1 // SPDX-License-Identifier: GPL-2.0
2 /* calibrate.c: default delay calibration
4 * Excised from init/main.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/jiffies.h>
9 #include <linux/delay.h>
10 #include <linux/init.h>
11 #include <linux/timex.h>
12 #include <linux/smp.h>
13 #include <linux/percpu.h>
15 unsigned long lpj_fine
;
16 unsigned long preset_lpj
;
17 static int __init
lpj_setup(char *str
)
19 preset_lpj
= simple_strtoul(str
,NULL
,0);
23 __setup("lpj=", lpj_setup
);
25 #ifdef ARCH_HAS_READ_CURRENT_TIMER
27 /* This routine uses the read_current_timer() routine and gets the
28 * loops per jiffy directly, instead of guessing it using delay().
29 * Also, this code tries to handle non-maskable asynchronous events
32 #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
33 #define MAX_DIRECT_CALIBRATION_RETRIES 5
35 static unsigned long calibrate_delay_direct(void)
37 unsigned long pre_start
, start
, post_start
;
38 unsigned long pre_end
, end
, post_end
;
39 unsigned long start_jiffies
;
40 unsigned long timer_rate_min
, timer_rate_max
;
41 unsigned long good_timer_sum
= 0;
42 unsigned long good_timer_count
= 0;
43 unsigned long measured_times
[MAX_DIRECT_CALIBRATION_RETRIES
];
44 int max
= -1; /* index of measured_times with max/min values or not set */
48 if (read_current_timer(&pre_start
) < 0 )
53 * while ( jiffies < start_jiffies+1)
54 * start = read_current_timer();
55 * will not do. As we don't really know whether jiffy switch
56 * happened first or timer_value was read first. And some asynchronous
57 * event can happen between these two events introducing errors in lpj.
60 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
61 * 2. check jiffy switch
62 * 3. start <- timer value before or after jiffy switch
63 * 4. post_start <- When we are sure that jiffy switch has happened
65 * Note, we don't know anything about order of 2 and 3.
66 * Now, by looking at post_start and pre_start difference, we can
67 * check whether any asynchronous event happened or not
70 for (i
= 0; i
< MAX_DIRECT_CALIBRATION_RETRIES
; i
++) {
72 read_current_timer(&start
);
73 start_jiffies
= jiffies
;
74 while (time_before_eq(jiffies
, start_jiffies
+ 1)) {
76 read_current_timer(&start
);
78 read_current_timer(&post_start
);
82 while (time_before_eq(jiffies
, start_jiffies
+ 1 +
83 DELAY_CALIBRATION_TICKS
)) {
85 read_current_timer(&end
);
87 read_current_timer(&post_end
);
89 timer_rate_max
= (post_end
- pre_start
) /
90 DELAY_CALIBRATION_TICKS
;
91 timer_rate_min
= (pre_end
- post_start
) /
92 DELAY_CALIBRATION_TICKS
;
95 * If the upper limit and lower limit of the timer_rate is
96 * >= 12.5% apart, redo calibration.
98 if (start
>= post_end
)
99 printk(KERN_NOTICE
"calibrate_delay_direct() ignoring "
100 "timer_rate as we had a TSC wrap around"
101 " start=%lu >=post_end=%lu\n",
103 if (start
< post_end
&& pre_start
!= 0 && pre_end
!= 0 &&
104 (timer_rate_max
- timer_rate_min
) < (timer_rate_max
>> 3)) {
106 good_timer_sum
+= timer_rate_max
;
107 measured_times
[i
] = timer_rate_max
;
108 if (max
< 0 || timer_rate_max
> measured_times
[max
])
110 if (min
< 0 || timer_rate_max
< measured_times
[min
])
113 measured_times
[i
] = 0;
118 * Find the maximum & minimum - if they differ too much throw out the
119 * one with the largest difference from the mean and try again...
121 while (good_timer_count
> 1) {
122 unsigned long estimate
;
123 unsigned long maxdiff
;
125 /* compute the estimate */
126 estimate
= (good_timer_sum
/good_timer_count
);
127 maxdiff
= estimate
>> 3;
129 /* if range is within 12% let's take it */
130 if ((measured_times
[max
] - measured_times
[min
]) < maxdiff
)
133 /* ok - drop the worse value and try again... */
135 good_timer_count
= 0;
136 if ((measured_times
[max
] - estimate
) <
137 (estimate
- measured_times
[min
])) {
138 printk(KERN_NOTICE
"calibrate_delay_direct() dropping "
139 "min bogoMips estimate %d = %lu\n",
140 min
, measured_times
[min
]);
141 measured_times
[min
] = 0;
144 printk(KERN_NOTICE
"calibrate_delay_direct() dropping "
145 "max bogoMips estimate %d = %lu\n",
146 max
, measured_times
[max
]);
147 measured_times
[max
] = 0;
151 for (i
= 0; i
< MAX_DIRECT_CALIBRATION_RETRIES
; i
++) {
152 if (measured_times
[i
] == 0)
155 good_timer_sum
+= measured_times
[i
];
156 if (measured_times
[i
] < measured_times
[min
])
158 if (measured_times
[i
] > measured_times
[max
])
164 printk(KERN_NOTICE
"calibrate_delay_direct() failed to get a good "
165 "estimate for loops_per_jiffy.\nProbably due to long platform "
166 "interrupts. Consider using \"lpj=\" boot option.\n");
170 static unsigned long calibrate_delay_direct(void)
177 * This is the number of bits of precision for the loops_per_jiffy. Each
178 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
179 * to start with a good estimate.
180 * For the boot cpu we can skip the delay calibration and assign it a value
181 * calculated based on the timer frequency.
182 * For the rest of the CPUs we cannot assume that the timer frequency is same as
183 * the cpu frequency, hence do the calibration for those.
187 static unsigned long calibrate_delay_converge(void)
189 /* First stage - slowly accelerate to find initial bounds */
190 unsigned long lpj
, lpj_base
, ticks
, loopadd
, loopadd_base
, chop_limit
;
191 int trials
= 0, band
= 0, trial_in_band
= 0;
195 /* wait for "start of" clock tick */
197 while (ticks
== jiffies
)
202 if (++trial_in_band
== (1<<band
)) {
208 } while (ticks
== jiffies
);
210 * We overshot, so retreat to a clear underestimate. Then estimate
211 * the largest likely undershoot. This defines our chop bounds.
214 loopadd_base
= lpj
* band
;
215 lpj_base
= lpj
* trials
;
219 loopadd
= loopadd_base
;
222 * Do a binary approximation to get lpj set to
223 * equal one clock (up to LPS_PREC bits)
225 chop_limit
= lpj
>> LPS_PREC
;
226 while (loopadd
> chop_limit
) {
229 while (ticks
== jiffies
)
233 if (jiffies
!= ticks
) /* longer than 1 tick */
238 * If we incremented every single time possible, presume we've
239 * massively underestimated initially, and retry with a higher
240 * start, and larger range. (Only seen on x86_64, due to SMIs)
242 if (lpj
+ loopadd
* 2 == lpj_base
+ loopadd_base
* 2) {
251 static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy
) = { 0 };
254 * Check if cpu calibration delay is already known. For example,
255 * some processors with multi-core sockets may have all cores
256 * with the same calibration delay.
258 * Architectures should override this function if a faster calibration
259 * method is available.
261 unsigned long __attribute__((weak
)) calibrate_delay_is_known(void)
267 * Indicate the cpu delay calibration is done. This can be used by
268 * architectures to stop accepting delay timer registrations after this point.
271 void __attribute__((weak
)) calibration_delay_done(void)
275 void calibrate_delay(void)
279 int this_cpu
= smp_processor_id();
281 if (per_cpu(cpu_loops_per_jiffy
, this_cpu
)) {
282 lpj
= per_cpu(cpu_loops_per_jiffy
, this_cpu
);
284 pr_info("Calibrating delay loop (skipped) "
285 "already calibrated this CPU");
286 } else if (preset_lpj
) {
289 pr_info("Calibrating delay loop (skipped) "
291 } else if ((!printed
) && lpj_fine
) {
293 pr_info("Calibrating delay loop (skipped), "
294 "value calculated using timer frequency.. ");
295 } else if ((lpj
= calibrate_delay_is_known())) {
297 } else if ((lpj
= calibrate_delay_direct()) != 0) {
299 pr_info("Calibrating delay using timer "
300 "specific routine.. ");
303 pr_info("Calibrating delay loop... ");
304 lpj
= calibrate_delay_converge();
306 per_cpu(cpu_loops_per_jiffy
, this_cpu
) = lpj
;
308 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
310 (lpj
/(5000/HZ
)) % 100, lpj
);
312 loops_per_jiffy
= lpj
;
315 calibration_delay_done();