mlxsw: spectrum_router: Add helpers for neighbor access
[linux-2.6/btrfs-unstable.git] / block / blk-mq.c
blob4603b115e234887860cbb28520c36ba9e5e7efd8
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 int ddir, bytes, bucket;
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
50 bucket = ddir + 2*(ilog2(bytes) - 9);
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 return bucket;
61 * Check if any of the ctx's have pending work in this hardware queue
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
71 * Mark this ctx as having pending work in this hardware queue
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 void blk_freeze_queue_start(struct request_queue *q)
88 int freeze_depth;
90 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
91 if (freeze_depth == 1) {
92 percpu_ref_kill(&q->q_usage_counter);
93 blk_mq_run_hw_queues(q, false);
96 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
98 void blk_mq_freeze_queue_wait(struct request_queue *q)
100 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
102 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
104 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
105 unsigned long timeout)
107 return wait_event_timeout(q->mq_freeze_wq,
108 percpu_ref_is_zero(&q->q_usage_counter),
109 timeout);
111 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
114 * Guarantee no request is in use, so we can change any data structure of
115 * the queue afterward.
117 void blk_freeze_queue(struct request_queue *q)
120 * In the !blk_mq case we are only calling this to kill the
121 * q_usage_counter, otherwise this increases the freeze depth
122 * and waits for it to return to zero. For this reason there is
123 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
124 * exported to drivers as the only user for unfreeze is blk_mq.
126 blk_freeze_queue_start(q);
127 blk_mq_freeze_queue_wait(q);
130 void blk_mq_freeze_queue(struct request_queue *q)
133 * ...just an alias to keep freeze and unfreeze actions balanced
134 * in the blk_mq_* namespace
136 blk_freeze_queue(q);
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
140 void blk_mq_unfreeze_queue(struct request_queue *q)
142 int freeze_depth;
144 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
145 WARN_ON_ONCE(freeze_depth < 0);
146 if (!freeze_depth) {
147 percpu_ref_reinit(&q->q_usage_counter);
148 wake_up_all(&q->mq_freeze_wq);
151 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
155 * mpt3sas driver such that this function can be removed.
157 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
159 unsigned long flags;
161 spin_lock_irqsave(q->queue_lock, flags);
162 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
163 spin_unlock_irqrestore(q->queue_lock, flags);
165 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
168 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
169 * @q: request queue.
171 * Note: this function does not prevent that the struct request end_io()
172 * callback function is invoked. Once this function is returned, we make
173 * sure no dispatch can happen until the queue is unquiesced via
174 * blk_mq_unquiesce_queue().
176 void blk_mq_quiesce_queue(struct request_queue *q)
178 struct blk_mq_hw_ctx *hctx;
179 unsigned int i;
180 bool rcu = false;
182 blk_mq_quiesce_queue_nowait(q);
184 queue_for_each_hw_ctx(q, hctx, i) {
185 if (hctx->flags & BLK_MQ_F_BLOCKING)
186 synchronize_srcu(hctx->queue_rq_srcu);
187 else
188 rcu = true;
190 if (rcu)
191 synchronize_rcu();
193 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
196 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
197 * @q: request queue.
199 * This function recovers queue into the state before quiescing
200 * which is done by blk_mq_quiesce_queue.
202 void blk_mq_unquiesce_queue(struct request_queue *q)
204 unsigned long flags;
206 spin_lock_irqsave(q->queue_lock, flags);
207 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
208 spin_unlock_irqrestore(q->queue_lock, flags);
210 /* dispatch requests which are inserted during quiescing */
211 blk_mq_run_hw_queues(q, true);
213 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
215 void blk_mq_wake_waiters(struct request_queue *q)
217 struct blk_mq_hw_ctx *hctx;
218 unsigned int i;
220 queue_for_each_hw_ctx(q, hctx, i)
221 if (blk_mq_hw_queue_mapped(hctx))
222 blk_mq_tag_wakeup_all(hctx->tags, true);
225 * If we are called because the queue has now been marked as
226 * dying, we need to ensure that processes currently waiting on
227 * the queue are notified as well.
229 wake_up_all(&q->mq_freeze_wq);
232 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
234 return blk_mq_has_free_tags(hctx->tags);
236 EXPORT_SYMBOL(blk_mq_can_queue);
238 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
239 unsigned int tag, unsigned int op)
241 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
242 struct request *rq = tags->static_rqs[tag];
244 rq->rq_flags = 0;
246 if (data->flags & BLK_MQ_REQ_INTERNAL) {
247 rq->tag = -1;
248 rq->internal_tag = tag;
249 } else {
250 if (blk_mq_tag_busy(data->hctx)) {
251 rq->rq_flags = RQF_MQ_INFLIGHT;
252 atomic_inc(&data->hctx->nr_active);
254 rq->tag = tag;
255 rq->internal_tag = -1;
256 data->hctx->tags->rqs[rq->tag] = rq;
259 INIT_LIST_HEAD(&rq->queuelist);
260 /* csd/requeue_work/fifo_time is initialized before use */
261 rq->q = data->q;
262 rq->mq_ctx = data->ctx;
263 rq->cmd_flags = op;
264 if (blk_queue_io_stat(data->q))
265 rq->rq_flags |= RQF_IO_STAT;
266 /* do not touch atomic flags, it needs atomic ops against the timer */
267 rq->cpu = -1;
268 INIT_HLIST_NODE(&rq->hash);
269 RB_CLEAR_NODE(&rq->rb_node);
270 rq->rq_disk = NULL;
271 rq->part = NULL;
272 rq->start_time = jiffies;
273 #ifdef CONFIG_BLK_CGROUP
274 rq->rl = NULL;
275 set_start_time_ns(rq);
276 rq->io_start_time_ns = 0;
277 #endif
278 rq->nr_phys_segments = 0;
279 #if defined(CONFIG_BLK_DEV_INTEGRITY)
280 rq->nr_integrity_segments = 0;
281 #endif
282 rq->special = NULL;
283 /* tag was already set */
284 rq->extra_len = 0;
286 INIT_LIST_HEAD(&rq->timeout_list);
287 rq->timeout = 0;
289 rq->end_io = NULL;
290 rq->end_io_data = NULL;
291 rq->next_rq = NULL;
293 data->ctx->rq_dispatched[op_is_sync(op)]++;
294 return rq;
297 static struct request *blk_mq_get_request(struct request_queue *q,
298 struct bio *bio, unsigned int op,
299 struct blk_mq_alloc_data *data)
301 struct elevator_queue *e = q->elevator;
302 struct request *rq;
303 unsigned int tag;
304 struct blk_mq_ctx *local_ctx = NULL;
306 blk_queue_enter_live(q);
307 data->q = q;
308 if (likely(!data->ctx))
309 data->ctx = local_ctx = blk_mq_get_ctx(q);
310 if (likely(!data->hctx))
311 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
312 if (op & REQ_NOWAIT)
313 data->flags |= BLK_MQ_REQ_NOWAIT;
315 if (e) {
316 data->flags |= BLK_MQ_REQ_INTERNAL;
319 * Flush requests are special and go directly to the
320 * dispatch list.
322 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
323 e->type->ops.mq.limit_depth(op, data);
326 tag = blk_mq_get_tag(data);
327 if (tag == BLK_MQ_TAG_FAIL) {
328 if (local_ctx) {
329 blk_mq_put_ctx(local_ctx);
330 data->ctx = NULL;
332 blk_queue_exit(q);
333 return NULL;
336 rq = blk_mq_rq_ctx_init(data, tag, op);
337 if (!op_is_flush(op)) {
338 rq->elv.icq = NULL;
339 if (e && e->type->ops.mq.prepare_request) {
340 if (e->type->icq_cache && rq_ioc(bio))
341 blk_mq_sched_assign_ioc(rq, bio);
343 e->type->ops.mq.prepare_request(rq, bio);
344 rq->rq_flags |= RQF_ELVPRIV;
347 data->hctx->queued++;
348 return rq;
351 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
352 unsigned int flags)
354 struct blk_mq_alloc_data alloc_data = { .flags = flags };
355 struct request *rq;
356 int ret;
358 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
359 if (ret)
360 return ERR_PTR(ret);
362 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
363 blk_queue_exit(q);
365 if (!rq)
366 return ERR_PTR(-EWOULDBLOCK);
368 blk_mq_put_ctx(alloc_data.ctx);
370 rq->__data_len = 0;
371 rq->__sector = (sector_t) -1;
372 rq->bio = rq->biotail = NULL;
373 return rq;
375 EXPORT_SYMBOL(blk_mq_alloc_request);
377 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
378 unsigned int op, unsigned int flags, unsigned int hctx_idx)
380 struct blk_mq_alloc_data alloc_data = { .flags = flags };
381 struct request *rq;
382 unsigned int cpu;
383 int ret;
386 * If the tag allocator sleeps we could get an allocation for a
387 * different hardware context. No need to complicate the low level
388 * allocator for this for the rare use case of a command tied to
389 * a specific queue.
391 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
392 return ERR_PTR(-EINVAL);
394 if (hctx_idx >= q->nr_hw_queues)
395 return ERR_PTR(-EIO);
397 ret = blk_queue_enter(q, true);
398 if (ret)
399 return ERR_PTR(ret);
402 * Check if the hardware context is actually mapped to anything.
403 * If not tell the caller that it should skip this queue.
405 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
406 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
407 blk_queue_exit(q);
408 return ERR_PTR(-EXDEV);
410 cpu = cpumask_first(alloc_data.hctx->cpumask);
411 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
413 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
414 blk_queue_exit(q);
416 if (!rq)
417 return ERR_PTR(-EWOULDBLOCK);
419 return rq;
421 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
423 void blk_mq_free_request(struct request *rq)
425 struct request_queue *q = rq->q;
426 struct elevator_queue *e = q->elevator;
427 struct blk_mq_ctx *ctx = rq->mq_ctx;
428 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
429 const int sched_tag = rq->internal_tag;
431 if (rq->rq_flags & RQF_ELVPRIV) {
432 if (e && e->type->ops.mq.finish_request)
433 e->type->ops.mq.finish_request(rq);
434 if (rq->elv.icq) {
435 put_io_context(rq->elv.icq->ioc);
436 rq->elv.icq = NULL;
440 ctx->rq_completed[rq_is_sync(rq)]++;
441 if (rq->rq_flags & RQF_MQ_INFLIGHT)
442 atomic_dec(&hctx->nr_active);
444 wbt_done(q->rq_wb, &rq->issue_stat);
446 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
447 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
448 if (rq->tag != -1)
449 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
450 if (sched_tag != -1)
451 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
452 blk_mq_sched_restart(hctx);
453 blk_queue_exit(q);
455 EXPORT_SYMBOL_GPL(blk_mq_free_request);
457 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
459 blk_account_io_done(rq);
461 if (rq->end_io) {
462 wbt_done(rq->q->rq_wb, &rq->issue_stat);
463 rq->end_io(rq, error);
464 } else {
465 if (unlikely(blk_bidi_rq(rq)))
466 blk_mq_free_request(rq->next_rq);
467 blk_mq_free_request(rq);
470 EXPORT_SYMBOL(__blk_mq_end_request);
472 void blk_mq_end_request(struct request *rq, blk_status_t error)
474 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
475 BUG();
476 __blk_mq_end_request(rq, error);
478 EXPORT_SYMBOL(blk_mq_end_request);
480 static void __blk_mq_complete_request_remote(void *data)
482 struct request *rq = data;
484 rq->q->softirq_done_fn(rq);
487 static void __blk_mq_complete_request(struct request *rq)
489 struct blk_mq_ctx *ctx = rq->mq_ctx;
490 bool shared = false;
491 int cpu;
493 if (rq->internal_tag != -1)
494 blk_mq_sched_completed_request(rq);
495 if (rq->rq_flags & RQF_STATS) {
496 blk_mq_poll_stats_start(rq->q);
497 blk_stat_add(rq);
500 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
501 rq->q->softirq_done_fn(rq);
502 return;
505 cpu = get_cpu();
506 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
507 shared = cpus_share_cache(cpu, ctx->cpu);
509 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
510 rq->csd.func = __blk_mq_complete_request_remote;
511 rq->csd.info = rq;
512 rq->csd.flags = 0;
513 smp_call_function_single_async(ctx->cpu, &rq->csd);
514 } else {
515 rq->q->softirq_done_fn(rq);
517 put_cpu();
521 * blk_mq_complete_request - end I/O on a request
522 * @rq: the request being processed
524 * Description:
525 * Ends all I/O on a request. It does not handle partial completions.
526 * The actual completion happens out-of-order, through a IPI handler.
528 void blk_mq_complete_request(struct request *rq)
530 struct request_queue *q = rq->q;
532 if (unlikely(blk_should_fake_timeout(q)))
533 return;
534 if (!blk_mark_rq_complete(rq))
535 __blk_mq_complete_request(rq);
537 EXPORT_SYMBOL(blk_mq_complete_request);
539 int blk_mq_request_started(struct request *rq)
541 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
543 EXPORT_SYMBOL_GPL(blk_mq_request_started);
545 void blk_mq_start_request(struct request *rq)
547 struct request_queue *q = rq->q;
549 blk_mq_sched_started_request(rq);
551 trace_block_rq_issue(q, rq);
553 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
554 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
555 rq->rq_flags |= RQF_STATS;
556 wbt_issue(q->rq_wb, &rq->issue_stat);
559 blk_add_timer(rq);
562 * Ensure that ->deadline is visible before set the started
563 * flag and clear the completed flag.
565 smp_mb__before_atomic();
568 * Mark us as started and clear complete. Complete might have been
569 * set if requeue raced with timeout, which then marked it as
570 * complete. So be sure to clear complete again when we start
571 * the request, otherwise we'll ignore the completion event.
573 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
574 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
575 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
576 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
578 if (q->dma_drain_size && blk_rq_bytes(rq)) {
580 * Make sure space for the drain appears. We know we can do
581 * this because max_hw_segments has been adjusted to be one
582 * fewer than the device can handle.
584 rq->nr_phys_segments++;
587 EXPORT_SYMBOL(blk_mq_start_request);
590 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
591 * flag isn't set yet, so there may be race with timeout handler,
592 * but given rq->deadline is just set in .queue_rq() under
593 * this situation, the race won't be possible in reality because
594 * rq->timeout should be set as big enough to cover the window
595 * between blk_mq_start_request() called from .queue_rq() and
596 * clearing REQ_ATOM_STARTED here.
598 static void __blk_mq_requeue_request(struct request *rq)
600 struct request_queue *q = rq->q;
602 trace_block_rq_requeue(q, rq);
603 wbt_requeue(q->rq_wb, &rq->issue_stat);
604 blk_mq_sched_requeue_request(rq);
606 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
607 if (q->dma_drain_size && blk_rq_bytes(rq))
608 rq->nr_phys_segments--;
612 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
614 __blk_mq_requeue_request(rq);
616 BUG_ON(blk_queued_rq(rq));
617 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
619 EXPORT_SYMBOL(blk_mq_requeue_request);
621 static void blk_mq_requeue_work(struct work_struct *work)
623 struct request_queue *q =
624 container_of(work, struct request_queue, requeue_work.work);
625 LIST_HEAD(rq_list);
626 struct request *rq, *next;
627 unsigned long flags;
629 spin_lock_irqsave(&q->requeue_lock, flags);
630 list_splice_init(&q->requeue_list, &rq_list);
631 spin_unlock_irqrestore(&q->requeue_lock, flags);
633 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
634 if (!(rq->rq_flags & RQF_SOFTBARRIER))
635 continue;
637 rq->rq_flags &= ~RQF_SOFTBARRIER;
638 list_del_init(&rq->queuelist);
639 blk_mq_sched_insert_request(rq, true, false, false, true);
642 while (!list_empty(&rq_list)) {
643 rq = list_entry(rq_list.next, struct request, queuelist);
644 list_del_init(&rq->queuelist);
645 blk_mq_sched_insert_request(rq, false, false, false, true);
648 blk_mq_run_hw_queues(q, false);
651 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
652 bool kick_requeue_list)
654 struct request_queue *q = rq->q;
655 unsigned long flags;
658 * We abuse this flag that is otherwise used by the I/O scheduler to
659 * request head insertation from the workqueue.
661 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
663 spin_lock_irqsave(&q->requeue_lock, flags);
664 if (at_head) {
665 rq->rq_flags |= RQF_SOFTBARRIER;
666 list_add(&rq->queuelist, &q->requeue_list);
667 } else {
668 list_add_tail(&rq->queuelist, &q->requeue_list);
670 spin_unlock_irqrestore(&q->requeue_lock, flags);
672 if (kick_requeue_list)
673 blk_mq_kick_requeue_list(q);
675 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
677 void blk_mq_kick_requeue_list(struct request_queue *q)
679 kblockd_schedule_delayed_work(&q->requeue_work, 0);
681 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
683 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
684 unsigned long msecs)
686 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
687 msecs_to_jiffies(msecs));
689 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
691 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
693 if (tag < tags->nr_tags) {
694 prefetch(tags->rqs[tag]);
695 return tags->rqs[tag];
698 return NULL;
700 EXPORT_SYMBOL(blk_mq_tag_to_rq);
702 struct blk_mq_timeout_data {
703 unsigned long next;
704 unsigned int next_set;
707 void blk_mq_rq_timed_out(struct request *req, bool reserved)
709 const struct blk_mq_ops *ops = req->q->mq_ops;
710 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
713 * We know that complete is set at this point. If STARTED isn't set
714 * anymore, then the request isn't active and the "timeout" should
715 * just be ignored. This can happen due to the bitflag ordering.
716 * Timeout first checks if STARTED is set, and if it is, assumes
717 * the request is active. But if we race with completion, then
718 * both flags will get cleared. So check here again, and ignore
719 * a timeout event with a request that isn't active.
721 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
722 return;
724 if (ops->timeout)
725 ret = ops->timeout(req, reserved);
727 switch (ret) {
728 case BLK_EH_HANDLED:
729 __blk_mq_complete_request(req);
730 break;
731 case BLK_EH_RESET_TIMER:
732 blk_add_timer(req);
733 blk_clear_rq_complete(req);
734 break;
735 case BLK_EH_NOT_HANDLED:
736 break;
737 default:
738 printk(KERN_ERR "block: bad eh return: %d\n", ret);
739 break;
743 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
744 struct request *rq, void *priv, bool reserved)
746 struct blk_mq_timeout_data *data = priv;
748 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
749 return;
752 * The rq being checked may have been freed and reallocated
753 * out already here, we avoid this race by checking rq->deadline
754 * and REQ_ATOM_COMPLETE flag together:
756 * - if rq->deadline is observed as new value because of
757 * reusing, the rq won't be timed out because of timing.
758 * - if rq->deadline is observed as previous value,
759 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
760 * because we put a barrier between setting rq->deadline
761 * and clearing the flag in blk_mq_start_request(), so
762 * this rq won't be timed out too.
764 if (time_after_eq(jiffies, rq->deadline)) {
765 if (!blk_mark_rq_complete(rq))
766 blk_mq_rq_timed_out(rq, reserved);
767 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
768 data->next = rq->deadline;
769 data->next_set = 1;
773 static void blk_mq_timeout_work(struct work_struct *work)
775 struct request_queue *q =
776 container_of(work, struct request_queue, timeout_work);
777 struct blk_mq_timeout_data data = {
778 .next = 0,
779 .next_set = 0,
781 int i;
783 /* A deadlock might occur if a request is stuck requiring a
784 * timeout at the same time a queue freeze is waiting
785 * completion, since the timeout code would not be able to
786 * acquire the queue reference here.
788 * That's why we don't use blk_queue_enter here; instead, we use
789 * percpu_ref_tryget directly, because we need to be able to
790 * obtain a reference even in the short window between the queue
791 * starting to freeze, by dropping the first reference in
792 * blk_freeze_queue_start, and the moment the last request is
793 * consumed, marked by the instant q_usage_counter reaches
794 * zero.
796 if (!percpu_ref_tryget(&q->q_usage_counter))
797 return;
799 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
801 if (data.next_set) {
802 data.next = blk_rq_timeout(round_jiffies_up(data.next));
803 mod_timer(&q->timeout, data.next);
804 } else {
805 struct blk_mq_hw_ctx *hctx;
807 queue_for_each_hw_ctx(q, hctx, i) {
808 /* the hctx may be unmapped, so check it here */
809 if (blk_mq_hw_queue_mapped(hctx))
810 blk_mq_tag_idle(hctx);
813 blk_queue_exit(q);
816 struct flush_busy_ctx_data {
817 struct blk_mq_hw_ctx *hctx;
818 struct list_head *list;
821 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 struct flush_busy_ctx_data *flush_data = data;
824 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
825 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827 sbitmap_clear_bit(sb, bitnr);
828 spin_lock(&ctx->lock);
829 list_splice_tail_init(&ctx->rq_list, flush_data->list);
830 spin_unlock(&ctx->lock);
831 return true;
835 * Process software queues that have been marked busy, splicing them
836 * to the for-dispatch
838 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 struct flush_busy_ctx_data data = {
841 .hctx = hctx,
842 .list = list,
845 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849 static inline unsigned int queued_to_index(unsigned int queued)
851 if (!queued)
852 return 0;
854 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
857 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
858 bool wait)
860 struct blk_mq_alloc_data data = {
861 .q = rq->q,
862 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
863 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
866 might_sleep_if(wait);
868 if (rq->tag != -1)
869 goto done;
871 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
872 data.flags |= BLK_MQ_REQ_RESERVED;
874 rq->tag = blk_mq_get_tag(&data);
875 if (rq->tag >= 0) {
876 if (blk_mq_tag_busy(data.hctx)) {
877 rq->rq_flags |= RQF_MQ_INFLIGHT;
878 atomic_inc(&data.hctx->nr_active);
880 data.hctx->tags->rqs[rq->tag] = rq;
883 done:
884 if (hctx)
885 *hctx = data.hctx;
886 return rq->tag != -1;
889 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
890 struct request *rq)
892 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
893 rq->tag = -1;
895 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
896 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
897 atomic_dec(&hctx->nr_active);
901 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
902 struct request *rq)
904 if (rq->tag == -1 || rq->internal_tag == -1)
905 return;
907 __blk_mq_put_driver_tag(hctx, rq);
910 static void blk_mq_put_driver_tag(struct request *rq)
912 struct blk_mq_hw_ctx *hctx;
914 if (rq->tag == -1 || rq->internal_tag == -1)
915 return;
917 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
918 __blk_mq_put_driver_tag(hctx, rq);
922 * If we fail getting a driver tag because all the driver tags are already
923 * assigned and on the dispatch list, BUT the first entry does not have a
924 * tag, then we could deadlock. For that case, move entries with assigned
925 * driver tags to the front, leaving the set of tagged requests in the
926 * same order, and the untagged set in the same order.
928 static bool reorder_tags_to_front(struct list_head *list)
930 struct request *rq, *tmp, *first = NULL;
932 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
933 if (rq == first)
934 break;
935 if (rq->tag != -1) {
936 list_move(&rq->queuelist, list);
937 if (!first)
938 first = rq;
942 return first != NULL;
945 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
946 void *key)
948 struct blk_mq_hw_ctx *hctx;
950 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
952 list_del(&wait->entry);
953 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
954 blk_mq_run_hw_queue(hctx, true);
955 return 1;
958 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
960 struct sbq_wait_state *ws;
963 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
964 * The thread which wins the race to grab this bit adds the hardware
965 * queue to the wait queue.
967 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
968 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
969 return false;
971 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
972 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
975 * As soon as this returns, it's no longer safe to fiddle with
976 * hctx->dispatch_wait, since a completion can wake up the wait queue
977 * and unlock the bit.
979 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
980 return true;
983 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
985 struct blk_mq_hw_ctx *hctx;
986 struct request *rq;
987 int errors, queued;
989 if (list_empty(list))
990 return false;
993 * Now process all the entries, sending them to the driver.
995 errors = queued = 0;
996 do {
997 struct blk_mq_queue_data bd;
998 blk_status_t ret;
1000 rq = list_first_entry(list, struct request, queuelist);
1001 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1002 if (!queued && reorder_tags_to_front(list))
1003 continue;
1006 * The initial allocation attempt failed, so we need to
1007 * rerun the hardware queue when a tag is freed.
1009 if (!blk_mq_dispatch_wait_add(hctx))
1010 break;
1013 * It's possible that a tag was freed in the window
1014 * between the allocation failure and adding the
1015 * hardware queue to the wait queue.
1017 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1018 break;
1021 list_del_init(&rq->queuelist);
1023 bd.rq = rq;
1026 * Flag last if we have no more requests, or if we have more
1027 * but can't assign a driver tag to it.
1029 if (list_empty(list))
1030 bd.last = true;
1031 else {
1032 struct request *nxt;
1034 nxt = list_first_entry(list, struct request, queuelist);
1035 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1038 ret = q->mq_ops->queue_rq(hctx, &bd);
1039 if (ret == BLK_STS_RESOURCE) {
1040 blk_mq_put_driver_tag_hctx(hctx, rq);
1041 list_add(&rq->queuelist, list);
1042 __blk_mq_requeue_request(rq);
1043 break;
1046 if (unlikely(ret != BLK_STS_OK)) {
1047 errors++;
1048 blk_mq_end_request(rq, BLK_STS_IOERR);
1049 continue;
1052 queued++;
1053 } while (!list_empty(list));
1055 hctx->dispatched[queued_to_index(queued)]++;
1058 * Any items that need requeuing? Stuff them into hctx->dispatch,
1059 * that is where we will continue on next queue run.
1061 if (!list_empty(list)) {
1063 * If an I/O scheduler has been configured and we got a driver
1064 * tag for the next request already, free it again.
1066 rq = list_first_entry(list, struct request, queuelist);
1067 blk_mq_put_driver_tag(rq);
1069 spin_lock(&hctx->lock);
1070 list_splice_init(list, &hctx->dispatch);
1071 spin_unlock(&hctx->lock);
1074 * If SCHED_RESTART was set by the caller of this function and
1075 * it is no longer set that means that it was cleared by another
1076 * thread and hence that a queue rerun is needed.
1078 * If TAG_WAITING is set that means that an I/O scheduler has
1079 * been configured and another thread is waiting for a driver
1080 * tag. To guarantee fairness, do not rerun this hardware queue
1081 * but let the other thread grab the driver tag.
1083 * If no I/O scheduler has been configured it is possible that
1084 * the hardware queue got stopped and restarted before requests
1085 * were pushed back onto the dispatch list. Rerun the queue to
1086 * avoid starvation. Notes:
1087 * - blk_mq_run_hw_queue() checks whether or not a queue has
1088 * been stopped before rerunning a queue.
1089 * - Some but not all block drivers stop a queue before
1090 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1091 * and dm-rq.
1093 if (!blk_mq_sched_needs_restart(hctx) &&
1094 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1095 blk_mq_run_hw_queue(hctx, true);
1098 return (queued + errors) != 0;
1101 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1103 int srcu_idx;
1105 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1106 cpu_online(hctx->next_cpu));
1108 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1109 rcu_read_lock();
1110 blk_mq_sched_dispatch_requests(hctx);
1111 rcu_read_unlock();
1112 } else {
1113 might_sleep();
1115 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1116 blk_mq_sched_dispatch_requests(hctx);
1117 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1122 * It'd be great if the workqueue API had a way to pass
1123 * in a mask and had some smarts for more clever placement.
1124 * For now we just round-robin here, switching for every
1125 * BLK_MQ_CPU_WORK_BATCH queued items.
1127 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1129 if (hctx->queue->nr_hw_queues == 1)
1130 return WORK_CPU_UNBOUND;
1132 if (--hctx->next_cpu_batch <= 0) {
1133 int next_cpu;
1135 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1136 if (next_cpu >= nr_cpu_ids)
1137 next_cpu = cpumask_first(hctx->cpumask);
1139 hctx->next_cpu = next_cpu;
1140 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1143 return hctx->next_cpu;
1146 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1147 unsigned long msecs)
1149 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1150 return;
1152 if (unlikely(blk_mq_hctx_stopped(hctx)))
1153 return;
1155 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1156 int cpu = get_cpu();
1157 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1158 __blk_mq_run_hw_queue(hctx);
1159 put_cpu();
1160 return;
1163 put_cpu();
1166 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1167 &hctx->run_work,
1168 msecs_to_jiffies(msecs));
1171 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1173 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1175 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1177 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1179 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1181 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1183 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1185 struct blk_mq_hw_ctx *hctx;
1186 int i;
1188 queue_for_each_hw_ctx(q, hctx, i) {
1189 if (!blk_mq_hctx_has_pending(hctx) ||
1190 blk_mq_hctx_stopped(hctx))
1191 continue;
1193 blk_mq_run_hw_queue(hctx, async);
1196 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1199 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1200 * @q: request queue.
1202 * The caller is responsible for serializing this function against
1203 * blk_mq_{start,stop}_hw_queue().
1205 bool blk_mq_queue_stopped(struct request_queue *q)
1207 struct blk_mq_hw_ctx *hctx;
1208 int i;
1210 queue_for_each_hw_ctx(q, hctx, i)
1211 if (blk_mq_hctx_stopped(hctx))
1212 return true;
1214 return false;
1216 EXPORT_SYMBOL(blk_mq_queue_stopped);
1219 * This function is often used for pausing .queue_rq() by driver when
1220 * there isn't enough resource or some conditions aren't satisfied, and
1221 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1223 * We do not guarantee that dispatch can be drained or blocked
1224 * after blk_mq_stop_hw_queue() returns. Please use
1225 * blk_mq_quiesce_queue() for that requirement.
1227 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1229 cancel_delayed_work(&hctx->run_work);
1231 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1233 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1236 * This function is often used for pausing .queue_rq() by driver when
1237 * there isn't enough resource or some conditions aren't satisfied, and
1238 * BLK_MQ_RQ_QUEUE_BUSY is usually returned.
1240 * We do not guarantee that dispatch can be drained or blocked
1241 * after blk_mq_stop_hw_queues() returns. Please use
1242 * blk_mq_quiesce_queue() for that requirement.
1244 void blk_mq_stop_hw_queues(struct request_queue *q)
1246 struct blk_mq_hw_ctx *hctx;
1247 int i;
1249 queue_for_each_hw_ctx(q, hctx, i)
1250 blk_mq_stop_hw_queue(hctx);
1252 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1254 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1256 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1258 blk_mq_run_hw_queue(hctx, false);
1260 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1262 void blk_mq_start_hw_queues(struct request_queue *q)
1264 struct blk_mq_hw_ctx *hctx;
1265 int i;
1267 queue_for_each_hw_ctx(q, hctx, i)
1268 blk_mq_start_hw_queue(hctx);
1270 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1272 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1274 if (!blk_mq_hctx_stopped(hctx))
1275 return;
1277 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1278 blk_mq_run_hw_queue(hctx, async);
1280 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1282 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1284 struct blk_mq_hw_ctx *hctx;
1285 int i;
1287 queue_for_each_hw_ctx(q, hctx, i)
1288 blk_mq_start_stopped_hw_queue(hctx, async);
1290 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1292 static void blk_mq_run_work_fn(struct work_struct *work)
1294 struct blk_mq_hw_ctx *hctx;
1296 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1299 * If we are stopped, don't run the queue. The exception is if
1300 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1301 * the STOPPED bit and run it.
1303 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1304 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1305 return;
1307 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1308 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1311 __blk_mq_run_hw_queue(hctx);
1315 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1317 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1318 return;
1321 * Stop the hw queue, then modify currently delayed work.
1322 * This should prevent us from running the queue prematurely.
1323 * Mark the queue as auto-clearing STOPPED when it runs.
1325 blk_mq_stop_hw_queue(hctx);
1326 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1327 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1328 &hctx->run_work,
1329 msecs_to_jiffies(msecs));
1331 EXPORT_SYMBOL(blk_mq_delay_queue);
1333 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1334 struct request *rq,
1335 bool at_head)
1337 struct blk_mq_ctx *ctx = rq->mq_ctx;
1339 lockdep_assert_held(&ctx->lock);
1341 trace_block_rq_insert(hctx->queue, rq);
1343 if (at_head)
1344 list_add(&rq->queuelist, &ctx->rq_list);
1345 else
1346 list_add_tail(&rq->queuelist, &ctx->rq_list);
1349 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1350 bool at_head)
1352 struct blk_mq_ctx *ctx = rq->mq_ctx;
1354 lockdep_assert_held(&ctx->lock);
1356 __blk_mq_insert_req_list(hctx, rq, at_head);
1357 blk_mq_hctx_mark_pending(hctx, ctx);
1360 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1361 struct list_head *list)
1365 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1366 * offline now
1368 spin_lock(&ctx->lock);
1369 while (!list_empty(list)) {
1370 struct request *rq;
1372 rq = list_first_entry(list, struct request, queuelist);
1373 BUG_ON(rq->mq_ctx != ctx);
1374 list_del_init(&rq->queuelist);
1375 __blk_mq_insert_req_list(hctx, rq, false);
1377 blk_mq_hctx_mark_pending(hctx, ctx);
1378 spin_unlock(&ctx->lock);
1381 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1383 struct request *rqa = container_of(a, struct request, queuelist);
1384 struct request *rqb = container_of(b, struct request, queuelist);
1386 return !(rqa->mq_ctx < rqb->mq_ctx ||
1387 (rqa->mq_ctx == rqb->mq_ctx &&
1388 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1391 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1393 struct blk_mq_ctx *this_ctx;
1394 struct request_queue *this_q;
1395 struct request *rq;
1396 LIST_HEAD(list);
1397 LIST_HEAD(ctx_list);
1398 unsigned int depth;
1400 list_splice_init(&plug->mq_list, &list);
1402 list_sort(NULL, &list, plug_ctx_cmp);
1404 this_q = NULL;
1405 this_ctx = NULL;
1406 depth = 0;
1408 while (!list_empty(&list)) {
1409 rq = list_entry_rq(list.next);
1410 list_del_init(&rq->queuelist);
1411 BUG_ON(!rq->q);
1412 if (rq->mq_ctx != this_ctx) {
1413 if (this_ctx) {
1414 trace_block_unplug(this_q, depth, from_schedule);
1415 blk_mq_sched_insert_requests(this_q, this_ctx,
1416 &ctx_list,
1417 from_schedule);
1420 this_ctx = rq->mq_ctx;
1421 this_q = rq->q;
1422 depth = 0;
1425 depth++;
1426 list_add_tail(&rq->queuelist, &ctx_list);
1430 * If 'this_ctx' is set, we know we have entries to complete
1431 * on 'ctx_list'. Do those.
1433 if (this_ctx) {
1434 trace_block_unplug(this_q, depth, from_schedule);
1435 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1436 from_schedule);
1440 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1442 blk_init_request_from_bio(rq, bio);
1444 blk_account_io_start(rq, true);
1447 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1449 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1450 !blk_queue_nomerges(hctx->queue);
1453 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1454 struct blk_mq_ctx *ctx,
1455 struct request *rq)
1457 spin_lock(&ctx->lock);
1458 __blk_mq_insert_request(hctx, rq, false);
1459 spin_unlock(&ctx->lock);
1462 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1464 if (rq->tag != -1)
1465 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1467 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1470 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1471 struct request *rq,
1472 blk_qc_t *cookie, bool may_sleep)
1474 struct request_queue *q = rq->q;
1475 struct blk_mq_queue_data bd = {
1476 .rq = rq,
1477 .last = true,
1479 blk_qc_t new_cookie;
1480 blk_status_t ret;
1481 bool run_queue = true;
1483 /* RCU or SRCU read lock is needed before checking quiesced flag */
1484 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1485 run_queue = false;
1486 goto insert;
1489 if (q->elevator)
1490 goto insert;
1492 if (!blk_mq_get_driver_tag(rq, NULL, false))
1493 goto insert;
1495 new_cookie = request_to_qc_t(hctx, rq);
1498 * For OK queue, we are done. For error, kill it. Any other
1499 * error (busy), just add it to our list as we previously
1500 * would have done
1502 ret = q->mq_ops->queue_rq(hctx, &bd);
1503 switch (ret) {
1504 case BLK_STS_OK:
1505 *cookie = new_cookie;
1506 return;
1507 case BLK_STS_RESOURCE:
1508 __blk_mq_requeue_request(rq);
1509 goto insert;
1510 default:
1511 *cookie = BLK_QC_T_NONE;
1512 blk_mq_end_request(rq, ret);
1513 return;
1516 insert:
1517 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1520 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1521 struct request *rq, blk_qc_t *cookie)
1523 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1524 rcu_read_lock();
1525 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1526 rcu_read_unlock();
1527 } else {
1528 unsigned int srcu_idx;
1530 might_sleep();
1532 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1533 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1534 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1538 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1540 const int is_sync = op_is_sync(bio->bi_opf);
1541 const int is_flush_fua = op_is_flush(bio->bi_opf);
1542 struct blk_mq_alloc_data data = { .flags = 0 };
1543 struct request *rq;
1544 unsigned int request_count = 0;
1545 struct blk_plug *plug;
1546 struct request *same_queue_rq = NULL;
1547 blk_qc_t cookie;
1548 unsigned int wb_acct;
1550 blk_queue_bounce(q, &bio);
1552 blk_queue_split(q, &bio);
1554 if (!bio_integrity_prep(bio))
1555 return BLK_QC_T_NONE;
1557 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1558 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1559 return BLK_QC_T_NONE;
1561 if (blk_mq_sched_bio_merge(q, bio))
1562 return BLK_QC_T_NONE;
1564 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1566 trace_block_getrq(q, bio, bio->bi_opf);
1568 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1569 if (unlikely(!rq)) {
1570 __wbt_done(q->rq_wb, wb_acct);
1571 if (bio->bi_opf & REQ_NOWAIT)
1572 bio_wouldblock_error(bio);
1573 return BLK_QC_T_NONE;
1576 wbt_track(&rq->issue_stat, wb_acct);
1578 cookie = request_to_qc_t(data.hctx, rq);
1580 plug = current->plug;
1581 if (unlikely(is_flush_fua)) {
1582 blk_mq_put_ctx(data.ctx);
1583 blk_mq_bio_to_request(rq, bio);
1584 if (q->elevator) {
1585 blk_mq_sched_insert_request(rq, false, true, true,
1586 true);
1587 } else {
1588 blk_insert_flush(rq);
1589 blk_mq_run_hw_queue(data.hctx, true);
1591 } else if (plug && q->nr_hw_queues == 1) {
1592 struct request *last = NULL;
1594 blk_mq_put_ctx(data.ctx);
1595 blk_mq_bio_to_request(rq, bio);
1598 * @request_count may become stale because of schedule
1599 * out, so check the list again.
1601 if (list_empty(&plug->mq_list))
1602 request_count = 0;
1603 else if (blk_queue_nomerges(q))
1604 request_count = blk_plug_queued_count(q);
1606 if (!request_count)
1607 trace_block_plug(q);
1608 else
1609 last = list_entry_rq(plug->mq_list.prev);
1611 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1612 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1613 blk_flush_plug_list(plug, false);
1614 trace_block_plug(q);
1617 list_add_tail(&rq->queuelist, &plug->mq_list);
1618 } else if (plug && !blk_queue_nomerges(q)) {
1619 blk_mq_bio_to_request(rq, bio);
1622 * We do limited plugging. If the bio can be merged, do that.
1623 * Otherwise the existing request in the plug list will be
1624 * issued. So the plug list will have one request at most
1625 * The plug list might get flushed before this. If that happens,
1626 * the plug list is empty, and same_queue_rq is invalid.
1628 if (list_empty(&plug->mq_list))
1629 same_queue_rq = NULL;
1630 if (same_queue_rq)
1631 list_del_init(&same_queue_rq->queuelist);
1632 list_add_tail(&rq->queuelist, &plug->mq_list);
1634 blk_mq_put_ctx(data.ctx);
1636 if (same_queue_rq) {
1637 data.hctx = blk_mq_map_queue(q,
1638 same_queue_rq->mq_ctx->cpu);
1639 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1640 &cookie);
1642 } else if (q->nr_hw_queues > 1 && is_sync) {
1643 blk_mq_put_ctx(data.ctx);
1644 blk_mq_bio_to_request(rq, bio);
1645 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1646 } else if (q->elevator) {
1647 blk_mq_put_ctx(data.ctx);
1648 blk_mq_bio_to_request(rq, bio);
1649 blk_mq_sched_insert_request(rq, false, true, true, true);
1650 } else {
1651 blk_mq_put_ctx(data.ctx);
1652 blk_mq_bio_to_request(rq, bio);
1653 blk_mq_queue_io(data.hctx, data.ctx, rq);
1654 blk_mq_run_hw_queue(data.hctx, true);
1657 return cookie;
1660 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1661 unsigned int hctx_idx)
1663 struct page *page;
1665 if (tags->rqs && set->ops->exit_request) {
1666 int i;
1668 for (i = 0; i < tags->nr_tags; i++) {
1669 struct request *rq = tags->static_rqs[i];
1671 if (!rq)
1672 continue;
1673 set->ops->exit_request(set, rq, hctx_idx);
1674 tags->static_rqs[i] = NULL;
1678 while (!list_empty(&tags->page_list)) {
1679 page = list_first_entry(&tags->page_list, struct page, lru);
1680 list_del_init(&page->lru);
1682 * Remove kmemleak object previously allocated in
1683 * blk_mq_init_rq_map().
1685 kmemleak_free(page_address(page));
1686 __free_pages(page, page->private);
1690 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1692 kfree(tags->rqs);
1693 tags->rqs = NULL;
1694 kfree(tags->static_rqs);
1695 tags->static_rqs = NULL;
1697 blk_mq_free_tags(tags);
1700 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1701 unsigned int hctx_idx,
1702 unsigned int nr_tags,
1703 unsigned int reserved_tags)
1705 struct blk_mq_tags *tags;
1706 int node;
1708 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1709 if (node == NUMA_NO_NODE)
1710 node = set->numa_node;
1712 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1713 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1714 if (!tags)
1715 return NULL;
1717 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1718 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1719 node);
1720 if (!tags->rqs) {
1721 blk_mq_free_tags(tags);
1722 return NULL;
1725 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1726 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1727 node);
1728 if (!tags->static_rqs) {
1729 kfree(tags->rqs);
1730 blk_mq_free_tags(tags);
1731 return NULL;
1734 return tags;
1737 static size_t order_to_size(unsigned int order)
1739 return (size_t)PAGE_SIZE << order;
1742 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1743 unsigned int hctx_idx, unsigned int depth)
1745 unsigned int i, j, entries_per_page, max_order = 4;
1746 size_t rq_size, left;
1747 int node;
1749 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1750 if (node == NUMA_NO_NODE)
1751 node = set->numa_node;
1753 INIT_LIST_HEAD(&tags->page_list);
1756 * rq_size is the size of the request plus driver payload, rounded
1757 * to the cacheline size
1759 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1760 cache_line_size());
1761 left = rq_size * depth;
1763 for (i = 0; i < depth; ) {
1764 int this_order = max_order;
1765 struct page *page;
1766 int to_do;
1767 void *p;
1769 while (this_order && left < order_to_size(this_order - 1))
1770 this_order--;
1772 do {
1773 page = alloc_pages_node(node,
1774 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1775 this_order);
1776 if (page)
1777 break;
1778 if (!this_order--)
1779 break;
1780 if (order_to_size(this_order) < rq_size)
1781 break;
1782 } while (1);
1784 if (!page)
1785 goto fail;
1787 page->private = this_order;
1788 list_add_tail(&page->lru, &tags->page_list);
1790 p = page_address(page);
1792 * Allow kmemleak to scan these pages as they contain pointers
1793 * to additional allocations like via ops->init_request().
1795 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1796 entries_per_page = order_to_size(this_order) / rq_size;
1797 to_do = min(entries_per_page, depth - i);
1798 left -= to_do * rq_size;
1799 for (j = 0; j < to_do; j++) {
1800 struct request *rq = p;
1802 tags->static_rqs[i] = rq;
1803 if (set->ops->init_request) {
1804 if (set->ops->init_request(set, rq, hctx_idx,
1805 node)) {
1806 tags->static_rqs[i] = NULL;
1807 goto fail;
1811 p += rq_size;
1812 i++;
1815 return 0;
1817 fail:
1818 blk_mq_free_rqs(set, tags, hctx_idx);
1819 return -ENOMEM;
1823 * 'cpu' is going away. splice any existing rq_list entries from this
1824 * software queue to the hw queue dispatch list, and ensure that it
1825 * gets run.
1827 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1829 struct blk_mq_hw_ctx *hctx;
1830 struct blk_mq_ctx *ctx;
1831 LIST_HEAD(tmp);
1833 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1834 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1836 spin_lock(&ctx->lock);
1837 if (!list_empty(&ctx->rq_list)) {
1838 list_splice_init(&ctx->rq_list, &tmp);
1839 blk_mq_hctx_clear_pending(hctx, ctx);
1841 spin_unlock(&ctx->lock);
1843 if (list_empty(&tmp))
1844 return 0;
1846 spin_lock(&hctx->lock);
1847 list_splice_tail_init(&tmp, &hctx->dispatch);
1848 spin_unlock(&hctx->lock);
1850 blk_mq_run_hw_queue(hctx, true);
1851 return 0;
1854 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1856 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1857 &hctx->cpuhp_dead);
1860 /* hctx->ctxs will be freed in queue's release handler */
1861 static void blk_mq_exit_hctx(struct request_queue *q,
1862 struct blk_mq_tag_set *set,
1863 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1865 blk_mq_debugfs_unregister_hctx(hctx);
1867 blk_mq_tag_idle(hctx);
1869 if (set->ops->exit_request)
1870 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1872 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1874 if (set->ops->exit_hctx)
1875 set->ops->exit_hctx(hctx, hctx_idx);
1877 if (hctx->flags & BLK_MQ_F_BLOCKING)
1878 cleanup_srcu_struct(hctx->queue_rq_srcu);
1880 blk_mq_remove_cpuhp(hctx);
1881 blk_free_flush_queue(hctx->fq);
1882 sbitmap_free(&hctx->ctx_map);
1885 static void blk_mq_exit_hw_queues(struct request_queue *q,
1886 struct blk_mq_tag_set *set, int nr_queue)
1888 struct blk_mq_hw_ctx *hctx;
1889 unsigned int i;
1891 queue_for_each_hw_ctx(q, hctx, i) {
1892 if (i == nr_queue)
1893 break;
1894 blk_mq_exit_hctx(q, set, hctx, i);
1898 static int blk_mq_init_hctx(struct request_queue *q,
1899 struct blk_mq_tag_set *set,
1900 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1902 int node;
1904 node = hctx->numa_node;
1905 if (node == NUMA_NO_NODE)
1906 node = hctx->numa_node = set->numa_node;
1908 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1909 spin_lock_init(&hctx->lock);
1910 INIT_LIST_HEAD(&hctx->dispatch);
1911 hctx->queue = q;
1912 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1914 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1916 hctx->tags = set->tags[hctx_idx];
1919 * Allocate space for all possible cpus to avoid allocation at
1920 * runtime
1922 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1923 GFP_KERNEL, node);
1924 if (!hctx->ctxs)
1925 goto unregister_cpu_notifier;
1927 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1928 node))
1929 goto free_ctxs;
1931 hctx->nr_ctx = 0;
1933 if (set->ops->init_hctx &&
1934 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1935 goto free_bitmap;
1937 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1938 goto exit_hctx;
1940 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1941 if (!hctx->fq)
1942 goto sched_exit_hctx;
1944 if (set->ops->init_request &&
1945 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1946 node))
1947 goto free_fq;
1949 if (hctx->flags & BLK_MQ_F_BLOCKING)
1950 init_srcu_struct(hctx->queue_rq_srcu);
1952 blk_mq_debugfs_register_hctx(q, hctx);
1954 return 0;
1956 free_fq:
1957 kfree(hctx->fq);
1958 sched_exit_hctx:
1959 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1960 exit_hctx:
1961 if (set->ops->exit_hctx)
1962 set->ops->exit_hctx(hctx, hctx_idx);
1963 free_bitmap:
1964 sbitmap_free(&hctx->ctx_map);
1965 free_ctxs:
1966 kfree(hctx->ctxs);
1967 unregister_cpu_notifier:
1968 blk_mq_remove_cpuhp(hctx);
1969 return -1;
1972 static void blk_mq_init_cpu_queues(struct request_queue *q,
1973 unsigned int nr_hw_queues)
1975 unsigned int i;
1977 for_each_possible_cpu(i) {
1978 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1979 struct blk_mq_hw_ctx *hctx;
1981 __ctx->cpu = i;
1982 spin_lock_init(&__ctx->lock);
1983 INIT_LIST_HEAD(&__ctx->rq_list);
1984 __ctx->queue = q;
1986 /* If the cpu isn't present, the cpu is mapped to first hctx */
1987 if (!cpu_present(i))
1988 continue;
1990 hctx = blk_mq_map_queue(q, i);
1993 * Set local node, IFF we have more than one hw queue. If
1994 * not, we remain on the home node of the device
1996 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1997 hctx->numa_node = local_memory_node(cpu_to_node(i));
2001 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2003 int ret = 0;
2005 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2006 set->queue_depth, set->reserved_tags);
2007 if (!set->tags[hctx_idx])
2008 return false;
2010 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2011 set->queue_depth);
2012 if (!ret)
2013 return true;
2015 blk_mq_free_rq_map(set->tags[hctx_idx]);
2016 set->tags[hctx_idx] = NULL;
2017 return false;
2020 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2021 unsigned int hctx_idx)
2023 if (set->tags[hctx_idx]) {
2024 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2025 blk_mq_free_rq_map(set->tags[hctx_idx]);
2026 set->tags[hctx_idx] = NULL;
2030 static void blk_mq_map_swqueue(struct request_queue *q)
2032 unsigned int i, hctx_idx;
2033 struct blk_mq_hw_ctx *hctx;
2034 struct blk_mq_ctx *ctx;
2035 struct blk_mq_tag_set *set = q->tag_set;
2038 * Avoid others reading imcomplete hctx->cpumask through sysfs
2040 mutex_lock(&q->sysfs_lock);
2042 queue_for_each_hw_ctx(q, hctx, i) {
2043 cpumask_clear(hctx->cpumask);
2044 hctx->nr_ctx = 0;
2048 * Map software to hardware queues.
2050 * If the cpu isn't present, the cpu is mapped to first hctx.
2052 for_each_present_cpu(i) {
2053 hctx_idx = q->mq_map[i];
2054 /* unmapped hw queue can be remapped after CPU topo changed */
2055 if (!set->tags[hctx_idx] &&
2056 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2058 * If tags initialization fail for some hctx,
2059 * that hctx won't be brought online. In this
2060 * case, remap the current ctx to hctx[0] which
2061 * is guaranteed to always have tags allocated
2063 q->mq_map[i] = 0;
2066 ctx = per_cpu_ptr(q->queue_ctx, i);
2067 hctx = blk_mq_map_queue(q, i);
2069 cpumask_set_cpu(i, hctx->cpumask);
2070 ctx->index_hw = hctx->nr_ctx;
2071 hctx->ctxs[hctx->nr_ctx++] = ctx;
2074 mutex_unlock(&q->sysfs_lock);
2076 queue_for_each_hw_ctx(q, hctx, i) {
2078 * If no software queues are mapped to this hardware queue,
2079 * disable it and free the request entries.
2081 if (!hctx->nr_ctx) {
2082 /* Never unmap queue 0. We need it as a
2083 * fallback in case of a new remap fails
2084 * allocation
2086 if (i && set->tags[i])
2087 blk_mq_free_map_and_requests(set, i);
2089 hctx->tags = NULL;
2090 continue;
2093 hctx->tags = set->tags[i];
2094 WARN_ON(!hctx->tags);
2097 * Set the map size to the number of mapped software queues.
2098 * This is more accurate and more efficient than looping
2099 * over all possibly mapped software queues.
2101 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2104 * Initialize batch roundrobin counts
2106 hctx->next_cpu = cpumask_first(hctx->cpumask);
2107 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2112 * Caller needs to ensure that we're either frozen/quiesced, or that
2113 * the queue isn't live yet.
2115 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2117 struct blk_mq_hw_ctx *hctx;
2118 int i;
2120 queue_for_each_hw_ctx(q, hctx, i) {
2121 if (shared) {
2122 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2123 atomic_inc(&q->shared_hctx_restart);
2124 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2125 } else {
2126 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2127 atomic_dec(&q->shared_hctx_restart);
2128 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2133 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2134 bool shared)
2136 struct request_queue *q;
2138 lockdep_assert_held(&set->tag_list_lock);
2140 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2141 blk_mq_freeze_queue(q);
2142 queue_set_hctx_shared(q, shared);
2143 blk_mq_unfreeze_queue(q);
2147 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2149 struct blk_mq_tag_set *set = q->tag_set;
2151 mutex_lock(&set->tag_list_lock);
2152 list_del_rcu(&q->tag_set_list);
2153 INIT_LIST_HEAD(&q->tag_set_list);
2154 if (list_is_singular(&set->tag_list)) {
2155 /* just transitioned to unshared */
2156 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2157 /* update existing queue */
2158 blk_mq_update_tag_set_depth(set, false);
2160 mutex_unlock(&set->tag_list_lock);
2162 synchronize_rcu();
2165 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2166 struct request_queue *q)
2168 q->tag_set = set;
2170 mutex_lock(&set->tag_list_lock);
2172 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2173 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2174 set->flags |= BLK_MQ_F_TAG_SHARED;
2175 /* update existing queue */
2176 blk_mq_update_tag_set_depth(set, true);
2178 if (set->flags & BLK_MQ_F_TAG_SHARED)
2179 queue_set_hctx_shared(q, true);
2180 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2182 mutex_unlock(&set->tag_list_lock);
2186 * It is the actual release handler for mq, but we do it from
2187 * request queue's release handler for avoiding use-after-free
2188 * and headache because q->mq_kobj shouldn't have been introduced,
2189 * but we can't group ctx/kctx kobj without it.
2191 void blk_mq_release(struct request_queue *q)
2193 struct blk_mq_hw_ctx *hctx;
2194 unsigned int i;
2196 /* hctx kobj stays in hctx */
2197 queue_for_each_hw_ctx(q, hctx, i) {
2198 if (!hctx)
2199 continue;
2200 kobject_put(&hctx->kobj);
2203 q->mq_map = NULL;
2205 kfree(q->queue_hw_ctx);
2208 * release .mq_kobj and sw queue's kobject now because
2209 * both share lifetime with request queue.
2211 blk_mq_sysfs_deinit(q);
2213 free_percpu(q->queue_ctx);
2216 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2218 struct request_queue *uninit_q, *q;
2220 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2221 if (!uninit_q)
2222 return ERR_PTR(-ENOMEM);
2224 q = blk_mq_init_allocated_queue(set, uninit_q);
2225 if (IS_ERR(q))
2226 blk_cleanup_queue(uninit_q);
2228 return q;
2230 EXPORT_SYMBOL(blk_mq_init_queue);
2232 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2234 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2236 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2237 __alignof__(struct blk_mq_hw_ctx)) !=
2238 sizeof(struct blk_mq_hw_ctx));
2240 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2241 hw_ctx_size += sizeof(struct srcu_struct);
2243 return hw_ctx_size;
2246 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2247 struct request_queue *q)
2249 int i, j;
2250 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2252 blk_mq_sysfs_unregister(q);
2253 for (i = 0; i < set->nr_hw_queues; i++) {
2254 int node;
2256 if (hctxs[i])
2257 continue;
2259 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2260 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2261 GFP_KERNEL, node);
2262 if (!hctxs[i])
2263 break;
2265 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2266 node)) {
2267 kfree(hctxs[i]);
2268 hctxs[i] = NULL;
2269 break;
2272 atomic_set(&hctxs[i]->nr_active, 0);
2273 hctxs[i]->numa_node = node;
2274 hctxs[i]->queue_num = i;
2276 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2277 free_cpumask_var(hctxs[i]->cpumask);
2278 kfree(hctxs[i]);
2279 hctxs[i] = NULL;
2280 break;
2282 blk_mq_hctx_kobj_init(hctxs[i]);
2284 for (j = i; j < q->nr_hw_queues; j++) {
2285 struct blk_mq_hw_ctx *hctx = hctxs[j];
2287 if (hctx) {
2288 if (hctx->tags)
2289 blk_mq_free_map_and_requests(set, j);
2290 blk_mq_exit_hctx(q, set, hctx, j);
2291 kobject_put(&hctx->kobj);
2292 hctxs[j] = NULL;
2296 q->nr_hw_queues = i;
2297 blk_mq_sysfs_register(q);
2300 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2301 struct request_queue *q)
2303 /* mark the queue as mq asap */
2304 q->mq_ops = set->ops;
2306 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2307 blk_mq_poll_stats_bkt,
2308 BLK_MQ_POLL_STATS_BKTS, q);
2309 if (!q->poll_cb)
2310 goto err_exit;
2312 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2313 if (!q->queue_ctx)
2314 goto err_exit;
2316 /* init q->mq_kobj and sw queues' kobjects */
2317 blk_mq_sysfs_init(q);
2319 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2320 GFP_KERNEL, set->numa_node);
2321 if (!q->queue_hw_ctx)
2322 goto err_percpu;
2324 q->mq_map = set->mq_map;
2326 blk_mq_realloc_hw_ctxs(set, q);
2327 if (!q->nr_hw_queues)
2328 goto err_hctxs;
2330 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2331 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2333 q->nr_queues = nr_cpu_ids;
2335 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2337 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2338 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2340 q->sg_reserved_size = INT_MAX;
2342 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2343 INIT_LIST_HEAD(&q->requeue_list);
2344 spin_lock_init(&q->requeue_lock);
2346 blk_queue_make_request(q, blk_mq_make_request);
2349 * Do this after blk_queue_make_request() overrides it...
2351 q->nr_requests = set->queue_depth;
2354 * Default to classic polling
2356 q->poll_nsec = -1;
2358 if (set->ops->complete)
2359 blk_queue_softirq_done(q, set->ops->complete);
2361 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2362 blk_mq_add_queue_tag_set(set, q);
2363 blk_mq_map_swqueue(q);
2365 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2366 int ret;
2368 ret = blk_mq_sched_init(q);
2369 if (ret)
2370 return ERR_PTR(ret);
2373 return q;
2375 err_hctxs:
2376 kfree(q->queue_hw_ctx);
2377 err_percpu:
2378 free_percpu(q->queue_ctx);
2379 err_exit:
2380 q->mq_ops = NULL;
2381 return ERR_PTR(-ENOMEM);
2383 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2385 void blk_mq_free_queue(struct request_queue *q)
2387 struct blk_mq_tag_set *set = q->tag_set;
2389 blk_mq_del_queue_tag_set(q);
2390 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2393 /* Basically redo blk_mq_init_queue with queue frozen */
2394 static void blk_mq_queue_reinit(struct request_queue *q)
2396 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2398 blk_mq_debugfs_unregister_hctxs(q);
2399 blk_mq_sysfs_unregister(q);
2402 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2403 * we should change hctx numa_node according to new topology (this
2404 * involves free and re-allocate memory, worthy doing?)
2407 blk_mq_map_swqueue(q);
2409 blk_mq_sysfs_register(q);
2410 blk_mq_debugfs_register_hctxs(q);
2413 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2415 int i;
2417 for (i = 0; i < set->nr_hw_queues; i++)
2418 if (!__blk_mq_alloc_rq_map(set, i))
2419 goto out_unwind;
2421 return 0;
2423 out_unwind:
2424 while (--i >= 0)
2425 blk_mq_free_rq_map(set->tags[i]);
2427 return -ENOMEM;
2431 * Allocate the request maps associated with this tag_set. Note that this
2432 * may reduce the depth asked for, if memory is tight. set->queue_depth
2433 * will be updated to reflect the allocated depth.
2435 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2437 unsigned int depth;
2438 int err;
2440 depth = set->queue_depth;
2441 do {
2442 err = __blk_mq_alloc_rq_maps(set);
2443 if (!err)
2444 break;
2446 set->queue_depth >>= 1;
2447 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2448 err = -ENOMEM;
2449 break;
2451 } while (set->queue_depth);
2453 if (!set->queue_depth || err) {
2454 pr_err("blk-mq: failed to allocate request map\n");
2455 return -ENOMEM;
2458 if (depth != set->queue_depth)
2459 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2460 depth, set->queue_depth);
2462 return 0;
2465 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2467 if (set->ops->map_queues)
2468 return set->ops->map_queues(set);
2469 else
2470 return blk_mq_map_queues(set);
2474 * Alloc a tag set to be associated with one or more request queues.
2475 * May fail with EINVAL for various error conditions. May adjust the
2476 * requested depth down, if if it too large. In that case, the set
2477 * value will be stored in set->queue_depth.
2479 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2481 int ret;
2483 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2485 if (!set->nr_hw_queues)
2486 return -EINVAL;
2487 if (!set->queue_depth)
2488 return -EINVAL;
2489 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2490 return -EINVAL;
2492 if (!set->ops->queue_rq)
2493 return -EINVAL;
2495 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2496 pr_info("blk-mq: reduced tag depth to %u\n",
2497 BLK_MQ_MAX_DEPTH);
2498 set->queue_depth = BLK_MQ_MAX_DEPTH;
2502 * If a crashdump is active, then we are potentially in a very
2503 * memory constrained environment. Limit us to 1 queue and
2504 * 64 tags to prevent using too much memory.
2506 if (is_kdump_kernel()) {
2507 set->nr_hw_queues = 1;
2508 set->queue_depth = min(64U, set->queue_depth);
2511 * There is no use for more h/w queues than cpus.
2513 if (set->nr_hw_queues > nr_cpu_ids)
2514 set->nr_hw_queues = nr_cpu_ids;
2516 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2517 GFP_KERNEL, set->numa_node);
2518 if (!set->tags)
2519 return -ENOMEM;
2521 ret = -ENOMEM;
2522 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2523 GFP_KERNEL, set->numa_node);
2524 if (!set->mq_map)
2525 goto out_free_tags;
2527 ret = blk_mq_update_queue_map(set);
2528 if (ret)
2529 goto out_free_mq_map;
2531 ret = blk_mq_alloc_rq_maps(set);
2532 if (ret)
2533 goto out_free_mq_map;
2535 mutex_init(&set->tag_list_lock);
2536 INIT_LIST_HEAD(&set->tag_list);
2538 return 0;
2540 out_free_mq_map:
2541 kfree(set->mq_map);
2542 set->mq_map = NULL;
2543 out_free_tags:
2544 kfree(set->tags);
2545 set->tags = NULL;
2546 return ret;
2548 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2550 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2552 int i;
2554 for (i = 0; i < nr_cpu_ids; i++)
2555 blk_mq_free_map_and_requests(set, i);
2557 kfree(set->mq_map);
2558 set->mq_map = NULL;
2560 kfree(set->tags);
2561 set->tags = NULL;
2563 EXPORT_SYMBOL(blk_mq_free_tag_set);
2565 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2567 struct blk_mq_tag_set *set = q->tag_set;
2568 struct blk_mq_hw_ctx *hctx;
2569 int i, ret;
2571 if (!set)
2572 return -EINVAL;
2574 blk_mq_freeze_queue(q);
2576 ret = 0;
2577 queue_for_each_hw_ctx(q, hctx, i) {
2578 if (!hctx->tags)
2579 continue;
2581 * If we're using an MQ scheduler, just update the scheduler
2582 * queue depth. This is similar to what the old code would do.
2584 if (!hctx->sched_tags) {
2585 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2586 min(nr, set->queue_depth),
2587 false);
2588 } else {
2589 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2590 nr, true);
2592 if (ret)
2593 break;
2596 if (!ret)
2597 q->nr_requests = nr;
2599 blk_mq_unfreeze_queue(q);
2601 return ret;
2604 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2605 int nr_hw_queues)
2607 struct request_queue *q;
2609 lockdep_assert_held(&set->tag_list_lock);
2611 if (nr_hw_queues > nr_cpu_ids)
2612 nr_hw_queues = nr_cpu_ids;
2613 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2614 return;
2616 list_for_each_entry(q, &set->tag_list, tag_set_list)
2617 blk_mq_freeze_queue(q);
2619 set->nr_hw_queues = nr_hw_queues;
2620 blk_mq_update_queue_map(set);
2621 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2622 blk_mq_realloc_hw_ctxs(set, q);
2623 blk_mq_queue_reinit(q);
2626 list_for_each_entry(q, &set->tag_list, tag_set_list)
2627 blk_mq_unfreeze_queue(q);
2630 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2632 mutex_lock(&set->tag_list_lock);
2633 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2634 mutex_unlock(&set->tag_list_lock);
2636 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2638 /* Enable polling stats and return whether they were already enabled. */
2639 static bool blk_poll_stats_enable(struct request_queue *q)
2641 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2642 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2643 return true;
2644 blk_stat_add_callback(q, q->poll_cb);
2645 return false;
2648 static void blk_mq_poll_stats_start(struct request_queue *q)
2651 * We don't arm the callback if polling stats are not enabled or the
2652 * callback is already active.
2654 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2655 blk_stat_is_active(q->poll_cb))
2656 return;
2658 blk_stat_activate_msecs(q->poll_cb, 100);
2661 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2663 struct request_queue *q = cb->data;
2664 int bucket;
2666 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2667 if (cb->stat[bucket].nr_samples)
2668 q->poll_stat[bucket] = cb->stat[bucket];
2672 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2673 struct blk_mq_hw_ctx *hctx,
2674 struct request *rq)
2676 unsigned long ret = 0;
2677 int bucket;
2680 * If stats collection isn't on, don't sleep but turn it on for
2681 * future users
2683 if (!blk_poll_stats_enable(q))
2684 return 0;
2687 * As an optimistic guess, use half of the mean service time
2688 * for this type of request. We can (and should) make this smarter.
2689 * For instance, if the completion latencies are tight, we can
2690 * get closer than just half the mean. This is especially
2691 * important on devices where the completion latencies are longer
2692 * than ~10 usec. We do use the stats for the relevant IO size
2693 * if available which does lead to better estimates.
2695 bucket = blk_mq_poll_stats_bkt(rq);
2696 if (bucket < 0)
2697 return ret;
2699 if (q->poll_stat[bucket].nr_samples)
2700 ret = (q->poll_stat[bucket].mean + 1) / 2;
2702 return ret;
2705 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2706 struct blk_mq_hw_ctx *hctx,
2707 struct request *rq)
2709 struct hrtimer_sleeper hs;
2710 enum hrtimer_mode mode;
2711 unsigned int nsecs;
2712 ktime_t kt;
2714 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2715 return false;
2718 * poll_nsec can be:
2720 * -1: don't ever hybrid sleep
2721 * 0: use half of prev avg
2722 * >0: use this specific value
2724 if (q->poll_nsec == -1)
2725 return false;
2726 else if (q->poll_nsec > 0)
2727 nsecs = q->poll_nsec;
2728 else
2729 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2731 if (!nsecs)
2732 return false;
2734 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2737 * This will be replaced with the stats tracking code, using
2738 * 'avg_completion_time / 2' as the pre-sleep target.
2740 kt = nsecs;
2742 mode = HRTIMER_MODE_REL;
2743 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2744 hrtimer_set_expires(&hs.timer, kt);
2746 hrtimer_init_sleeper(&hs, current);
2747 do {
2748 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2749 break;
2750 set_current_state(TASK_UNINTERRUPTIBLE);
2751 hrtimer_start_expires(&hs.timer, mode);
2752 if (hs.task)
2753 io_schedule();
2754 hrtimer_cancel(&hs.timer);
2755 mode = HRTIMER_MODE_ABS;
2756 } while (hs.task && !signal_pending(current));
2758 __set_current_state(TASK_RUNNING);
2759 destroy_hrtimer_on_stack(&hs.timer);
2760 return true;
2763 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2765 struct request_queue *q = hctx->queue;
2766 long state;
2769 * If we sleep, have the caller restart the poll loop to reset
2770 * the state. Like for the other success return cases, the
2771 * caller is responsible for checking if the IO completed. If
2772 * the IO isn't complete, we'll get called again and will go
2773 * straight to the busy poll loop.
2775 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2776 return true;
2778 hctx->poll_considered++;
2780 state = current->state;
2781 while (!need_resched()) {
2782 int ret;
2784 hctx->poll_invoked++;
2786 ret = q->mq_ops->poll(hctx, rq->tag);
2787 if (ret > 0) {
2788 hctx->poll_success++;
2789 set_current_state(TASK_RUNNING);
2790 return true;
2793 if (signal_pending_state(state, current))
2794 set_current_state(TASK_RUNNING);
2796 if (current->state == TASK_RUNNING)
2797 return true;
2798 if (ret < 0)
2799 break;
2800 cpu_relax();
2803 return false;
2806 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2808 struct blk_mq_hw_ctx *hctx;
2809 struct blk_plug *plug;
2810 struct request *rq;
2812 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2813 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2814 return false;
2816 plug = current->plug;
2817 if (plug)
2818 blk_flush_plug_list(plug, false);
2820 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2821 if (!blk_qc_t_is_internal(cookie))
2822 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2823 else {
2824 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2826 * With scheduling, if the request has completed, we'll
2827 * get a NULL return here, as we clear the sched tag when
2828 * that happens. The request still remains valid, like always,
2829 * so we should be safe with just the NULL check.
2831 if (!rq)
2832 return false;
2835 return __blk_mq_poll(hctx, rq);
2837 EXPORT_SYMBOL_GPL(blk_mq_poll);
2839 static int __init blk_mq_init(void)
2841 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2842 blk_mq_hctx_notify_dead);
2843 return 0;
2845 subsys_initcall(blk_mq_init);