ath9k: Refactor hw.c
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ath9k / eeprom.c
blobf5fd03c0edd7805d4a5c816535afbd88e33a055c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "core.h"
18 #include "hw.h"
19 #include "reg.h"
20 #include "phy.h"
22 static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
23 u32 reg, u32 mask,
24 u32 shift, u32 val)
26 u32 regVal;
28 regVal = REG_READ(ah, reg) & ~mask;
29 regVal |= (val << shift) & mask;
31 REG_WRITE(ah, reg, regVal);
33 if (ah->ah_config.analog_shiftreg)
34 udelay(100);
36 return;
39 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
42 if (fbin == AR5416_BCHAN_UNUSED)
43 return fbin;
45 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
48 static inline int16_t ath9k_hw_interpolate(u16 target,
49 u16 srcLeft, u16 srcRight,
50 int16_t targetLeft,
51 int16_t targetRight)
53 int16_t rv;
55 if (srcRight == srcLeft) {
56 rv = targetLeft;
57 } else {
58 rv = (int16_t) (((target - srcLeft) * targetRight +
59 (srcRight - target) * targetLeft) /
60 (srcRight - srcLeft));
62 return rv;
65 static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
66 u16 listSize, u16 *indexL,
67 u16 *indexR)
69 u16 i;
71 if (target <= pList[0]) {
72 *indexL = *indexR = 0;
73 return true;
75 if (target >= pList[listSize - 1]) {
76 *indexL = *indexR = (u16) (listSize - 1);
77 return true;
80 for (i = 0; i < listSize - 1; i++) {
81 if (pList[i] == target) {
82 *indexL = *indexR = i;
83 return true;
85 if (target < pList[i + 1]) {
86 *indexL = i;
87 *indexR = (u16) (i + 1);
88 return false;
91 return false;
94 static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off, u16 *data)
96 (void)REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
98 if (!ath9k_hw_wait(ah,
99 AR_EEPROM_STATUS_DATA,
100 AR_EEPROM_STATUS_DATA_BUSY |
101 AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
102 return false;
105 *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
106 AR_EEPROM_STATUS_DATA_VAL);
108 return true;
111 static int ath9k_hw_flash_map(struct ath_hal *ah)
113 struct ath_hal_5416 *ahp = AH5416(ah);
115 ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
117 if (!ahp->ah_cal_mem) {
118 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
119 "%s: cannot remap eeprom region \n", __func__);
120 return -EIO;
123 return 0;
126 static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off, u16 *data)
128 struct ath_hal_5416 *ahp = AH5416(ah);
130 *data = ioread16(ahp->ah_cal_mem + off);
132 return true;
135 static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data)
137 if (ath9k_hw_use_flash(ah))
138 return ath9k_hw_flash_read(ah, off, data);
139 else
140 return ath9k_hw_eeprom_read(ah, off, data);
143 static bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
145 struct ath_hal_5416 *ahp = AH5416(ah);
146 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
147 u16 *eep_data;
148 int addr, ar5416_eep_start_loc = 0;
150 if (!ath9k_hw_use_flash(ah)) {
151 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
152 "%s: Reading from EEPROM, not flash\n", __func__);
153 ar5416_eep_start_loc = 256;
156 if (AR_SREV_9100(ah))
157 ar5416_eep_start_loc = 256;
159 eep_data = (u16 *)eep;
161 for (addr = 0; addr < sizeof(struct ar5416_eeprom) / sizeof(u16); addr++) {
162 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
163 eep_data)) {
164 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
165 "%s: Unable to read eeprom region \n",
166 __func__);
167 return false;
169 eep_data++;
171 return true;
174 static int ath9k_hw_check_eeprom(struct ath_hal *ah)
176 struct ath_hal_5416 *ahp = AH5416(ah);
177 struct ar5416_eeprom *eep =
178 (struct ar5416_eeprom *) &ahp->ah_eeprom;
179 u16 *eepdata, temp, magic, magic2;
180 u32 sum = 0, el;
181 bool need_swap = false;
182 int i, addr, size;
184 if (!ath9k_hw_use_flash(ah)) {
185 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
186 &magic)) {
187 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
188 "%s: Reading Magic # failed\n", __func__);
189 return false;
192 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Read Magic = 0x%04X\n",
193 __func__, magic);
195 if (magic != AR5416_EEPROM_MAGIC) {
196 magic2 = swab16(magic);
198 if (magic2 == AR5416_EEPROM_MAGIC) {
199 size = sizeof(struct ar5416_eeprom);
200 need_swap = true;
201 eepdata = (u16 *) (&ahp->ah_eeprom);
203 for (addr = 0; addr < size / sizeof(u16); addr++) {
204 temp = swab16(*eepdata);
205 *eepdata = temp;
206 eepdata++;
208 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
209 "0x%04X ", *eepdata);
211 if (((addr + 1) % 6) == 0)
212 DPRINTF(ah->ah_sc,
213 ATH_DBG_EEPROM, "\n");
215 } else {
216 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
217 "Invalid EEPROM Magic. "
218 "endianness mismatch.\n");
219 return -EINVAL;
224 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
225 need_swap ? "True" : "False");
227 if (need_swap)
228 el = swab16(ahp->ah_eeprom.baseEepHeader.length);
229 else
230 el = ahp->ah_eeprom.baseEepHeader.length;
232 if (el > sizeof(struct ar5416_eeprom))
233 el = sizeof(struct ar5416_eeprom) / sizeof(u16);
234 else
235 el = el / sizeof(u16);
237 eepdata = (u16 *)(&ahp->ah_eeprom);
239 for (i = 0; i < el; i++)
240 sum ^= *eepdata++;
242 if (need_swap) {
243 u32 integer, j;
244 u16 word;
246 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
247 "EEPROM Endianness is not native.. Changing \n");
249 word = swab16(eep->baseEepHeader.length);
250 eep->baseEepHeader.length = word;
252 word = swab16(eep->baseEepHeader.checksum);
253 eep->baseEepHeader.checksum = word;
255 word = swab16(eep->baseEepHeader.version);
256 eep->baseEepHeader.version = word;
258 word = swab16(eep->baseEepHeader.regDmn[0]);
259 eep->baseEepHeader.regDmn[0] = word;
261 word = swab16(eep->baseEepHeader.regDmn[1]);
262 eep->baseEepHeader.regDmn[1] = word;
264 word = swab16(eep->baseEepHeader.rfSilent);
265 eep->baseEepHeader.rfSilent = word;
267 word = swab16(eep->baseEepHeader.blueToothOptions);
268 eep->baseEepHeader.blueToothOptions = word;
270 word = swab16(eep->baseEepHeader.deviceCap);
271 eep->baseEepHeader.deviceCap = word;
273 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
274 struct modal_eep_header *pModal =
275 &eep->modalHeader[j];
276 integer = swab32(pModal->antCtrlCommon);
277 pModal->antCtrlCommon = integer;
279 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
280 integer = swab32(pModal->antCtrlChain[i]);
281 pModal->antCtrlChain[i] = integer;
284 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
285 word = swab16(pModal->spurChans[i].spurChan);
286 pModal->spurChans[i].spurChan = word;
291 if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
292 ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
293 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
294 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
295 sum, ar5416_get_eep_ver(ahp));
296 return -EINVAL;
299 return 0;
302 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
303 u8 *pVpdList, u16 numIntercepts,
304 u8 *pRetVpdList)
306 u16 i, k;
307 u8 currPwr = pwrMin;
308 u16 idxL = 0, idxR = 0;
310 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
311 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
312 numIntercepts, &(idxL),
313 &(idxR));
314 if (idxR < 1)
315 idxR = 1;
316 if (idxL == numIntercepts - 1)
317 idxL = (u16) (numIntercepts - 2);
318 if (pPwrList[idxL] == pPwrList[idxR])
319 k = pVpdList[idxL];
320 else
321 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
322 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
323 (pPwrList[idxR] - pPwrList[idxL]));
324 pRetVpdList[i] = (u8) k;
325 currPwr += 2;
328 return true;
331 static void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hal *ah,
332 struct ath9k_channel *chan,
333 struct cal_data_per_freq *pRawDataSet,
334 u8 *bChans, u16 availPiers,
335 u16 tPdGainOverlap, int16_t *pMinCalPower,
336 u16 *pPdGainBoundaries, u8 *pPDADCValues,
337 u16 numXpdGains)
339 int i, j, k;
340 int16_t ss;
341 u16 idxL = 0, idxR = 0, numPiers;
342 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
343 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
344 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
345 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
346 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
347 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
349 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
350 u8 minPwrT4[AR5416_NUM_PD_GAINS];
351 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
352 int16_t vpdStep;
353 int16_t tmpVal;
354 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
355 bool match;
356 int16_t minDelta = 0;
357 struct chan_centers centers;
359 ath9k_hw_get_channel_centers(ah, chan, &centers);
361 for (numPiers = 0; numPiers < availPiers; numPiers++) {
362 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
363 break;
366 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
367 IS_CHAN_2GHZ(chan)),
368 bChans, numPiers, &idxL, &idxR);
370 if (match) {
371 for (i = 0; i < numXpdGains; i++) {
372 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
373 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
374 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
375 pRawDataSet[idxL].pwrPdg[i],
376 pRawDataSet[idxL].vpdPdg[i],
377 AR5416_PD_GAIN_ICEPTS,
378 vpdTableI[i]);
380 } else {
381 for (i = 0; i < numXpdGains; i++) {
382 pVpdL = pRawDataSet[idxL].vpdPdg[i];
383 pPwrL = pRawDataSet[idxL].pwrPdg[i];
384 pVpdR = pRawDataSet[idxR].vpdPdg[i];
385 pPwrR = pRawDataSet[idxR].pwrPdg[i];
387 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
389 maxPwrT4[i] =
390 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
391 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
394 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
395 pPwrL, pVpdL,
396 AR5416_PD_GAIN_ICEPTS,
397 vpdTableL[i]);
398 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
399 pPwrR, pVpdR,
400 AR5416_PD_GAIN_ICEPTS,
401 vpdTableR[i]);
403 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
404 vpdTableI[i][j] =
405 (u8)(ath9k_hw_interpolate((u16)
406 FREQ2FBIN(centers.
407 synth_center,
408 IS_CHAN_2GHZ
409 (chan)),
410 bChans[idxL], bChans[idxR],
411 vpdTableL[i][j], vpdTableR[i][j]));
416 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
418 k = 0;
420 for (i = 0; i < numXpdGains; i++) {
421 if (i == (numXpdGains - 1))
422 pPdGainBoundaries[i] =
423 (u16)(maxPwrT4[i] / 2);
424 else
425 pPdGainBoundaries[i] =
426 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
428 pPdGainBoundaries[i] =
429 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
431 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
432 minDelta = pPdGainBoundaries[0] - 23;
433 pPdGainBoundaries[0] = 23;
434 } else {
435 minDelta = 0;
438 if (i == 0) {
439 if (AR_SREV_9280_10_OR_LATER(ah))
440 ss = (int16_t)(0 - (minPwrT4[i] / 2));
441 else
442 ss = 0;
443 } else {
444 ss = (int16_t)((pPdGainBoundaries[i - 1] -
445 (minPwrT4[i] / 2)) -
446 tPdGainOverlap + 1 + minDelta);
448 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
449 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
451 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
452 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
453 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
454 ss++;
457 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
458 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
459 (minPwrT4[i] / 2));
460 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
461 tgtIndex : sizeCurrVpdTable;
463 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
464 pPDADCValues[k++] = vpdTableI[i][ss++];
467 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
468 vpdTableI[i][sizeCurrVpdTable - 2]);
469 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
471 if (tgtIndex > maxIndex) {
472 while ((ss <= tgtIndex) &&
473 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
474 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
475 (ss - maxIndex + 1) * vpdStep));
476 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
477 255 : tmpVal);
478 ss++;
483 while (i < AR5416_PD_GAINS_IN_MASK) {
484 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
485 i++;
488 while (k < AR5416_NUM_PDADC_VALUES) {
489 pPDADCValues[k] = pPDADCValues[k - 1];
490 k++;
493 return;
496 static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
497 struct ath9k_channel *chan,
498 struct cal_target_power_leg *powInfo,
499 u16 numChannels,
500 struct cal_target_power_leg *pNewPower,
501 u16 numRates, bool isExtTarget)
503 struct chan_centers centers;
504 u16 clo, chi;
505 int i;
506 int matchIndex = -1, lowIndex = -1;
507 u16 freq;
509 ath9k_hw_get_channel_centers(ah, chan, &centers);
510 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
512 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
513 IS_CHAN_2GHZ(chan))) {
514 matchIndex = 0;
515 } else {
516 for (i = 0; (i < numChannels) &&
517 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
518 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
519 IS_CHAN_2GHZ(chan))) {
520 matchIndex = i;
521 break;
522 } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
523 IS_CHAN_2GHZ(chan))) &&
524 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
525 IS_CHAN_2GHZ(chan)))) {
526 lowIndex = i - 1;
527 break;
530 if ((matchIndex == -1) && (lowIndex == -1))
531 matchIndex = i - 1;
534 if (matchIndex != -1) {
535 *pNewPower = powInfo[matchIndex];
536 } else {
537 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
538 IS_CHAN_2GHZ(chan));
539 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
540 IS_CHAN_2GHZ(chan));
542 for (i = 0; i < numRates; i++) {
543 pNewPower->tPow2x[i] =
544 (u8)ath9k_hw_interpolate(freq, clo, chi,
545 powInfo[lowIndex].tPow2x[i],
546 powInfo[lowIndex + 1].tPow2x[i]);
551 static void ath9k_hw_get_target_powers(struct ath_hal *ah,
552 struct ath9k_channel *chan,
553 struct cal_target_power_ht *powInfo,
554 u16 numChannels,
555 struct cal_target_power_ht *pNewPower,
556 u16 numRates, bool isHt40Target)
558 struct chan_centers centers;
559 u16 clo, chi;
560 int i;
561 int matchIndex = -1, lowIndex = -1;
562 u16 freq;
564 ath9k_hw_get_channel_centers(ah, chan, &centers);
565 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
567 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
568 matchIndex = 0;
569 } else {
570 for (i = 0; (i < numChannels) &&
571 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
572 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
573 IS_CHAN_2GHZ(chan))) {
574 matchIndex = i;
575 break;
576 } else
577 if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
578 IS_CHAN_2GHZ(chan))) &&
579 (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
580 IS_CHAN_2GHZ(chan)))) {
581 lowIndex = i - 1;
582 break;
585 if ((matchIndex == -1) && (lowIndex == -1))
586 matchIndex = i - 1;
589 if (matchIndex != -1) {
590 *pNewPower = powInfo[matchIndex];
591 } else {
592 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
593 IS_CHAN_2GHZ(chan));
594 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
595 IS_CHAN_2GHZ(chan));
597 for (i = 0; i < numRates; i++) {
598 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
599 clo, chi,
600 powInfo[lowIndex].tPow2x[i],
601 powInfo[lowIndex + 1].tPow2x[i]);
606 static u16 ath9k_hw_get_max_edge_power(u16 freq,
607 struct cal_ctl_edges *pRdEdgesPower,
608 bool is2GHz)
610 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
611 int i;
613 for (i = 0; (i < AR5416_NUM_BAND_EDGES) &&
614 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
615 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
616 twiceMaxEdgePower = pRdEdgesPower[i].tPower;
617 break;
618 } else if ((i > 0) &&
619 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
620 is2GHz))) {
621 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
622 is2GHz) < freq &&
623 pRdEdgesPower[i - 1].flag) {
624 twiceMaxEdgePower =
625 pRdEdgesPower[i - 1].tPower;
627 break;
631 return twiceMaxEdgePower;
634 int ath9k_hw_set_txpower(struct ath_hal *ah,
635 struct ath9k_channel *chan,
636 u16 cfgCtl,
637 u8 twiceAntennaReduction,
638 u8 twiceMaxRegulatoryPower,
639 u8 powerLimit)
641 struct ath_hal_5416 *ahp = AH5416(ah);
642 struct ar5416_eeprom *pEepData = &ahp->ah_eeprom;
643 struct modal_eep_header *pModal =
644 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
645 int16_t ratesArray[Ar5416RateSize];
646 int16_t txPowerIndexOffset = 0;
647 u8 ht40PowerIncForPdadc = 2;
648 int i;
650 memset(ratesArray, 0, sizeof(ratesArray));
652 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
653 AR5416_EEP_MINOR_VER_2) {
654 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
657 if (!ath9k_hw_set_power_per_rate_table(ah, chan,
658 &ratesArray[0], cfgCtl,
659 twiceAntennaReduction,
660 twiceMaxRegulatoryPower,
661 powerLimit)) {
662 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
663 "ath9k_hw_set_txpower: unable to set "
664 "tx power per rate table\n");
665 return -EIO;
668 if (!ath9k_hw_set_power_cal_table(ah, chan, &txPowerIndexOffset)) {
669 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
670 "ath9k_hw_set_txpower: unable to set power table\n");
671 return -EIO;
674 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
675 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
676 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
677 ratesArray[i] = AR5416_MAX_RATE_POWER;
680 if (AR_SREV_9280_10_OR_LATER(ah)) {
681 for (i = 0; i < Ar5416RateSize; i++)
682 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
685 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
686 ATH9K_POW_SM(ratesArray[rate18mb], 24)
687 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
688 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
689 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
690 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
691 ATH9K_POW_SM(ratesArray[rate54mb], 24)
692 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
693 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
694 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
696 if (IS_CHAN_2GHZ(chan)) {
697 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
698 ATH9K_POW_SM(ratesArray[rate2s], 24)
699 | ATH9K_POW_SM(ratesArray[rate2l], 16)
700 | ATH9K_POW_SM(ratesArray[rateXr], 8)
701 | ATH9K_POW_SM(ratesArray[rate1l], 0));
702 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
703 ATH9K_POW_SM(ratesArray[rate11s], 24)
704 | ATH9K_POW_SM(ratesArray[rate11l], 16)
705 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
706 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
709 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
710 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
711 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
712 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
713 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
714 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
715 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
716 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
717 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
718 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
720 if (IS_CHAN_HT40(chan)) {
721 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
722 ATH9K_POW_SM(ratesArray[rateHt40_3] +
723 ht40PowerIncForPdadc, 24)
724 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
725 ht40PowerIncForPdadc, 16)
726 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
727 ht40PowerIncForPdadc, 8)
728 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
729 ht40PowerIncForPdadc, 0));
730 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
731 ATH9K_POW_SM(ratesArray[rateHt40_7] +
732 ht40PowerIncForPdadc, 24)
733 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
734 ht40PowerIncForPdadc, 16)
735 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
736 ht40PowerIncForPdadc, 8)
737 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
738 ht40PowerIncForPdadc, 0));
740 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
741 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
742 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
743 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
744 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
747 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
748 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
749 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
751 i = rate6mb;
753 if (IS_CHAN_HT40(chan))
754 i = rateHt40_0;
755 else if (IS_CHAN_HT20(chan))
756 i = rateHt20_0;
758 if (AR_SREV_9280_10_OR_LATER(ah))
759 ah->ah_maxPowerLevel =
760 ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
761 else
762 ah->ah_maxPowerLevel = ratesArray[i];
764 return 0;
767 void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan)
769 struct modal_eep_header *pModal;
770 struct ath_hal_5416 *ahp = AH5416(ah);
771 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
772 u8 biaslevel;
774 if (ah->ah_macVersion != AR_SREV_VERSION_9160)
775 return;
777 if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
778 return;
780 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
782 if (pModal->xpaBiasLvl != 0xff) {
783 biaslevel = pModal->xpaBiasLvl;
784 } else {
785 u16 resetFreqBin, freqBin, freqCount = 0;
786 struct chan_centers centers;
788 ath9k_hw_get_channel_centers(ah, chan, &centers);
790 resetFreqBin = FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
791 freqBin = pModal->xpaBiasLvlFreq[0] & 0xff;
792 biaslevel = (u8) (pModal->xpaBiasLvlFreq[0] >> 14);
794 freqCount++;
796 while (freqCount < 3) {
797 if (pModal->xpaBiasLvlFreq[freqCount] == 0x0)
798 break;
800 freqBin = pModal->xpaBiasLvlFreq[freqCount] & 0xff;
801 if (resetFreqBin >= freqBin) {
802 biaslevel = (u8)(pModal->xpaBiasLvlFreq[freqCount] >> 14);
803 } else {
804 break;
806 freqCount++;
810 if (IS_CHAN_2GHZ(chan)) {
811 INI_RA(&ahp->ah_iniAddac, 7, 1) =
812 (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
813 } else {
814 INI_RA(&ahp->ah_iniAddac, 6, 1) =
815 (INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel << 6;
819 bool ath9k_hw_set_power_per_rate_table(struct ath_hal *ah,
820 struct ath9k_channel *chan,
821 int16_t *ratesArray,
822 u16 cfgCtl,
823 u8 AntennaReduction,
824 u8 twiceMaxRegulatoryPower,
825 u8 powerLimit)
827 struct ath_hal_5416 *ahp = AH5416(ah);
828 struct ar5416_eeprom *pEepData = &ahp->ah_eeprom;
829 u8 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
830 static const u16 tpScaleReductionTable[5] =
831 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
833 int i;
834 int8_t twiceLargestAntenna;
835 struct cal_ctl_data *rep;
836 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
837 0, { 0, 0, 0, 0}
839 struct cal_target_power_leg targetPowerOfdmExt = {
840 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
841 0, { 0, 0, 0, 0 }
843 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
844 0, {0, 0, 0, 0}
846 u8 scaledPower = 0, minCtlPower, maxRegAllowedPower;
847 u16 ctlModesFor11a[] =
848 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
849 u16 ctlModesFor11g[] =
850 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
851 CTL_2GHT40
853 u16 numCtlModes, *pCtlMode, ctlMode, freq;
854 struct chan_centers centers;
855 int tx_chainmask;
856 u8 twiceMinEdgePower;
858 tx_chainmask = ahp->ah_txchainmask;
860 ath9k_hw_get_channel_centers(ah, chan, &centers);
862 twiceLargestAntenna = max(
863 pEepData->modalHeader
864 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
865 pEepData->modalHeader
866 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
868 twiceLargestAntenna = max((u8)twiceLargestAntenna,
869 pEepData->modalHeader
870 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
872 twiceLargestAntenna = (int8_t)min(AntennaReduction - twiceLargestAntenna, 0);
874 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
876 if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
877 maxRegAllowedPower -=
878 (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
881 scaledPower = min(powerLimit, maxRegAllowedPower);
883 switch (ar5416_get_ntxchains(tx_chainmask)) {
884 case 1:
885 break;
886 case 2:
887 scaledPower -=
888 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
889 break;
890 case 3:
891 scaledPower -=
892 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
893 break;
896 scaledPower = max(0, (int32_t) scaledPower);
898 if (IS_CHAN_2GHZ(chan)) {
899 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
900 SUB_NUM_CTL_MODES_AT_2G_40;
901 pCtlMode = ctlModesFor11g;
903 ath9k_hw_get_legacy_target_powers(ah, chan,
904 pEepData->calTargetPowerCck,
905 AR5416_NUM_2G_CCK_TARGET_POWERS,
906 &targetPowerCck, 4, false);
907 ath9k_hw_get_legacy_target_powers(ah, chan,
908 pEepData->calTargetPower2G,
909 AR5416_NUM_2G_20_TARGET_POWERS,
910 &targetPowerOfdm, 4, false);
911 ath9k_hw_get_target_powers(ah, chan,
912 pEepData->calTargetPower2GHT20,
913 AR5416_NUM_2G_20_TARGET_POWERS,
914 &targetPowerHt20, 8, false);
916 if (IS_CHAN_HT40(chan)) {
917 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
918 ath9k_hw_get_target_powers(ah, chan,
919 pEepData->calTargetPower2GHT40,
920 AR5416_NUM_2G_40_TARGET_POWERS,
921 &targetPowerHt40, 8, true);
922 ath9k_hw_get_legacy_target_powers(ah, chan,
923 pEepData->calTargetPowerCck,
924 AR5416_NUM_2G_CCK_TARGET_POWERS,
925 &targetPowerCckExt, 4, true);
926 ath9k_hw_get_legacy_target_powers(ah, chan,
927 pEepData->calTargetPower2G,
928 AR5416_NUM_2G_20_TARGET_POWERS,
929 &targetPowerOfdmExt, 4, true);
931 } else {
932 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
933 SUB_NUM_CTL_MODES_AT_5G_40;
934 pCtlMode = ctlModesFor11a;
936 ath9k_hw_get_legacy_target_powers(ah, chan,
937 pEepData->calTargetPower5G,
938 AR5416_NUM_5G_20_TARGET_POWERS,
939 &targetPowerOfdm, 4, false);
940 ath9k_hw_get_target_powers(ah, chan,
941 pEepData->calTargetPower5GHT20,
942 AR5416_NUM_5G_20_TARGET_POWERS,
943 &targetPowerHt20, 8, false);
945 if (IS_CHAN_HT40(chan)) {
946 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
947 ath9k_hw_get_target_powers(ah, chan,
948 pEepData->calTargetPower5GHT40,
949 AR5416_NUM_5G_40_TARGET_POWERS,
950 &targetPowerHt40, 8, true);
951 ath9k_hw_get_legacy_target_powers(ah, chan,
952 pEepData->calTargetPower5G,
953 AR5416_NUM_5G_20_TARGET_POWERS,
954 &targetPowerOfdmExt, 4, true);
958 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
959 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
960 (pCtlMode[ctlMode] == CTL_2GHT40);
961 if (isHt40CtlMode)
962 freq = centers.synth_center;
963 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
964 freq = centers.ext_center;
965 else
966 freq = centers.ctl_center;
968 if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2)
969 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
971 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
972 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
973 "EXT_ADDITIVE %d\n",
974 ctlMode, numCtlModes, isHt40CtlMode,
975 (pCtlMode[ctlMode] & EXT_ADDITIVE));
977 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
978 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
979 " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
980 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
981 "chan %d\n",
982 i, cfgCtl, pCtlMode[ctlMode],
983 pEepData->ctlIndex[i], chan->channel);
985 if ((((cfgCtl & ~CTL_MODE_M) |
986 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
987 pEepData->ctlIndex[i]) ||
988 (((cfgCtl & ~CTL_MODE_M) |
989 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
990 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
991 rep = &(pEepData->ctlData[i]);
993 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
994 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
995 IS_CHAN_2GHZ(chan));
997 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
998 " MATCH-EE_IDX %d: ch %d is2 %d "
999 "2xMinEdge %d chainmask %d chains %d\n",
1000 i, freq, IS_CHAN_2GHZ(chan),
1001 twiceMinEdgePower, tx_chainmask,
1002 ar5416_get_ntxchains
1003 (tx_chainmask));
1004 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1005 twiceMaxEdgePower = min(twiceMaxEdgePower,
1006 twiceMinEdgePower);
1007 } else {
1008 twiceMaxEdgePower = twiceMinEdgePower;
1009 break;
1014 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1016 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1017 " SEL-Min ctlMode %d pCtlMode %d "
1018 "2xMaxEdge %d sP %d minCtlPwr %d\n",
1019 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1020 scaledPower, minCtlPower);
1022 switch (pCtlMode[ctlMode]) {
1023 case CTL_11B:
1024 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1025 targetPowerCck.tPow2x[i] =
1026 min(targetPowerCck.tPow2x[i],
1027 minCtlPower);
1029 break;
1030 case CTL_11A:
1031 case CTL_11G:
1032 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1033 targetPowerOfdm.tPow2x[i] =
1034 min(targetPowerOfdm.tPow2x[i],
1035 minCtlPower);
1037 break;
1038 case CTL_5GHT20:
1039 case CTL_2GHT20:
1040 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1041 targetPowerHt20.tPow2x[i] =
1042 min(targetPowerHt20.tPow2x[i],
1043 minCtlPower);
1045 break;
1046 case CTL_11B_EXT:
1047 targetPowerCckExt.tPow2x[0] =
1048 min(targetPowerCckExt.tPow2x[0], minCtlPower);
1049 break;
1050 case CTL_11A_EXT:
1051 case CTL_11G_EXT:
1052 targetPowerOfdmExt.tPow2x[0] =
1053 min(targetPowerOfdmExt.tPow2x[0], minCtlPower);
1054 break;
1055 case CTL_5GHT40:
1056 case CTL_2GHT40:
1057 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1058 targetPowerHt40.tPow2x[i] =
1059 min(targetPowerHt40.tPow2x[i],
1060 minCtlPower);
1062 break;
1063 default:
1064 break;
1068 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1069 ratesArray[rate18mb] = ratesArray[rate24mb] =
1070 targetPowerOfdm.tPow2x[0];
1071 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1072 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1073 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1074 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1076 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1077 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1079 if (IS_CHAN_2GHZ(chan)) {
1080 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1081 ratesArray[rate2s] = ratesArray[rate2l] =
1082 targetPowerCck.tPow2x[1];
1083 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1084 targetPowerCck.tPow2x[2];
1086 ratesArray[rate11s] = ratesArray[rate11l] =
1087 targetPowerCck.tPow2x[3];
1090 if (IS_CHAN_HT40(chan)) {
1091 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1092 ratesArray[rateHt40_0 + i] =
1093 targetPowerHt40.tPow2x[i];
1095 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1096 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1097 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1098 if (IS_CHAN_2GHZ(chan)) {
1099 ratesArray[rateExtCck] =
1100 targetPowerCckExt.tPow2x[0];
1103 return true;
1106 bool ath9k_hw_set_power_cal_table(struct ath_hal *ah,
1107 struct ath9k_channel *chan,
1108 int16_t *pTxPowerIndexOffset)
1110 struct ath_hal_5416 *ahp = AH5416(ah);
1111 struct ar5416_eeprom *pEepData = &ahp->ah_eeprom;
1112 struct cal_data_per_freq *pRawDataset;
1113 u8 *pCalBChans = NULL;
1114 u16 pdGainOverlap_t2;
1115 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
1116 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1117 u16 numPiers, i, j;
1118 int16_t tMinCalPower;
1119 u16 numXpdGain, xpdMask;
1120 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
1121 u32 reg32, regOffset, regChainOffset;
1122 int16_t modalIdx;
1124 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
1125 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
1127 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1128 AR5416_EEP_MINOR_VER_2) {
1129 pdGainOverlap_t2 =
1130 pEepData->modalHeader[modalIdx].pdGainOverlap;
1131 } else {
1132 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
1133 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1136 if (IS_CHAN_2GHZ(chan)) {
1137 pCalBChans = pEepData->calFreqPier2G;
1138 numPiers = AR5416_NUM_2G_CAL_PIERS;
1139 } else {
1140 pCalBChans = pEepData->calFreqPier5G;
1141 numPiers = AR5416_NUM_5G_CAL_PIERS;
1144 numXpdGain = 0;
1146 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1147 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1148 if (numXpdGain >= AR5416_NUM_PD_GAINS)
1149 break;
1150 xpdGainValues[numXpdGain] =
1151 (u16)(AR5416_PD_GAINS_IN_MASK - i);
1152 numXpdGain++;
1156 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
1157 (numXpdGain - 1) & 0x3);
1158 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
1159 xpdGainValues[0]);
1160 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
1161 xpdGainValues[1]);
1162 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
1163 xpdGainValues[2]);
1165 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1166 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1167 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
1168 (i != 0)) {
1169 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1170 } else
1171 regChainOffset = i * 0x1000;
1173 if (pEepData->baseEepHeader.txMask & (1 << i)) {
1174 if (IS_CHAN_2GHZ(chan))
1175 pRawDataset = pEepData->calPierData2G[i];
1176 else
1177 pRawDataset = pEepData->calPierData5G[i];
1179 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
1180 pRawDataset, pCalBChans,
1181 numPiers, pdGainOverlap_t2,
1182 &tMinCalPower, gainBoundaries,
1183 pdadcValues, numXpdGain);
1185 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1186 REG_WRITE(ah,
1187 AR_PHY_TPCRG5 + regChainOffset,
1188 SM(pdGainOverlap_t2,
1189 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1190 | SM(gainBoundaries[0],
1191 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1192 | SM(gainBoundaries[1],
1193 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1194 | SM(gainBoundaries[2],
1195 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1196 | SM(gainBoundaries[3],
1197 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1200 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1201 for (j = 0; j < 32; j++) {
1202 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1203 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1204 ((pdadcValues[4 * j + 2] & 0xFF) << 16) |
1205 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1206 REG_WRITE(ah, regOffset, reg32);
1208 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
1209 "PDADC (%d,%4x): %4.4x %8.8x\n",
1210 i, regChainOffset, regOffset,
1211 reg32);
1212 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
1213 "PDADC: Chain %d | PDADC %3d Value %3d | "
1214 "PDADC %3d Value %3d | PDADC %3d Value %3d | "
1215 "PDADC %3d Value %3d |\n",
1216 i, 4 * j, pdadcValues[4 * j],
1217 4 * j + 1, pdadcValues[4 * j + 1],
1218 4 * j + 2, pdadcValues[4 * j + 2],
1219 4 * j + 3,
1220 pdadcValues[4 * j + 3]);
1222 regOffset += 4;
1227 *pTxPowerIndexOffset = 0;
1229 return true;
1232 /* XXX: Clean me up, make me more legible */
1233 bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
1234 struct ath9k_channel *chan)
1236 struct modal_eep_header *pModal;
1237 struct ath_hal_5416 *ahp = AH5416(ah);
1238 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1239 int i, regChainOffset;
1240 u8 txRxAttenLocal;
1241 u16 ant_config;
1243 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1245 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
1247 ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 1, &ant_config);
1248 REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
1250 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1251 if (AR_SREV_9280(ah)) {
1252 if (i >= 2)
1253 break;
1256 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1257 (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
1258 && (i != 0))
1259 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1260 else
1261 regChainOffset = i * 0x1000;
1263 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1264 pModal->antCtrlChain[i]);
1266 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1267 (REG_READ(ah,
1268 AR_PHY_TIMING_CTRL4(0) +
1269 regChainOffset) &
1270 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1271 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1272 SM(pModal->iqCalICh[i],
1273 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1274 SM(pModal->iqCalQCh[i],
1275 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1277 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1278 if ((eep->baseEepHeader.version &
1279 AR5416_EEP_VER_MINOR_MASK) >=
1280 AR5416_EEP_MINOR_VER_3) {
1281 txRxAttenLocal = pModal->txRxAttenCh[i];
1282 if (AR_SREV_9280_10_OR_LATER(ah)) {
1283 REG_RMW_FIELD(ah,
1284 AR_PHY_GAIN_2GHZ +
1285 regChainOffset,
1286 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1287 pModal->
1288 bswMargin[i]);
1289 REG_RMW_FIELD(ah,
1290 AR_PHY_GAIN_2GHZ +
1291 regChainOffset,
1292 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1293 pModal->
1294 bswAtten[i]);
1295 REG_RMW_FIELD(ah,
1296 AR_PHY_GAIN_2GHZ +
1297 regChainOffset,
1298 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1299 pModal->
1300 xatten2Margin[i]);
1301 REG_RMW_FIELD(ah,
1302 AR_PHY_GAIN_2GHZ +
1303 regChainOffset,
1304 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1305 pModal->
1306 xatten2Db[i]);
1307 } else {
1308 REG_WRITE(ah,
1309 AR_PHY_GAIN_2GHZ +
1310 regChainOffset,
1311 (REG_READ(ah,
1312 AR_PHY_GAIN_2GHZ +
1313 regChainOffset) &
1314 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
1315 | SM(pModal->
1316 bswMargin[i],
1317 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1318 REG_WRITE(ah,
1319 AR_PHY_GAIN_2GHZ +
1320 regChainOffset,
1321 (REG_READ(ah,
1322 AR_PHY_GAIN_2GHZ +
1323 regChainOffset) &
1324 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
1325 | SM(pModal->bswAtten[i],
1326 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1329 if (AR_SREV_9280_10_OR_LATER(ah)) {
1330 REG_RMW_FIELD(ah,
1331 AR_PHY_RXGAIN +
1332 regChainOffset,
1333 AR9280_PHY_RXGAIN_TXRX_ATTEN,
1334 txRxAttenLocal);
1335 REG_RMW_FIELD(ah,
1336 AR_PHY_RXGAIN +
1337 regChainOffset,
1338 AR9280_PHY_RXGAIN_TXRX_MARGIN,
1339 pModal->rxTxMarginCh[i]);
1340 } else {
1341 REG_WRITE(ah,
1342 AR_PHY_RXGAIN + regChainOffset,
1343 (REG_READ(ah,
1344 AR_PHY_RXGAIN +
1345 regChainOffset) &
1346 ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1347 SM(txRxAttenLocal,
1348 AR_PHY_RXGAIN_TXRX_ATTEN));
1349 REG_WRITE(ah,
1350 AR_PHY_GAIN_2GHZ +
1351 regChainOffset,
1352 (REG_READ(ah,
1353 AR_PHY_GAIN_2GHZ +
1354 regChainOffset) &
1355 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1356 SM(pModal->rxTxMarginCh[i],
1357 AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1362 if (AR_SREV_9280_10_OR_LATER(ah)) {
1363 if (IS_CHAN_2GHZ(chan)) {
1364 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1365 AR_AN_RF2G1_CH0_OB,
1366 AR_AN_RF2G1_CH0_OB_S,
1367 pModal->ob);
1368 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1369 AR_AN_RF2G1_CH0_DB,
1370 AR_AN_RF2G1_CH0_DB_S,
1371 pModal->db);
1372 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1373 AR_AN_RF2G1_CH1_OB,
1374 AR_AN_RF2G1_CH1_OB_S,
1375 pModal->ob_ch1);
1376 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1377 AR_AN_RF2G1_CH1_DB,
1378 AR_AN_RF2G1_CH1_DB_S,
1379 pModal->db_ch1);
1380 } else {
1381 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1382 AR_AN_RF5G1_CH0_OB5,
1383 AR_AN_RF5G1_CH0_OB5_S,
1384 pModal->ob);
1385 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1386 AR_AN_RF5G1_CH0_DB5,
1387 AR_AN_RF5G1_CH0_DB5_S,
1388 pModal->db);
1389 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1390 AR_AN_RF5G1_CH1_OB5,
1391 AR_AN_RF5G1_CH1_OB5_S,
1392 pModal->ob_ch1);
1393 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1394 AR_AN_RF5G1_CH1_DB5,
1395 AR_AN_RF5G1_CH1_DB5_S,
1396 pModal->db_ch1);
1398 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1399 AR_AN_TOP2_XPABIAS_LVL,
1400 AR_AN_TOP2_XPABIAS_LVL_S,
1401 pModal->xpaBiasLvl);
1402 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1403 AR_AN_TOP2_LOCALBIAS,
1404 AR_AN_TOP2_LOCALBIAS_S,
1405 pModal->local_bias);
1406 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
1407 pModal->force_xpaon);
1408 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1409 pModal->force_xpaon);
1412 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1413 pModal->switchSettling);
1414 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1415 pModal->adcDesiredSize);
1417 if (!AR_SREV_9280_10_OR_LATER(ah))
1418 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1419 AR_PHY_DESIRED_SZ_PGA,
1420 pModal->pgaDesiredSize);
1422 REG_WRITE(ah, AR_PHY_RF_CTL4,
1423 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1424 | SM(pModal->txEndToXpaOff,
1425 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1426 | SM(pModal->txFrameToXpaOn,
1427 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1428 | SM(pModal->txFrameToXpaOn,
1429 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1431 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1432 pModal->txEndToRxOn);
1433 if (AR_SREV_9280_10_OR_LATER(ah)) {
1434 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1435 pModal->thresh62);
1436 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
1437 AR_PHY_EXT_CCA0_THRESH62,
1438 pModal->thresh62);
1439 } else {
1440 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1441 pModal->thresh62);
1442 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1443 AR_PHY_EXT_CCA_THRESH62,
1444 pModal->thresh62);
1447 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1448 AR5416_EEP_MINOR_VER_2) {
1449 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1450 AR_PHY_TX_END_DATA_START,
1451 pModal->txFrameToDataStart);
1452 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1453 pModal->txFrameToPaOn);
1456 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1457 AR5416_EEP_MINOR_VER_3) {
1458 if (IS_CHAN_HT40(chan))
1459 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1460 AR_PHY_SETTLING_SWITCH,
1461 pModal->swSettleHt40);
1464 return true;
1467 int ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah,
1468 struct ath9k_channel *chan,
1469 u8 index, u16 *config)
1471 struct ath_hal_5416 *ahp = AH5416(ah);
1472 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1473 struct modal_eep_header *pModal =
1474 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1475 struct base_eep_header *pBase = &eep->baseEepHeader;
1477 switch (index) {
1478 case 0:
1479 *config = pModal->antCtrlCommon & 0xFFFF;
1480 return 0;
1481 case 1:
1482 if (pBase->version >= 0x0E0D) {
1483 if (pModal->useAnt1) {
1484 *config =
1485 ((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
1486 return 0;
1489 break;
1490 default:
1491 break;
1494 return -EINVAL;
1497 u8 ath9k_hw_get_num_ant_config(struct ath_hal *ah,
1498 enum ieee80211_band freq_band)
1500 struct ath_hal_5416 *ahp = AH5416(ah);
1501 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1502 struct modal_eep_header *pModal =
1503 &(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]);
1504 struct base_eep_header *pBase = &eep->baseEepHeader;
1505 u8 num_ant_config;
1507 num_ant_config = 1;
1509 if (pBase->version >= 0x0E0D)
1510 if (pModal->useAnt1)
1511 num_ant_config += 1;
1513 return num_ant_config;
1516 u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz)
1518 struct ath_hal_5416 *ahp = AH5416(ah);
1519 struct ar5416_eeprom *eep =
1520 (struct ar5416_eeprom *) &ahp->ah_eeprom;
1521 u16 spur_val = AR_NO_SPUR;
1523 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1524 "Getting spur idx %d is2Ghz. %d val %x\n",
1525 i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
1527 switch (ah->ah_config.spurmode) {
1528 case SPUR_DISABLE:
1529 break;
1530 case SPUR_ENABLE_IOCTL:
1531 spur_val = ah->ah_config.spurchans[i][is2GHz];
1532 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1533 "Getting spur val from new loc. %d\n", spur_val);
1534 break;
1535 case SPUR_ENABLE_EEPROM:
1536 spur_val = eep->modalHeader[is2GHz].spurChans[i].spurChan;
1537 break;
1541 return spur_val;
1544 u32 ath9k_hw_get_eeprom(struct ath_hal *ah,
1545 enum eeprom_param param)
1547 struct ath_hal_5416 *ahp = AH5416(ah);
1548 struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1549 struct modal_eep_header *pModal = eep->modalHeader;
1550 struct base_eep_header *pBase = &eep->baseEepHeader;
1552 switch (param) {
1553 case EEP_NFTHRESH_5:
1554 return -pModal[0].noiseFloorThreshCh[0];
1555 case EEP_NFTHRESH_2:
1556 return -pModal[1].noiseFloorThreshCh[0];
1557 case AR_EEPROM_MAC(0):
1558 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
1559 case AR_EEPROM_MAC(1):
1560 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
1561 case AR_EEPROM_MAC(2):
1562 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
1563 case EEP_REG_0:
1564 return pBase->regDmn[0];
1565 case EEP_REG_1:
1566 return pBase->regDmn[1];
1567 case EEP_OP_CAP:
1568 return pBase->deviceCap;
1569 case EEP_OP_MODE:
1570 return pBase->opCapFlags;
1571 case EEP_RF_SILENT:
1572 return pBase->rfSilent;
1573 case EEP_OB_5:
1574 return pModal[0].ob;
1575 case EEP_DB_5:
1576 return pModal[0].db;
1577 case EEP_OB_2:
1578 return pModal[1].ob;
1579 case EEP_DB_2:
1580 return pModal[1].db;
1581 case EEP_MINOR_REV:
1582 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
1583 case EEP_TX_MASK:
1584 return pBase->txMask;
1585 case EEP_RX_MASK:
1586 return pBase->rxMask;
1587 default:
1588 return 0;
1592 int ath9k_hw_eeprom_attach(struct ath_hal *ah)
1594 int status;
1596 if (ath9k_hw_use_flash(ah))
1597 ath9k_hw_flash_map(ah);
1599 if (!ath9k_hw_fill_eeprom(ah))
1600 return -EIO;
1602 status = ath9k_hw_check_eeprom(ah);
1604 return status;