 0;
13948 for_each_intel_encoder(dev, source_encoder) {
13949 if (encoders_cloneable(encoder, source_encoder))
13950 index_mask |= (1 << entry);
13952 entry++;
13955 return index_mask;
13958 static bool has_edp_a(struct drm_i915_private *dev_priv)
13960 if (!IS_MOBILE(dev_priv))
13961 return false;
13963 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13964 return false;
13966 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13967 return false;
13969 return true;
13972 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13974 if (INTEL_GEN(dev_priv) >= 9)
13975 return false;
13977 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13978 return false;
13980 if (IS_CHERRYVIEW(dev_priv))
13981 return false;
13983 if (HAS_PCH_LPT_H(dev_priv) &&
13984 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13985 return false;
13987 /* DDI E can't be used if DDI A requires 4 lanes */
13988 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13989 return false;
13991 if (!dev_priv->vbt.int_crt_support)
13992 return false;
13994 return true;
13997 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
13999 int pps_num;
14000 int pps_idx;
14002 if (HAS_DDI(dev_priv))
14003 return;
14005 * This w/a is needed at least on CPT/PPT, but to be sure apply it
14006 * everywhere where registers can be write protected.
14008 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14009 pps_num = 2;
14010 else
14011 pps_num = 1;
14013 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14014 u32 val = I915_READ(PP_CONTROL(pps_idx));
14016 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14017 I915_WRITE(PP_CONTROL(pps_idx), val);
14021 static void intel_pps_init(struct drm_i915_private *dev_priv)
14023 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14024 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14025 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14026 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14027 else
14028 dev_priv->pps_mmio_base = PPS_BASE;
14030 intel_pps_unlock_regs_wa(dev_priv);
14033 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14035 struct intel_encoder *encoder;
14036 bool dpd_is_edp = false;
14038 intel_pps_init(dev_priv);
14041 * intel_edp_init_connector() depends on this completing first, to
14042 * prevent the registeration of both eDP and LVDS and the incorrect
14043 * sharing of the PPS.
14045 intel_lvds_init(dev_priv);
14047 if (intel_crt_present(dev_priv))
14048 intel_crt_init(dev_priv);
14050 if (IS_GEN9_LP(dev_priv)) {
14052 * FIXME: Broxton doesn't support port detection via the
14053 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14054 * detect the ports.
14056 intel_ddi_init(dev_priv, PORT_A);
14057 intel_ddi_init(dev_priv, PORT_B);
14058 intel_ddi_init(dev_priv, PORT_C);
14060 intel_dsi_init(dev_priv);
14061 } else if (HAS_DDI(dev_priv)) {
14062 int found;
14065 * Haswell uses DDI functions to detect digital outputs.
14066 * On SKL pre-D0 the strap isn't connected, so we assume
14067 * it's there.
14069 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14070 /* WaIgnoreDDIAStrap: skl */
14071 if (found || IS_GEN9_BC(dev_priv))
14072 intel_ddi_init(dev_priv, PORT_A);
14074 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14075 * register */
14076 found = I915_READ(SFUSE_STRAP);
14078 if (found & SFUSE_STRAP_DDIB_DETECTED)
14079 intel_ddi_init(dev_priv, PORT_B);
14080 if (found & SFUSE_STRAP_DDIC_DETECTED)
14081 intel_ddi_init(dev_priv, PORT_C);
14082 if (found & SFUSE_STRAP_DDID_DETECTED)
14083 intel_ddi_init(dev_priv, PORT_D);
14085 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14087 if (IS_GEN9_BC(dev_priv) &&
14088 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14089 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14090 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14091 intel_ddi_init(dev_priv, PORT_E);
14093 } else if (HAS_PCH_SPLIT(dev_priv)) {
14094 int found;
14095 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14097 if (has_edp_a(dev_priv))
14098 intel_dp_init(dev_priv, DP_A, PORT_A);
14100 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14101 /* PCH SDVOB multiplex with HDMIB */
14102 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14103 if (!found)
14104 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14105 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14106 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14109 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14110 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14112 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14113 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14115 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14116 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14118 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14119 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14120 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14121 bool has_edp, has_port;
14124 * The DP_DETECTED bit is the latched state of the DDC
14125 * SDA pin at boot. However since eDP doesn't require DDC
14126 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14127 * eDP ports may have been muxed to an alternate function.
14128 * Thus we can't rely on the DP_DETECTED bit alone to detect
14129 * eDP ports. Consult the VBT as well as DP_DETECTED to
14130 * detect eDP ports.
14132 * Sadly the straps seem to be missing sometimes even for HDMI
14133 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14134 * and VBT for the presence of the port. Additionally we can't
14135 * trust the port type the VBT declares as we've seen at least
14136 * HDMI ports that the VBT claim are DP or eDP.
14138 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14139 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14140 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14141 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14142 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14143 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14145 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14146 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14147 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14148 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14149 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14150 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14152 if (IS_CHERRYVIEW(dev_priv)) {
14154 * eDP not supported on port D,
14155 * so no need to worry about it
14157 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14158 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14159 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14160 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14161 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14164 intel_dsi_init(dev_priv);
14165 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14166 bool found = false;
14168 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14169 DRM_DEBUG_KMS("probing SDVOB\n");
14170 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14171 if (!found && IS_G4X(dev_priv)) {
14172 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14173 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14176 if (!found && IS_G4X(dev_priv))
14177 intel_dp_init(dev_priv, DP_B, PORT_B);
14180 /* Before G4X SDVOC doesn't have its own detect register */
14182 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14183 DRM_DEBUG_KMS("probing SDVOC\n");
14184 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14187 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14189 if (IS_G4X(dev_priv)) {
14190 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14191 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14193 if (IS_G4X(dev_priv))
14194 intel_dp_init(dev_priv, DP_C, PORT_C);
14197 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14198 intel_dp_init(dev_priv, DP_D, PORT_D);
14199 } else if (IS_GEN2(dev_priv))
14200 intel_dvo_init(dev_priv);
14202 if (SUPPORTS_TV(dev_priv))
14203 intel_tv_init(dev_priv);
14205 intel_psr_init(dev_priv);
14207 for_each_intel_encoder(&dev_priv->drm, encoder) {
14208 encoder->base.possible_crtcs = encoder->crtc_mask;
14209 encoder->base.possible_clones =
14210 intel_encoder_clones(encoder);
14213 intel_init_pch_refclk(dev_priv);
14215 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14218 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14220 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14222 drm_framebuffer_cleanup(fb);
14224 i915_gem_object_lock(intel_fb->obj);
14225 WARN_ON(!intel_fb->obj->framebuffer_references--);
14226 i915_gem_object_unlock(intel_fb->obj);
14228 i915_gem_object_put(intel_fb->obj);
14230 kfree(intel_fb);
14233 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14234 struct drm_file *file,
14235 unsigned int *handle)
14237 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14238 struct drm_i915_gem_object *obj = intel_fb->obj;
14240 if (obj->userptr.mm) {
14241 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14242 return -EINVAL;
14245 return drm_gem_handle_create(file, &obj->base, handle);
14248 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14249 struct drm_file *file,
14250 unsigned flags, unsigned color,
14251 struct drm_clip_rect *clips,
14252 unsigned num_clips)
14254 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14256 i915_gem_object_flush_if_display(obj);
14257 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14259 return 0;
14262 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14263 .destroy = intel_user_framebuffer_destroy,
14264 .create_handle = intel_user_framebuffer_create_handle,
14265 .dirty = intel_user_framebuffer_dirty,
14268 static
14269 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14270 uint64_t fb_modifier, uint32_t pixel_format)
14272 u32 gen = INTEL_GEN(dev_priv);
14274 if (gen >= 9) {
14275 int cpp = drm_format_plane_cpp(pixel_format, 0);
14277 /* "The stride in bytes must not exceed the of the size of 8K
14278 * pixels and 32K bytes."
14280 return min(8192 * cpp, 32768);
14281 } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14282 return 32*1024;
14283 } else if (gen >= 4) {
14284 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14285 return 16*1024;
14286 else
14287 return 32*1024;
14288 } else if (gen >= 3) {
14289 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14290 return 8*1024;
14291 else
14292 return 16*1024;
14293 } else {
14294 /* XXX DSPC is limited to 4k tiled */
14295 return 8*1024;
14299 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14300 struct drm_i915_gem_object *obj,
14301 struct drm_mode_fb_cmd2 *mode_cmd)
14303 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14304 struct drm_format_name_buf format_name;
14305 u32 pitch_limit, stride_alignment;
14306 unsigned int tiling, stride;
14307 int ret = -EINVAL;
14309 i915_gem_object_lock(obj);
14310 obj->framebuffer_references++;
14311 tiling = i915_gem_object_get_tiling(obj);
14312 stride = i915_gem_object_get_stride(obj);
14313 i915_gem_object_unlock(obj);
14315 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14317 * If there's a fence, enforce that
14318 * the fb modifier and tiling mode match.
14320 if (tiling != I915_TILING_NONE &&
14321 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14322 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14323 goto err;
14325 } else {
14326 if (tiling == I915_TILING_X) {
14327 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14328 } else if (tiling == I915_TILING_Y) {
14329 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14330 goto err;
14334 /* Passed in modifier sanity checking. */
14335 switch (mode_cmd->modifier[0]) {
14336 case I915_FORMAT_MOD_Y_TILED:
14337 case I915_FORMAT_MOD_Yf_TILED:
14338 if (INTEL_GEN(dev_priv) < 9) {
14339 DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14340 mode_cmd->modifier[0]);
14341 goto err;
14343 case DRM_FORMAT_MOD_LINEAR:
14344 case I915_FORMAT_MOD_X_TILED:
14345 break;
14346 default:
14347 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14348 mode_cmd->modifier[0]);
14349 goto err;
14353 * gen2/3 display engine uses the fence if present,
14354 * so the tiling mode must match the fb modifier exactly.
14356 if (INTEL_INFO(dev_priv)->gen < 4 &&
14357 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14358 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14359 goto err;
14362 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14363 mode_cmd->pixel_format);
14364 if (mode_cmd->pitches[0] > pitch_limit) {
14365 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14366 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14367 "tiled" : "linear",
14368 mode_cmd->pitches[0], pitch_limit);
14369 goto err;
14373 * If there's a fence, enforce that
14374 * the fb pitch and fence stride match.
14376 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14377 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14378 mode_cmd->pitches[0], stride);
14379 goto err;
14382 /* Reject formats not supported by any plane early. */
14383 switch (mode_cmd->pixel_format) {
14384 case DRM_FORMAT_C8:
14385 case DRM_FORMAT_RGB565:
14386 case DRM_FORMAT_XRGB8888:
14387 case DRM_FORMAT_ARGB8888:
14388 break;
14389 case DRM_FORMAT_XRGB1555:
14390 if (INTEL_GEN(dev_priv) > 3) {
14391 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14392 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14393 goto err;
14395 break;
14396 case DRM_FORMAT_ABGR8888:
14397 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14398 INTEL_GEN(dev_priv) < 9) {
14399 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14400 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14401 goto err;
14403 break;
14404 case DRM_FORMAT_XBGR8888:
14405 case DRM_FORMAT_XRGB2101010:
14406 case DRM_FORMAT_XBGR2101010:
14407 if (INTEL_GEN(dev_priv) < 4) {
14408 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14409 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14410 goto err;
14412 break;
14413 case DRM_FORMAT_ABGR2101010:
14414 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14415 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14416 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14417 goto err;
14419 break;
14420 case DRM_FORMAT_YUYV:
14421 case DRM_FORMAT_UYVY:
14422 case DRM_FORMAT_YVYU:
14423 case DRM_FORMAT_VYUY:
14424 if (INTEL_GEN(dev_priv) < 5) {
14425 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14426 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14427 goto err;
14429 break;
14430 default:
14431 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14432 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14433 goto err;
14436 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14437 if (mode_cmd->offsets[0] != 0)
14438 goto err;
14440 drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14441 &intel_fb->base, mode_cmd);
14443 stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14444 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14445 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14446 mode_cmd->pitches[0], stride_alignment);
14447 goto err;
14450 intel_fb->obj = obj;
14452 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14453 if (ret)
14454 goto err;
14456 ret = drm_framebuffer_init(obj->base.dev,
14457 &intel_fb->base,
14458 &intel_fb_funcs);
14459 if (ret) {
14460 DRM_ERROR("framebuffer init failed %d\n", ret);
14461 goto err;
14464 return 0;
14466 err:
14467 i915_gem_object_lock(obj);
14468 obj->framebuffer_references--;
14469 i915_gem_object_unlock(obj);
14470 return ret;
14473 static struct drm_framebuffer *
14474 intel_user_framebuffer_create(struct drm_device *dev,
14475 struct drm_file *filp,
14476 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14478 struct drm_framebuffer *fb;
14479 struct drm_i915_gem_object *obj;
14480 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14482 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14483 if (!obj)
14484 return ERR_PTR(-ENOENT);
14486 fb = intel_framebuffer_create(obj, &mode_cmd);
14487 if (IS_ERR(fb))
14488 i915_gem_object_put(obj);
14490 return fb;
14493 static void intel_atomic_state_free(struct drm_atomic_state *state)
14495 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14497 drm_atomic_state_default_release(state);
14499 i915_sw_fence_fini(&intel_state->commit_ready);
14501 kfree(state);
14504 static const struct drm_mode_config_funcs intel_mode_funcs = {
14505 .fb_create = intel_user_framebuffer_create,
14506 .output_poll_changed = intel_fbdev_output_poll_changed,
14507 .atomic_check = intel_atomic_check,
14508 .atomic_commit = intel_atomic_commit,
14509 .atomic_state_alloc = intel_atomic_state_alloc,
14510 .atomic_state_clear = intel_atomic_state_clear,
14511 .atomic_state_free = intel_atomic_state_free,
14515 * intel_init_display_hooks - initialize the display modesetting hooks
14516 * @dev_priv: device private
14518 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14520 intel_init_cdclk_hooks(dev_priv);
14522 if (INTEL_INFO(dev_priv)->gen >= 9) {
14523 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14524 dev_priv->display.get_initial_plane_config =
14525 skylake_get_initial_plane_config;
14526 dev_priv->display.crtc_compute_clock =
14527 haswell_crtc_compute_clock;
14528 dev_priv->display.crtc_enable = haswell_crtc_enable;
14529 dev_priv->display.crtc_disable = haswell_crtc_disable;
14530 } else if (HAS_DDI(dev_priv)) {
14531 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14532 dev_priv->display.get_initial_plane_config =
14533 ironlake_get_initial_plane_config;
14534 dev_priv->display.crtc_compute_clock =
14535 haswell_crtc_compute_clock;
14536 dev_priv->display.crtc_enable = haswell_crtc_enable;
14537 dev_priv->display.crtc_disable = haswell_crtc_disable;
14538 } else if (HAS_PCH_SPLIT(dev_priv)) {
14539 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14540 dev_priv->display.get_initial_plane_config =
14541 ironlake_get_initial_plane_config;
14542 dev_priv->display.crtc_compute_clock =
14543 ironlake_crtc_compute_clock;
14544 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14545 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14546 } else if (IS_CHERRYVIEW(dev_priv)) {
14547 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14548 dev_priv->display.get_initial_plane_config =
14549 i9xx_get_initial_plane_config;
14550 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14551 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14552 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14553 } else if (IS_VALLEYVIEW(dev_priv)) {
14554 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14555 dev_priv->display.get_initial_plane_config =
14556 i9xx_get_initial_plane_config;
14557 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14558 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14559 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14560 } else if (IS_G4X(dev_priv)) {
14561 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14562 dev_priv->display.get_initial_plane_config =
14563 i9xx_get_initial_plane_config;
14564 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14565 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14566 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14567 } else if (IS_PINEVIEW(dev_priv)) {
14568 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14569 dev_priv->display.get_initial_plane_config =
14570 i9xx_get_initial_plane_config;
14571 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14572 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14573 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14574 } else if (!IS_GEN2(dev_priv)) {
14575 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14576 dev_priv->display.get_initial_plane_config =
14577 i9xx_get_initial_plane_config;
14578 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14579 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14580 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14581 } else {
14582 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14583 dev_priv->display.get_initial_plane_config =
14584 i9xx_get_initial_plane_config;
14585 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14586 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14587 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14590 if (IS_GEN5(dev_priv)) {
14591 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14592 } else if (IS_GEN6(dev_priv)) {
14593 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14594 } else if (IS_IVYBRIDGE(dev_priv)) {
14595 /* FIXME: detect B0+ stepping and use auto training */
14596 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14597 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14598 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14601 if (dev_priv->info.gen >= 9)
14602 dev_priv->display.update_crtcs = skl_update_crtcs;
14603 else
14604 dev_priv->display.update_crtcs = intel_update_crtcs;
14606 switch (INTEL_INFO(dev_priv)->gen) {
14607 case 2:
14608 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14609 break;
14611 case 3:
14612 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14613 break;
14615 case 4:
14616 case 5:
14617 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14618 break;
14620 case 6:
14621 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14622 break;
14623 case 7:
14624 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14625 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14626 break;
14627 case 9:
14628 /* Drop through - unsupported since execlist only. */
14629 default:
14630 /* Default just returns -ENODEV to indicate unsupported */
14631 dev_priv->display.queue_flip = intel_default_queue_flip;
14636 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14637 * resume, or other times. This quirk makes sure that's the case for
14638 * affected systems.
14640 static void quirk_pipea_force(struct drm_device *dev)
14642 struct drm_i915_private *dev_priv = to_i915(dev);
14644 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14645 DRM_INFO("applying pipe a force quirk\n");
14648 static void quirk_pipeb_force(struct drm_device *dev)
14650 struct drm_i915_private *dev_priv = to_i915(dev);
14652 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14653 DRM_INFO("applying pipe b force quirk\n");
14657 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14659 static void quirk_ssc_force_disable(struct drm_device *dev)
14661 struct drm_i915_private *dev_priv = to_i915(dev);
14662 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14663 DRM_INFO("applying lvds SSC disable quirk\n");
14667 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14668 * brightness value
14670 static void quirk_invert_brightness(struct drm_device *dev)
14672 struct drm_i915_private *dev_priv = to_i915(dev);
14673 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14674 DRM_INFO("applying inverted panel brightness quirk\n");
14677 /* Some VBT's incorrectly indicate no backlight is present */
14678 static void quirk_backlight_present(struct drm_device *dev)
14680 struct drm_i915_private *dev_priv = to_i915(dev);
14681 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14682 DRM_INFO("applying backlight present quirk\n");
14685 struct intel_quirk {
14686 int device;
14687 int subsystem_vendor;
14688 int subsystem_device;
14689 void (*hook)(struct drm_device *dev);
14692 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14693 struct intel_dmi_quirk {
14694 void (*hook)(struct drm_device *dev);
14695 const struct dmi_system_id (*dmi_id_list)[];
14698 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14700 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14701 return 1;
14704 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14706 .dmi_id_list = &(const struct dmi_system_id[]) {
14708 .callback = intel_dmi_reverse_brightness,
14709 .ident = "NCR Corporation",
14710 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14711 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14714 { } /* terminating entry */
14716 .hook = quirk_invert_brightness,
14720 static struct intel_quirk intel_quirks[] = {
14721 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14722 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14724 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14725 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14727 /* 830 needs to leave pipe A & dpll A up */
14728 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14730 /* 830 needs to leave pipe B & dpll B up */
14731 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14733 /* Lenovo U160 cannot use SSC on LVDS */
14734 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14736 /* Sony Vaio Y cannot use SSC on LVDS */
14737 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14739 /* Acer Aspire 5734Z must invert backlight brightness */
14740 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14742 /* Acer/eMachines G725 */
14743 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14745 /* Acer/eMachines e725 */
14746 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14748 /* Acer/Packard Bell NCL20 */
14749 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14751 /* Acer Aspire 4736Z */
14752 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14754 /* Acer Aspire 5336 */
14755 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14757 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14758 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14760 /* Acer C720 Chromebook (Core i3 4005U) */
14761 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14763 /* Apple Macbook 2,1 (Core 2 T7400) */
14764 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14766 /* Apple Macbook 4,1 */
14767 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14769 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14770 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14772 /* HP Chromebook 14 (Celeron 2955U) */
14773 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14775 /* Dell Chromebook 11 */
14776 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14778 /* Dell Chromebook 11 (2015 version) */
14779 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14782 static void intel_init_quirks(struct drm_device *dev)
14784 struct pci_dev *d = dev->pdev;
14785 int i;
14787 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14788 struct intel_quirk *q = &intel_quirks[i];
14790 if (d->device == q->device &&
14791 (d->subsystem_vendor == q->subsystem_vendor ||
14792 q->subsystem_vendor == PCI_ANY_ID) &&
14793 (d->subsystem_device == q->subsystem_device ||
14794 q->subsystem_device == PCI_ANY_ID))
14795 q->hook(dev);
14797 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14798 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14799 intel_dmi_quirks[i].hook(dev);
14803 /* Disable the VGA plane that we never use */
14804 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14806 struct pci_dev *pdev = dev_priv->drm.pdev;
14807 u8 sr1;
14808 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14810 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14811 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14812 outb(SR01, VGA_SR_INDEX);
14813 sr1 = inb(VGA_SR_DATA);
14814 outb(sr1 | 1<<5, VGA_SR_DATA);
14815 vga_put(pdev, VGA_RSRC_LEGACY_IO);
14816 udelay(300);
14818 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14819 POSTING_READ(vga_reg);
14822 void intel_modeset_init_hw(struct drm_device *dev)
14824 struct drm_i915_private *dev_priv = to_i915(dev);
14826 intel_update_cdclk(dev_priv);
14827 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14829 intel_init_clock_gating(dev_priv);
14833 * Calculate what we think the watermarks should be for the state we've read
14834 * out of the hardware and then immediately program those watermarks so that
14835 * we ensure the hardware settings match our internal state.
14837 * We can calculate what we think WM's should be by creating a duplicate of the
14838 * current state (which was constructed during hardware readout) and running it
14839 * through the atomic check code to calculate new watermark values in the
14840 * state object.
14842 static void sanitize_watermarks(struct drm_device *dev)
14844 struct drm_i915_private *dev_priv = to_i915(dev);
14845 struct drm_atomic_state *state;
14846 struct intel_atomic_state *intel_state;
14847 struct drm_crtc *crtc;
14848 struct drm_crtc_state *cstate;
14849 struct drm_modeset_acquire_ctx ctx;
14850 int ret;
14851 int i;
14853 /* Only supported on platforms that use atomic watermark design */
14854 if (!dev_priv->display.optimize_watermarks)
14855 return;
14858 * We need to hold connection_mutex before calling duplicate_state so
14859 * that the connector loop is protected.
14861 drm_modeset_acquire_init(&ctx, 0);
14862 retry:
14863 ret = drm_modeset_lock_all_ctx(dev, &ctx);
14864 if (ret == -EDEADLK) {
14865 drm_modeset_backoff(&ctx);
14866 goto retry;
14867 } else if (WARN_ON(ret)) {
14868 goto fail;
14871 state = drm_atomic_helper_duplicate_state(dev, &ctx);
14872 if (WARN_ON(IS_ERR(state)))
14873 goto fail;
14875 intel_state = to_intel_atomic_state(state);
14878 * Hardware readout is the only time we don't want to calculate
14879 * intermediate watermarks (since we don't trust the current
14880 * watermarks).
14882 if (!HAS_GMCH_DISPLAY(dev_priv))
14883 intel_state->skip_intermediate_wm = true;
14885 ret = intel_atomic_check(dev, state);
14886 if (ret) {
14888 * If we fail here, it means that the hardware appears to be
14889 * programmed in a way that shouldn't be possible, given our
14890 * understanding of watermark requirements. This might mean a
14891 * mistake in the hardware readout code or a mistake in the
14892 * watermark calculations for a given platform. Raise a WARN
14893 * so that this is noticeable.
14895 * If this actually happens, we'll have to just leave the
14896 * BIOS-programmed watermarks untouched and hope for the best.
14898 WARN(true, "Could not determine valid watermarks for inherited state\n");
14899 goto put_state;
14902 /* Write calculated watermark values back */
14903 for_each_new_crtc_in_state(state, crtc, cstate, i) {
14904 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14906 cs->wm.need_postvbl_update = true;
14907 dev_priv->display.optimize_watermarks(intel_state, cs);
14910 put_state:
14911 drm_atomic_state_put(state);
14912 fail:
14913 drm_modeset_drop_locks(&ctx);
14914 drm_modeset_acquire_fini(&ctx);
14917 int intel_modeset_init(struct drm_device *dev)
14919 struct drm_i915_private *dev_priv = to_i915(dev);
14920 struct i915_ggtt *ggtt = &dev_priv->ggtt;
14921 enum pipe pipe;
14922 struct intel_crtc *crtc;
14924 drm_mode_config_init(dev);
14926 dev->mode_config.min_width = 0;
14927 dev->mode_config.min_height = 0;
14929 dev->mode_config.preferred_depth = 24;
14930 dev->mode_config.prefer_shadow = 1;
14932 dev->mode_config.allow_fb_modifiers = true;
14934 dev->mode_config.funcs = &intel_mode_funcs;
14936 init_llist_head(&dev_priv->atomic_helper.free_list);
14937 INIT_WORK(&dev_priv->atomic_helper.free_work,
14938 intel_atomic_helper_free_state_worker);
14940 intel_init_quirks(dev);
14942 intel_init_pm(dev_priv);
14944 if (INTEL_INFO(dev_priv)->num_pipes == 0)
14945 return 0;
14948 * There may be no VBT; and if the BIOS enabled SSC we can
14949 * just keep using it to avoid unnecessary flicker. Whereas if the
14950 * BIOS isn't using it, don't assume it will work even if the VBT
14951 * indicates as much.
14953 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14954 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14955 DREF_SSC1_ENABLE);
14957 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14958 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14959 bios_lvds_use_ssc ? "en" : "dis",
14960 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14961 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14965 if (IS_GEN2(dev_priv)) {
14966 dev->mode_config.max_width = 2048;
14967 dev->mode_config.max_height = 2048;
14968 } else if (IS_GEN3(dev_priv)) {
14969 dev->mode_config.max_width = 4096;
14970 dev->mode_config.max_height = 4096;
14971 } else {
14972 dev->mode_config.max_width = 8192;
14973 dev->mode_config.max_height = 8192;
14976 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14977 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14978 dev->mode_config.cursor_height = 1023;
14979 } else if (IS_GEN2(dev_priv)) {
14980 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14981 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14982 } else {
14983 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14984 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14987 dev->mode_config.fb_base = ggtt->mappable_base;
14989 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14990 INTEL_INFO(dev_priv)->num_pipes,
14991 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
14993 for_each_pipe(dev_priv, pipe) {
14994 int ret;
14996 ret = intel_crtc_init(dev_priv, pipe);
14997 if (ret) {
14998 drm_mode_config_cleanup(dev);
14999 return ret;
15003 intel_shared_dpll_init(dev);
15005 intel_update_czclk(dev_priv);
15006 intel_modeset_init_hw(dev);
15008 if (dev_priv->max_cdclk_freq == 0)
15009 intel_update_max_cdclk(dev_priv);
15011 /* Just disable it once at startup */
15012 i915_disable_vga(dev_priv);
15013 intel_setup_outputs(dev_priv);
15015 drm_modeset_lock_all(dev);
15016 intel_modeset_setup_hw_state(dev);
15017 drm_modeset_unlock_all(dev);
15019 for_each_intel_crtc(dev, crtc) {
15020 struct intel_initial_plane_config plane_config = {};
15022 if (!crtc->active)
15023 continue;
15026 * Note that reserving the BIOS fb up front prevents us
15027 * from stuffing other stolen allocations like the ring
15028 * on top. This prevents some ugliness at boot time, and
15029 * can even allow for smooth boot transitions if the BIOS
15030 * fb is large enough for the active pipe configuration.
15032 dev_priv->display.get_initial_plane_config(crtc,
15033 &plane_config);
15036 * If the fb is shared between multiple heads, we'll
15037 * just get the first one.
15039 intel_find_initial_plane_obj(crtc, &plane_config);
15043 * Make sure hardware watermarks really match the state we read out.
15044 * Note that we need to do this after reconstructing the BIOS fb's
15045 * since the watermark calculation done here will use pstate->fb.
15047 if (!HAS_GMCH_DISPLAY(dev_priv))
15048 sanitize_watermarks(dev);
15050 return 0;
15053 static void intel_enable_pipe_a(struct drm_device *dev)
15055 struct intel_connector *connector;
15056 struct drm_connector_list_iter conn_iter;
15057 struct drm_connector *crt = NULL;
15058 struct intel_load_detect_pipe load_detect_temp;
15059 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15060 int ret;
15062 /* We can't just switch on the pipe A, we need to set things up with a
15063 * proper mode and output configuration. As a gross hack, enable pipe A
15064 * by enabling the load detect pipe once. */
15065 drm_connector_list_iter_begin(dev, &conn_iter);
15066 for_each_intel_connector_iter(connector, &conn_iter) {
15067 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15068 crt = &connector->base;
15069 break;
15072 drm_connector_list_iter_end(&conn_iter);
15074 if (!crt)
15075 return;
15077 ret = intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx);
15078 WARN(ret < 0, "All modeset mutexes are locked, but intel_get_load_detect_pipe failed\n");
15080 if (ret > 0)
15081 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15084 static bool
15085 intel_check_plane_mapping(struct intel_crtc *crtc)
15087 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15088 u32 val;
15090 if (INTEL_INFO(dev_priv)->num_pipes == 1)
15091 return true;
15093 val = I915_READ(DSPCNTR(!crtc->plane));
15095 if ((val & DISPLAY_PLANE_ENABLE) &&
15096 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15097 return false;
15099 return true;
15102 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15104 struct drm_device *dev = crtc->base.dev;
15105 struct intel_encoder *encoder;
15107 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15108 return true;
15110 return false;
15113 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15115 struct drm_device *dev = encoder->base.dev;
15116 struct intel_connector *connector;
15118 for_each_connector_on_encoder(dev, &encoder->base, connector)
15119 return connector;
15121 return NULL;
15124 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15125 enum transcoder pch_transcoder)
15127 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15128 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15131 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15133 struct drm_device *dev = crtc->base.dev;
15134 struct drm_i915_private *dev_priv = to_i915(dev);
15135 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15137 /* Clear any frame start delays used for debugging left by the BIOS */
15138 if (!transcoder_is_dsi(cpu_transcoder)) {
15139 i915_reg_t reg = PIPECONF(cpu_transcoder);
15141 I915_WRITE(reg,
15142 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15145 /* restore vblank interrupts to correct state */
15146 drm_crtc_vblank_reset(&crtc->base);
15147 if (crtc->active) {
15148 struct intel_plane *plane;
15150 drm_crtc_vblank_on(&crtc->base);
15152 /* Disable everything but the primary plane */
15153 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15154 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15155 continue;
15157 trace_intel_disable_plane(&plane->base, crtc);
15158 plane->disable_plane(&plane->base, &crtc->base);
15162 /* We need to sanitize the plane -> pipe mapping first because this will
15163 * disable the crtc (and hence change the state) if it is wrong. Note
15164 * that gen4+ has a fixed plane -> pipe mapping. */
15165 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15166 bool plane;
15168 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15169 crtc->base.base.id, crtc->base.name);
15171 /* Pipe has the wrong plane attached and the plane is active.
15172 * Temporarily change the plane mapping and disable everything
15173 * ... */
15174 plane = crtc->plane;
15175 crtc->base.primary->state->visible = true;
15176 crtc->plane = !plane;
15177 intel_crtc_disable_noatomic(&crtc->base);
15178 crtc->plane = plane;
15181 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15182 crtc->pipe == PIPE_A && !crtc->active) {
15183 /* BIOS forgot to enable pipe A, this mostly happens after
15184 * resume. Force-enable the pipe to fix this, the update_dpms
15185 * call below we restore the pipe to the right state, but leave
15186 * the required bits on. */
15187 intel_enable_pipe_a(dev);
15190 /* Adjust the state of the output pipe according to whether we
15191 * have active connectors/encoders. */
15192 if (crtc->active && !intel_crtc_has_encoders(crtc))
15193 intel_crtc_disable_noatomic(&crtc->base);
15195 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15197 * We start out with underrun reporting disabled to avoid races.
15198 * For correct bookkeeping mark this on active crtcs.
15200 * Also on gmch platforms we dont have any hardware bits to
15201 * disable the underrun reporting. Which means we need to start
15202 * out with underrun reporting disabled also on inactive pipes,
15203 * since otherwise we'll complain about the garbage we read when
15204 * e.g. coming up after runtime pm.
15206 * No protection against concurrent access is required - at
15207 * worst a fifo underrun happens which also sets this to false.
15209 crtc->cpu_fifo_underrun_disabled = true;
15211 * We track the PCH trancoder underrun reporting state
15212 * within the crtc. With crtc for pipe A housing the underrun
15213 * reporting state for PCH transcoder A, crtc for pipe B housing
15214 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15215 * and marking underrun reporting as disabled for the non-existing
15216 * PCH transcoders B and C would prevent enabling the south
15217 * error interrupt (see cpt_can_enable_serr_int()).
15219 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15220 crtc->pch_fifo_underrun_disabled = true;
15224 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15226 struct intel_connector *connector;
15228 /* We need to check both for a crtc link (meaning that the
15229 * encoder is active and trying to read from a pipe) and the
15230 * pipe itself being active. */
15231 bool has_active_crtc = encoder->base.crtc &&
15232 to_intel_crtc(encoder->base.crtc)->active;
15234 connector = intel_encoder_find_connector(encoder);
15235 if (connector && !has_active_crtc) {
15236 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15237 encoder->base.base.id,
15238 encoder->base.name);
15240 /* Connector is active, but has no active pipe. This is
15241 * fallout from our resume register restoring. Disable
15242 * the encoder manually again. */
15243 if (encoder->base.crtc) {
15244 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15246 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15247 encoder->base.base.id,
15248 encoder->base.name);
15249 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15250 if (encoder->post_disable)
15251 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15253 encoder->base.crtc = NULL;
15255 /* Inconsistent output/port/pipe state happens presumably due to
15256 * a bug in one of the get_hw_state functions. Or someplace else
15257 * in our code, like the register restore mess on resume. Clamp
15258 * things to off as a safer default. */
15260 connector->base.dpms = DRM_MODE_DPMS_OFF;
15261 connector->base.encoder = NULL;
15263 /* Enabled encoders without active connectors will be fixed in
15264 * the crtc fixup. */
15267 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15269 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15271 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15272 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15273 i915_disable_vga(dev_priv);
15277 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15279 /* This function can be called both from intel_modeset_setup_hw_state or
15280 * at a very early point in our resume sequence, where the power well
15281 * structures are not yet restored. Since this function is at a very
15282 * paranoid "someone might have enabled VGA while we were not looking"
15283 * level, just check if the power well is enabled instead of trying to
15284 * follow the "don't touch the power well if we don't need it" policy
15285 * the rest of the driver uses. */
15286 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15287 return;
15289 i915_redisable_vga_power_on(dev_priv);
15291 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15294 static bool primary_get_hw_state(struct intel_plane *plane)
15296 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15298 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15301 /* FIXME read out full plane state for all planes */
15302 static void readout_plane_state(struct intel_crtc *crtc)
15304 struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15305 bool visible;
15307 visible = crtc->active && primary_get_hw_state(primary);
15309 intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15310 to_intel_plane_state(primary->base.state),
15311 visible);
15314 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15316 struct drm_i915_private *dev_priv = to_i915(dev);
15317 enum pipe pipe;
15318 struct intel_crtc *crtc;
15319 struct intel_encoder *encoder;
15320 struct intel_connector *connector;
15321 struct drm_connector_list_iter conn_iter;
15322 int i;
15324 dev_priv->active_crtcs = 0;
15326 for_each_intel_crtc(dev, crtc) {
15327 struct intel_crtc_state *crtc_state =
15328 to_intel_crtc_state(crtc->base.state);
15330 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15331 memset(crtc_state, 0, sizeof(*crtc_state));
15332 crtc_state->base.crtc = &crtc->base;
15334 crtc_state->base.active = crtc_state->base.enable =
15335 dev_priv->display.get_pipe_config(crtc, crtc_state);
15337 crtc->base.enabled = crtc_state->base.enable;
15338 crtc->active = crtc_state->base.active;
15340 if (crtc_state->base.active)
15341 dev_priv->active_crtcs |= 1 << crtc->pipe;
15343 readout_plane_state(crtc);
15345 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15346 crtc->base.base.id, crtc->base.name,
15347 enableddisabled(crtc_state->base.active));
15350 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15351 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15353 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15354 &pll->state.hw_state);
15355 pll->state.crtc_mask = 0;
15356 for_each_intel_crtc(dev, crtc) {
15357 struct intel_crtc_state *crtc_state =
15358 to_intel_crtc_state(crtc->base.state);
15360 if (crtc_state->base.active &&
15361 crtc_state->shared_dpll == pll)
15362 pll->state.crtc_mask |= 1 << crtc->pipe;
15364 pll->active_mask = pll->state.crtc_mask;
15366 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15367 pll->name, pll->state.crtc_mask, pll->on);
15370 for_each_intel_encoder(dev, encoder) {
15371 pipe = 0;
15373 if (encoder->get_hw_state(encoder, &pipe)) {
15374 struct intel_crtc_state *crtc_state;
15376 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15377 crtc_state = to_intel_crtc_state(crtc->base.state);
15379 encoder->base.crtc = &crtc->base;
15380 crtc_state->output_types |= 1 << encoder->type;
15381 encoder->get_config(encoder, crtc_state);
15382 } else {
15383 encoder->base.crtc = NULL;
15386 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15387 encoder->base.base.id, encoder->base.name,
15388 enableddisabled(encoder->base.crtc),
15389 pipe_name(pipe));
15392 drm_connector_list_iter_begin(dev, &conn_iter);
15393 for_each_intel_connector_iter(connector, &conn_iter) {
15394 if (connector->get_hw_state(connector)) {
15395 connector->base.dpms = DRM_MODE_DPMS_ON;
15397 encoder = connector->encoder;
15398 connector->base.encoder = &encoder->base;
15400 if (encoder->base.crtc &&
15401 encoder->base.crtc->state->active) {
15403 * This has to be done during hardware readout
15404 * because anything calling .crtc_disable may
15405 * rely on the connector_mask being accurate.
15407 encoder->base.crtc->state->connector_mask |=
15408 1 << drm_connector_index(&connector->base);
15409 encoder->base.crtc->state->encoder_mask |=
15410 1 << drm_encoder_index(&encoder->base);
15413 } else {
15414 connector->base.dpms = DRM_MODE_DPMS_OFF;
15415 connector->base.encoder = NULL;
15417 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15418 connector->base.base.id, connector->base.name,
15419 enableddisabled(connector->base.encoder));
15421 drm_connector_list_iter_end(&conn_iter);
15423 for_each_intel_crtc(dev, crtc) {
15424 struct intel_crtc_state *crtc_state =
15425 to_intel_crtc_state(crtc->base.state);
15426 int pixclk = 0;
15428 crtc->base.hwmode = crtc_state->base.adjusted_mode;
15430 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15431 if (crtc_state->base.active) {
15432 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15433 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15434 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15437 * The initial mode needs to be set in order to keep
15438 * the atomic core happy. It wants a valid mode if the
15439 * crtc's enabled, so we do the above call.
15441 * But we don't set all the derived state fully, hence
15442 * set a flag to indicate that a full recalculation is
15443 * needed on the next commit.
15445 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15447 intel_crtc_compute_pixel_rate(crtc_state);
15449 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15450 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15451 pixclk = crtc_state->pixel_rate;
15452 else
15453 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15455 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15456 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15457 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15459 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15460 update_scanline_offset(crtc);
15463 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15465 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15469 static void
15470 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15472 struct intel_encoder *encoder;
15474 for_each_intel_encoder(&dev_priv->drm, encoder) {
15475 u64 get_domains;
15476 enum intel_display_power_domain domain;
15478 if (!encoder->get_power_domains)
15479 continue;
15481 get_domains = encoder->get_power_domains(encoder);
15482 for_each_power_domain(domain, get_domains)
15483 intel_display_power_get(dev_priv, domain);
15487 /* Scan out the current hw modeset state,
15488 * and sanitizes it to the current state
15490 static void
15491 intel_modeset_setup_hw_state(struct drm_device *dev)
15493 struct drm_i915_private *dev_priv = to_i915(dev);
15494 enum pipe pipe;
15495 struct intel_crtc *crtc;
15496 struct intel_encoder *encoder;
15497 int i;
15499 intel_modeset_readout_hw_state(dev);
15501 /* HW state is read out, now we need to sanitize this mess. */
15502 get_encoder_power_domains(dev_priv);
15504 for_each_intel_encoder(dev, encoder) {
15505 intel_sanitize_encoder(encoder);
15508 for_each_pipe(dev_priv, pipe) {
15509 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15511 intel_sanitize_crtc(crtc);
15512 intel_dump_pipe_config(crtc, crtc->config,
15513 "[setup_hw_state]");
15516 intel_modeset_update_connector_atomic_state(dev);
15518 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15519 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15521 if (!pll->on || pll->active_mask)
15522 continue;
15524 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15526 pll->funcs.disable(dev_priv, pll);
15527 pll->on = false;
15530 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15531 vlv_wm_get_hw_state(dev);
15532 vlv_wm_sanitize(dev_priv);
15533 } else if (IS_GEN9(dev_priv)) {
15534 skl_wm_get_hw_state(dev);
15535 } else if (HAS_PCH_SPLIT(dev_priv)) {
15536 ilk_wm_get_hw_state(dev);
15539 for_each_intel_crtc(dev, crtc) {
15540 u64 put_domains;
15542 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15543 if (WARN_ON(put_domains))
15544 modeset_put_power_domains(dev_priv, put_domains);
15546 intel_display_set_init_power(dev_priv, false);
15548 intel_power_domains_verify_state(dev_priv);
15550 intel_fbc_init_pipe_state(dev_priv);
15553 void intel_display_resume(struct drm_device *dev)
15555 struct drm_i915_private *dev_priv = to_i915(dev);
15556 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15557 struct drm_modeset_acquire_ctx ctx;
15558 int ret;
15560 dev_priv->modeset_restore_state = NULL;
15561 if (state)
15562 state->acquire_ctx = &ctx;
15564 drm_modeset_acquire_init(&ctx, 0);
15566 while (1) {
15567 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15568 if (ret != -EDEADLK)
15569 break;
15571 drm_modeset_backoff(&ctx);
15574 if (!ret)
15575 ret = __intel_display_resume(dev, state, &ctx);
15577 drm_modeset_drop_locks(&ctx);
15578 drm_modeset_acquire_fini(&ctx);
15580 if (ret)
15581 DRM_ERROR("Restoring old state failed with %i\n", ret);
15582 if (state)
15583 drm_atomic_state_put(state);
15586 void intel_modeset_gem_init(struct drm_device *dev)
15588 struct drm_i915_private *dev_priv = to_i915(dev);
15590 intel_init_gt_powersave(dev_priv);
15592 intel_setup_overlay(dev_priv);
15595 int intel_connector_register(struct drm_connector *connector)
15597 struct intel_connector *intel_connector = to_intel_connector(connector);
15598 int ret;
15600 ret = intel_backlight_device_register(intel_connector);
15601 if (ret)
15602 goto err;
15604 return 0;
15606 err:
15607 return ret;
15610 void intel_connector_unregister(struct drm_connector *connector)
15612 struct intel_connector *intel_connector = to_intel_connector(connector);
15614 intel_backlight_device_unregister(intel_connector);
15615 intel_panel_destroy_backlight(connector);
15618 void intel_modeset_cleanup(struct drm_device *dev)
15620 struct drm_i915_private *dev_priv = to_i915(dev);
15622 flush_work(&dev_priv->atomic_helper.free_work);
15623 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15625 intel_disable_gt_powersave(dev_priv);
15628 * Interrupts and polling as the first thing to avoid creating havoc.
15629 * Too much stuff here (turning of connectors, ...) would
15630 * experience fancy races otherwise.
15632 intel_irq_uninstall(dev_priv);
15635 * Due to the hpd irq storm handling the hotplug work can re-arm the
15636 * poll handlers. Hence disable polling after hpd handling is shut down.
15638 drm_kms_helper_poll_fini(dev);
15640 intel_unregister_dsm_handler();
15642 intel_fbc_global_disable(dev_priv);
15644 /* flush any delayed tasks or pending work */
15645 flush_scheduled_work();
15647 drm_mode_config_cleanup(dev);
15649 intel_cleanup_overlay(dev_priv);
15651 intel_cleanup_gt_powersave(dev_priv);
15653 intel_teardown_gmbus(dev_priv);
15656 void intel_connector_attach_encoder(struct intel_connector *connector,
15657 struct intel_encoder *encoder)
15659 connector->encoder = encoder;
15660 drm_mode_connector_attach_encoder(&connector->base,
15661 &encoder->base);
15665 * set vga decode state - true == enable VGA decode
15667 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15669 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15670 u16 gmch_ctrl;
15672 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15673 DRM_ERROR("failed to read control word\n");
15674 return -EIO;
15677 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15678 return 0;
15680 if (state)
15681 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15682 else
15683 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15685 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15686 DRM_ERROR("failed to write control word\n");
15687 return -EIO;
15690 return 0;
15693 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15695 struct intel_display_error_state {
15697 u32 power_well_driver;
15699 int num_transcoders;
15701 struct intel_cursor_error_state {
15702 u32 control;
15703 u32 position;
15704 u32 base;
15705 u32 size;
15706 } cursor[I915_MAX_PIPES];
15708 struct intel_pipe_error_state {
15709 bool power_domain_on;
15710 u32 source;
15711 u32 stat;
15712 } pipe[I915_MAX_PIPES];
15714 struct intel_plane_error_state {
15715 u32 control;
15716 u32 stride;
15717 u32 size;
15718 u32 pos;
15719 u32 addr;
15720 u32 surface;
15721 u32 tile_offset;
15722 } plane[I915_MAX_PIPES];
15724 struct intel_transcoder_error_state {
15725 bool power_domain_on;
15726 enum transcoder cpu_transcoder;
15728 u32 conf;
15730 u32 htotal;
15731 u32 hblank;
15732 u32 hsync;
15733 u32 vtotal;
15734 u32 vblank;
15735 u32 vsync;
15736 } transcoder[4];
15739 struct intel_display_error_state *
15740 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15742 struct intel_display_error_state *error;
15743 int transcoders[] = {
15744 TRANSCODER_A,
15745 TRANSCODER_B,
15746 TRANSCODER_C,
15747 TRANSCODER_EDP,
15749 int i;
15751 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15752 return NULL;
15754 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15755 if (error == NULL)
15756 return NULL;
15758 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15759 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15761 for_each_pipe(dev_priv, i) {
15762 error->pipe[i].power_domain_on =
15763 __intel_display_power_is_enabled(dev_priv,
15764 POWER_DOMAIN_PIPE(i));
15765 if (!error->pipe[i].power_domain_on)
15766 continue;
15768 error->cursor[i].control = I915_READ(CURCNTR(i));
15769 error->cursor[i].position = I915_READ(CURPOS(i));
15770 error->cursor[i].base = I915_READ(CURBASE(i));
15772 error->plane[i].control = I915_READ(DSPCNTR(i));
15773 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15774 if (INTEL_GEN(dev_priv) <= 3) {
15775 error->plane[i].size = I915_READ(DSPSIZE(i));
15776 error->plane[i].pos = I915_READ(DSPPOS(i));
15778 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15779 error->plane[i].addr = I915_READ(DSPADDR(i));
15780 if (INTEL_GEN(dev_priv) >= 4) {
15781 error->plane[i].surface = I915_READ(DSPSURF(i));
15782 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15785 error->pipe[i].source = I915_READ(PIPESRC(i));
15787 if (HAS_GMCH_DISPLAY(dev_priv))
15788 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15791 /* Note: this does not include DSI transcoders. */
15792 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15793 if (HAS_DDI(dev_priv))
15794 error->num_transcoders++; /* Account for eDP. */
15796 for (i = 0; i < error->num_transcoders; i++) {
15797 enum transcoder cpu_transcoder = transcoders[i];
15799 error->transcoder[i].power_domain_on =
15800 __intel_display_power_is_enabled(dev_priv,
15801 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15802 if (!error->transcoder[i].power_domain_on)
15803 continue;
15805 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15807 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15808 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15809 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15810 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15811 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15812 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15813 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15816 return error;
15819 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15821 void
15822 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15823 struct intel_display_error_state *error)
15825 struct drm_i915_private *dev_priv = m->i915;
15826 int i;
15828 if (!error)
15829 return;
15831 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15832 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15833 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15834 error->power_well_driver);
15835 for_each_pipe(dev_priv, i) {
15836 err_printf(m, "Pipe [%d]:\n", i);
15837 err_printf(m, " Power: %s\n",
15838 onoff(error->pipe[i].power_domain_on));
15839 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15840 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15842 err_printf(m, "Plane [%d]:\n", i);
15843 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15844 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15845 if (INTEL_GEN(dev_priv) <= 3) {
15846 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15847 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15849 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15850 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15851 if (INTEL_GEN(dev_priv) >= 4) {
15852 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15853 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15856 err_printf(m, "Cursor [%d]:\n", i);
15857 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15858 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15859 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15862 for (i = 0; i < error->num_transcoders; i++) {
15863 err_printf(m, "CPU transcoder: %s\n",
15864 transcoder_name(error->transcoder[i].cpu_transcoder));
15865 err_printf(m, " Power: %s\n",
15866 onoff(error->transcoder[i].power_domain_on));
15867 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15868 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15869 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15870 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15871 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15872 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15873 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15877 #endif