arch/x86: Remove efi_set_rtc_mmss()
[linux-2.6/btrfs-unstable.git] / net / ceph / messenger.c
blob1948d592aa54c7a1831df546702904898cd68da4
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
86 * connection states
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag)
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 BUG_ON(!con_flag_valid(con_flag));
123 clear_bit(con_flag, &con->flags);
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 BUG_ON(!con_flag_valid(con_flag));
130 set_bit(con_flag, &con->flags);
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 BUG_ON(!con_flag_valid(con_flag));
137 return test_bit(con_flag, &con->flags);
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
143 BUG_ON(!con_flag_valid(con_flag));
145 return test_and_clear_bit(con_flag, &con->flags);
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
151 BUG_ON(!con_flag_valid(con_flag));
153 return test_and_set_bit(con_flag, &con->flags);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 static struct page *zero_page; /* used in certain error cases */
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
220 return s;
222 EXPORT_SYMBOL(ceph_pr_addr);
224 static void encode_my_addr(struct ceph_messenger *msgr)
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
231 * work queue for all reading and writing to/from the socket.
233 static struct workqueue_struct *ceph_msgr_wq;
235 static int ceph_msgr_slab_init(void)
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
242 if (!ceph_msg_cache)
243 return -ENOMEM;
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
256 return -ENOMEM;
259 static void ceph_msgr_slab_exit(void)
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
270 static void _ceph_msgr_exit(void)
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
277 ceph_msgr_slab_exit();
279 BUG_ON(zero_page == NULL);
280 kunmap(zero_page);
281 page_cache_release(zero_page);
282 zero_page = NULL;
285 int ceph_msgr_init(void)
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
294 ceph_msgr_wq = alloc_workqueue("ceph-msgr", 0, 0);
295 if (ceph_msgr_wq)
296 return 0;
298 pr_err("msgr_init failed to create workqueue\n");
299 _ceph_msgr_exit();
301 return -ENOMEM;
303 EXPORT_SYMBOL(ceph_msgr_init);
305 void ceph_msgr_exit(void)
307 BUG_ON(ceph_msgr_wq == NULL);
309 _ceph_msgr_exit();
311 EXPORT_SYMBOL(ceph_msgr_exit);
313 void ceph_msgr_flush(void)
315 flush_workqueue(ceph_msgr_wq);
317 EXPORT_SYMBOL(ceph_msgr_flush);
319 /* Connection socket state transition functions */
321 static void con_sock_state_init(struct ceph_connection *con)
323 int old_state;
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
332 static void con_sock_state_connecting(struct ceph_connection *con)
334 int old_state;
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
338 printk("%s: unexpected old state %d\n", __func__, old_state);
339 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
340 CON_SOCK_STATE_CONNECTING);
343 static void con_sock_state_connected(struct ceph_connection *con)
345 int old_state;
347 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
348 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
349 printk("%s: unexpected old state %d\n", __func__, old_state);
350 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
351 CON_SOCK_STATE_CONNECTED);
354 static void con_sock_state_closing(struct ceph_connection *con)
356 int old_state;
358 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
359 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
360 old_state != CON_SOCK_STATE_CONNECTED &&
361 old_state != CON_SOCK_STATE_CLOSING))
362 printk("%s: unexpected old state %d\n", __func__, old_state);
363 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
364 CON_SOCK_STATE_CLOSING);
367 static void con_sock_state_closed(struct ceph_connection *con)
369 int old_state;
371 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
372 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
373 old_state != CON_SOCK_STATE_CLOSING &&
374 old_state != CON_SOCK_STATE_CONNECTING &&
375 old_state != CON_SOCK_STATE_CLOSED))
376 printk("%s: unexpected old state %d\n", __func__, old_state);
377 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
378 CON_SOCK_STATE_CLOSED);
382 * socket callback functions
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock *sk)
388 struct ceph_connection *con = sk->sk_user_data;
389 if (atomic_read(&con->msgr->stopping)) {
390 return;
393 if (sk->sk_state != TCP_CLOSE_WAIT) {
394 dout("%s on %p state = %lu, queueing work\n", __func__,
395 con, con->state);
396 queue_con(con);
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock *sk)
403 struct ceph_connection *con = sk->sk_user_data;
405 /* only queue to workqueue if there is data we want to write,
406 * and there is sufficient space in the socket buffer to accept
407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
408 * doesn't get called again until try_write() fills the socket
409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 * and net/core/stream.c:sk_stream_write_space().
412 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
413 if (sk_stream_is_writeable(sk)) {
414 dout("%s %p queueing write work\n", __func__, con);
415 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
416 queue_con(con);
418 } else {
419 dout("%s %p nothing to write\n", __func__, con);
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock *sk)
426 struct ceph_connection *con = sk->sk_user_data;
428 dout("%s %p state = %lu sk_state = %u\n", __func__,
429 con, con->state, sk->sk_state);
431 switch (sk->sk_state) {
432 case TCP_CLOSE:
433 dout("%s TCP_CLOSE\n", __func__);
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
451 * set up socket callbacks
453 static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
465 * socket helpers
469 * initiate connection to a remote socket.
471 static int ceph_tcp_connect(struct ceph_connection *con)
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 int ret;
477 BUG_ON(con->sock);
478 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
479 IPPROTO_TCP, &sock);
480 if (ret)
481 return ret;
482 sock->sk->sk_allocation = GFP_NOFS;
484 #ifdef CONFIG_LOCKDEP
485 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
486 #endif
488 set_sock_callbacks(sock, con);
490 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
492 con_sock_state_connecting(con);
493 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
494 O_NONBLOCK);
495 if (ret == -EINPROGRESS) {
496 dout("connect %s EINPROGRESS sk_state = %u\n",
497 ceph_pr_addr(&con->peer_addr.in_addr),
498 sock->sk->sk_state);
499 } else if (ret < 0) {
500 pr_err("connect %s error %d\n",
501 ceph_pr_addr(&con->peer_addr.in_addr), ret);
502 sock_release(sock);
503 con->error_msg = "connect error";
505 return ret;
507 con->sock = sock;
508 return 0;
511 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
513 struct kvec iov = {buf, len};
514 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
515 int r;
517 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
526 void *kaddr;
527 int ret;
529 BUG_ON(page_offset + length > PAGE_SIZE);
531 kaddr = kmap(page);
532 BUG_ON(!kaddr);
533 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
534 kunmap(page);
536 return ret;
540 * write something. @more is true if caller will be sending more data
541 * shortly.
543 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
544 size_t kvlen, size_t len, int more)
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
549 if (more)
550 msg.msg_flags |= MSG_MORE;
551 else
552 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
554 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
555 if (r == -EAGAIN)
556 r = 0;
557 return r;
560 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
561 int offset, size_t size, bool more)
563 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
564 int ret;
566 ret = kernel_sendpage(sock, page, offset, size, flags);
567 if (ret == -EAGAIN)
568 ret = 0;
570 return ret;
573 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
574 int offset, size_t size, bool more)
576 int ret;
577 struct kvec iov;
579 /* sendpage cannot properly handle pages with page_count == 0,
580 * we need to fallback to sendmsg if that's the case */
581 if (page_count(page) >= 1)
582 return __ceph_tcp_sendpage(sock, page, offset, size, more);
584 iov.iov_base = kmap(page) + offset;
585 iov.iov_len = size;
586 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
587 kunmap(page);
589 return ret;
593 * Shutdown/close the socket for the given connection.
595 static int con_close_socket(struct ceph_connection *con)
597 int rc = 0;
599 dout("con_close_socket on %p sock %p\n", con, con->sock);
600 if (con->sock) {
601 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
602 sock_release(con->sock);
603 con->sock = NULL;
607 * Forcibly clear the SOCK_CLOSED flag. It gets set
608 * independent of the connection mutex, and we could have
609 * received a socket close event before we had the chance to
610 * shut the socket down.
612 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
614 con_sock_state_closed(con);
615 return rc;
619 * Reset a connection. Discard all incoming and outgoing messages
620 * and clear *_seq state.
622 static void ceph_msg_remove(struct ceph_msg *msg)
624 list_del_init(&msg->list_head);
625 BUG_ON(msg->con == NULL);
626 msg->con->ops->put(msg->con);
627 msg->con = NULL;
629 ceph_msg_put(msg);
631 static void ceph_msg_remove_list(struct list_head *head)
633 while (!list_empty(head)) {
634 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
635 list_head);
636 ceph_msg_remove(msg);
640 static void reset_connection(struct ceph_connection *con)
642 /* reset connection, out_queue, msg_ and connect_seq */
643 /* discard existing out_queue and msg_seq */
644 dout("reset_connection %p\n", con);
645 ceph_msg_remove_list(&con->out_queue);
646 ceph_msg_remove_list(&con->out_sent);
648 if (con->in_msg) {
649 BUG_ON(con->in_msg->con != con);
650 con->in_msg->con = NULL;
651 ceph_msg_put(con->in_msg);
652 con->in_msg = NULL;
653 con->ops->put(con);
656 con->connect_seq = 0;
657 con->out_seq = 0;
658 if (con->out_msg) {
659 ceph_msg_put(con->out_msg);
660 con->out_msg = NULL;
662 con->in_seq = 0;
663 con->in_seq_acked = 0;
667 * mark a peer down. drop any open connections.
669 void ceph_con_close(struct ceph_connection *con)
671 mutex_lock(&con->mutex);
672 dout("con_close %p peer %s\n", con,
673 ceph_pr_addr(&con->peer_addr.in_addr));
674 con->state = CON_STATE_CLOSED;
676 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
677 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
678 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
679 con_flag_clear(con, CON_FLAG_BACKOFF);
681 reset_connection(con);
682 con->peer_global_seq = 0;
683 cancel_delayed_work(&con->work);
684 con_close_socket(con);
685 mutex_unlock(&con->mutex);
687 EXPORT_SYMBOL(ceph_con_close);
690 * Reopen a closed connection, with a new peer address.
692 void ceph_con_open(struct ceph_connection *con,
693 __u8 entity_type, __u64 entity_num,
694 struct ceph_entity_addr *addr)
696 mutex_lock(&con->mutex);
697 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
699 WARN_ON(con->state != CON_STATE_CLOSED);
700 con->state = CON_STATE_PREOPEN;
702 con->peer_name.type = (__u8) entity_type;
703 con->peer_name.num = cpu_to_le64(entity_num);
705 memcpy(&con->peer_addr, addr, sizeof(*addr));
706 con->delay = 0; /* reset backoff memory */
707 mutex_unlock(&con->mutex);
708 queue_con(con);
710 EXPORT_SYMBOL(ceph_con_open);
713 * return true if this connection ever successfully opened
715 bool ceph_con_opened(struct ceph_connection *con)
717 return con->connect_seq > 0;
721 * initialize a new connection.
723 void ceph_con_init(struct ceph_connection *con, void *private,
724 const struct ceph_connection_operations *ops,
725 struct ceph_messenger *msgr)
727 dout("con_init %p\n", con);
728 memset(con, 0, sizeof(*con));
729 con->private = private;
730 con->ops = ops;
731 con->msgr = msgr;
733 con_sock_state_init(con);
735 mutex_init(&con->mutex);
736 INIT_LIST_HEAD(&con->out_queue);
737 INIT_LIST_HEAD(&con->out_sent);
738 INIT_DELAYED_WORK(&con->work, con_work);
740 con->state = CON_STATE_CLOSED;
742 EXPORT_SYMBOL(ceph_con_init);
746 * We maintain a global counter to order connection attempts. Get
747 * a unique seq greater than @gt.
749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
751 u32 ret;
753 spin_lock(&msgr->global_seq_lock);
754 if (msgr->global_seq < gt)
755 msgr->global_seq = gt;
756 ret = ++msgr->global_seq;
757 spin_unlock(&msgr->global_seq_lock);
758 return ret;
761 static void con_out_kvec_reset(struct ceph_connection *con)
763 con->out_kvec_left = 0;
764 con->out_kvec_bytes = 0;
765 con->out_kvec_cur = &con->out_kvec[0];
768 static void con_out_kvec_add(struct ceph_connection *con,
769 size_t size, void *data)
771 int index;
773 index = con->out_kvec_left;
774 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
776 con->out_kvec[index].iov_len = size;
777 con->out_kvec[index].iov_base = data;
778 con->out_kvec_left++;
779 con->out_kvec_bytes += size;
782 #ifdef CONFIG_BLOCK
785 * For a bio data item, a piece is whatever remains of the next
786 * entry in the current bio iovec, or the first entry in the next
787 * bio in the list.
789 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
790 size_t length)
792 struct ceph_msg_data *data = cursor->data;
793 struct bio *bio;
795 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
797 bio = data->bio;
798 BUG_ON(!bio);
800 cursor->resid = min(length, data->bio_length);
801 cursor->bio = bio;
802 cursor->bvec_iter = bio->bi_iter;
803 cursor->last_piece =
804 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
807 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
808 size_t *page_offset,
809 size_t *length)
811 struct ceph_msg_data *data = cursor->data;
812 struct bio *bio;
813 struct bio_vec bio_vec;
815 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
817 bio = cursor->bio;
818 BUG_ON(!bio);
820 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
822 *page_offset = (size_t) bio_vec.bv_offset;
823 BUG_ON(*page_offset >= PAGE_SIZE);
824 if (cursor->last_piece) /* pagelist offset is always 0 */
825 *length = cursor->resid;
826 else
827 *length = (size_t) bio_vec.bv_len;
828 BUG_ON(*length > cursor->resid);
829 BUG_ON(*page_offset + *length > PAGE_SIZE);
831 return bio_vec.bv_page;
834 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
835 size_t bytes)
837 struct bio *bio;
838 struct bio_vec bio_vec;
840 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
842 bio = cursor->bio;
843 BUG_ON(!bio);
845 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
847 /* Advance the cursor offset */
849 BUG_ON(cursor->resid < bytes);
850 cursor->resid -= bytes;
852 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
854 if (bytes < bio_vec.bv_len)
855 return false; /* more bytes to process in this segment */
857 /* Move on to the next segment, and possibly the next bio */
859 if (!cursor->bvec_iter.bi_size) {
860 bio = bio->bi_next;
861 cursor->bio = bio;
862 if (bio)
863 cursor->bvec_iter = bio->bi_iter;
864 else
865 memset(&cursor->bvec_iter, 0,
866 sizeof(cursor->bvec_iter));
869 if (!cursor->last_piece) {
870 BUG_ON(!cursor->resid);
871 BUG_ON(!bio);
872 /* A short read is OK, so use <= rather than == */
873 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
874 cursor->last_piece = true;
877 return true;
879 #endif /* CONFIG_BLOCK */
882 * For a page array, a piece comes from the first page in the array
883 * that has not already been fully consumed.
885 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
886 size_t length)
888 struct ceph_msg_data *data = cursor->data;
889 int page_count;
891 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
893 BUG_ON(!data->pages);
894 BUG_ON(!data->length);
896 cursor->resid = min(length, data->length);
897 page_count = calc_pages_for(data->alignment, (u64)data->length);
898 cursor->page_offset = data->alignment & ~PAGE_MASK;
899 cursor->page_index = 0;
900 BUG_ON(page_count > (int)USHRT_MAX);
901 cursor->page_count = (unsigned short)page_count;
902 BUG_ON(length > SIZE_MAX - cursor->page_offset);
903 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
906 static struct page *
907 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
908 size_t *page_offset, size_t *length)
910 struct ceph_msg_data *data = cursor->data;
912 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
914 BUG_ON(cursor->page_index >= cursor->page_count);
915 BUG_ON(cursor->page_offset >= PAGE_SIZE);
917 *page_offset = cursor->page_offset;
918 if (cursor->last_piece)
919 *length = cursor->resid;
920 else
921 *length = PAGE_SIZE - *page_offset;
923 return data->pages[cursor->page_index];
926 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
927 size_t bytes)
929 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
931 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
933 /* Advance the cursor page offset */
935 cursor->resid -= bytes;
936 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
937 if (!bytes || cursor->page_offset)
938 return false; /* more bytes to process in the current page */
940 if (!cursor->resid)
941 return false; /* no more data */
943 /* Move on to the next page; offset is already at 0 */
945 BUG_ON(cursor->page_index >= cursor->page_count);
946 cursor->page_index++;
947 cursor->last_piece = cursor->resid <= PAGE_SIZE;
949 return true;
953 * For a pagelist, a piece is whatever remains to be consumed in the
954 * first page in the list, or the front of the next page.
956 static void
957 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
958 size_t length)
960 struct ceph_msg_data *data = cursor->data;
961 struct ceph_pagelist *pagelist;
962 struct page *page;
964 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
966 pagelist = data->pagelist;
967 BUG_ON(!pagelist);
969 if (!length)
970 return; /* pagelist can be assigned but empty */
972 BUG_ON(list_empty(&pagelist->head));
973 page = list_first_entry(&pagelist->head, struct page, lru);
975 cursor->resid = min(length, pagelist->length);
976 cursor->page = page;
977 cursor->offset = 0;
978 cursor->last_piece = cursor->resid <= PAGE_SIZE;
981 static struct page *
982 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
983 size_t *page_offset, size_t *length)
985 struct ceph_msg_data *data = cursor->data;
986 struct ceph_pagelist *pagelist;
988 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
990 pagelist = data->pagelist;
991 BUG_ON(!pagelist);
993 BUG_ON(!cursor->page);
994 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
996 /* offset of first page in pagelist is always 0 */
997 *page_offset = cursor->offset & ~PAGE_MASK;
998 if (cursor->last_piece)
999 *length = cursor->resid;
1000 else
1001 *length = PAGE_SIZE - *page_offset;
1003 return cursor->page;
1006 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1007 size_t bytes)
1009 struct ceph_msg_data *data = cursor->data;
1010 struct ceph_pagelist *pagelist;
1012 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1014 pagelist = data->pagelist;
1015 BUG_ON(!pagelist);
1017 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1018 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1020 /* Advance the cursor offset */
1022 cursor->resid -= bytes;
1023 cursor->offset += bytes;
1024 /* offset of first page in pagelist is always 0 */
1025 if (!bytes || cursor->offset & ~PAGE_MASK)
1026 return false; /* more bytes to process in the current page */
1028 if (!cursor->resid)
1029 return false; /* no more data */
1031 /* Move on to the next page */
1033 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1034 cursor->page = list_entry_next(cursor->page, lru);
1035 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1037 return true;
1041 * Message data is handled (sent or received) in pieces, where each
1042 * piece resides on a single page. The network layer might not
1043 * consume an entire piece at once. A data item's cursor keeps
1044 * track of which piece is next to process and how much remains to
1045 * be processed in that piece. It also tracks whether the current
1046 * piece is the last one in the data item.
1048 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1050 size_t length = cursor->total_resid;
1052 switch (cursor->data->type) {
1053 case CEPH_MSG_DATA_PAGELIST:
1054 ceph_msg_data_pagelist_cursor_init(cursor, length);
1055 break;
1056 case CEPH_MSG_DATA_PAGES:
1057 ceph_msg_data_pages_cursor_init(cursor, length);
1058 break;
1059 #ifdef CONFIG_BLOCK
1060 case CEPH_MSG_DATA_BIO:
1061 ceph_msg_data_bio_cursor_init(cursor, length);
1062 break;
1063 #endif /* CONFIG_BLOCK */
1064 case CEPH_MSG_DATA_NONE:
1065 default:
1066 /* BUG(); */
1067 break;
1069 cursor->need_crc = true;
1072 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1074 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1075 struct ceph_msg_data *data;
1077 BUG_ON(!length);
1078 BUG_ON(length > msg->data_length);
1079 BUG_ON(list_empty(&msg->data));
1081 cursor->data_head = &msg->data;
1082 cursor->total_resid = length;
1083 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1084 cursor->data = data;
1086 __ceph_msg_data_cursor_init(cursor);
1090 * Return the page containing the next piece to process for a given
1091 * data item, and supply the page offset and length of that piece.
1092 * Indicate whether this is the last piece in this data item.
1094 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1095 size_t *page_offset, size_t *length,
1096 bool *last_piece)
1098 struct page *page;
1100 switch (cursor->data->type) {
1101 case CEPH_MSG_DATA_PAGELIST:
1102 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1103 break;
1104 case CEPH_MSG_DATA_PAGES:
1105 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1106 break;
1107 #ifdef CONFIG_BLOCK
1108 case CEPH_MSG_DATA_BIO:
1109 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1110 break;
1111 #endif /* CONFIG_BLOCK */
1112 case CEPH_MSG_DATA_NONE:
1113 default:
1114 page = NULL;
1115 break;
1117 BUG_ON(!page);
1118 BUG_ON(*page_offset + *length > PAGE_SIZE);
1119 BUG_ON(!*length);
1120 if (last_piece)
1121 *last_piece = cursor->last_piece;
1123 return page;
1127 * Returns true if the result moves the cursor on to the next piece
1128 * of the data item.
1130 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1131 size_t bytes)
1133 bool new_piece;
1135 BUG_ON(bytes > cursor->resid);
1136 switch (cursor->data->type) {
1137 case CEPH_MSG_DATA_PAGELIST:
1138 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1139 break;
1140 case CEPH_MSG_DATA_PAGES:
1141 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1142 break;
1143 #ifdef CONFIG_BLOCK
1144 case CEPH_MSG_DATA_BIO:
1145 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1146 break;
1147 #endif /* CONFIG_BLOCK */
1148 case CEPH_MSG_DATA_NONE:
1149 default:
1150 BUG();
1151 break;
1153 cursor->total_resid -= bytes;
1155 if (!cursor->resid && cursor->total_resid) {
1156 WARN_ON(!cursor->last_piece);
1157 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1158 cursor->data = list_entry_next(cursor->data, links);
1159 __ceph_msg_data_cursor_init(cursor);
1160 new_piece = true;
1162 cursor->need_crc = new_piece;
1164 return new_piece;
1167 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1169 BUG_ON(!msg);
1170 BUG_ON(!data_len);
1172 /* Initialize data cursor */
1174 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1178 * Prepare footer for currently outgoing message, and finish things
1179 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1181 static void prepare_write_message_footer(struct ceph_connection *con)
1183 struct ceph_msg *m = con->out_msg;
1184 int v = con->out_kvec_left;
1186 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1188 dout("prepare_write_message_footer %p\n", con);
1189 con->out_kvec_is_msg = true;
1190 con->out_kvec[v].iov_base = &m->footer;
1191 con->out_kvec[v].iov_len = sizeof(m->footer);
1192 con->out_kvec_bytes += sizeof(m->footer);
1193 con->out_kvec_left++;
1194 con->out_more = m->more_to_follow;
1195 con->out_msg_done = true;
1199 * Prepare headers for the next outgoing message.
1201 static void prepare_write_message(struct ceph_connection *con)
1203 struct ceph_msg *m;
1204 u32 crc;
1206 con_out_kvec_reset(con);
1207 con->out_kvec_is_msg = true;
1208 con->out_msg_done = false;
1210 /* Sneak an ack in there first? If we can get it into the same
1211 * TCP packet that's a good thing. */
1212 if (con->in_seq > con->in_seq_acked) {
1213 con->in_seq_acked = con->in_seq;
1214 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1215 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1216 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1217 &con->out_temp_ack);
1220 BUG_ON(list_empty(&con->out_queue));
1221 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1222 con->out_msg = m;
1223 BUG_ON(m->con != con);
1225 /* put message on sent list */
1226 ceph_msg_get(m);
1227 list_move_tail(&m->list_head, &con->out_sent);
1230 * only assign outgoing seq # if we haven't sent this message
1231 * yet. if it is requeued, resend with it's original seq.
1233 if (m->needs_out_seq) {
1234 m->hdr.seq = cpu_to_le64(++con->out_seq);
1235 m->needs_out_seq = false;
1237 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1239 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1240 m, con->out_seq, le16_to_cpu(m->hdr.type),
1241 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1242 m->data_length);
1243 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1245 /* tag + hdr + front + middle */
1246 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1247 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1248 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1250 if (m->middle)
1251 con_out_kvec_add(con, m->middle->vec.iov_len,
1252 m->middle->vec.iov_base);
1254 /* fill in crc (except data pages), footer */
1255 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1256 con->out_msg->hdr.crc = cpu_to_le32(crc);
1257 con->out_msg->footer.flags = 0;
1259 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1260 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1261 if (m->middle) {
1262 crc = crc32c(0, m->middle->vec.iov_base,
1263 m->middle->vec.iov_len);
1264 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1265 } else
1266 con->out_msg->footer.middle_crc = 0;
1267 dout("%s front_crc %u middle_crc %u\n", __func__,
1268 le32_to_cpu(con->out_msg->footer.front_crc),
1269 le32_to_cpu(con->out_msg->footer.middle_crc));
1271 /* is there a data payload? */
1272 con->out_msg->footer.data_crc = 0;
1273 if (m->data_length) {
1274 prepare_message_data(con->out_msg, m->data_length);
1275 con->out_more = 1; /* data + footer will follow */
1276 } else {
1277 /* no, queue up footer too and be done */
1278 prepare_write_message_footer(con);
1281 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1285 * Prepare an ack.
1287 static void prepare_write_ack(struct ceph_connection *con)
1289 dout("prepare_write_ack %p %llu -> %llu\n", con,
1290 con->in_seq_acked, con->in_seq);
1291 con->in_seq_acked = con->in_seq;
1293 con_out_kvec_reset(con);
1295 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1297 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1298 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1299 &con->out_temp_ack);
1301 con->out_more = 1; /* more will follow.. eventually.. */
1302 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1306 * Prepare to share the seq during handshake
1308 static void prepare_write_seq(struct ceph_connection *con)
1310 dout("prepare_write_seq %p %llu -> %llu\n", con,
1311 con->in_seq_acked, con->in_seq);
1312 con->in_seq_acked = con->in_seq;
1314 con_out_kvec_reset(con);
1316 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1317 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1318 &con->out_temp_ack);
1320 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1324 * Prepare to write keepalive byte.
1326 static void prepare_write_keepalive(struct ceph_connection *con)
1328 dout("prepare_write_keepalive %p\n", con);
1329 con_out_kvec_reset(con);
1330 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1331 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1335 * Connection negotiation.
1338 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1339 int *auth_proto)
1341 struct ceph_auth_handshake *auth;
1343 if (!con->ops->get_authorizer) {
1344 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1345 con->out_connect.authorizer_len = 0;
1346 return NULL;
1349 /* Can't hold the mutex while getting authorizer */
1350 mutex_unlock(&con->mutex);
1351 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1352 mutex_lock(&con->mutex);
1354 if (IS_ERR(auth))
1355 return auth;
1356 if (con->state != CON_STATE_NEGOTIATING)
1357 return ERR_PTR(-EAGAIN);
1359 con->auth_reply_buf = auth->authorizer_reply_buf;
1360 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1361 return auth;
1365 * We connected to a peer and are saying hello.
1367 static void prepare_write_banner(struct ceph_connection *con)
1369 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1370 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1371 &con->msgr->my_enc_addr);
1373 con->out_more = 0;
1374 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1377 static int prepare_write_connect(struct ceph_connection *con)
1379 unsigned int global_seq = get_global_seq(con->msgr, 0);
1380 int proto;
1381 int auth_proto;
1382 struct ceph_auth_handshake *auth;
1384 switch (con->peer_name.type) {
1385 case CEPH_ENTITY_TYPE_MON:
1386 proto = CEPH_MONC_PROTOCOL;
1387 break;
1388 case CEPH_ENTITY_TYPE_OSD:
1389 proto = CEPH_OSDC_PROTOCOL;
1390 break;
1391 case CEPH_ENTITY_TYPE_MDS:
1392 proto = CEPH_MDSC_PROTOCOL;
1393 break;
1394 default:
1395 BUG();
1398 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1399 con->connect_seq, global_seq, proto);
1401 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1402 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1403 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1404 con->out_connect.global_seq = cpu_to_le32(global_seq);
1405 con->out_connect.protocol_version = cpu_to_le32(proto);
1406 con->out_connect.flags = 0;
1408 auth_proto = CEPH_AUTH_UNKNOWN;
1409 auth = get_connect_authorizer(con, &auth_proto);
1410 if (IS_ERR(auth))
1411 return PTR_ERR(auth);
1413 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1414 con->out_connect.authorizer_len = auth ?
1415 cpu_to_le32(auth->authorizer_buf_len) : 0;
1417 con_out_kvec_add(con, sizeof (con->out_connect),
1418 &con->out_connect);
1419 if (auth && auth->authorizer_buf_len)
1420 con_out_kvec_add(con, auth->authorizer_buf_len,
1421 auth->authorizer_buf);
1423 con->out_more = 0;
1424 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1426 return 0;
1430 * write as much of pending kvecs to the socket as we can.
1431 * 1 -> done
1432 * 0 -> socket full, but more to do
1433 * <0 -> error
1435 static int write_partial_kvec(struct ceph_connection *con)
1437 int ret;
1439 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1440 while (con->out_kvec_bytes > 0) {
1441 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1442 con->out_kvec_left, con->out_kvec_bytes,
1443 con->out_more);
1444 if (ret <= 0)
1445 goto out;
1446 con->out_kvec_bytes -= ret;
1447 if (con->out_kvec_bytes == 0)
1448 break; /* done */
1450 /* account for full iov entries consumed */
1451 while (ret >= con->out_kvec_cur->iov_len) {
1452 BUG_ON(!con->out_kvec_left);
1453 ret -= con->out_kvec_cur->iov_len;
1454 con->out_kvec_cur++;
1455 con->out_kvec_left--;
1457 /* and for a partially-consumed entry */
1458 if (ret) {
1459 con->out_kvec_cur->iov_len -= ret;
1460 con->out_kvec_cur->iov_base += ret;
1463 con->out_kvec_left = 0;
1464 con->out_kvec_is_msg = false;
1465 ret = 1;
1466 out:
1467 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1468 con->out_kvec_bytes, con->out_kvec_left, ret);
1469 return ret; /* done! */
1472 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1473 unsigned int page_offset,
1474 unsigned int length)
1476 char *kaddr;
1478 kaddr = kmap(page);
1479 BUG_ON(kaddr == NULL);
1480 crc = crc32c(crc, kaddr + page_offset, length);
1481 kunmap(page);
1483 return crc;
1486 * Write as much message data payload as we can. If we finish, queue
1487 * up the footer.
1488 * 1 -> done, footer is now queued in out_kvec[].
1489 * 0 -> socket full, but more to do
1490 * <0 -> error
1492 static int write_partial_message_data(struct ceph_connection *con)
1494 struct ceph_msg *msg = con->out_msg;
1495 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1496 bool do_datacrc = !con->msgr->nocrc;
1497 u32 crc;
1499 dout("%s %p msg %p\n", __func__, con, msg);
1501 if (list_empty(&msg->data))
1502 return -EINVAL;
1505 * Iterate through each page that contains data to be
1506 * written, and send as much as possible for each.
1508 * If we are calculating the data crc (the default), we will
1509 * need to map the page. If we have no pages, they have
1510 * been revoked, so use the zero page.
1512 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1513 while (cursor->resid) {
1514 struct page *page;
1515 size_t page_offset;
1516 size_t length;
1517 bool last_piece;
1518 bool need_crc;
1519 int ret;
1521 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1522 &last_piece);
1523 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1524 length, last_piece);
1525 if (ret <= 0) {
1526 if (do_datacrc)
1527 msg->footer.data_crc = cpu_to_le32(crc);
1529 return ret;
1531 if (do_datacrc && cursor->need_crc)
1532 crc = ceph_crc32c_page(crc, page, page_offset, length);
1533 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1536 dout("%s %p msg %p done\n", __func__, con, msg);
1538 /* prepare and queue up footer, too */
1539 if (do_datacrc)
1540 msg->footer.data_crc = cpu_to_le32(crc);
1541 else
1542 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1543 con_out_kvec_reset(con);
1544 prepare_write_message_footer(con);
1546 return 1; /* must return > 0 to indicate success */
1550 * write some zeros
1552 static int write_partial_skip(struct ceph_connection *con)
1554 int ret;
1556 while (con->out_skip > 0) {
1557 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1559 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1560 if (ret <= 0)
1561 goto out;
1562 con->out_skip -= ret;
1564 ret = 1;
1565 out:
1566 return ret;
1570 * Prepare to read connection handshake, or an ack.
1572 static void prepare_read_banner(struct ceph_connection *con)
1574 dout("prepare_read_banner %p\n", con);
1575 con->in_base_pos = 0;
1578 static void prepare_read_connect(struct ceph_connection *con)
1580 dout("prepare_read_connect %p\n", con);
1581 con->in_base_pos = 0;
1584 static void prepare_read_ack(struct ceph_connection *con)
1586 dout("prepare_read_ack %p\n", con);
1587 con->in_base_pos = 0;
1590 static void prepare_read_seq(struct ceph_connection *con)
1592 dout("prepare_read_seq %p\n", con);
1593 con->in_base_pos = 0;
1594 con->in_tag = CEPH_MSGR_TAG_SEQ;
1597 static void prepare_read_tag(struct ceph_connection *con)
1599 dout("prepare_read_tag %p\n", con);
1600 con->in_base_pos = 0;
1601 con->in_tag = CEPH_MSGR_TAG_READY;
1605 * Prepare to read a message.
1607 static int prepare_read_message(struct ceph_connection *con)
1609 dout("prepare_read_message %p\n", con);
1610 BUG_ON(con->in_msg != NULL);
1611 con->in_base_pos = 0;
1612 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1613 return 0;
1617 static int read_partial(struct ceph_connection *con,
1618 int end, int size, void *object)
1620 while (con->in_base_pos < end) {
1621 int left = end - con->in_base_pos;
1622 int have = size - left;
1623 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1624 if (ret <= 0)
1625 return ret;
1626 con->in_base_pos += ret;
1628 return 1;
1633 * Read all or part of the connect-side handshake on a new connection
1635 static int read_partial_banner(struct ceph_connection *con)
1637 int size;
1638 int end;
1639 int ret;
1641 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1643 /* peer's banner */
1644 size = strlen(CEPH_BANNER);
1645 end = size;
1646 ret = read_partial(con, end, size, con->in_banner);
1647 if (ret <= 0)
1648 goto out;
1650 size = sizeof (con->actual_peer_addr);
1651 end += size;
1652 ret = read_partial(con, end, size, &con->actual_peer_addr);
1653 if (ret <= 0)
1654 goto out;
1656 size = sizeof (con->peer_addr_for_me);
1657 end += size;
1658 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1659 if (ret <= 0)
1660 goto out;
1662 out:
1663 return ret;
1666 static int read_partial_connect(struct ceph_connection *con)
1668 int size;
1669 int end;
1670 int ret;
1672 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1674 size = sizeof (con->in_reply);
1675 end = size;
1676 ret = read_partial(con, end, size, &con->in_reply);
1677 if (ret <= 0)
1678 goto out;
1680 size = le32_to_cpu(con->in_reply.authorizer_len);
1681 end += size;
1682 ret = read_partial(con, end, size, con->auth_reply_buf);
1683 if (ret <= 0)
1684 goto out;
1686 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1687 con, (int)con->in_reply.tag,
1688 le32_to_cpu(con->in_reply.connect_seq),
1689 le32_to_cpu(con->in_reply.global_seq));
1690 out:
1691 return ret;
1696 * Verify the hello banner looks okay.
1698 static int verify_hello(struct ceph_connection *con)
1700 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1701 pr_err("connect to %s got bad banner\n",
1702 ceph_pr_addr(&con->peer_addr.in_addr));
1703 con->error_msg = "protocol error, bad banner";
1704 return -1;
1706 return 0;
1709 static bool addr_is_blank(struct sockaddr_storage *ss)
1711 switch (ss->ss_family) {
1712 case AF_INET:
1713 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1714 case AF_INET6:
1715 return
1716 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1717 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1718 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1719 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1721 return false;
1724 static int addr_port(struct sockaddr_storage *ss)
1726 switch (ss->ss_family) {
1727 case AF_INET:
1728 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1729 case AF_INET6:
1730 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1732 return 0;
1735 static void addr_set_port(struct sockaddr_storage *ss, int p)
1737 switch (ss->ss_family) {
1738 case AF_INET:
1739 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1740 break;
1741 case AF_INET6:
1742 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1743 break;
1748 * Unlike other *_pton function semantics, zero indicates success.
1750 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1751 char delim, const char **ipend)
1753 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1754 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1756 memset(ss, 0, sizeof(*ss));
1758 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1759 ss->ss_family = AF_INET;
1760 return 0;
1763 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1764 ss->ss_family = AF_INET6;
1765 return 0;
1768 return -EINVAL;
1772 * Extract hostname string and resolve using kernel DNS facility.
1774 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1775 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1776 struct sockaddr_storage *ss, char delim, const char **ipend)
1778 const char *end, *delim_p;
1779 char *colon_p, *ip_addr = NULL;
1780 int ip_len, ret;
1783 * The end of the hostname occurs immediately preceding the delimiter or
1784 * the port marker (':') where the delimiter takes precedence.
1786 delim_p = memchr(name, delim, namelen);
1787 colon_p = memchr(name, ':', namelen);
1789 if (delim_p && colon_p)
1790 end = delim_p < colon_p ? delim_p : colon_p;
1791 else if (!delim_p && colon_p)
1792 end = colon_p;
1793 else {
1794 end = delim_p;
1795 if (!end) /* case: hostname:/ */
1796 end = name + namelen;
1799 if (end <= name)
1800 return -EINVAL;
1802 /* do dns_resolve upcall */
1803 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1804 if (ip_len > 0)
1805 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1806 else
1807 ret = -ESRCH;
1809 kfree(ip_addr);
1811 *ipend = end;
1813 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1814 ret, ret ? "failed" : ceph_pr_addr(ss));
1816 return ret;
1818 #else
1819 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1820 struct sockaddr_storage *ss, char delim, const char **ipend)
1822 return -EINVAL;
1824 #endif
1827 * Parse a server name (IP or hostname). If a valid IP address is not found
1828 * then try to extract a hostname to resolve using userspace DNS upcall.
1830 static int ceph_parse_server_name(const char *name, size_t namelen,
1831 struct sockaddr_storage *ss, char delim, const char **ipend)
1833 int ret;
1835 ret = ceph_pton(name, namelen, ss, delim, ipend);
1836 if (ret)
1837 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1839 return ret;
1843 * Parse an ip[:port] list into an addr array. Use the default
1844 * monitor port if a port isn't specified.
1846 int ceph_parse_ips(const char *c, const char *end,
1847 struct ceph_entity_addr *addr,
1848 int max_count, int *count)
1850 int i, ret = -EINVAL;
1851 const char *p = c;
1853 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1854 for (i = 0; i < max_count; i++) {
1855 const char *ipend;
1856 struct sockaddr_storage *ss = &addr[i].in_addr;
1857 int port;
1858 char delim = ',';
1860 if (*p == '[') {
1861 delim = ']';
1862 p++;
1865 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1866 if (ret)
1867 goto bad;
1868 ret = -EINVAL;
1870 p = ipend;
1872 if (delim == ']') {
1873 if (*p != ']') {
1874 dout("missing matching ']'\n");
1875 goto bad;
1877 p++;
1880 /* port? */
1881 if (p < end && *p == ':') {
1882 port = 0;
1883 p++;
1884 while (p < end && *p >= '0' && *p <= '9') {
1885 port = (port * 10) + (*p - '0');
1886 p++;
1888 if (port == 0)
1889 port = CEPH_MON_PORT;
1890 else if (port > 65535)
1891 goto bad;
1892 } else {
1893 port = CEPH_MON_PORT;
1896 addr_set_port(ss, port);
1898 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1900 if (p == end)
1901 break;
1902 if (*p != ',')
1903 goto bad;
1904 p++;
1907 if (p != end)
1908 goto bad;
1910 if (count)
1911 *count = i + 1;
1912 return 0;
1914 bad:
1915 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1916 return ret;
1918 EXPORT_SYMBOL(ceph_parse_ips);
1920 static int process_banner(struct ceph_connection *con)
1922 dout("process_banner on %p\n", con);
1924 if (verify_hello(con) < 0)
1925 return -1;
1927 ceph_decode_addr(&con->actual_peer_addr);
1928 ceph_decode_addr(&con->peer_addr_for_me);
1931 * Make sure the other end is who we wanted. note that the other
1932 * end may not yet know their ip address, so if it's 0.0.0.0, give
1933 * them the benefit of the doubt.
1935 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1936 sizeof(con->peer_addr)) != 0 &&
1937 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1938 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1939 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1940 ceph_pr_addr(&con->peer_addr.in_addr),
1941 (int)le32_to_cpu(con->peer_addr.nonce),
1942 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1943 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1944 con->error_msg = "wrong peer at address";
1945 return -1;
1949 * did we learn our address?
1951 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1952 int port = addr_port(&con->msgr->inst.addr.in_addr);
1954 memcpy(&con->msgr->inst.addr.in_addr,
1955 &con->peer_addr_for_me.in_addr,
1956 sizeof(con->peer_addr_for_me.in_addr));
1957 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1958 encode_my_addr(con->msgr);
1959 dout("process_banner learned my addr is %s\n",
1960 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1963 return 0;
1966 static int process_connect(struct ceph_connection *con)
1968 u64 sup_feat = con->msgr->supported_features;
1969 u64 req_feat = con->msgr->required_features;
1970 u64 server_feat = ceph_sanitize_features(
1971 le64_to_cpu(con->in_reply.features));
1972 int ret;
1974 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1976 switch (con->in_reply.tag) {
1977 case CEPH_MSGR_TAG_FEATURES:
1978 pr_err("%s%lld %s feature set mismatch,"
1979 " my %llx < server's %llx, missing %llx\n",
1980 ENTITY_NAME(con->peer_name),
1981 ceph_pr_addr(&con->peer_addr.in_addr),
1982 sup_feat, server_feat, server_feat & ~sup_feat);
1983 con->error_msg = "missing required protocol features";
1984 reset_connection(con);
1985 return -1;
1987 case CEPH_MSGR_TAG_BADPROTOVER:
1988 pr_err("%s%lld %s protocol version mismatch,"
1989 " my %d != server's %d\n",
1990 ENTITY_NAME(con->peer_name),
1991 ceph_pr_addr(&con->peer_addr.in_addr),
1992 le32_to_cpu(con->out_connect.protocol_version),
1993 le32_to_cpu(con->in_reply.protocol_version));
1994 con->error_msg = "protocol version mismatch";
1995 reset_connection(con);
1996 return -1;
1998 case CEPH_MSGR_TAG_BADAUTHORIZER:
1999 con->auth_retry++;
2000 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2001 con->auth_retry);
2002 if (con->auth_retry == 2) {
2003 con->error_msg = "connect authorization failure";
2004 return -1;
2006 con_out_kvec_reset(con);
2007 ret = prepare_write_connect(con);
2008 if (ret < 0)
2009 return ret;
2010 prepare_read_connect(con);
2011 break;
2013 case CEPH_MSGR_TAG_RESETSESSION:
2015 * If we connected with a large connect_seq but the peer
2016 * has no record of a session with us (no connection, or
2017 * connect_seq == 0), they will send RESETSESION to indicate
2018 * that they must have reset their session, and may have
2019 * dropped messages.
2021 dout("process_connect got RESET peer seq %u\n",
2022 le32_to_cpu(con->in_reply.connect_seq));
2023 pr_err("%s%lld %s connection reset\n",
2024 ENTITY_NAME(con->peer_name),
2025 ceph_pr_addr(&con->peer_addr.in_addr));
2026 reset_connection(con);
2027 con_out_kvec_reset(con);
2028 ret = prepare_write_connect(con);
2029 if (ret < 0)
2030 return ret;
2031 prepare_read_connect(con);
2033 /* Tell ceph about it. */
2034 mutex_unlock(&con->mutex);
2035 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2036 if (con->ops->peer_reset)
2037 con->ops->peer_reset(con);
2038 mutex_lock(&con->mutex);
2039 if (con->state != CON_STATE_NEGOTIATING)
2040 return -EAGAIN;
2041 break;
2043 case CEPH_MSGR_TAG_RETRY_SESSION:
2045 * If we sent a smaller connect_seq than the peer has, try
2046 * again with a larger value.
2048 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2049 le32_to_cpu(con->out_connect.connect_seq),
2050 le32_to_cpu(con->in_reply.connect_seq));
2051 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2052 con_out_kvec_reset(con);
2053 ret = prepare_write_connect(con);
2054 if (ret < 0)
2055 return ret;
2056 prepare_read_connect(con);
2057 break;
2059 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2061 * If we sent a smaller global_seq than the peer has, try
2062 * again with a larger value.
2064 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2065 con->peer_global_seq,
2066 le32_to_cpu(con->in_reply.global_seq));
2067 get_global_seq(con->msgr,
2068 le32_to_cpu(con->in_reply.global_seq));
2069 con_out_kvec_reset(con);
2070 ret = prepare_write_connect(con);
2071 if (ret < 0)
2072 return ret;
2073 prepare_read_connect(con);
2074 break;
2076 case CEPH_MSGR_TAG_SEQ:
2077 case CEPH_MSGR_TAG_READY:
2078 if (req_feat & ~server_feat) {
2079 pr_err("%s%lld %s protocol feature mismatch,"
2080 " my required %llx > server's %llx, need %llx\n",
2081 ENTITY_NAME(con->peer_name),
2082 ceph_pr_addr(&con->peer_addr.in_addr),
2083 req_feat, server_feat, req_feat & ~server_feat);
2084 con->error_msg = "missing required protocol features";
2085 reset_connection(con);
2086 return -1;
2089 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2090 con->state = CON_STATE_OPEN;
2091 con->auth_retry = 0; /* we authenticated; clear flag */
2092 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2093 con->connect_seq++;
2094 con->peer_features = server_feat;
2095 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2096 con->peer_global_seq,
2097 le32_to_cpu(con->in_reply.connect_seq),
2098 con->connect_seq);
2099 WARN_ON(con->connect_seq !=
2100 le32_to_cpu(con->in_reply.connect_seq));
2102 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2103 con_flag_set(con, CON_FLAG_LOSSYTX);
2105 con->delay = 0; /* reset backoff memory */
2107 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2108 prepare_write_seq(con);
2109 prepare_read_seq(con);
2110 } else {
2111 prepare_read_tag(con);
2113 break;
2115 case CEPH_MSGR_TAG_WAIT:
2117 * If there is a connection race (we are opening
2118 * connections to each other), one of us may just have
2119 * to WAIT. This shouldn't happen if we are the
2120 * client.
2122 pr_err("process_connect got WAIT as client\n");
2123 con->error_msg = "protocol error, got WAIT as client";
2124 return -1;
2126 default:
2127 pr_err("connect protocol error, will retry\n");
2128 con->error_msg = "protocol error, garbage tag during connect";
2129 return -1;
2131 return 0;
2136 * read (part of) an ack
2138 static int read_partial_ack(struct ceph_connection *con)
2140 int size = sizeof (con->in_temp_ack);
2141 int end = size;
2143 return read_partial(con, end, size, &con->in_temp_ack);
2147 * We can finally discard anything that's been acked.
2149 static void process_ack(struct ceph_connection *con)
2151 struct ceph_msg *m;
2152 u64 ack = le64_to_cpu(con->in_temp_ack);
2153 u64 seq;
2155 while (!list_empty(&con->out_sent)) {
2156 m = list_first_entry(&con->out_sent, struct ceph_msg,
2157 list_head);
2158 seq = le64_to_cpu(m->hdr.seq);
2159 if (seq > ack)
2160 break;
2161 dout("got ack for seq %llu type %d at %p\n", seq,
2162 le16_to_cpu(m->hdr.type), m);
2163 m->ack_stamp = jiffies;
2164 ceph_msg_remove(m);
2166 prepare_read_tag(con);
2170 static int read_partial_message_section(struct ceph_connection *con,
2171 struct kvec *section,
2172 unsigned int sec_len, u32 *crc)
2174 int ret, left;
2176 BUG_ON(!section);
2178 while (section->iov_len < sec_len) {
2179 BUG_ON(section->iov_base == NULL);
2180 left = sec_len - section->iov_len;
2181 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2182 section->iov_len, left);
2183 if (ret <= 0)
2184 return ret;
2185 section->iov_len += ret;
2187 if (section->iov_len == sec_len)
2188 *crc = crc32c(0, section->iov_base, section->iov_len);
2190 return 1;
2193 static int read_partial_msg_data(struct ceph_connection *con)
2195 struct ceph_msg *msg = con->in_msg;
2196 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2197 const bool do_datacrc = !con->msgr->nocrc;
2198 struct page *page;
2199 size_t page_offset;
2200 size_t length;
2201 u32 crc = 0;
2202 int ret;
2204 BUG_ON(!msg);
2205 if (list_empty(&msg->data))
2206 return -EIO;
2208 if (do_datacrc)
2209 crc = con->in_data_crc;
2210 while (cursor->resid) {
2211 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2212 NULL);
2213 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2214 if (ret <= 0) {
2215 if (do_datacrc)
2216 con->in_data_crc = crc;
2218 return ret;
2221 if (do_datacrc)
2222 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2223 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2225 if (do_datacrc)
2226 con->in_data_crc = crc;
2228 return 1; /* must return > 0 to indicate success */
2232 * read (part of) a message.
2234 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2236 static int read_partial_message(struct ceph_connection *con)
2238 struct ceph_msg *m = con->in_msg;
2239 int size;
2240 int end;
2241 int ret;
2242 unsigned int front_len, middle_len, data_len;
2243 bool do_datacrc = !con->msgr->nocrc;
2244 u64 seq;
2245 u32 crc;
2247 dout("read_partial_message con %p msg %p\n", con, m);
2249 /* header */
2250 size = sizeof (con->in_hdr);
2251 end = size;
2252 ret = read_partial(con, end, size, &con->in_hdr);
2253 if (ret <= 0)
2254 return ret;
2256 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2257 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2258 pr_err("read_partial_message bad hdr "
2259 " crc %u != expected %u\n",
2260 crc, con->in_hdr.crc);
2261 return -EBADMSG;
2264 front_len = le32_to_cpu(con->in_hdr.front_len);
2265 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2266 return -EIO;
2267 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2268 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2269 return -EIO;
2270 data_len = le32_to_cpu(con->in_hdr.data_len);
2271 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2272 return -EIO;
2274 /* verify seq# */
2275 seq = le64_to_cpu(con->in_hdr.seq);
2276 if ((s64)seq - (s64)con->in_seq < 1) {
2277 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2278 ENTITY_NAME(con->peer_name),
2279 ceph_pr_addr(&con->peer_addr.in_addr),
2280 seq, con->in_seq + 1);
2281 con->in_base_pos = -front_len - middle_len - data_len -
2282 sizeof(m->footer);
2283 con->in_tag = CEPH_MSGR_TAG_READY;
2284 return 0;
2285 } else if ((s64)seq - (s64)con->in_seq > 1) {
2286 pr_err("read_partial_message bad seq %lld expected %lld\n",
2287 seq, con->in_seq + 1);
2288 con->error_msg = "bad message sequence # for incoming message";
2289 return -EBADMSG;
2292 /* allocate message? */
2293 if (!con->in_msg) {
2294 int skip = 0;
2296 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2297 front_len, data_len);
2298 ret = ceph_con_in_msg_alloc(con, &skip);
2299 if (ret < 0)
2300 return ret;
2302 BUG_ON(!con->in_msg ^ skip);
2303 if (con->in_msg && data_len > con->in_msg->data_length) {
2304 pr_warning("%s skipping long message (%u > %zd)\n",
2305 __func__, data_len, con->in_msg->data_length);
2306 ceph_msg_put(con->in_msg);
2307 con->in_msg = NULL;
2308 skip = 1;
2310 if (skip) {
2311 /* skip this message */
2312 dout("alloc_msg said skip message\n");
2313 con->in_base_pos = -front_len - middle_len - data_len -
2314 sizeof(m->footer);
2315 con->in_tag = CEPH_MSGR_TAG_READY;
2316 con->in_seq++;
2317 return 0;
2320 BUG_ON(!con->in_msg);
2321 BUG_ON(con->in_msg->con != con);
2322 m = con->in_msg;
2323 m->front.iov_len = 0; /* haven't read it yet */
2324 if (m->middle)
2325 m->middle->vec.iov_len = 0;
2327 /* prepare for data payload, if any */
2329 if (data_len)
2330 prepare_message_data(con->in_msg, data_len);
2333 /* front */
2334 ret = read_partial_message_section(con, &m->front, front_len,
2335 &con->in_front_crc);
2336 if (ret <= 0)
2337 return ret;
2339 /* middle */
2340 if (m->middle) {
2341 ret = read_partial_message_section(con, &m->middle->vec,
2342 middle_len,
2343 &con->in_middle_crc);
2344 if (ret <= 0)
2345 return ret;
2348 /* (page) data */
2349 if (data_len) {
2350 ret = read_partial_msg_data(con);
2351 if (ret <= 0)
2352 return ret;
2355 /* footer */
2356 size = sizeof (m->footer);
2357 end += size;
2358 ret = read_partial(con, end, size, &m->footer);
2359 if (ret <= 0)
2360 return ret;
2362 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2363 m, front_len, m->footer.front_crc, middle_len,
2364 m->footer.middle_crc, data_len, m->footer.data_crc);
2366 /* crc ok? */
2367 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2368 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2369 m, con->in_front_crc, m->footer.front_crc);
2370 return -EBADMSG;
2372 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2373 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2374 m, con->in_middle_crc, m->footer.middle_crc);
2375 return -EBADMSG;
2377 if (do_datacrc &&
2378 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2379 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2380 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2381 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2382 return -EBADMSG;
2385 return 1; /* done! */
2389 * Process message. This happens in the worker thread. The callback should
2390 * be careful not to do anything that waits on other incoming messages or it
2391 * may deadlock.
2393 static void process_message(struct ceph_connection *con)
2395 struct ceph_msg *msg;
2397 BUG_ON(con->in_msg->con != con);
2398 con->in_msg->con = NULL;
2399 msg = con->in_msg;
2400 con->in_msg = NULL;
2401 con->ops->put(con);
2403 /* if first message, set peer_name */
2404 if (con->peer_name.type == 0)
2405 con->peer_name = msg->hdr.src;
2407 con->in_seq++;
2408 mutex_unlock(&con->mutex);
2410 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2411 msg, le64_to_cpu(msg->hdr.seq),
2412 ENTITY_NAME(msg->hdr.src),
2413 le16_to_cpu(msg->hdr.type),
2414 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2415 le32_to_cpu(msg->hdr.front_len),
2416 le32_to_cpu(msg->hdr.data_len),
2417 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2418 con->ops->dispatch(con, msg);
2420 mutex_lock(&con->mutex);
2425 * Write something to the socket. Called in a worker thread when the
2426 * socket appears to be writeable and we have something ready to send.
2428 static int try_write(struct ceph_connection *con)
2430 int ret = 1;
2432 dout("try_write start %p state %lu\n", con, con->state);
2434 more:
2435 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2437 /* open the socket first? */
2438 if (con->state == CON_STATE_PREOPEN) {
2439 BUG_ON(con->sock);
2440 con->state = CON_STATE_CONNECTING;
2442 con_out_kvec_reset(con);
2443 prepare_write_banner(con);
2444 prepare_read_banner(con);
2446 BUG_ON(con->in_msg);
2447 con->in_tag = CEPH_MSGR_TAG_READY;
2448 dout("try_write initiating connect on %p new state %lu\n",
2449 con, con->state);
2450 ret = ceph_tcp_connect(con);
2451 if (ret < 0) {
2452 con->error_msg = "connect error";
2453 goto out;
2457 more_kvec:
2458 /* kvec data queued? */
2459 if (con->out_skip) {
2460 ret = write_partial_skip(con);
2461 if (ret <= 0)
2462 goto out;
2464 if (con->out_kvec_left) {
2465 ret = write_partial_kvec(con);
2466 if (ret <= 0)
2467 goto out;
2470 /* msg pages? */
2471 if (con->out_msg) {
2472 if (con->out_msg_done) {
2473 ceph_msg_put(con->out_msg);
2474 con->out_msg = NULL; /* we're done with this one */
2475 goto do_next;
2478 ret = write_partial_message_data(con);
2479 if (ret == 1)
2480 goto more_kvec; /* we need to send the footer, too! */
2481 if (ret == 0)
2482 goto out;
2483 if (ret < 0) {
2484 dout("try_write write_partial_message_data err %d\n",
2485 ret);
2486 goto out;
2490 do_next:
2491 if (con->state == CON_STATE_OPEN) {
2492 /* is anything else pending? */
2493 if (!list_empty(&con->out_queue)) {
2494 prepare_write_message(con);
2495 goto more;
2497 if (con->in_seq > con->in_seq_acked) {
2498 prepare_write_ack(con);
2499 goto more;
2501 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2502 prepare_write_keepalive(con);
2503 goto more;
2507 /* Nothing to do! */
2508 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2509 dout("try_write nothing else to write.\n");
2510 ret = 0;
2511 out:
2512 dout("try_write done on %p ret %d\n", con, ret);
2513 return ret;
2519 * Read what we can from the socket.
2521 static int try_read(struct ceph_connection *con)
2523 int ret = -1;
2525 more:
2526 dout("try_read start on %p state %lu\n", con, con->state);
2527 if (con->state != CON_STATE_CONNECTING &&
2528 con->state != CON_STATE_NEGOTIATING &&
2529 con->state != CON_STATE_OPEN)
2530 return 0;
2532 BUG_ON(!con->sock);
2534 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2535 con->in_base_pos);
2537 if (con->state == CON_STATE_CONNECTING) {
2538 dout("try_read connecting\n");
2539 ret = read_partial_banner(con);
2540 if (ret <= 0)
2541 goto out;
2542 ret = process_banner(con);
2543 if (ret < 0)
2544 goto out;
2546 con->state = CON_STATE_NEGOTIATING;
2549 * Received banner is good, exchange connection info.
2550 * Do not reset out_kvec, as sending our banner raced
2551 * with receiving peer banner after connect completed.
2553 ret = prepare_write_connect(con);
2554 if (ret < 0)
2555 goto out;
2556 prepare_read_connect(con);
2558 /* Send connection info before awaiting response */
2559 goto out;
2562 if (con->state == CON_STATE_NEGOTIATING) {
2563 dout("try_read negotiating\n");
2564 ret = read_partial_connect(con);
2565 if (ret <= 0)
2566 goto out;
2567 ret = process_connect(con);
2568 if (ret < 0)
2569 goto out;
2570 goto more;
2573 WARN_ON(con->state != CON_STATE_OPEN);
2575 if (con->in_base_pos < 0) {
2577 * skipping + discarding content.
2579 * FIXME: there must be a better way to do this!
2581 static char buf[SKIP_BUF_SIZE];
2582 int skip = min((int) sizeof (buf), -con->in_base_pos);
2584 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2585 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2586 if (ret <= 0)
2587 goto out;
2588 con->in_base_pos += ret;
2589 if (con->in_base_pos)
2590 goto more;
2592 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2594 * what's next?
2596 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2597 if (ret <= 0)
2598 goto out;
2599 dout("try_read got tag %d\n", (int)con->in_tag);
2600 switch (con->in_tag) {
2601 case CEPH_MSGR_TAG_MSG:
2602 prepare_read_message(con);
2603 break;
2604 case CEPH_MSGR_TAG_ACK:
2605 prepare_read_ack(con);
2606 break;
2607 case CEPH_MSGR_TAG_CLOSE:
2608 con_close_socket(con);
2609 con->state = CON_STATE_CLOSED;
2610 goto out;
2611 default:
2612 goto bad_tag;
2615 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2616 ret = read_partial_message(con);
2617 if (ret <= 0) {
2618 switch (ret) {
2619 case -EBADMSG:
2620 con->error_msg = "bad crc";
2621 ret = -EIO;
2622 break;
2623 case -EIO:
2624 con->error_msg = "io error";
2625 break;
2627 goto out;
2629 if (con->in_tag == CEPH_MSGR_TAG_READY)
2630 goto more;
2631 process_message(con);
2632 if (con->state == CON_STATE_OPEN)
2633 prepare_read_tag(con);
2634 goto more;
2636 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2637 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2639 * the final handshake seq exchange is semantically
2640 * equivalent to an ACK
2642 ret = read_partial_ack(con);
2643 if (ret <= 0)
2644 goto out;
2645 process_ack(con);
2646 goto more;
2649 out:
2650 dout("try_read done on %p ret %d\n", con, ret);
2651 return ret;
2653 bad_tag:
2654 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2655 con->error_msg = "protocol error, garbage tag";
2656 ret = -1;
2657 goto out;
2662 * Atomically queue work on a connection after the specified delay.
2663 * Bump @con reference to avoid races with connection teardown.
2664 * Returns 0 if work was queued, or an error code otherwise.
2666 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2668 if (!con->ops->get(con)) {
2669 dout("%s %p ref count 0\n", __func__, con);
2671 return -ENOENT;
2674 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2675 dout("%s %p - already queued\n", __func__, con);
2676 con->ops->put(con);
2678 return -EBUSY;
2681 dout("%s %p %lu\n", __func__, con, delay);
2683 return 0;
2686 static void queue_con(struct ceph_connection *con)
2688 (void) queue_con_delay(con, 0);
2691 static bool con_sock_closed(struct ceph_connection *con)
2693 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2694 return false;
2696 #define CASE(x) \
2697 case CON_STATE_ ## x: \
2698 con->error_msg = "socket closed (con state " #x ")"; \
2699 break;
2701 switch (con->state) {
2702 CASE(CLOSED);
2703 CASE(PREOPEN);
2704 CASE(CONNECTING);
2705 CASE(NEGOTIATING);
2706 CASE(OPEN);
2707 CASE(STANDBY);
2708 default:
2709 pr_warning("%s con %p unrecognized state %lu\n",
2710 __func__, con, con->state);
2711 con->error_msg = "unrecognized con state";
2712 BUG();
2713 break;
2715 #undef CASE
2717 return true;
2720 static bool con_backoff(struct ceph_connection *con)
2722 int ret;
2724 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2725 return false;
2727 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2728 if (ret) {
2729 dout("%s: con %p FAILED to back off %lu\n", __func__,
2730 con, con->delay);
2731 BUG_ON(ret == -ENOENT);
2732 con_flag_set(con, CON_FLAG_BACKOFF);
2735 return true;
2738 /* Finish fault handling; con->mutex must *not* be held here */
2740 static void con_fault_finish(struct ceph_connection *con)
2743 * in case we faulted due to authentication, invalidate our
2744 * current tickets so that we can get new ones.
2746 if (con->auth_retry && con->ops->invalidate_authorizer) {
2747 dout("calling invalidate_authorizer()\n");
2748 con->ops->invalidate_authorizer(con);
2751 if (con->ops->fault)
2752 con->ops->fault(con);
2756 * Do some work on a connection. Drop a connection ref when we're done.
2758 static void con_work(struct work_struct *work)
2760 struct ceph_connection *con = container_of(work, struct ceph_connection,
2761 work.work);
2762 bool fault;
2764 mutex_lock(&con->mutex);
2765 while (true) {
2766 int ret;
2768 if ((fault = con_sock_closed(con))) {
2769 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2770 break;
2772 if (con_backoff(con)) {
2773 dout("%s: con %p BACKOFF\n", __func__, con);
2774 break;
2776 if (con->state == CON_STATE_STANDBY) {
2777 dout("%s: con %p STANDBY\n", __func__, con);
2778 break;
2780 if (con->state == CON_STATE_CLOSED) {
2781 dout("%s: con %p CLOSED\n", __func__, con);
2782 BUG_ON(con->sock);
2783 break;
2785 if (con->state == CON_STATE_PREOPEN) {
2786 dout("%s: con %p PREOPEN\n", __func__, con);
2787 BUG_ON(con->sock);
2790 ret = try_read(con);
2791 if (ret < 0) {
2792 if (ret == -EAGAIN)
2793 continue;
2794 con->error_msg = "socket error on read";
2795 fault = true;
2796 break;
2799 ret = try_write(con);
2800 if (ret < 0) {
2801 if (ret == -EAGAIN)
2802 continue;
2803 con->error_msg = "socket error on write";
2804 fault = true;
2807 break; /* If we make it to here, we're done */
2809 if (fault)
2810 con_fault(con);
2811 mutex_unlock(&con->mutex);
2813 if (fault)
2814 con_fault_finish(con);
2816 con->ops->put(con);
2820 * Generic error/fault handler. A retry mechanism is used with
2821 * exponential backoff
2823 static void con_fault(struct ceph_connection *con)
2825 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2826 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2827 dout("fault %p state %lu to peer %s\n",
2828 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2830 WARN_ON(con->state != CON_STATE_CONNECTING &&
2831 con->state != CON_STATE_NEGOTIATING &&
2832 con->state != CON_STATE_OPEN);
2834 con_close_socket(con);
2836 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2837 dout("fault on LOSSYTX channel, marking CLOSED\n");
2838 con->state = CON_STATE_CLOSED;
2839 return;
2842 if (con->in_msg) {
2843 BUG_ON(con->in_msg->con != con);
2844 con->in_msg->con = NULL;
2845 ceph_msg_put(con->in_msg);
2846 con->in_msg = NULL;
2847 con->ops->put(con);
2850 /* Requeue anything that hasn't been acked */
2851 list_splice_init(&con->out_sent, &con->out_queue);
2853 /* If there are no messages queued or keepalive pending, place
2854 * the connection in a STANDBY state */
2855 if (list_empty(&con->out_queue) &&
2856 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2857 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2858 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2859 con->state = CON_STATE_STANDBY;
2860 } else {
2861 /* retry after a delay. */
2862 con->state = CON_STATE_PREOPEN;
2863 if (con->delay == 0)
2864 con->delay = BASE_DELAY_INTERVAL;
2865 else if (con->delay < MAX_DELAY_INTERVAL)
2866 con->delay *= 2;
2867 con_flag_set(con, CON_FLAG_BACKOFF);
2868 queue_con(con);
2875 * initialize a new messenger instance
2877 void ceph_messenger_init(struct ceph_messenger *msgr,
2878 struct ceph_entity_addr *myaddr,
2879 u64 supported_features,
2880 u64 required_features,
2881 bool nocrc)
2883 msgr->supported_features = supported_features;
2884 msgr->required_features = required_features;
2886 spin_lock_init(&msgr->global_seq_lock);
2888 if (myaddr)
2889 msgr->inst.addr = *myaddr;
2891 /* select a random nonce */
2892 msgr->inst.addr.type = 0;
2893 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2894 encode_my_addr(msgr);
2895 msgr->nocrc = nocrc;
2897 atomic_set(&msgr->stopping, 0);
2899 dout("%s %p\n", __func__, msgr);
2901 EXPORT_SYMBOL(ceph_messenger_init);
2903 static void clear_standby(struct ceph_connection *con)
2905 /* come back from STANDBY? */
2906 if (con->state == CON_STATE_STANDBY) {
2907 dout("clear_standby %p and ++connect_seq\n", con);
2908 con->state = CON_STATE_PREOPEN;
2909 con->connect_seq++;
2910 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2911 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2916 * Queue up an outgoing message on the given connection.
2918 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2920 /* set src+dst */
2921 msg->hdr.src = con->msgr->inst.name;
2922 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2923 msg->needs_out_seq = true;
2925 mutex_lock(&con->mutex);
2927 if (con->state == CON_STATE_CLOSED) {
2928 dout("con_send %p closed, dropping %p\n", con, msg);
2929 ceph_msg_put(msg);
2930 mutex_unlock(&con->mutex);
2931 return;
2934 BUG_ON(msg->con != NULL);
2935 msg->con = con->ops->get(con);
2936 BUG_ON(msg->con == NULL);
2938 BUG_ON(!list_empty(&msg->list_head));
2939 list_add_tail(&msg->list_head, &con->out_queue);
2940 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2941 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2942 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2943 le32_to_cpu(msg->hdr.front_len),
2944 le32_to_cpu(msg->hdr.middle_len),
2945 le32_to_cpu(msg->hdr.data_len));
2947 clear_standby(con);
2948 mutex_unlock(&con->mutex);
2950 /* if there wasn't anything waiting to send before, queue
2951 * new work */
2952 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2953 queue_con(con);
2955 EXPORT_SYMBOL(ceph_con_send);
2958 * Revoke a message that was previously queued for send
2960 void ceph_msg_revoke(struct ceph_msg *msg)
2962 struct ceph_connection *con = msg->con;
2964 if (!con)
2965 return; /* Message not in our possession */
2967 mutex_lock(&con->mutex);
2968 if (!list_empty(&msg->list_head)) {
2969 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2970 list_del_init(&msg->list_head);
2971 BUG_ON(msg->con == NULL);
2972 msg->con->ops->put(msg->con);
2973 msg->con = NULL;
2974 msg->hdr.seq = 0;
2976 ceph_msg_put(msg);
2978 if (con->out_msg == msg) {
2979 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2980 con->out_msg = NULL;
2981 if (con->out_kvec_is_msg) {
2982 con->out_skip = con->out_kvec_bytes;
2983 con->out_kvec_is_msg = false;
2985 msg->hdr.seq = 0;
2987 ceph_msg_put(msg);
2989 mutex_unlock(&con->mutex);
2993 * Revoke a message that we may be reading data into
2995 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2997 struct ceph_connection *con;
2999 BUG_ON(msg == NULL);
3000 if (!msg->con) {
3001 dout("%s msg %p null con\n", __func__, msg);
3003 return; /* Message not in our possession */
3006 con = msg->con;
3007 mutex_lock(&con->mutex);
3008 if (con->in_msg == msg) {
3009 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3010 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3011 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3013 /* skip rest of message */
3014 dout("%s %p msg %p revoked\n", __func__, con, msg);
3015 con->in_base_pos = con->in_base_pos -
3016 sizeof(struct ceph_msg_header) -
3017 front_len -
3018 middle_len -
3019 data_len -
3020 sizeof(struct ceph_msg_footer);
3021 ceph_msg_put(con->in_msg);
3022 con->in_msg = NULL;
3023 con->in_tag = CEPH_MSGR_TAG_READY;
3024 con->in_seq++;
3025 } else {
3026 dout("%s %p in_msg %p msg %p no-op\n",
3027 __func__, con, con->in_msg, msg);
3029 mutex_unlock(&con->mutex);
3033 * Queue a keepalive byte to ensure the tcp connection is alive.
3035 void ceph_con_keepalive(struct ceph_connection *con)
3037 dout("con_keepalive %p\n", con);
3038 mutex_lock(&con->mutex);
3039 clear_standby(con);
3040 mutex_unlock(&con->mutex);
3041 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3042 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3043 queue_con(con);
3045 EXPORT_SYMBOL(ceph_con_keepalive);
3047 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3049 struct ceph_msg_data *data;
3051 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3052 return NULL;
3054 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3055 if (data)
3056 data->type = type;
3057 INIT_LIST_HEAD(&data->links);
3059 return data;
3062 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3064 if (!data)
3065 return;
3067 WARN_ON(!list_empty(&data->links));
3068 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3069 ceph_pagelist_release(data->pagelist);
3070 kfree(data->pagelist);
3072 kmem_cache_free(ceph_msg_data_cache, data);
3075 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3076 size_t length, size_t alignment)
3078 struct ceph_msg_data *data;
3080 BUG_ON(!pages);
3081 BUG_ON(!length);
3083 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3084 BUG_ON(!data);
3085 data->pages = pages;
3086 data->length = length;
3087 data->alignment = alignment & ~PAGE_MASK;
3089 list_add_tail(&data->links, &msg->data);
3090 msg->data_length += length;
3092 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3094 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3095 struct ceph_pagelist *pagelist)
3097 struct ceph_msg_data *data;
3099 BUG_ON(!pagelist);
3100 BUG_ON(!pagelist->length);
3102 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3103 BUG_ON(!data);
3104 data->pagelist = pagelist;
3106 list_add_tail(&data->links, &msg->data);
3107 msg->data_length += pagelist->length;
3109 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3111 #ifdef CONFIG_BLOCK
3112 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3113 size_t length)
3115 struct ceph_msg_data *data;
3117 BUG_ON(!bio);
3119 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3120 BUG_ON(!data);
3121 data->bio = bio;
3122 data->bio_length = length;
3124 list_add_tail(&data->links, &msg->data);
3125 msg->data_length += length;
3127 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3128 #endif /* CONFIG_BLOCK */
3131 * construct a new message with given type, size
3132 * the new msg has a ref count of 1.
3134 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3135 bool can_fail)
3137 struct ceph_msg *m;
3139 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3140 if (m == NULL)
3141 goto out;
3143 m->hdr.type = cpu_to_le16(type);
3144 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3145 m->hdr.front_len = cpu_to_le32(front_len);
3147 INIT_LIST_HEAD(&m->list_head);
3148 kref_init(&m->kref);
3149 INIT_LIST_HEAD(&m->data);
3151 /* front */
3152 if (front_len) {
3153 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3154 if (m->front.iov_base == NULL) {
3155 dout("ceph_msg_new can't allocate %d bytes\n",
3156 front_len);
3157 goto out2;
3159 } else {
3160 m->front.iov_base = NULL;
3162 m->front_alloc_len = m->front.iov_len = front_len;
3164 dout("ceph_msg_new %p front %d\n", m, front_len);
3165 return m;
3167 out2:
3168 ceph_msg_put(m);
3169 out:
3170 if (!can_fail) {
3171 pr_err("msg_new can't create type %d front %d\n", type,
3172 front_len);
3173 WARN_ON(1);
3174 } else {
3175 dout("msg_new can't create type %d front %d\n", type,
3176 front_len);
3178 return NULL;
3180 EXPORT_SYMBOL(ceph_msg_new);
3183 * Allocate "middle" portion of a message, if it is needed and wasn't
3184 * allocated by alloc_msg. This allows us to read a small fixed-size
3185 * per-type header in the front and then gracefully fail (i.e.,
3186 * propagate the error to the caller based on info in the front) when
3187 * the middle is too large.
3189 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3191 int type = le16_to_cpu(msg->hdr.type);
3192 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3194 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3195 ceph_msg_type_name(type), middle_len);
3196 BUG_ON(!middle_len);
3197 BUG_ON(msg->middle);
3199 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3200 if (!msg->middle)
3201 return -ENOMEM;
3202 return 0;
3206 * Allocate a message for receiving an incoming message on a
3207 * connection, and save the result in con->in_msg. Uses the
3208 * connection's private alloc_msg op if available.
3210 * Returns 0 on success, or a negative error code.
3212 * On success, if we set *skip = 1:
3213 * - the next message should be skipped and ignored.
3214 * - con->in_msg == NULL
3215 * or if we set *skip = 0:
3216 * - con->in_msg is non-null.
3217 * On error (ENOMEM, EAGAIN, ...),
3218 * - con->in_msg == NULL
3220 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3222 struct ceph_msg_header *hdr = &con->in_hdr;
3223 int middle_len = le32_to_cpu(hdr->middle_len);
3224 struct ceph_msg *msg;
3225 int ret = 0;
3227 BUG_ON(con->in_msg != NULL);
3228 BUG_ON(!con->ops->alloc_msg);
3230 mutex_unlock(&con->mutex);
3231 msg = con->ops->alloc_msg(con, hdr, skip);
3232 mutex_lock(&con->mutex);
3233 if (con->state != CON_STATE_OPEN) {
3234 if (msg)
3235 ceph_msg_put(msg);
3236 return -EAGAIN;
3238 if (msg) {
3239 BUG_ON(*skip);
3240 con->in_msg = msg;
3241 con->in_msg->con = con->ops->get(con);
3242 BUG_ON(con->in_msg->con == NULL);
3243 } else {
3245 * Null message pointer means either we should skip
3246 * this message or we couldn't allocate memory. The
3247 * former is not an error.
3249 if (*skip)
3250 return 0;
3251 con->error_msg = "error allocating memory for incoming message";
3253 return -ENOMEM;
3255 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3257 if (middle_len && !con->in_msg->middle) {
3258 ret = ceph_alloc_middle(con, con->in_msg);
3259 if (ret < 0) {
3260 ceph_msg_put(con->in_msg);
3261 con->in_msg = NULL;
3265 return ret;
3270 * Free a generically kmalloc'd message.
3272 void ceph_msg_kfree(struct ceph_msg *m)
3274 dout("msg_kfree %p\n", m);
3275 ceph_kvfree(m->front.iov_base);
3276 kmem_cache_free(ceph_msg_cache, m);
3280 * Drop a msg ref. Destroy as needed.
3282 void ceph_msg_last_put(struct kref *kref)
3284 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3285 LIST_HEAD(data);
3286 struct list_head *links;
3287 struct list_head *next;
3289 dout("ceph_msg_put last one on %p\n", m);
3290 WARN_ON(!list_empty(&m->list_head));
3292 /* drop middle, data, if any */
3293 if (m->middle) {
3294 ceph_buffer_put(m->middle);
3295 m->middle = NULL;
3298 list_splice_init(&m->data, &data);
3299 list_for_each_safe(links, next, &data) {
3300 struct ceph_msg_data *data;
3302 data = list_entry(links, struct ceph_msg_data, links);
3303 list_del_init(links);
3304 ceph_msg_data_destroy(data);
3306 m->data_length = 0;
3308 if (m->pool)
3309 ceph_msgpool_put(m->pool, m);
3310 else
3311 ceph_msg_kfree(m);
3313 EXPORT_SYMBOL(ceph_msg_last_put);
3315 void ceph_msg_dump(struct ceph_msg *msg)
3317 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3318 msg->front_alloc_len, msg->data_length);
3319 print_hex_dump(KERN_DEBUG, "header: ",
3320 DUMP_PREFIX_OFFSET, 16, 1,
3321 &msg->hdr, sizeof(msg->hdr), true);
3322 print_hex_dump(KERN_DEBUG, " front: ",
3323 DUMP_PREFIX_OFFSET, 16, 1,
3324 msg->front.iov_base, msg->front.iov_len, true);
3325 if (msg->middle)
3326 print_hex_dump(KERN_DEBUG, "middle: ",
3327 DUMP_PREFIX_OFFSET, 16, 1,
3328 msg->middle->vec.iov_base,
3329 msg->middle->vec.iov_len, true);
3330 print_hex_dump(KERN_DEBUG, "footer: ",
3331 DUMP_PREFIX_OFFSET, 16, 1,
3332 &msg->footer, sizeof(msg->footer), true);
3334 EXPORT_SYMBOL(ceph_msg_dump);