drm/i915: Add interfaces to read out encoder/connector hw state
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / intel_display.c
blob7e7569b68039790f83ca2b0d05037f5dbb278373
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
62 typedef struct {
63 int min, max;
64 } intel_range_t;
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
127 .find_pll = intel_find_best_PLL,
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
141 .find_pll = intel_find_best_PLL,
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
155 .find_pll = intel_find_best_PLL,
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 .find_pll = intel_find_best_PLL,
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
186 .find_pll = intel_g4x_find_best_PLL,
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
200 .find_pll = intel_g4x_find_best_PLL,
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
215 .find_pll = intel_g4x_find_best_PLL,
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
230 .find_pll = intel_g4x_find_best_PLL,
233 static const intel_limit_t intel_limits_g4x_display_port = {
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 10, .p2_fast = 10 },
244 .find_pll = intel_find_pll_g4x_dp,
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
250 /* Pineview's Ncounter is a ring counter */
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
253 /* Pineview only has one combined m divider, which we treat as m2. */
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
260 .find_pll = intel_find_best_PLL,
263 static const intel_limit_t intel_limits_pineview_lvds = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
274 .find_pll = intel_find_best_PLL,
277 /* Ironlake / Sandybridge
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
282 static const intel_limit_t intel_limits_ironlake_dac = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
293 .find_pll = intel_g4x_find_best_PLL,
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
307 .find_pll = intel_g4x_find_best_PLL,
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
321 .find_pll = intel_g4x_find_best_PLL,
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
333 .p1 = { .min = 2, .max = 8 },
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
336 .find_pll = intel_g4x_find_best_PLL,
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
347 .p1 = { .min = 2, .max = 6 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 .find_pll = intel_g4x_find_best_PLL,
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
363 .p2_slow = 10, .p2_fast = 10 },
364 .find_pll = intel_find_pll_ironlake_dp,
367 static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
395 static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 162000, .max = 270000 },
397 .vco = { .min = 5994000, .max = 4000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 60, .max = 300 }, /* guess */
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
411 unsigned long flags;
412 u32 val = 0;
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
427 val = I915_READ(DPIO_DATA);
429 out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
437 unsigned long flags;
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
452 out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
456 static void vlv_init_dpio(struct drm_device *dev)
458 struct drm_i915_private *dev_priv = dev->dev_private;
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
482 { } /* terminating entry */
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
488 unsigned int val;
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
505 val = I915_READ(reg);
506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522 /* LVDS dual channel */
523 if (refclk == 100000)
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
528 if (refclk == 100000)
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
536 else
537 limit = &intel_limits_ironlake_dac;
539 return limit;
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549 if (is_dual_link_lvds(dev_priv, LVDS))
550 /* LVDS with dual channel */
551 limit = &intel_limits_g4x_dual_channel_lvds;
552 else
553 /* LVDS with dual channel */
554 limit = &intel_limits_g4x_single_channel_lvds;
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557 limit = &intel_limits_g4x_hdmi;
558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559 limit = &intel_limits_g4x_sdvo;
560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561 limit = &intel_limits_g4x_display_port;
562 } else /* The option is for other outputs */
563 limit = &intel_limits_i9xx_sdvo;
565 return limit;
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
573 if (HAS_PCH_SPLIT(dev))
574 limit = intel_ironlake_limit(crtc, refclk);
575 else if (IS_G4X(dev)) {
576 limit = intel_g4x_limit(crtc);
577 } else if (IS_PINEVIEW(dev)) {
578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_pineview_lvds;
580 else
581 limit = &intel_limits_pineview_sdvo;
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596 limit = &intel_limits_i8xx_lvds;
597 else
598 limit = &intel_limits_i8xx_dvo;
600 return limit;
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
616 return;
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
625 * Returns whether any output on the specified pipe is of the specified type
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
629 struct drm_device *dev = crtc->dev;
630 struct intel_encoder *encoder;
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
634 return true;
636 return false;
639 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
650 INTELPllInvalid("p1 out of range\n");
651 if (clock->p < limit->p.min || limit->p.max < clock->p)
652 INTELPllInvalid("p out of range\n");
653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
654 INTELPllInvalid("m2 out of range\n");
655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
656 INTELPllInvalid("m1 out of range\n");
657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658 INTELPllInvalid("m1 <= m2\n");
659 if (clock->m < limit->m.min || limit->m.max < clock->m)
660 INTELPllInvalid("m out of range\n");
661 if (clock->n < limit->n.min || limit->n.max < clock->n)
662 INTELPllInvalid("n out of range\n");
663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664 INTELPllInvalid("vco out of range\n");
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669 INTELPllInvalid("dot out of range\n");
671 return true;
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
683 int err = target;
685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686 (I915_READ(LVDS)) != 0) {
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
693 if (is_dual_link_lvds(dev_priv, LVDS))
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
704 memset(best_clock, 0, sizeof(*best_clock));
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
717 int this_err;
719 intel_clock(dev, refclk, &clock);
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
722 continue;
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
737 return (err != target);
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
752 found = false;
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755 int lvds_reg;
757 if (HAS_PCH_SPLIT(dev))
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 /* based on hardware requirement, prefere larger m1,m2 */
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
786 intel_clock(dev, refclk, &clock);
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
789 continue;
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
794 this_err = abs(clock.dot - target);
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
805 return found;
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
872 flag = 0;
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
927 return true;
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
935 frame = I915_READ(frame_reg);
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 int pipestat_reg = PIPESTAT(pipe);
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
975 /* Wait for vblank interrupt bit to set */
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
979 DRM_DEBUG_KMS("vblank wait timed out\n");
983 * intel_wait_for_pipe_off - wait for pipe to turn off
984 * @dev: drm device
985 * @pipe: pipe to wait for
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1001 struct drm_i915_private *dev_priv = dev->dev_private;
1003 if (INTEL_INFO(dev)->gen >= 4) {
1004 int reg = PIPECONF(pipe);
1006 /* Wait for the Pipe State to go off */
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
1009 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1010 } else {
1011 u32 last_line, line_mask;
1012 int reg = PIPEDSL(pipe);
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1020 /* Wait for the display line to settle */
1021 do {
1022 last_line = I915_READ(reg) & line_mask;
1023 mdelay(5);
1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
1027 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1031 static const char *state_string(bool enabled)
1033 return enabled ? "on" : "off";
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
1060 u32 val;
1061 bool cur_state;
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070 return;
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080 u32 pch_dpll;
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1149 int reg;
1150 u32 val;
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1168 int reg;
1169 u32 val;
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
1186 bool locked = true;
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
1206 pipe_name(pipe));
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
1212 int reg;
1213 u32 val;
1214 bool cur_state;
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
1225 pipe_name(pipe), state_string(state), state_string(cur_state));
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
1231 int reg;
1232 u32 val;
1233 bool cur_state;
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1253 /* Planes are fixed to pipes on ILK+ */
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
1260 return;
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1277 u32 val;
1278 bool enabled;
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1294 int reg;
1295 u32 val;
1296 bool enabled;
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1321 return true;
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1337 return true;
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1353 return true;
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1368 return true;
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, int reg, u32 port_sel)
1374 u32 val = I915_READ(reg);
1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377 reg, pipe_name(pipe));
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1380 "IBX PCH dp port still using transcoder B\n");
1383 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1384 enum pipe pipe, int reg)
1386 u32 val = I915_READ(reg);
1387 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1388 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1389 reg, pipe_name(pipe));
1391 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1392 "IBX PCH hdmi port still using transcoder B\n");
1395 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe)
1398 int reg;
1399 u32 val;
1401 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1402 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1405 reg = PCH_ADPA;
1406 val = I915_READ(reg);
1407 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1408 "PCH VGA enabled on transcoder %c, should be disabled\n",
1409 pipe_name(pipe));
1411 reg = PCH_LVDS;
1412 val = I915_READ(reg);
1413 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1414 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1415 pipe_name(pipe));
1417 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1418 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1423 * intel_enable_pll - enable a PLL
1424 * @dev_priv: i915 private structure
1425 * @pipe: pipe PLL to enable
1427 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1428 * make sure the PLL reg is writable first though, since the panel write
1429 * protect mechanism may be enabled.
1431 * Note! This is for pre-ILK only.
1433 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1435 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1437 int reg;
1438 u32 val;
1440 /* No really, not for ILK+ */
1441 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1443 /* PLL is protected by panel, make sure we can write it */
1444 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1445 assert_panel_unlocked(dev_priv, pipe);
1447 reg = DPLL(pipe);
1448 val = I915_READ(reg);
1449 val |= DPLL_VCO_ENABLE;
1451 /* We do this three times for luck */
1452 I915_WRITE(reg, val);
1453 POSTING_READ(reg);
1454 udelay(150); /* wait for warmup */
1455 I915_WRITE(reg, val);
1456 POSTING_READ(reg);
1457 udelay(150); /* wait for warmup */
1458 I915_WRITE(reg, val);
1459 POSTING_READ(reg);
1460 udelay(150); /* wait for warmup */
1464 * intel_disable_pll - disable a PLL
1465 * @dev_priv: i915 private structure
1466 * @pipe: pipe PLL to disable
1468 * Disable the PLL for @pipe, making sure the pipe is off first.
1470 * Note! This is for pre-ILK only.
1472 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1474 int reg;
1475 u32 val;
1477 /* Don't disable pipe A or pipe A PLLs if needed */
1478 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1479 return;
1481 /* Make sure the pipe isn't still relying on us */
1482 assert_pipe_disabled(dev_priv, pipe);
1484 reg = DPLL(pipe);
1485 val = I915_READ(reg);
1486 val &= ~DPLL_VCO_ENABLE;
1487 I915_WRITE(reg, val);
1488 POSTING_READ(reg);
1491 /* SBI access */
1492 static void
1493 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1495 unsigned long flags;
1497 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1498 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1499 100)) {
1500 DRM_ERROR("timeout waiting for SBI to become ready\n");
1501 goto out_unlock;
1504 I915_WRITE(SBI_ADDR,
1505 (reg << 16));
1506 I915_WRITE(SBI_DATA,
1507 value);
1508 I915_WRITE(SBI_CTL_STAT,
1509 SBI_BUSY |
1510 SBI_CTL_OP_CRWR);
1512 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1513 100)) {
1514 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1515 goto out_unlock;
1518 out_unlock:
1519 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522 static u32
1523 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1525 unsigned long flags;
1526 u32 value = 0;
1528 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1529 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1530 100)) {
1531 DRM_ERROR("timeout waiting for SBI to become ready\n");
1532 goto out_unlock;
1535 I915_WRITE(SBI_ADDR,
1536 (reg << 16));
1537 I915_WRITE(SBI_CTL_STAT,
1538 SBI_BUSY |
1539 SBI_CTL_OP_CRRD);
1541 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1542 100)) {
1543 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1544 goto out_unlock;
1547 value = I915_READ(SBI_DATA);
1549 out_unlock:
1550 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1551 return value;
1555 * intel_enable_pch_pll - enable PCH PLL
1556 * @dev_priv: i915 private structure
1557 * @pipe: pipe PLL to enable
1559 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1560 * drives the transcoder clock.
1562 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1564 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1565 struct intel_pch_pll *pll;
1566 int reg;
1567 u32 val;
1569 /* PCH PLLs only available on ILK, SNB and IVB */
1570 BUG_ON(dev_priv->info->gen < 5);
1571 pll = intel_crtc->pch_pll;
1572 if (pll == NULL)
1573 return;
1575 if (WARN_ON(pll->refcount == 0))
1576 return;
1578 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1579 pll->pll_reg, pll->active, pll->on,
1580 intel_crtc->base.base.id);
1582 /* PCH refclock must be enabled first */
1583 assert_pch_refclk_enabled(dev_priv);
1585 if (pll->active++ && pll->on) {
1586 assert_pch_pll_enabled(dev_priv, pll, NULL);
1587 return;
1590 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1592 reg = pll->pll_reg;
1593 val = I915_READ(reg);
1594 val |= DPLL_VCO_ENABLE;
1595 I915_WRITE(reg, val);
1596 POSTING_READ(reg);
1597 udelay(200);
1599 pll->on = true;
1602 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1604 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1605 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1606 int reg;
1607 u32 val;
1609 /* PCH only available on ILK+ */
1610 BUG_ON(dev_priv->info->gen < 5);
1611 if (pll == NULL)
1612 return;
1614 if (WARN_ON(pll->refcount == 0))
1615 return;
1617 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1618 pll->pll_reg, pll->active, pll->on,
1619 intel_crtc->base.base.id);
1621 if (WARN_ON(pll->active == 0)) {
1622 assert_pch_pll_disabled(dev_priv, pll, NULL);
1623 return;
1626 if (--pll->active) {
1627 assert_pch_pll_enabled(dev_priv, pll, NULL);
1628 return;
1631 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1633 /* Make sure transcoder isn't still depending on us */
1634 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1636 reg = pll->pll_reg;
1637 val = I915_READ(reg);
1638 val &= ~DPLL_VCO_ENABLE;
1639 I915_WRITE(reg, val);
1640 POSTING_READ(reg);
1641 udelay(200);
1643 pll->on = false;
1646 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1647 enum pipe pipe)
1649 int reg;
1650 u32 val, pipeconf_val;
1651 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1653 /* PCH only available on ILK+ */
1654 BUG_ON(dev_priv->info->gen < 5);
1656 /* Make sure PCH DPLL is enabled */
1657 assert_pch_pll_enabled(dev_priv,
1658 to_intel_crtc(crtc)->pch_pll,
1659 to_intel_crtc(crtc));
1661 /* FDI must be feeding us bits for PCH ports */
1662 assert_fdi_tx_enabled(dev_priv, pipe);
1663 assert_fdi_rx_enabled(dev_priv, pipe);
1665 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1666 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1667 return;
1669 reg = TRANSCONF(pipe);
1670 val = I915_READ(reg);
1671 pipeconf_val = I915_READ(PIPECONF(pipe));
1673 if (HAS_PCH_IBX(dev_priv->dev)) {
1675 * make the BPC in transcoder be consistent with
1676 * that in pipeconf reg.
1678 val &= ~PIPE_BPC_MASK;
1679 val |= pipeconf_val & PIPE_BPC_MASK;
1682 val &= ~TRANS_INTERLACE_MASK;
1683 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1684 if (HAS_PCH_IBX(dev_priv->dev) &&
1685 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1686 val |= TRANS_LEGACY_INTERLACED_ILK;
1687 else
1688 val |= TRANS_INTERLACED;
1689 else
1690 val |= TRANS_PROGRESSIVE;
1692 I915_WRITE(reg, val | TRANS_ENABLE);
1693 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1694 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1698 enum pipe pipe)
1700 int reg;
1701 u32 val;
1703 /* FDI relies on the transcoder */
1704 assert_fdi_tx_disabled(dev_priv, pipe);
1705 assert_fdi_rx_disabled(dev_priv, pipe);
1707 /* Ports must be off as well */
1708 assert_pch_ports_disabled(dev_priv, pipe);
1710 reg = TRANSCONF(pipe);
1711 val = I915_READ(reg);
1712 val &= ~TRANS_ENABLE;
1713 I915_WRITE(reg, val);
1714 /* wait for PCH transcoder off, transcoder state */
1715 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1716 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1720 * intel_enable_pipe - enable a pipe, asserting requirements
1721 * @dev_priv: i915 private structure
1722 * @pipe: pipe to enable
1723 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1725 * Enable @pipe, making sure that various hardware specific requirements
1726 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1728 * @pipe should be %PIPE_A or %PIPE_B.
1730 * Will wait until the pipe is actually running (i.e. first vblank) before
1731 * returning.
1733 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1734 bool pch_port)
1736 int reg;
1737 u32 val;
1740 * A pipe without a PLL won't actually be able to drive bits from
1741 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1742 * need the check.
1744 if (!HAS_PCH_SPLIT(dev_priv->dev))
1745 assert_pll_enabled(dev_priv, pipe);
1746 else {
1747 if (pch_port) {
1748 /* if driving the PCH, we need FDI enabled */
1749 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1750 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1752 /* FIXME: assert CPU port conditions for SNB+ */
1755 reg = PIPECONF(pipe);
1756 val = I915_READ(reg);
1757 if (val & PIPECONF_ENABLE)
1758 return;
1760 I915_WRITE(reg, val | PIPECONF_ENABLE);
1761 intel_wait_for_vblank(dev_priv->dev, pipe);
1765 * intel_disable_pipe - disable a pipe, asserting requirements
1766 * @dev_priv: i915 private structure
1767 * @pipe: pipe to disable
1769 * Disable @pipe, making sure that various hardware specific requirements
1770 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1772 * @pipe should be %PIPE_A or %PIPE_B.
1774 * Will wait until the pipe has shut down before returning.
1776 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1777 enum pipe pipe)
1779 int reg;
1780 u32 val;
1783 * Make sure planes won't keep trying to pump pixels to us,
1784 * or we might hang the display.
1786 assert_planes_disabled(dev_priv, pipe);
1788 /* Don't disable pipe A or pipe A PLLs if needed */
1789 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1790 return;
1792 reg = PIPECONF(pipe);
1793 val = I915_READ(reg);
1794 if ((val & PIPECONF_ENABLE) == 0)
1795 return;
1797 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1798 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1802 * Plane regs are double buffered, going from enabled->disabled needs a
1803 * trigger in order to latch. The display address reg provides this.
1805 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1806 enum plane plane)
1808 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1809 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1813 * intel_enable_plane - enable a display plane on a given pipe
1814 * @dev_priv: i915 private structure
1815 * @plane: plane to enable
1816 * @pipe: pipe being fed
1818 * Enable @plane on @pipe, making sure that @pipe is running first.
1820 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1821 enum plane plane, enum pipe pipe)
1823 int reg;
1824 u32 val;
1826 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1827 assert_pipe_enabled(dev_priv, pipe);
1829 reg = DSPCNTR(plane);
1830 val = I915_READ(reg);
1831 if (val & DISPLAY_PLANE_ENABLE)
1832 return;
1834 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1835 intel_flush_display_plane(dev_priv, plane);
1836 intel_wait_for_vblank(dev_priv->dev, pipe);
1840 * intel_disable_plane - disable a display plane
1841 * @dev_priv: i915 private structure
1842 * @plane: plane to disable
1843 * @pipe: pipe consuming the data
1845 * Disable @plane; should be an independent operation.
1847 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1848 enum plane plane, enum pipe pipe)
1850 int reg;
1851 u32 val;
1853 reg = DSPCNTR(plane);
1854 val = I915_READ(reg);
1855 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1856 return;
1858 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1859 intel_flush_display_plane(dev_priv, plane);
1860 intel_wait_for_vblank(dev_priv->dev, pipe);
1863 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1864 enum pipe pipe, int reg, u32 port_sel)
1866 u32 val = I915_READ(reg);
1867 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1868 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1869 I915_WRITE(reg, val & ~DP_PORT_EN);
1873 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1874 enum pipe pipe, int reg)
1876 u32 val = I915_READ(reg);
1877 if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
1878 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1879 reg, pipe);
1880 I915_WRITE(reg, val & ~PORT_ENABLE);
1884 /* Disable any ports connected to this transcoder */
1885 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1886 enum pipe pipe)
1888 u32 reg, val;
1890 val = I915_READ(PCH_PP_CONTROL);
1891 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1893 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1894 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1895 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1897 reg = PCH_ADPA;
1898 val = I915_READ(reg);
1899 if (adpa_pipe_enabled(dev_priv, pipe, val))
1900 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1902 reg = PCH_LVDS;
1903 val = I915_READ(reg);
1904 if (lvds_pipe_enabled(dev_priv, pipe, val)) {
1905 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1906 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1907 POSTING_READ(reg);
1908 udelay(100);
1911 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1912 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1913 disable_pch_hdmi(dev_priv, pipe, HDMID);
1917 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1918 struct drm_i915_gem_object *obj,
1919 struct intel_ring_buffer *pipelined)
1921 struct drm_i915_private *dev_priv = dev->dev_private;
1922 u32 alignment;
1923 int ret;
1925 switch (obj->tiling_mode) {
1926 case I915_TILING_NONE:
1927 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1928 alignment = 128 * 1024;
1929 else if (INTEL_INFO(dev)->gen >= 4)
1930 alignment = 4 * 1024;
1931 else
1932 alignment = 64 * 1024;
1933 break;
1934 case I915_TILING_X:
1935 /* pin() will align the object as required by fence */
1936 alignment = 0;
1937 break;
1938 case I915_TILING_Y:
1939 /* FIXME: Is this true? */
1940 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1941 return -EINVAL;
1942 default:
1943 BUG();
1946 dev_priv->mm.interruptible = false;
1947 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1948 if (ret)
1949 goto err_interruptible;
1951 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1952 * fence, whereas 965+ only requires a fence if using
1953 * framebuffer compression. For simplicity, we always install
1954 * a fence as the cost is not that onerous.
1956 ret = i915_gem_object_get_fence(obj);
1957 if (ret)
1958 goto err_unpin;
1960 i915_gem_object_pin_fence(obj);
1962 dev_priv->mm.interruptible = true;
1963 return 0;
1965 err_unpin:
1966 i915_gem_object_unpin(obj);
1967 err_interruptible:
1968 dev_priv->mm.interruptible = true;
1969 return ret;
1972 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1974 i915_gem_object_unpin_fence(obj);
1975 i915_gem_object_unpin(obj);
1978 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1979 * is assumed to be a power-of-two. */
1980 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1981 unsigned int bpp,
1982 unsigned int pitch)
1984 int tile_rows, tiles;
1986 tile_rows = *y / 8;
1987 *y %= 8;
1988 tiles = *x / (512/bpp);
1989 *x %= 512/bpp;
1991 return tile_rows * pitch * 8 + tiles * 4096;
1994 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1995 int x, int y)
1997 struct drm_device *dev = crtc->dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2000 struct intel_framebuffer *intel_fb;
2001 struct drm_i915_gem_object *obj;
2002 int plane = intel_crtc->plane;
2003 unsigned long linear_offset;
2004 u32 dspcntr;
2005 u32 reg;
2007 switch (plane) {
2008 case 0:
2009 case 1:
2010 break;
2011 default:
2012 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2013 return -EINVAL;
2016 intel_fb = to_intel_framebuffer(fb);
2017 obj = intel_fb->obj;
2019 reg = DSPCNTR(plane);
2020 dspcntr = I915_READ(reg);
2021 /* Mask out pixel format bits in case we change it */
2022 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2023 switch (fb->bits_per_pixel) {
2024 case 8:
2025 dspcntr |= DISPPLANE_8BPP;
2026 break;
2027 case 16:
2028 if (fb->depth == 15)
2029 dspcntr |= DISPPLANE_15_16BPP;
2030 else
2031 dspcntr |= DISPPLANE_16BPP;
2032 break;
2033 case 24:
2034 case 32:
2035 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2036 break;
2037 default:
2038 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2039 return -EINVAL;
2041 if (INTEL_INFO(dev)->gen >= 4) {
2042 if (obj->tiling_mode != I915_TILING_NONE)
2043 dspcntr |= DISPPLANE_TILED;
2044 else
2045 dspcntr &= ~DISPPLANE_TILED;
2048 I915_WRITE(reg, dspcntr);
2050 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2052 if (INTEL_INFO(dev)->gen >= 4) {
2053 intel_crtc->dspaddr_offset =
2054 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2055 fb->bits_per_pixel / 8,
2056 fb->pitches[0]);
2057 linear_offset -= intel_crtc->dspaddr_offset;
2058 } else {
2059 intel_crtc->dspaddr_offset = linear_offset;
2062 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2063 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2064 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2065 if (INTEL_INFO(dev)->gen >= 4) {
2066 I915_MODIFY_DISPBASE(DSPSURF(plane),
2067 obj->gtt_offset + intel_crtc->dspaddr_offset);
2068 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2069 I915_WRITE(DSPLINOFF(plane), linear_offset);
2070 } else
2071 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2072 POSTING_READ(reg);
2074 return 0;
2077 static int ironlake_update_plane(struct drm_crtc *crtc,
2078 struct drm_framebuffer *fb, int x, int y)
2080 struct drm_device *dev = crtc->dev;
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2083 struct intel_framebuffer *intel_fb;
2084 struct drm_i915_gem_object *obj;
2085 int plane = intel_crtc->plane;
2086 unsigned long linear_offset;
2087 u32 dspcntr;
2088 u32 reg;
2090 switch (plane) {
2091 case 0:
2092 case 1:
2093 case 2:
2094 break;
2095 default:
2096 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2097 return -EINVAL;
2100 intel_fb = to_intel_framebuffer(fb);
2101 obj = intel_fb->obj;
2103 reg = DSPCNTR(plane);
2104 dspcntr = I915_READ(reg);
2105 /* Mask out pixel format bits in case we change it */
2106 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2107 switch (fb->bits_per_pixel) {
2108 case 8:
2109 dspcntr |= DISPPLANE_8BPP;
2110 break;
2111 case 16:
2112 if (fb->depth != 16)
2113 return -EINVAL;
2115 dspcntr |= DISPPLANE_16BPP;
2116 break;
2117 case 24:
2118 case 32:
2119 if (fb->depth == 24)
2120 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2121 else if (fb->depth == 30)
2122 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2123 else
2124 return -EINVAL;
2125 break;
2126 default:
2127 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2128 return -EINVAL;
2131 if (obj->tiling_mode != I915_TILING_NONE)
2132 dspcntr |= DISPPLANE_TILED;
2133 else
2134 dspcntr &= ~DISPPLANE_TILED;
2136 /* must disable */
2137 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2139 I915_WRITE(reg, dspcntr);
2141 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2142 intel_crtc->dspaddr_offset =
2143 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2144 fb->bits_per_pixel / 8,
2145 fb->pitches[0]);
2146 linear_offset -= intel_crtc->dspaddr_offset;
2148 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2149 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2150 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2151 I915_MODIFY_DISPBASE(DSPSURF(plane),
2152 obj->gtt_offset + intel_crtc->dspaddr_offset);
2153 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2154 I915_WRITE(DSPLINOFF(plane), linear_offset);
2155 POSTING_READ(reg);
2157 return 0;
2160 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2161 static int
2162 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2163 int x, int y, enum mode_set_atomic state)
2165 struct drm_device *dev = crtc->dev;
2166 struct drm_i915_private *dev_priv = dev->dev_private;
2168 if (dev_priv->display.disable_fbc)
2169 dev_priv->display.disable_fbc(dev);
2170 intel_increase_pllclock(crtc);
2172 return dev_priv->display.update_plane(crtc, fb, x, y);
2175 static int
2176 intel_finish_fb(struct drm_framebuffer *old_fb)
2178 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2179 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2180 bool was_interruptible = dev_priv->mm.interruptible;
2181 int ret;
2183 wait_event(dev_priv->pending_flip_queue,
2184 atomic_read(&dev_priv->mm.wedged) ||
2185 atomic_read(&obj->pending_flip) == 0);
2187 /* Big Hammer, we also need to ensure that any pending
2188 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2189 * current scanout is retired before unpinning the old
2190 * framebuffer.
2192 * This should only fail upon a hung GPU, in which case we
2193 * can safely continue.
2195 dev_priv->mm.interruptible = false;
2196 ret = i915_gem_object_finish_gpu(obj);
2197 dev_priv->mm.interruptible = was_interruptible;
2199 return ret;
2202 static int
2203 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2204 struct drm_framebuffer *old_fb)
2206 struct drm_device *dev = crtc->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_i915_master_private *master_priv;
2209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2210 int ret;
2212 /* no fb bound */
2213 if (!crtc->fb) {
2214 DRM_ERROR("No FB bound\n");
2215 return 0;
2218 if(intel_crtc->plane > dev_priv->num_pipe) {
2219 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2220 intel_crtc->plane,
2221 dev_priv->num_pipe);
2222 return -EINVAL;
2225 mutex_lock(&dev->struct_mutex);
2226 ret = intel_pin_and_fence_fb_obj(dev,
2227 to_intel_framebuffer(crtc->fb)->obj,
2228 NULL);
2229 if (ret != 0) {
2230 mutex_unlock(&dev->struct_mutex);
2231 DRM_ERROR("pin & fence failed\n");
2232 return ret;
2235 if (old_fb)
2236 intel_finish_fb(old_fb);
2238 ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2239 if (ret) {
2240 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2241 mutex_unlock(&dev->struct_mutex);
2242 DRM_ERROR("failed to update base address\n");
2243 return ret;
2246 if (old_fb) {
2247 intel_wait_for_vblank(dev, intel_crtc->pipe);
2248 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2251 intel_update_fbc(dev);
2252 mutex_unlock(&dev->struct_mutex);
2254 if (!dev->primary->master)
2255 return 0;
2257 master_priv = dev->primary->master->driver_priv;
2258 if (!master_priv->sarea_priv)
2259 return 0;
2261 if (intel_crtc->pipe) {
2262 master_priv->sarea_priv->pipeB_x = x;
2263 master_priv->sarea_priv->pipeB_y = y;
2264 } else {
2265 master_priv->sarea_priv->pipeA_x = x;
2266 master_priv->sarea_priv->pipeA_y = y;
2269 return 0;
2272 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2274 struct drm_device *dev = crtc->dev;
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276 u32 dpa_ctl;
2278 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2279 dpa_ctl = I915_READ(DP_A);
2280 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2282 if (clock < 200000) {
2283 u32 temp;
2284 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2285 /* workaround for 160Mhz:
2286 1) program 0x4600c bits 15:0 = 0x8124
2287 2) program 0x46010 bit 0 = 1
2288 3) program 0x46034 bit 24 = 1
2289 4) program 0x64000 bit 14 = 1
2291 temp = I915_READ(0x4600c);
2292 temp &= 0xffff0000;
2293 I915_WRITE(0x4600c, temp | 0x8124);
2295 temp = I915_READ(0x46010);
2296 I915_WRITE(0x46010, temp | 1);
2298 temp = I915_READ(0x46034);
2299 I915_WRITE(0x46034, temp | (1 << 24));
2300 } else {
2301 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2303 I915_WRITE(DP_A, dpa_ctl);
2305 POSTING_READ(DP_A);
2306 udelay(500);
2309 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2311 struct drm_device *dev = crtc->dev;
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2314 int pipe = intel_crtc->pipe;
2315 u32 reg, temp;
2317 /* enable normal train */
2318 reg = FDI_TX_CTL(pipe);
2319 temp = I915_READ(reg);
2320 if (IS_IVYBRIDGE(dev)) {
2321 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2322 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2323 } else {
2324 temp &= ~FDI_LINK_TRAIN_NONE;
2325 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2327 I915_WRITE(reg, temp);
2329 reg = FDI_RX_CTL(pipe);
2330 temp = I915_READ(reg);
2331 if (HAS_PCH_CPT(dev)) {
2332 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2333 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2334 } else {
2335 temp &= ~FDI_LINK_TRAIN_NONE;
2336 temp |= FDI_LINK_TRAIN_NONE;
2338 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2340 /* wait one idle pattern time */
2341 POSTING_READ(reg);
2342 udelay(1000);
2344 /* IVB wants error correction enabled */
2345 if (IS_IVYBRIDGE(dev))
2346 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2347 FDI_FE_ERRC_ENABLE);
2350 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 u32 flags = I915_READ(SOUTH_CHICKEN1);
2355 flags |= FDI_PHASE_SYNC_OVR(pipe);
2356 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2357 flags |= FDI_PHASE_SYNC_EN(pipe);
2358 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2359 POSTING_READ(SOUTH_CHICKEN1);
2362 /* The FDI link training functions for ILK/Ibexpeak. */
2363 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2365 struct drm_device *dev = crtc->dev;
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368 int pipe = intel_crtc->pipe;
2369 int plane = intel_crtc->plane;
2370 u32 reg, temp, tries;
2372 /* FDI needs bits from pipe & plane first */
2373 assert_pipe_enabled(dev_priv, pipe);
2374 assert_plane_enabled(dev_priv, plane);
2376 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2377 for train result */
2378 reg = FDI_RX_IMR(pipe);
2379 temp = I915_READ(reg);
2380 temp &= ~FDI_RX_SYMBOL_LOCK;
2381 temp &= ~FDI_RX_BIT_LOCK;
2382 I915_WRITE(reg, temp);
2383 I915_READ(reg);
2384 udelay(150);
2386 /* enable CPU FDI TX and PCH FDI RX */
2387 reg = FDI_TX_CTL(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~(7 << 19);
2390 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2391 temp &= ~FDI_LINK_TRAIN_NONE;
2392 temp |= FDI_LINK_TRAIN_PATTERN_1;
2393 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2395 reg = FDI_RX_CTL(pipe);
2396 temp = I915_READ(reg);
2397 temp &= ~FDI_LINK_TRAIN_NONE;
2398 temp |= FDI_LINK_TRAIN_PATTERN_1;
2399 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2401 POSTING_READ(reg);
2402 udelay(150);
2404 /* Ironlake workaround, enable clock pointer after FDI enable*/
2405 if (HAS_PCH_IBX(dev)) {
2406 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2407 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2408 FDI_RX_PHASE_SYNC_POINTER_EN);
2411 reg = FDI_RX_IIR(pipe);
2412 for (tries = 0; tries < 5; tries++) {
2413 temp = I915_READ(reg);
2414 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2416 if ((temp & FDI_RX_BIT_LOCK)) {
2417 DRM_DEBUG_KMS("FDI train 1 done.\n");
2418 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2419 break;
2422 if (tries == 5)
2423 DRM_ERROR("FDI train 1 fail!\n");
2425 /* Train 2 */
2426 reg = FDI_TX_CTL(pipe);
2427 temp = I915_READ(reg);
2428 temp &= ~FDI_LINK_TRAIN_NONE;
2429 temp |= FDI_LINK_TRAIN_PATTERN_2;
2430 I915_WRITE(reg, temp);
2432 reg = FDI_RX_CTL(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_LINK_TRAIN_NONE;
2435 temp |= FDI_LINK_TRAIN_PATTERN_2;
2436 I915_WRITE(reg, temp);
2438 POSTING_READ(reg);
2439 udelay(150);
2441 reg = FDI_RX_IIR(pipe);
2442 for (tries = 0; tries < 5; tries++) {
2443 temp = I915_READ(reg);
2444 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2446 if (temp & FDI_RX_SYMBOL_LOCK) {
2447 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2448 DRM_DEBUG_KMS("FDI train 2 done.\n");
2449 break;
2452 if (tries == 5)
2453 DRM_ERROR("FDI train 2 fail!\n");
2455 DRM_DEBUG_KMS("FDI train done\n");
2459 static const int snb_b_fdi_train_param[] = {
2460 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2461 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2462 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2463 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2466 /* The FDI link training functions for SNB/Cougarpoint. */
2467 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2469 struct drm_device *dev = crtc->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2472 int pipe = intel_crtc->pipe;
2473 u32 reg, temp, i, retry;
2475 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2476 for train result */
2477 reg = FDI_RX_IMR(pipe);
2478 temp = I915_READ(reg);
2479 temp &= ~FDI_RX_SYMBOL_LOCK;
2480 temp &= ~FDI_RX_BIT_LOCK;
2481 I915_WRITE(reg, temp);
2483 POSTING_READ(reg);
2484 udelay(150);
2486 /* enable CPU FDI TX and PCH FDI RX */
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~(7 << 19);
2490 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2494 /* SNB-B */
2495 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2496 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503 } else {
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_PATTERN_1;
2507 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2509 POSTING_READ(reg);
2510 udelay(150);
2512 if (HAS_PCH_CPT(dev))
2513 cpt_phase_pointer_enable(dev, pipe);
2515 for (i = 0; i < 4; i++) {
2516 reg = FDI_TX_CTL(pipe);
2517 temp = I915_READ(reg);
2518 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2519 temp |= snb_b_fdi_train_param[i];
2520 I915_WRITE(reg, temp);
2522 POSTING_READ(reg);
2523 udelay(500);
2525 for (retry = 0; retry < 5; retry++) {
2526 reg = FDI_RX_IIR(pipe);
2527 temp = I915_READ(reg);
2528 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2529 if (temp & FDI_RX_BIT_LOCK) {
2530 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2531 DRM_DEBUG_KMS("FDI train 1 done.\n");
2532 break;
2534 udelay(50);
2536 if (retry < 5)
2537 break;
2539 if (i == 4)
2540 DRM_ERROR("FDI train 1 fail!\n");
2542 /* Train 2 */
2543 reg = FDI_TX_CTL(pipe);
2544 temp = I915_READ(reg);
2545 temp &= ~FDI_LINK_TRAIN_NONE;
2546 temp |= FDI_LINK_TRAIN_PATTERN_2;
2547 if (IS_GEN6(dev)) {
2548 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2549 /* SNB-B */
2550 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2552 I915_WRITE(reg, temp);
2554 reg = FDI_RX_CTL(pipe);
2555 temp = I915_READ(reg);
2556 if (HAS_PCH_CPT(dev)) {
2557 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2559 } else {
2560 temp &= ~FDI_LINK_TRAIN_NONE;
2561 temp |= FDI_LINK_TRAIN_PATTERN_2;
2563 I915_WRITE(reg, temp);
2565 POSTING_READ(reg);
2566 udelay(150);
2568 for (i = 0; i < 4; i++) {
2569 reg = FDI_TX_CTL(pipe);
2570 temp = I915_READ(reg);
2571 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2572 temp |= snb_b_fdi_train_param[i];
2573 I915_WRITE(reg, temp);
2575 POSTING_READ(reg);
2576 udelay(500);
2578 for (retry = 0; retry < 5; retry++) {
2579 reg = FDI_RX_IIR(pipe);
2580 temp = I915_READ(reg);
2581 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2582 if (temp & FDI_RX_SYMBOL_LOCK) {
2583 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2584 DRM_DEBUG_KMS("FDI train 2 done.\n");
2585 break;
2587 udelay(50);
2589 if (retry < 5)
2590 break;
2592 if (i == 4)
2593 DRM_ERROR("FDI train 2 fail!\n");
2595 DRM_DEBUG_KMS("FDI train done.\n");
2598 /* Manual link training for Ivy Bridge A0 parts */
2599 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601 struct drm_device *dev = crtc->dev;
2602 struct drm_i915_private *dev_priv = dev->dev_private;
2603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2604 int pipe = intel_crtc->pipe;
2605 u32 reg, temp, i;
2607 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2608 for train result */
2609 reg = FDI_RX_IMR(pipe);
2610 temp = I915_READ(reg);
2611 temp &= ~FDI_RX_SYMBOL_LOCK;
2612 temp &= ~FDI_RX_BIT_LOCK;
2613 I915_WRITE(reg, temp);
2615 POSTING_READ(reg);
2616 udelay(150);
2618 /* enable CPU FDI TX and PCH FDI RX */
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 temp &= ~(7 << 19);
2622 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2623 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2624 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2625 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2626 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2627 temp |= FDI_COMPOSITE_SYNC;
2628 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630 reg = FDI_RX_CTL(pipe);
2631 temp = I915_READ(reg);
2632 temp &= ~FDI_LINK_TRAIN_AUTO;
2633 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2634 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2635 temp |= FDI_COMPOSITE_SYNC;
2636 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638 POSTING_READ(reg);
2639 udelay(150);
2641 if (HAS_PCH_CPT(dev))
2642 cpt_phase_pointer_enable(dev, pipe);
2644 for (i = 0; i < 4; i++) {
2645 reg = FDI_TX_CTL(pipe);
2646 temp = I915_READ(reg);
2647 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648 temp |= snb_b_fdi_train_param[i];
2649 I915_WRITE(reg, temp);
2651 POSTING_READ(reg);
2652 udelay(500);
2654 reg = FDI_RX_IIR(pipe);
2655 temp = I915_READ(reg);
2656 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658 if (temp & FDI_RX_BIT_LOCK ||
2659 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2660 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2661 DRM_DEBUG_KMS("FDI train 1 done.\n");
2662 break;
2665 if (i == 4)
2666 DRM_ERROR("FDI train 1 fail!\n");
2668 /* Train 2 */
2669 reg = FDI_TX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2672 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2673 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2675 I915_WRITE(reg, temp);
2677 reg = FDI_RX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2680 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2681 I915_WRITE(reg, temp);
2683 POSTING_READ(reg);
2684 udelay(150);
2686 for (i = 0; i < 4; i++) {
2687 reg = FDI_TX_CTL(pipe);
2688 temp = I915_READ(reg);
2689 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2690 temp |= snb_b_fdi_train_param[i];
2691 I915_WRITE(reg, temp);
2693 POSTING_READ(reg);
2694 udelay(500);
2696 reg = FDI_RX_IIR(pipe);
2697 temp = I915_READ(reg);
2698 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700 if (temp & FDI_RX_SYMBOL_LOCK) {
2701 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2702 DRM_DEBUG_KMS("FDI train 2 done.\n");
2703 break;
2706 if (i == 4)
2707 DRM_ERROR("FDI train 2 fail!\n");
2709 DRM_DEBUG_KMS("FDI train done.\n");
2712 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2714 struct drm_device *dev = intel_crtc->base.dev;
2715 struct drm_i915_private *dev_priv = dev->dev_private;
2716 int pipe = intel_crtc->pipe;
2717 u32 reg, temp;
2719 /* Write the TU size bits so error detection works */
2720 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2721 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2723 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2724 reg = FDI_RX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 temp &= ~((0x7 << 19) | (0x7 << 16));
2727 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2728 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2729 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2731 POSTING_READ(reg);
2732 udelay(200);
2734 /* Switch from Rawclk to PCDclk */
2735 temp = I915_READ(reg);
2736 I915_WRITE(reg, temp | FDI_PCDCLK);
2738 POSTING_READ(reg);
2739 udelay(200);
2741 /* On Haswell, the PLL configuration for ports and pipes is handled
2742 * separately, as part of DDI setup */
2743 if (!IS_HASWELL(dev)) {
2744 /* Enable CPU FDI TX PLL, always on for Ironlake */
2745 reg = FDI_TX_CTL(pipe);
2746 temp = I915_READ(reg);
2747 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2748 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2750 POSTING_READ(reg);
2751 udelay(100);
2756 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2758 struct drm_device *dev = intel_crtc->base.dev;
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760 int pipe = intel_crtc->pipe;
2761 u32 reg, temp;
2763 /* Switch from PCDclk to Rawclk */
2764 reg = FDI_RX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2768 /* Disable CPU FDI TX PLL */
2769 reg = FDI_TX_CTL(pipe);
2770 temp = I915_READ(reg);
2771 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2773 POSTING_READ(reg);
2774 udelay(100);
2776 reg = FDI_RX_CTL(pipe);
2777 temp = I915_READ(reg);
2778 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2780 /* Wait for the clocks to turn off. */
2781 POSTING_READ(reg);
2782 udelay(100);
2785 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2787 struct drm_i915_private *dev_priv = dev->dev_private;
2788 u32 flags = I915_READ(SOUTH_CHICKEN1);
2790 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2791 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2792 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2793 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2794 POSTING_READ(SOUTH_CHICKEN1);
2796 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2798 struct drm_device *dev = crtc->dev;
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2801 int pipe = intel_crtc->pipe;
2802 u32 reg, temp;
2804 /* disable CPU FDI tx and PCH FDI rx */
2805 reg = FDI_TX_CTL(pipe);
2806 temp = I915_READ(reg);
2807 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2808 POSTING_READ(reg);
2810 reg = FDI_RX_CTL(pipe);
2811 temp = I915_READ(reg);
2812 temp &= ~(0x7 << 16);
2813 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2814 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2816 POSTING_READ(reg);
2817 udelay(100);
2819 /* Ironlake workaround, disable clock pointer after downing FDI */
2820 if (HAS_PCH_IBX(dev)) {
2821 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2822 I915_WRITE(FDI_RX_CHICKEN(pipe),
2823 I915_READ(FDI_RX_CHICKEN(pipe) &
2824 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2825 } else if (HAS_PCH_CPT(dev)) {
2826 cpt_phase_pointer_disable(dev, pipe);
2829 /* still set train pattern 1 */
2830 reg = FDI_TX_CTL(pipe);
2831 temp = I915_READ(reg);
2832 temp &= ~FDI_LINK_TRAIN_NONE;
2833 temp |= FDI_LINK_TRAIN_PATTERN_1;
2834 I915_WRITE(reg, temp);
2836 reg = FDI_RX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 if (HAS_PCH_CPT(dev)) {
2839 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2840 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2841 } else {
2842 temp &= ~FDI_LINK_TRAIN_NONE;
2843 temp |= FDI_LINK_TRAIN_PATTERN_1;
2845 /* BPC in FDI rx is consistent with that in PIPECONF */
2846 temp &= ~(0x07 << 16);
2847 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2848 I915_WRITE(reg, temp);
2850 POSTING_READ(reg);
2851 udelay(100);
2854 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2856 struct drm_device *dev = crtc->dev;
2858 if (crtc->fb == NULL)
2859 return;
2861 mutex_lock(&dev->struct_mutex);
2862 intel_finish_fb(crtc->fb);
2863 mutex_unlock(&dev->struct_mutex);
2866 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2868 struct drm_device *dev = crtc->dev;
2869 struct intel_encoder *intel_encoder;
2872 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873 * must be driven by its own crtc; no sharing is possible.
2875 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2877 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2878 * CPU handles all others */
2879 if (IS_HASWELL(dev)) {
2880 /* It is still unclear how this will work on PPT, so throw up a warning */
2881 WARN_ON(!HAS_PCH_LPT(dev));
2883 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
2884 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2885 return true;
2886 } else {
2887 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2888 intel_encoder->type);
2889 return false;
2893 switch (intel_encoder->type) {
2894 case INTEL_OUTPUT_EDP:
2895 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2896 return false;
2897 continue;
2901 return true;
2904 /* Program iCLKIP clock to the desired frequency */
2905 static void lpt_program_iclkip(struct drm_crtc *crtc)
2907 struct drm_device *dev = crtc->dev;
2908 struct drm_i915_private *dev_priv = dev->dev_private;
2909 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2910 u32 temp;
2912 /* It is necessary to ungate the pixclk gate prior to programming
2913 * the divisors, and gate it back when it is done.
2915 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2917 /* Disable SSCCTL */
2918 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2919 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2920 SBI_SSCCTL_DISABLE);
2922 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2923 if (crtc->mode.clock == 20000) {
2924 auxdiv = 1;
2925 divsel = 0x41;
2926 phaseinc = 0x20;
2927 } else {
2928 /* The iCLK virtual clock root frequency is in MHz,
2929 * but the crtc->mode.clock in in KHz. To get the divisors,
2930 * it is necessary to divide one by another, so we
2931 * convert the virtual clock precision to KHz here for higher
2932 * precision.
2934 u32 iclk_virtual_root_freq = 172800 * 1000;
2935 u32 iclk_pi_range = 64;
2936 u32 desired_divisor, msb_divisor_value, pi_value;
2938 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2939 msb_divisor_value = desired_divisor / iclk_pi_range;
2940 pi_value = desired_divisor % iclk_pi_range;
2942 auxdiv = 0;
2943 divsel = msb_divisor_value - 2;
2944 phaseinc = pi_value;
2947 /* This should not happen with any sane values */
2948 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2949 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2950 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2951 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2953 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2954 crtc->mode.clock,
2955 auxdiv,
2956 divsel,
2957 phasedir,
2958 phaseinc);
2960 /* Program SSCDIVINTPHASE6 */
2961 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2962 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2963 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2964 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2965 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2966 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2967 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2969 intel_sbi_write(dev_priv,
2970 SBI_SSCDIVINTPHASE6,
2971 temp);
2973 /* Program SSCAUXDIV */
2974 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2975 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2976 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2977 intel_sbi_write(dev_priv,
2978 SBI_SSCAUXDIV6,
2979 temp);
2982 /* Enable modulator and associated divider */
2983 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2984 temp &= ~SBI_SSCCTL_DISABLE;
2985 intel_sbi_write(dev_priv,
2986 SBI_SSCCTL6,
2987 temp);
2989 /* Wait for initialization time */
2990 udelay(24);
2992 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2996 * Enable PCH resources required for PCH ports:
2997 * - PCH PLLs
2998 * - FDI training & RX/TX
2999 * - update transcoder timings
3000 * - DP transcoding bits
3001 * - transcoder
3003 static void ironlake_pch_enable(struct drm_crtc *crtc)
3005 struct drm_device *dev = crtc->dev;
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3008 int pipe = intel_crtc->pipe;
3009 u32 reg, temp;
3011 assert_transcoder_disabled(dev_priv, pipe);
3013 /* For PCH output, training FDI link */
3014 dev_priv->display.fdi_link_train(crtc);
3016 intel_enable_pch_pll(intel_crtc);
3018 if (HAS_PCH_LPT(dev)) {
3019 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3020 lpt_program_iclkip(crtc);
3021 } else if (HAS_PCH_CPT(dev)) {
3022 u32 sel;
3024 temp = I915_READ(PCH_DPLL_SEL);
3025 switch (pipe) {
3026 default:
3027 case 0:
3028 temp |= TRANSA_DPLL_ENABLE;
3029 sel = TRANSA_DPLLB_SEL;
3030 break;
3031 case 1:
3032 temp |= TRANSB_DPLL_ENABLE;
3033 sel = TRANSB_DPLLB_SEL;
3034 break;
3035 case 2:
3036 temp |= TRANSC_DPLL_ENABLE;
3037 sel = TRANSC_DPLLB_SEL;
3038 break;
3040 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3041 temp |= sel;
3042 else
3043 temp &= ~sel;
3044 I915_WRITE(PCH_DPLL_SEL, temp);
3047 /* set transcoder timing, panel must allow it */
3048 assert_panel_unlocked(dev_priv, pipe);
3049 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3050 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3051 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3053 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3054 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3055 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3056 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3058 if (!IS_HASWELL(dev))
3059 intel_fdi_normal_train(crtc);
3061 /* For PCH DP, enable TRANS_DP_CTL */
3062 if (HAS_PCH_CPT(dev) &&
3063 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3064 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3065 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3066 reg = TRANS_DP_CTL(pipe);
3067 temp = I915_READ(reg);
3068 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3069 TRANS_DP_SYNC_MASK |
3070 TRANS_DP_BPC_MASK);
3071 temp |= (TRANS_DP_OUTPUT_ENABLE |
3072 TRANS_DP_ENH_FRAMING);
3073 temp |= bpc << 9; /* same format but at 11:9 */
3075 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3076 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3077 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3078 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3080 switch (intel_trans_dp_port_sel(crtc)) {
3081 case PCH_DP_B:
3082 temp |= TRANS_DP_PORT_SEL_B;
3083 break;
3084 case PCH_DP_C:
3085 temp |= TRANS_DP_PORT_SEL_C;
3086 break;
3087 case PCH_DP_D:
3088 temp |= TRANS_DP_PORT_SEL_D;
3089 break;
3090 default:
3091 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3092 temp |= TRANS_DP_PORT_SEL_B;
3093 break;
3096 I915_WRITE(reg, temp);
3099 intel_enable_transcoder(dev_priv, pipe);
3102 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3104 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3106 if (pll == NULL)
3107 return;
3109 if (pll->refcount == 0) {
3110 WARN(1, "bad PCH PLL refcount\n");
3111 return;
3114 --pll->refcount;
3115 intel_crtc->pch_pll = NULL;
3118 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3120 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3121 struct intel_pch_pll *pll;
3122 int i;
3124 pll = intel_crtc->pch_pll;
3125 if (pll) {
3126 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3127 intel_crtc->base.base.id, pll->pll_reg);
3128 goto prepare;
3131 if (HAS_PCH_IBX(dev_priv->dev)) {
3132 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3133 i = intel_crtc->pipe;
3134 pll = &dev_priv->pch_plls[i];
3136 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3137 intel_crtc->base.base.id, pll->pll_reg);
3139 goto found;
3142 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3143 pll = &dev_priv->pch_plls[i];
3145 /* Only want to check enabled timings first */
3146 if (pll->refcount == 0)
3147 continue;
3149 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3150 fp == I915_READ(pll->fp0_reg)) {
3151 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3152 intel_crtc->base.base.id,
3153 pll->pll_reg, pll->refcount, pll->active);
3155 goto found;
3159 /* Ok no matching timings, maybe there's a free one? */
3160 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3161 pll = &dev_priv->pch_plls[i];
3162 if (pll->refcount == 0) {
3163 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3164 intel_crtc->base.base.id, pll->pll_reg);
3165 goto found;
3169 return NULL;
3171 found:
3172 intel_crtc->pch_pll = pll;
3173 pll->refcount++;
3174 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3175 prepare: /* separate function? */
3176 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3178 /* Wait for the clocks to stabilize before rewriting the regs */
3179 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3180 POSTING_READ(pll->pll_reg);
3181 udelay(150);
3183 I915_WRITE(pll->fp0_reg, fp);
3184 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3185 pll->on = false;
3186 return pll;
3189 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3191 struct drm_i915_private *dev_priv = dev->dev_private;
3192 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3193 u32 temp;
3195 temp = I915_READ(dslreg);
3196 udelay(500);
3197 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3198 /* Without this, mode sets may fail silently on FDI */
3199 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3200 udelay(250);
3201 I915_WRITE(tc2reg, 0);
3202 if (wait_for(I915_READ(dslreg) != temp, 5))
3203 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3207 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3209 struct drm_device *dev = crtc->dev;
3210 struct drm_i915_private *dev_priv = dev->dev_private;
3211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3212 struct intel_encoder *encoder;
3213 int pipe = intel_crtc->pipe;
3214 int plane = intel_crtc->plane;
3215 u32 temp;
3216 bool is_pch_port;
3218 WARN_ON(!crtc->enabled);
3220 /* XXX: For compatability with the crtc helper code, call the encoder's
3221 * enable function unconditionally for now. */
3222 if (intel_crtc->active)
3223 goto encoders;
3225 intel_crtc->active = true;
3226 intel_update_watermarks(dev);
3228 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3229 temp = I915_READ(PCH_LVDS);
3230 if ((temp & LVDS_PORT_EN) == 0)
3231 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3234 is_pch_port = intel_crtc_driving_pch(crtc);
3236 if (is_pch_port)
3237 ironlake_fdi_pll_enable(intel_crtc);
3238 else
3239 ironlake_fdi_disable(crtc);
3241 /* Enable panel fitting for LVDS */
3242 if (dev_priv->pch_pf_size &&
3243 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3244 /* Force use of hard-coded filter coefficients
3245 * as some pre-programmed values are broken,
3246 * e.g. x201.
3248 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3249 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3250 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3254 * On ILK+ LUT must be loaded before the pipe is running but with
3255 * clocks enabled
3257 intel_crtc_load_lut(crtc);
3259 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3260 intel_enable_plane(dev_priv, plane, pipe);
3262 if (is_pch_port)
3263 ironlake_pch_enable(crtc);
3265 mutex_lock(&dev->struct_mutex);
3266 intel_update_fbc(dev);
3267 mutex_unlock(&dev->struct_mutex);
3269 intel_crtc_update_cursor(crtc, true);
3271 encoders:
3272 for_each_encoder_on_crtc(dev, crtc, encoder)
3273 encoder->enable(encoder);
3275 if (HAS_PCH_CPT(dev))
3276 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3279 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3281 struct drm_device *dev = crtc->dev;
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 struct intel_encoder *encoder;
3285 int pipe = intel_crtc->pipe;
3286 int plane = intel_crtc->plane;
3287 u32 reg, temp;
3289 /* XXX: For compatability with the crtc helper code, call the encoder's
3290 * disable function unconditionally for now. */
3291 for_each_encoder_on_crtc(dev, crtc, encoder)
3292 encoder->disable(encoder);
3294 if (!intel_crtc->active)
3295 return;
3297 intel_crtc_wait_for_pending_flips(crtc);
3298 drm_vblank_off(dev, pipe);
3299 intel_crtc_update_cursor(crtc, false);
3301 intel_disable_plane(dev_priv, plane, pipe);
3303 if (dev_priv->cfb_plane == plane)
3304 intel_disable_fbc(dev);
3306 intel_disable_pipe(dev_priv, pipe);
3308 /* Disable PF */
3309 I915_WRITE(PF_CTL(pipe), 0);
3310 I915_WRITE(PF_WIN_SZ(pipe), 0);
3312 ironlake_fdi_disable(crtc);
3314 /* This is a horrible layering violation; we should be doing this in
3315 * the connector/encoder ->prepare instead, but we don't always have
3316 * enough information there about the config to know whether it will
3317 * actually be necessary or just cause undesired flicker.
3319 intel_disable_pch_ports(dev_priv, pipe);
3321 intel_disable_transcoder(dev_priv, pipe);
3323 if (HAS_PCH_CPT(dev)) {
3324 /* disable TRANS_DP_CTL */
3325 reg = TRANS_DP_CTL(pipe);
3326 temp = I915_READ(reg);
3327 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3328 temp |= TRANS_DP_PORT_SEL_NONE;
3329 I915_WRITE(reg, temp);
3331 /* disable DPLL_SEL */
3332 temp = I915_READ(PCH_DPLL_SEL);
3333 switch (pipe) {
3334 case 0:
3335 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3336 break;
3337 case 1:
3338 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3339 break;
3340 case 2:
3341 /* C shares PLL A or B */
3342 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3343 break;
3344 default:
3345 BUG(); /* wtf */
3347 I915_WRITE(PCH_DPLL_SEL, temp);
3350 /* disable PCH DPLL */
3351 intel_disable_pch_pll(intel_crtc);
3353 ironlake_fdi_pll_disable(intel_crtc);
3355 intel_crtc->active = false;
3356 intel_update_watermarks(dev);
3358 mutex_lock(&dev->struct_mutex);
3359 intel_update_fbc(dev);
3360 mutex_unlock(&dev->struct_mutex);
3363 static void ironlake_crtc_off(struct drm_crtc *crtc)
3365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3366 intel_put_pch_pll(intel_crtc);
3369 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3371 if (!enable && intel_crtc->overlay) {
3372 struct drm_device *dev = intel_crtc->base.dev;
3373 struct drm_i915_private *dev_priv = dev->dev_private;
3375 mutex_lock(&dev->struct_mutex);
3376 dev_priv->mm.interruptible = false;
3377 (void) intel_overlay_switch_off(intel_crtc->overlay);
3378 dev_priv->mm.interruptible = true;
3379 mutex_unlock(&dev->struct_mutex);
3382 /* Let userspace switch the overlay on again. In most cases userspace
3383 * has to recompute where to put it anyway.
3387 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3389 struct drm_device *dev = crtc->dev;
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3392 struct intel_encoder *encoder;
3393 int pipe = intel_crtc->pipe;
3394 int plane = intel_crtc->plane;
3396 WARN_ON(!crtc->enabled);
3398 /* XXX: For compatability with the crtc helper code, call the encoder's
3399 * enable function unconditionally for now. */
3400 if (intel_crtc->active)
3401 goto encoders;
3403 intel_crtc->active = true;
3404 intel_update_watermarks(dev);
3406 intel_enable_pll(dev_priv, pipe);
3407 intel_enable_pipe(dev_priv, pipe, false);
3408 intel_enable_plane(dev_priv, plane, pipe);
3410 intel_crtc_load_lut(crtc);
3411 intel_update_fbc(dev);
3413 /* Give the overlay scaler a chance to enable if it's on this pipe */
3414 intel_crtc_dpms_overlay(intel_crtc, true);
3415 intel_crtc_update_cursor(crtc, true);
3417 encoders:
3418 for_each_encoder_on_crtc(dev, crtc, encoder)
3419 encoder->enable(encoder);
3422 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3424 struct drm_device *dev = crtc->dev;
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3427 struct intel_encoder *encoder;
3428 int pipe = intel_crtc->pipe;
3429 int plane = intel_crtc->plane;
3431 /* XXX: For compatability with the crtc helper code, call the encoder's
3432 * disable function unconditionally for now. */
3433 for_each_encoder_on_crtc(dev, crtc, encoder)
3434 encoder->disable(encoder);
3436 if (!intel_crtc->active)
3437 return;
3439 /* Give the overlay scaler a chance to disable if it's on this pipe */
3440 intel_crtc_wait_for_pending_flips(crtc);
3441 drm_vblank_off(dev, pipe);
3442 intel_crtc_dpms_overlay(intel_crtc, false);
3443 intel_crtc_update_cursor(crtc, false);
3445 if (dev_priv->cfb_plane == plane)
3446 intel_disable_fbc(dev);
3448 intel_disable_plane(dev_priv, plane, pipe);
3449 intel_disable_pipe(dev_priv, pipe);
3450 intel_disable_pll(dev_priv, pipe);
3452 intel_crtc->active = false;
3453 intel_update_fbc(dev);
3454 intel_update_watermarks(dev);
3457 static void i9xx_crtc_off(struct drm_crtc *crtc)
3462 * Sets the power management mode of the pipe and plane.
3464 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3466 struct drm_device *dev = crtc->dev;
3467 struct drm_i915_private *dev_priv = dev->dev_private;
3468 struct drm_i915_master_private *master_priv;
3469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3470 struct intel_encoder *intel_encoder;
3471 int pipe = intel_crtc->pipe;
3472 bool enabled, enable = false;
3473 int mode;
3475 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3476 enable |= intel_encoder->connectors_active;
3478 mode = enable ? DRM_MODE_DPMS_ON : DRM_MODE_DPMS_OFF;
3480 if (intel_crtc->dpms_mode == mode)
3481 return;
3483 intel_crtc->dpms_mode = mode;
3485 if (enable)
3486 dev_priv->display.crtc_enable(crtc);
3487 else
3488 dev_priv->display.crtc_disable(crtc);
3490 if (!dev->primary->master)
3491 return;
3493 master_priv = dev->primary->master->driver_priv;
3494 if (!master_priv->sarea_priv)
3495 return;
3497 enabled = crtc->enabled && enable;
3499 switch (pipe) {
3500 case 0:
3501 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3502 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3503 break;
3504 case 1:
3505 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3506 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3507 break;
3508 default:
3509 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3510 break;
3514 static void intel_crtc_disable(struct drm_crtc *crtc)
3516 struct drm_device *dev = crtc->dev;
3517 struct drm_i915_private *dev_priv = dev->dev_private;
3519 /* crtc->disable is only called when we have no encoders, hence this
3520 * will disable the pipe. */
3521 intel_crtc_update_dpms(crtc);
3522 dev_priv->display.off(crtc);
3524 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3525 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3527 if (crtc->fb) {
3528 mutex_lock(&dev->struct_mutex);
3529 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3530 mutex_unlock(&dev->struct_mutex);
3534 void intel_encoder_disable(struct drm_encoder *encoder)
3536 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3538 intel_encoder->disable(intel_encoder);
3541 void intel_encoder_destroy(struct drm_encoder *encoder)
3543 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3545 drm_encoder_cleanup(encoder);
3546 kfree(intel_encoder);
3549 /* Simple dpms helper for encodres with just one connector, no cloning and only
3550 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3551 * state of the entire output pipe. */
3552 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3554 if (mode == DRM_MODE_DPMS_ON) {
3555 encoder->connectors_active = true;
3557 intel_crtc_update_dpms(encoder->base.crtc);
3558 } else {
3559 encoder->connectors_active = false;
3561 intel_crtc_update_dpms(encoder->base.crtc);
3565 /* Even simpler default implementation, if there's really no special case to
3566 * consider. */
3567 void intel_connector_dpms(struct drm_connector *connector, int mode)
3569 struct intel_encoder *encoder = intel_attached_encoder(connector);
3571 /* All the simple cases only support two dpms states. */
3572 if (mode != DRM_MODE_DPMS_ON)
3573 mode = DRM_MODE_DPMS_OFF;
3575 if (mode == connector->dpms)
3576 return;
3578 connector->dpms = mode;
3580 /* Only need to change hw state when actually enabled */
3581 if (encoder->base.crtc)
3582 intel_encoder_dpms(encoder, mode);
3583 else
3584 encoder->connectors_active = false;
3587 /* Simple connector->get_hw_state implementation for encoders that support only
3588 * one connector and no cloning and hence the encoder state determines the state
3589 * of the connector. */
3590 bool intel_connector_get_hw_state(struct intel_connector *connector)
3592 enum pipe pipe;
3593 struct intel_encoder *encoder = connector->encoder;
3595 return encoder->get_hw_state(encoder, &pipe);
3598 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3599 const struct drm_display_mode *mode,
3600 struct drm_display_mode *adjusted_mode)
3602 struct drm_device *dev = crtc->dev;
3604 if (HAS_PCH_SPLIT(dev)) {
3605 /* FDI link clock is fixed at 2.7G */
3606 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3607 return false;
3610 /* All interlaced capable intel hw wants timings in frames. Note though
3611 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3612 * timings, so we need to be careful not to clobber these.*/
3613 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3614 drm_mode_set_crtcinfo(adjusted_mode, 0);
3616 return true;
3619 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3621 return 400000; /* FIXME */
3624 static int i945_get_display_clock_speed(struct drm_device *dev)
3626 return 400000;
3629 static int i915_get_display_clock_speed(struct drm_device *dev)
3631 return 333000;
3634 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3636 return 200000;
3639 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3641 u16 gcfgc = 0;
3643 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3645 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3646 return 133000;
3647 else {
3648 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3649 case GC_DISPLAY_CLOCK_333_MHZ:
3650 return 333000;
3651 default:
3652 case GC_DISPLAY_CLOCK_190_200_MHZ:
3653 return 190000;
3658 static int i865_get_display_clock_speed(struct drm_device *dev)
3660 return 266000;
3663 static int i855_get_display_clock_speed(struct drm_device *dev)
3665 u16 hpllcc = 0;
3666 /* Assume that the hardware is in the high speed state. This
3667 * should be the default.
3669 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3670 case GC_CLOCK_133_200:
3671 case GC_CLOCK_100_200:
3672 return 200000;
3673 case GC_CLOCK_166_250:
3674 return 250000;
3675 case GC_CLOCK_100_133:
3676 return 133000;
3679 /* Shouldn't happen */
3680 return 0;
3683 static int i830_get_display_clock_speed(struct drm_device *dev)
3685 return 133000;
3688 struct fdi_m_n {
3689 u32 tu;
3690 u32 gmch_m;
3691 u32 gmch_n;
3692 u32 link_m;
3693 u32 link_n;
3696 static void
3697 fdi_reduce_ratio(u32 *num, u32 *den)
3699 while (*num > 0xffffff || *den > 0xffffff) {
3700 *num >>= 1;
3701 *den >>= 1;
3705 static void
3706 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3707 int link_clock, struct fdi_m_n *m_n)
3709 m_n->tu = 64; /* default size */
3711 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3712 m_n->gmch_m = bits_per_pixel * pixel_clock;
3713 m_n->gmch_n = link_clock * nlanes * 8;
3714 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3716 m_n->link_m = pixel_clock;
3717 m_n->link_n = link_clock;
3718 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3721 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3723 if (i915_panel_use_ssc >= 0)
3724 return i915_panel_use_ssc != 0;
3725 return dev_priv->lvds_use_ssc
3726 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3730 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3731 * @crtc: CRTC structure
3732 * @mode: requested mode
3734 * A pipe may be connected to one or more outputs. Based on the depth of the
3735 * attached framebuffer, choose a good color depth to use on the pipe.
3737 * If possible, match the pipe depth to the fb depth. In some cases, this
3738 * isn't ideal, because the connected output supports a lesser or restricted
3739 * set of depths. Resolve that here:
3740 * LVDS typically supports only 6bpc, so clamp down in that case
3741 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3742 * Displays may support a restricted set as well, check EDID and clamp as
3743 * appropriate.
3744 * DP may want to dither down to 6bpc to fit larger modes
3746 * RETURNS:
3747 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3748 * true if they don't match).
3750 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3751 unsigned int *pipe_bpp,
3752 struct drm_display_mode *mode)
3754 struct drm_device *dev = crtc->dev;
3755 struct drm_i915_private *dev_priv = dev->dev_private;
3756 struct drm_connector *connector;
3757 struct intel_encoder *intel_encoder;
3758 unsigned int display_bpc = UINT_MAX, bpc;
3760 /* Walk the encoders & connectors on this crtc, get min bpc */
3761 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3763 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3764 unsigned int lvds_bpc;
3766 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3767 LVDS_A3_POWER_UP)
3768 lvds_bpc = 8;
3769 else
3770 lvds_bpc = 6;
3772 if (lvds_bpc < display_bpc) {
3773 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3774 display_bpc = lvds_bpc;
3776 continue;
3779 /* Not one of the known troublemakers, check the EDID */
3780 list_for_each_entry(connector, &dev->mode_config.connector_list,
3781 head) {
3782 if (connector->encoder != &intel_encoder->base)
3783 continue;
3785 /* Don't use an invalid EDID bpc value */
3786 if (connector->display_info.bpc &&
3787 connector->display_info.bpc < display_bpc) {
3788 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3789 display_bpc = connector->display_info.bpc;
3794 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3795 * through, clamp it down. (Note: >12bpc will be caught below.)
3797 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3798 if (display_bpc > 8 && display_bpc < 12) {
3799 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3800 display_bpc = 12;
3801 } else {
3802 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3803 display_bpc = 8;
3808 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3809 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3810 display_bpc = 6;
3814 * We could just drive the pipe at the highest bpc all the time and
3815 * enable dithering as needed, but that costs bandwidth. So choose
3816 * the minimum value that expresses the full color range of the fb but
3817 * also stays within the max display bpc discovered above.
3820 switch (crtc->fb->depth) {
3821 case 8:
3822 bpc = 8; /* since we go through a colormap */
3823 break;
3824 case 15:
3825 case 16:
3826 bpc = 6; /* min is 18bpp */
3827 break;
3828 case 24:
3829 bpc = 8;
3830 break;
3831 case 30:
3832 bpc = 10;
3833 break;
3834 case 48:
3835 bpc = 12;
3836 break;
3837 default:
3838 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3839 bpc = min((unsigned int)8, display_bpc);
3840 break;
3843 display_bpc = min(display_bpc, bpc);
3845 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3846 bpc, display_bpc);
3848 *pipe_bpp = display_bpc * 3;
3850 return display_bpc != bpc;
3853 static int vlv_get_refclk(struct drm_crtc *crtc)
3855 struct drm_device *dev = crtc->dev;
3856 struct drm_i915_private *dev_priv = dev->dev_private;
3857 int refclk = 27000; /* for DP & HDMI */
3859 return 100000; /* only one validated so far */
3861 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3862 refclk = 96000;
3863 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3864 if (intel_panel_use_ssc(dev_priv))
3865 refclk = 100000;
3866 else
3867 refclk = 96000;
3868 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3869 refclk = 100000;
3872 return refclk;
3875 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3877 struct drm_device *dev = crtc->dev;
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879 int refclk;
3881 if (IS_VALLEYVIEW(dev)) {
3882 refclk = vlv_get_refclk(crtc);
3883 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3884 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3885 refclk = dev_priv->lvds_ssc_freq * 1000;
3886 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3887 refclk / 1000);
3888 } else if (!IS_GEN2(dev)) {
3889 refclk = 96000;
3890 } else {
3891 refclk = 48000;
3894 return refclk;
3897 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3898 intel_clock_t *clock)
3900 /* SDVO TV has fixed PLL values depend on its clock range,
3901 this mirrors vbios setting. */
3902 if (adjusted_mode->clock >= 100000
3903 && adjusted_mode->clock < 140500) {
3904 clock->p1 = 2;
3905 clock->p2 = 10;
3906 clock->n = 3;
3907 clock->m1 = 16;
3908 clock->m2 = 8;
3909 } else if (adjusted_mode->clock >= 140500
3910 && adjusted_mode->clock <= 200000) {
3911 clock->p1 = 1;
3912 clock->p2 = 10;
3913 clock->n = 6;
3914 clock->m1 = 12;
3915 clock->m2 = 8;
3919 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3920 intel_clock_t *clock,
3921 intel_clock_t *reduced_clock)
3923 struct drm_device *dev = crtc->dev;
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3926 int pipe = intel_crtc->pipe;
3927 u32 fp, fp2 = 0;
3929 if (IS_PINEVIEW(dev)) {
3930 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3931 if (reduced_clock)
3932 fp2 = (1 << reduced_clock->n) << 16 |
3933 reduced_clock->m1 << 8 | reduced_clock->m2;
3934 } else {
3935 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3936 if (reduced_clock)
3937 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3938 reduced_clock->m2;
3941 I915_WRITE(FP0(pipe), fp);
3943 intel_crtc->lowfreq_avail = false;
3944 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3945 reduced_clock && i915_powersave) {
3946 I915_WRITE(FP1(pipe), fp2);
3947 intel_crtc->lowfreq_avail = true;
3948 } else {
3949 I915_WRITE(FP1(pipe), fp);
3953 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3954 struct drm_display_mode *adjusted_mode)
3956 struct drm_device *dev = crtc->dev;
3957 struct drm_i915_private *dev_priv = dev->dev_private;
3958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3959 int pipe = intel_crtc->pipe;
3960 u32 temp;
3962 temp = I915_READ(LVDS);
3963 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3964 if (pipe == 1) {
3965 temp |= LVDS_PIPEB_SELECT;
3966 } else {
3967 temp &= ~LVDS_PIPEB_SELECT;
3969 /* set the corresponsding LVDS_BORDER bit */
3970 temp |= dev_priv->lvds_border_bits;
3971 /* Set the B0-B3 data pairs corresponding to whether we're going to
3972 * set the DPLLs for dual-channel mode or not.
3974 if (clock->p2 == 7)
3975 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3976 else
3977 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3979 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3980 * appropriately here, but we need to look more thoroughly into how
3981 * panels behave in the two modes.
3983 /* set the dithering flag on LVDS as needed */
3984 if (INTEL_INFO(dev)->gen >= 4) {
3985 if (dev_priv->lvds_dither)
3986 temp |= LVDS_ENABLE_DITHER;
3987 else
3988 temp &= ~LVDS_ENABLE_DITHER;
3990 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3991 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3992 temp |= LVDS_HSYNC_POLARITY;
3993 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3994 temp |= LVDS_VSYNC_POLARITY;
3995 I915_WRITE(LVDS, temp);
3998 static void vlv_update_pll(struct drm_crtc *crtc,
3999 struct drm_display_mode *mode,
4000 struct drm_display_mode *adjusted_mode,
4001 intel_clock_t *clock, intel_clock_t *reduced_clock,
4002 int refclk, int num_connectors)
4004 struct drm_device *dev = crtc->dev;
4005 struct drm_i915_private *dev_priv = dev->dev_private;
4006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4007 int pipe = intel_crtc->pipe;
4008 u32 dpll, mdiv, pdiv;
4009 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4010 bool is_hdmi;
4012 is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4014 bestn = clock->n;
4015 bestm1 = clock->m1;
4016 bestm2 = clock->m2;
4017 bestp1 = clock->p1;
4018 bestp2 = clock->p2;
4020 /* Enable DPIO clock input */
4021 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4022 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4023 I915_WRITE(DPLL(pipe), dpll);
4024 POSTING_READ(DPLL(pipe));
4026 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4027 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4028 mdiv |= ((bestn << DPIO_N_SHIFT));
4029 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4030 mdiv |= (1 << DPIO_K_SHIFT);
4031 mdiv |= DPIO_ENABLE_CALIBRATION;
4032 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4034 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4036 pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4037 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4038 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4039 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4041 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4043 dpll |= DPLL_VCO_ENABLE;
4044 I915_WRITE(DPLL(pipe), dpll);
4045 POSTING_READ(DPLL(pipe));
4046 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4047 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4049 if (is_hdmi) {
4050 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4052 if (temp > 1)
4053 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4054 else
4055 temp = 0;
4057 I915_WRITE(DPLL_MD(pipe), temp);
4058 POSTING_READ(DPLL_MD(pipe));
4061 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4064 static void i9xx_update_pll(struct drm_crtc *crtc,
4065 struct drm_display_mode *mode,
4066 struct drm_display_mode *adjusted_mode,
4067 intel_clock_t *clock, intel_clock_t *reduced_clock,
4068 int num_connectors)
4070 struct drm_device *dev = crtc->dev;
4071 struct drm_i915_private *dev_priv = dev->dev_private;
4072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4073 int pipe = intel_crtc->pipe;
4074 u32 dpll;
4075 bool is_sdvo;
4077 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4078 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4080 dpll = DPLL_VGA_MODE_DIS;
4082 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4083 dpll |= DPLLB_MODE_LVDS;
4084 else
4085 dpll |= DPLLB_MODE_DAC_SERIAL;
4086 if (is_sdvo) {
4087 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4088 if (pixel_multiplier > 1) {
4089 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4090 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4092 dpll |= DPLL_DVO_HIGH_SPEED;
4094 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4095 dpll |= DPLL_DVO_HIGH_SPEED;
4097 /* compute bitmask from p1 value */
4098 if (IS_PINEVIEW(dev))
4099 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4100 else {
4101 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4102 if (IS_G4X(dev) && reduced_clock)
4103 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4105 switch (clock->p2) {
4106 case 5:
4107 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4108 break;
4109 case 7:
4110 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4111 break;
4112 case 10:
4113 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4114 break;
4115 case 14:
4116 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4117 break;
4119 if (INTEL_INFO(dev)->gen >= 4)
4120 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4122 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4123 dpll |= PLL_REF_INPUT_TVCLKINBC;
4124 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4125 /* XXX: just matching BIOS for now */
4126 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4127 dpll |= 3;
4128 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4129 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4130 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4131 else
4132 dpll |= PLL_REF_INPUT_DREFCLK;
4134 dpll |= DPLL_VCO_ENABLE;
4135 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4136 POSTING_READ(DPLL(pipe));
4137 udelay(150);
4139 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4140 * This is an exception to the general rule that mode_set doesn't turn
4141 * things on.
4143 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4144 intel_update_lvds(crtc, clock, adjusted_mode);
4146 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4147 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4149 I915_WRITE(DPLL(pipe), dpll);
4151 /* Wait for the clocks to stabilize. */
4152 POSTING_READ(DPLL(pipe));
4153 udelay(150);
4155 if (INTEL_INFO(dev)->gen >= 4) {
4156 u32 temp = 0;
4157 if (is_sdvo) {
4158 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4159 if (temp > 1)
4160 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4161 else
4162 temp = 0;
4164 I915_WRITE(DPLL_MD(pipe), temp);
4165 } else {
4166 /* The pixel multiplier can only be updated once the
4167 * DPLL is enabled and the clocks are stable.
4169 * So write it again.
4171 I915_WRITE(DPLL(pipe), dpll);
4175 static void i8xx_update_pll(struct drm_crtc *crtc,
4176 struct drm_display_mode *adjusted_mode,
4177 intel_clock_t *clock,
4178 int num_connectors)
4180 struct drm_device *dev = crtc->dev;
4181 struct drm_i915_private *dev_priv = dev->dev_private;
4182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183 int pipe = intel_crtc->pipe;
4184 u32 dpll;
4186 dpll = DPLL_VGA_MODE_DIS;
4188 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4189 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4190 } else {
4191 if (clock->p1 == 2)
4192 dpll |= PLL_P1_DIVIDE_BY_TWO;
4193 else
4194 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4195 if (clock->p2 == 4)
4196 dpll |= PLL_P2_DIVIDE_BY_4;
4199 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4200 /* XXX: just matching BIOS for now */
4201 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4202 dpll |= 3;
4203 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4204 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4205 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4206 else
4207 dpll |= PLL_REF_INPUT_DREFCLK;
4209 dpll |= DPLL_VCO_ENABLE;
4210 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4211 POSTING_READ(DPLL(pipe));
4212 udelay(150);
4214 I915_WRITE(DPLL(pipe), dpll);
4216 /* Wait for the clocks to stabilize. */
4217 POSTING_READ(DPLL(pipe));
4218 udelay(150);
4220 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4221 * This is an exception to the general rule that mode_set doesn't turn
4222 * things on.
4224 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4225 intel_update_lvds(crtc, clock, adjusted_mode);
4227 /* The pixel multiplier can only be updated once the
4228 * DPLL is enabled and the clocks are stable.
4230 * So write it again.
4232 I915_WRITE(DPLL(pipe), dpll);
4235 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4236 struct drm_display_mode *mode,
4237 struct drm_display_mode *adjusted_mode,
4238 int x, int y,
4239 struct drm_framebuffer *old_fb)
4241 struct drm_device *dev = crtc->dev;
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4244 int pipe = intel_crtc->pipe;
4245 int plane = intel_crtc->plane;
4246 int refclk, num_connectors = 0;
4247 intel_clock_t clock, reduced_clock;
4248 u32 dspcntr, pipeconf, vsyncshift;
4249 bool ok, has_reduced_clock = false, is_sdvo = false;
4250 bool is_lvds = false, is_tv = false, is_dp = false;
4251 struct intel_encoder *encoder;
4252 const intel_limit_t *limit;
4253 int ret;
4255 for_each_encoder_on_crtc(dev, crtc, encoder) {
4256 switch (encoder->type) {
4257 case INTEL_OUTPUT_LVDS:
4258 is_lvds = true;
4259 break;
4260 case INTEL_OUTPUT_SDVO:
4261 case INTEL_OUTPUT_HDMI:
4262 is_sdvo = true;
4263 if (encoder->needs_tv_clock)
4264 is_tv = true;
4265 break;
4266 case INTEL_OUTPUT_TVOUT:
4267 is_tv = true;
4268 break;
4269 case INTEL_OUTPUT_DISPLAYPORT:
4270 is_dp = true;
4271 break;
4274 num_connectors++;
4277 refclk = i9xx_get_refclk(crtc, num_connectors);
4280 * Returns a set of divisors for the desired target clock with the given
4281 * refclk, or FALSE. The returned values represent the clock equation:
4282 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4284 limit = intel_limit(crtc, refclk);
4285 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4286 &clock);
4287 if (!ok) {
4288 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4289 return -EINVAL;
4292 /* Ensure that the cursor is valid for the new mode before changing... */
4293 intel_crtc_update_cursor(crtc, true);
4295 if (is_lvds && dev_priv->lvds_downclock_avail) {
4297 * Ensure we match the reduced clock's P to the target clock.
4298 * If the clocks don't match, we can't switch the display clock
4299 * by using the FP0/FP1. In such case we will disable the LVDS
4300 * downclock feature.
4302 has_reduced_clock = limit->find_pll(limit, crtc,
4303 dev_priv->lvds_downclock,
4304 refclk,
4305 &clock,
4306 &reduced_clock);
4309 if (is_sdvo && is_tv)
4310 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4312 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4313 &reduced_clock : NULL);
4315 if (IS_GEN2(dev))
4316 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4317 else if (IS_VALLEYVIEW(dev))
4318 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4319 refclk, num_connectors);
4320 else
4321 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4322 has_reduced_clock ? &reduced_clock : NULL,
4323 num_connectors);
4325 /* setup pipeconf */
4326 pipeconf = I915_READ(PIPECONF(pipe));
4328 /* Set up the display plane register */
4329 dspcntr = DISPPLANE_GAMMA_ENABLE;
4331 if (pipe == 0)
4332 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4333 else
4334 dspcntr |= DISPPLANE_SEL_PIPE_B;
4336 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4337 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4338 * core speed.
4340 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4341 * pipe == 0 check?
4343 if (mode->clock >
4344 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4345 pipeconf |= PIPECONF_DOUBLE_WIDE;
4346 else
4347 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4350 /* default to 8bpc */
4351 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4352 if (is_dp) {
4353 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4354 pipeconf |= PIPECONF_BPP_6 |
4355 PIPECONF_DITHER_EN |
4356 PIPECONF_DITHER_TYPE_SP;
4360 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4361 drm_mode_debug_printmodeline(mode);
4363 if (HAS_PIPE_CXSR(dev)) {
4364 if (intel_crtc->lowfreq_avail) {
4365 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4366 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4367 } else {
4368 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4369 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4373 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4374 if (!IS_GEN2(dev) &&
4375 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4376 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4377 /* the chip adds 2 halflines automatically */
4378 adjusted_mode->crtc_vtotal -= 1;
4379 adjusted_mode->crtc_vblank_end -= 1;
4380 vsyncshift = adjusted_mode->crtc_hsync_start
4381 - adjusted_mode->crtc_htotal/2;
4382 } else {
4383 pipeconf |= PIPECONF_PROGRESSIVE;
4384 vsyncshift = 0;
4387 if (!IS_GEN3(dev))
4388 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4390 I915_WRITE(HTOTAL(pipe),
4391 (adjusted_mode->crtc_hdisplay - 1) |
4392 ((adjusted_mode->crtc_htotal - 1) << 16));
4393 I915_WRITE(HBLANK(pipe),
4394 (adjusted_mode->crtc_hblank_start - 1) |
4395 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4396 I915_WRITE(HSYNC(pipe),
4397 (adjusted_mode->crtc_hsync_start - 1) |
4398 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4400 I915_WRITE(VTOTAL(pipe),
4401 (adjusted_mode->crtc_vdisplay - 1) |
4402 ((adjusted_mode->crtc_vtotal - 1) << 16));
4403 I915_WRITE(VBLANK(pipe),
4404 (adjusted_mode->crtc_vblank_start - 1) |
4405 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4406 I915_WRITE(VSYNC(pipe),
4407 (adjusted_mode->crtc_vsync_start - 1) |
4408 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4410 /* pipesrc and dspsize control the size that is scaled from,
4411 * which should always be the user's requested size.
4413 I915_WRITE(DSPSIZE(plane),
4414 ((mode->vdisplay - 1) << 16) |
4415 (mode->hdisplay - 1));
4416 I915_WRITE(DSPPOS(plane), 0);
4417 I915_WRITE(PIPESRC(pipe),
4418 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4420 I915_WRITE(PIPECONF(pipe), pipeconf);
4421 POSTING_READ(PIPECONF(pipe));
4422 intel_enable_pipe(dev_priv, pipe, false);
4424 intel_wait_for_vblank(dev, pipe);
4426 I915_WRITE(DSPCNTR(plane), dspcntr);
4427 POSTING_READ(DSPCNTR(plane));
4429 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4431 intel_update_watermarks(dev);
4433 return ret;
4437 * Initialize reference clocks when the driver loads
4439 void ironlake_init_pch_refclk(struct drm_device *dev)
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 struct drm_mode_config *mode_config = &dev->mode_config;
4443 struct intel_encoder *encoder;
4444 u32 temp;
4445 bool has_lvds = false;
4446 bool has_cpu_edp = false;
4447 bool has_pch_edp = false;
4448 bool has_panel = false;
4449 bool has_ck505 = false;
4450 bool can_ssc = false;
4452 /* We need to take the global config into account */
4453 list_for_each_entry(encoder, &mode_config->encoder_list,
4454 base.head) {
4455 switch (encoder->type) {
4456 case INTEL_OUTPUT_LVDS:
4457 has_panel = true;
4458 has_lvds = true;
4459 break;
4460 case INTEL_OUTPUT_EDP:
4461 has_panel = true;
4462 if (intel_encoder_is_pch_edp(&encoder->base))
4463 has_pch_edp = true;
4464 else
4465 has_cpu_edp = true;
4466 break;
4470 if (HAS_PCH_IBX(dev)) {
4471 has_ck505 = dev_priv->display_clock_mode;
4472 can_ssc = has_ck505;
4473 } else {
4474 has_ck505 = false;
4475 can_ssc = true;
4478 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4479 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4480 has_ck505);
4482 /* Ironlake: try to setup display ref clock before DPLL
4483 * enabling. This is only under driver's control after
4484 * PCH B stepping, previous chipset stepping should be
4485 * ignoring this setting.
4487 temp = I915_READ(PCH_DREF_CONTROL);
4488 /* Always enable nonspread source */
4489 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4491 if (has_ck505)
4492 temp |= DREF_NONSPREAD_CK505_ENABLE;
4493 else
4494 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4496 if (has_panel) {
4497 temp &= ~DREF_SSC_SOURCE_MASK;
4498 temp |= DREF_SSC_SOURCE_ENABLE;
4500 /* SSC must be turned on before enabling the CPU output */
4501 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4502 DRM_DEBUG_KMS("Using SSC on panel\n");
4503 temp |= DREF_SSC1_ENABLE;
4504 } else
4505 temp &= ~DREF_SSC1_ENABLE;
4507 /* Get SSC going before enabling the outputs */
4508 I915_WRITE(PCH_DREF_CONTROL, temp);
4509 POSTING_READ(PCH_DREF_CONTROL);
4510 udelay(200);
4512 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4514 /* Enable CPU source on CPU attached eDP */
4515 if (has_cpu_edp) {
4516 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4517 DRM_DEBUG_KMS("Using SSC on eDP\n");
4518 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4520 else
4521 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4522 } else
4523 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4525 I915_WRITE(PCH_DREF_CONTROL, temp);
4526 POSTING_READ(PCH_DREF_CONTROL);
4527 udelay(200);
4528 } else {
4529 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4531 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4533 /* Turn off CPU output */
4534 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4536 I915_WRITE(PCH_DREF_CONTROL, temp);
4537 POSTING_READ(PCH_DREF_CONTROL);
4538 udelay(200);
4540 /* Turn off the SSC source */
4541 temp &= ~DREF_SSC_SOURCE_MASK;
4542 temp |= DREF_SSC_SOURCE_DISABLE;
4544 /* Turn off SSC1 */
4545 temp &= ~ DREF_SSC1_ENABLE;
4547 I915_WRITE(PCH_DREF_CONTROL, temp);
4548 POSTING_READ(PCH_DREF_CONTROL);
4549 udelay(200);
4553 static int ironlake_get_refclk(struct drm_crtc *crtc)
4555 struct drm_device *dev = crtc->dev;
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557 struct intel_encoder *encoder;
4558 struct intel_encoder *edp_encoder = NULL;
4559 int num_connectors = 0;
4560 bool is_lvds = false;
4562 for_each_encoder_on_crtc(dev, crtc, encoder) {
4563 switch (encoder->type) {
4564 case INTEL_OUTPUT_LVDS:
4565 is_lvds = true;
4566 break;
4567 case INTEL_OUTPUT_EDP:
4568 edp_encoder = encoder;
4569 break;
4571 num_connectors++;
4574 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4575 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4576 dev_priv->lvds_ssc_freq);
4577 return dev_priv->lvds_ssc_freq * 1000;
4580 return 120000;
4583 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4584 struct drm_display_mode *mode,
4585 struct drm_display_mode *adjusted_mode,
4586 int x, int y,
4587 struct drm_framebuffer *old_fb)
4589 struct drm_device *dev = crtc->dev;
4590 struct drm_i915_private *dev_priv = dev->dev_private;
4591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4592 int pipe = intel_crtc->pipe;
4593 int plane = intel_crtc->plane;
4594 int refclk, num_connectors = 0;
4595 intel_clock_t clock, reduced_clock;
4596 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4597 bool ok, has_reduced_clock = false, is_sdvo = false;
4598 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4599 struct intel_encoder *encoder, *edp_encoder = NULL;
4600 const intel_limit_t *limit;
4601 int ret;
4602 struct fdi_m_n m_n = {0};
4603 u32 temp;
4604 int target_clock, pixel_multiplier, lane, link_bw, factor;
4605 unsigned int pipe_bpp;
4606 bool dither;
4607 bool is_cpu_edp = false, is_pch_edp = false;
4609 for_each_encoder_on_crtc(dev, crtc, encoder) {
4610 switch (encoder->type) {
4611 case INTEL_OUTPUT_LVDS:
4612 is_lvds = true;
4613 break;
4614 case INTEL_OUTPUT_SDVO:
4615 case INTEL_OUTPUT_HDMI:
4616 is_sdvo = true;
4617 if (encoder->needs_tv_clock)
4618 is_tv = true;
4619 break;
4620 case INTEL_OUTPUT_TVOUT:
4621 is_tv = true;
4622 break;
4623 case INTEL_OUTPUT_ANALOG:
4624 is_crt = true;
4625 break;
4626 case INTEL_OUTPUT_DISPLAYPORT:
4627 is_dp = true;
4628 break;
4629 case INTEL_OUTPUT_EDP:
4630 is_dp = true;
4631 if (intel_encoder_is_pch_edp(&encoder->base))
4632 is_pch_edp = true;
4633 else
4634 is_cpu_edp = true;
4635 edp_encoder = encoder;
4636 break;
4639 num_connectors++;
4642 refclk = ironlake_get_refclk(crtc);
4645 * Returns a set of divisors for the desired target clock with the given
4646 * refclk, or FALSE. The returned values represent the clock equation:
4647 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4649 limit = intel_limit(crtc, refclk);
4650 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4651 &clock);
4652 if (!ok) {
4653 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4654 return -EINVAL;
4657 /* Ensure that the cursor is valid for the new mode before changing... */
4658 intel_crtc_update_cursor(crtc, true);
4660 if (is_lvds && dev_priv->lvds_downclock_avail) {
4662 * Ensure we match the reduced clock's P to the target clock.
4663 * If the clocks don't match, we can't switch the display clock
4664 * by using the FP0/FP1. In such case we will disable the LVDS
4665 * downclock feature.
4667 has_reduced_clock = limit->find_pll(limit, crtc,
4668 dev_priv->lvds_downclock,
4669 refclk,
4670 &clock,
4671 &reduced_clock);
4674 if (is_sdvo && is_tv)
4675 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4678 /* FDI link */
4679 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4680 lane = 0;
4681 /* CPU eDP doesn't require FDI link, so just set DP M/N
4682 according to current link config */
4683 if (is_cpu_edp) {
4684 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4685 } else {
4686 /* FDI is a binary signal running at ~2.7GHz, encoding
4687 * each output octet as 10 bits. The actual frequency
4688 * is stored as a divider into a 100MHz clock, and the
4689 * mode pixel clock is stored in units of 1KHz.
4690 * Hence the bw of each lane in terms of the mode signal
4691 * is:
4693 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4696 /* [e]DP over FDI requires target mode clock instead of link clock. */
4697 if (edp_encoder)
4698 target_clock = intel_edp_target_clock(edp_encoder, mode);
4699 else if (is_dp)
4700 target_clock = mode->clock;
4701 else
4702 target_clock = adjusted_mode->clock;
4704 /* determine panel color depth */
4705 temp = I915_READ(PIPECONF(pipe));
4706 temp &= ~PIPE_BPC_MASK;
4707 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4708 switch (pipe_bpp) {
4709 case 18:
4710 temp |= PIPE_6BPC;
4711 break;
4712 case 24:
4713 temp |= PIPE_8BPC;
4714 break;
4715 case 30:
4716 temp |= PIPE_10BPC;
4717 break;
4718 case 36:
4719 temp |= PIPE_12BPC;
4720 break;
4721 default:
4722 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4723 pipe_bpp);
4724 temp |= PIPE_8BPC;
4725 pipe_bpp = 24;
4726 break;
4729 intel_crtc->bpp = pipe_bpp;
4730 I915_WRITE(PIPECONF(pipe), temp);
4732 if (!lane) {
4734 * Account for spread spectrum to avoid
4735 * oversubscribing the link. Max center spread
4736 * is 2.5%; use 5% for safety's sake.
4738 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4739 lane = bps / (link_bw * 8) + 1;
4742 intel_crtc->fdi_lanes = lane;
4744 if (pixel_multiplier > 1)
4745 link_bw *= pixel_multiplier;
4746 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4747 &m_n);
4749 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4750 if (has_reduced_clock)
4751 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4752 reduced_clock.m2;
4754 /* Enable autotuning of the PLL clock (if permissible) */
4755 factor = 21;
4756 if (is_lvds) {
4757 if ((intel_panel_use_ssc(dev_priv) &&
4758 dev_priv->lvds_ssc_freq == 100) ||
4759 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4760 factor = 25;
4761 } else if (is_sdvo && is_tv)
4762 factor = 20;
4764 if (clock.m < factor * clock.n)
4765 fp |= FP_CB_TUNE;
4767 dpll = 0;
4769 if (is_lvds)
4770 dpll |= DPLLB_MODE_LVDS;
4771 else
4772 dpll |= DPLLB_MODE_DAC_SERIAL;
4773 if (is_sdvo) {
4774 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4775 if (pixel_multiplier > 1) {
4776 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4778 dpll |= DPLL_DVO_HIGH_SPEED;
4780 if (is_dp && !is_cpu_edp)
4781 dpll |= DPLL_DVO_HIGH_SPEED;
4783 /* compute bitmask from p1 value */
4784 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4785 /* also FPA1 */
4786 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4788 switch (clock.p2) {
4789 case 5:
4790 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4791 break;
4792 case 7:
4793 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4794 break;
4795 case 10:
4796 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4797 break;
4798 case 14:
4799 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4800 break;
4803 if (is_sdvo && is_tv)
4804 dpll |= PLL_REF_INPUT_TVCLKINBC;
4805 else if (is_tv)
4806 /* XXX: just matching BIOS for now */
4807 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4808 dpll |= 3;
4809 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4810 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4811 else
4812 dpll |= PLL_REF_INPUT_DREFCLK;
4814 /* setup pipeconf */
4815 pipeconf = I915_READ(PIPECONF(pipe));
4817 /* Set up the display plane register */
4818 dspcntr = DISPPLANE_GAMMA_ENABLE;
4820 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4821 drm_mode_debug_printmodeline(mode);
4823 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4824 * pre-Haswell/LPT generation */
4825 if (HAS_PCH_LPT(dev)) {
4826 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4827 pipe);
4828 } else if (!is_cpu_edp) {
4829 struct intel_pch_pll *pll;
4831 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4832 if (pll == NULL) {
4833 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4834 pipe);
4835 return -EINVAL;
4837 } else
4838 intel_put_pch_pll(intel_crtc);
4840 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4841 * This is an exception to the general rule that mode_set doesn't turn
4842 * things on.
4844 if (is_lvds) {
4845 temp = I915_READ(PCH_LVDS);
4846 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4847 if (HAS_PCH_CPT(dev)) {
4848 temp &= ~PORT_TRANS_SEL_MASK;
4849 temp |= PORT_TRANS_SEL_CPT(pipe);
4850 } else {
4851 if (pipe == 1)
4852 temp |= LVDS_PIPEB_SELECT;
4853 else
4854 temp &= ~LVDS_PIPEB_SELECT;
4857 /* set the corresponsding LVDS_BORDER bit */
4858 temp |= dev_priv->lvds_border_bits;
4859 /* Set the B0-B3 data pairs corresponding to whether we're going to
4860 * set the DPLLs for dual-channel mode or not.
4862 if (clock.p2 == 7)
4863 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4864 else
4865 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4867 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4868 * appropriately here, but we need to look more thoroughly into how
4869 * panels behave in the two modes.
4871 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4872 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4873 temp |= LVDS_HSYNC_POLARITY;
4874 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4875 temp |= LVDS_VSYNC_POLARITY;
4876 I915_WRITE(PCH_LVDS, temp);
4879 pipeconf &= ~PIPECONF_DITHER_EN;
4880 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4881 if ((is_lvds && dev_priv->lvds_dither) || dither) {
4882 pipeconf |= PIPECONF_DITHER_EN;
4883 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4885 if (is_dp && !is_cpu_edp) {
4886 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4887 } else {
4888 /* For non-DP output, clear any trans DP clock recovery setting.*/
4889 I915_WRITE(TRANSDATA_M1(pipe), 0);
4890 I915_WRITE(TRANSDATA_N1(pipe), 0);
4891 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4892 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4895 if (intel_crtc->pch_pll) {
4896 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4898 /* Wait for the clocks to stabilize. */
4899 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4900 udelay(150);
4902 /* The pixel multiplier can only be updated once the
4903 * DPLL is enabled and the clocks are stable.
4905 * So write it again.
4907 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4910 intel_crtc->lowfreq_avail = false;
4911 if (intel_crtc->pch_pll) {
4912 if (is_lvds && has_reduced_clock && i915_powersave) {
4913 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4914 intel_crtc->lowfreq_avail = true;
4915 } else {
4916 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4920 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4921 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4922 pipeconf |= PIPECONF_INTERLACED_ILK;
4923 /* the chip adds 2 halflines automatically */
4924 adjusted_mode->crtc_vtotal -= 1;
4925 adjusted_mode->crtc_vblank_end -= 1;
4926 I915_WRITE(VSYNCSHIFT(pipe),
4927 adjusted_mode->crtc_hsync_start
4928 - adjusted_mode->crtc_htotal/2);
4929 } else {
4930 pipeconf |= PIPECONF_PROGRESSIVE;
4931 I915_WRITE(VSYNCSHIFT(pipe), 0);
4934 I915_WRITE(HTOTAL(pipe),
4935 (adjusted_mode->crtc_hdisplay - 1) |
4936 ((adjusted_mode->crtc_htotal - 1) << 16));
4937 I915_WRITE(HBLANK(pipe),
4938 (adjusted_mode->crtc_hblank_start - 1) |
4939 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4940 I915_WRITE(HSYNC(pipe),
4941 (adjusted_mode->crtc_hsync_start - 1) |
4942 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4944 I915_WRITE(VTOTAL(pipe),
4945 (adjusted_mode->crtc_vdisplay - 1) |
4946 ((adjusted_mode->crtc_vtotal - 1) << 16));
4947 I915_WRITE(VBLANK(pipe),
4948 (adjusted_mode->crtc_vblank_start - 1) |
4949 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4950 I915_WRITE(VSYNC(pipe),
4951 (adjusted_mode->crtc_vsync_start - 1) |
4952 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4954 /* pipesrc controls the size that is scaled from, which should
4955 * always be the user's requested size.
4957 I915_WRITE(PIPESRC(pipe),
4958 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4960 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4961 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4962 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4963 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4965 if (is_cpu_edp)
4966 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4968 I915_WRITE(PIPECONF(pipe), pipeconf);
4969 POSTING_READ(PIPECONF(pipe));
4971 intel_wait_for_vblank(dev, pipe);
4973 I915_WRITE(DSPCNTR(plane), dspcntr);
4974 POSTING_READ(DSPCNTR(plane));
4976 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4978 intel_update_watermarks(dev);
4980 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4982 return ret;
4985 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4986 struct drm_display_mode *mode,
4987 struct drm_display_mode *adjusted_mode,
4988 int x, int y,
4989 struct drm_framebuffer *old_fb)
4991 struct drm_device *dev = crtc->dev;
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4994 int pipe = intel_crtc->pipe;
4995 int ret;
4997 drm_vblank_pre_modeset(dev, pipe);
4999 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5000 x, y, old_fb);
5001 drm_vblank_post_modeset(dev, pipe);
5003 if (ret)
5004 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5005 else
5006 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5008 return ret;
5011 static bool intel_eld_uptodate(struct drm_connector *connector,
5012 int reg_eldv, uint32_t bits_eldv,
5013 int reg_elda, uint32_t bits_elda,
5014 int reg_edid)
5016 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5017 uint8_t *eld = connector->eld;
5018 uint32_t i;
5020 i = I915_READ(reg_eldv);
5021 i &= bits_eldv;
5023 if (!eld[0])
5024 return !i;
5026 if (!i)
5027 return false;
5029 i = I915_READ(reg_elda);
5030 i &= ~bits_elda;
5031 I915_WRITE(reg_elda, i);
5033 for (i = 0; i < eld[2]; i++)
5034 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5035 return false;
5037 return true;
5040 static void g4x_write_eld(struct drm_connector *connector,
5041 struct drm_crtc *crtc)
5043 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5044 uint8_t *eld = connector->eld;
5045 uint32_t eldv;
5046 uint32_t len;
5047 uint32_t i;
5049 i = I915_READ(G4X_AUD_VID_DID);
5051 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5052 eldv = G4X_ELDV_DEVCL_DEVBLC;
5053 else
5054 eldv = G4X_ELDV_DEVCTG;
5056 if (intel_eld_uptodate(connector,
5057 G4X_AUD_CNTL_ST, eldv,
5058 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5059 G4X_HDMIW_HDMIEDID))
5060 return;
5062 i = I915_READ(G4X_AUD_CNTL_ST);
5063 i &= ~(eldv | G4X_ELD_ADDR);
5064 len = (i >> 9) & 0x1f; /* ELD buffer size */
5065 I915_WRITE(G4X_AUD_CNTL_ST, i);
5067 if (!eld[0])
5068 return;
5070 len = min_t(uint8_t, eld[2], len);
5071 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5072 for (i = 0; i < len; i++)
5073 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5075 i = I915_READ(G4X_AUD_CNTL_ST);
5076 i |= eldv;
5077 I915_WRITE(G4X_AUD_CNTL_ST, i);
5080 static void haswell_write_eld(struct drm_connector *connector,
5081 struct drm_crtc *crtc)
5083 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5084 uint8_t *eld = connector->eld;
5085 struct drm_device *dev = crtc->dev;
5086 uint32_t eldv;
5087 uint32_t i;
5088 int len;
5089 int pipe = to_intel_crtc(crtc)->pipe;
5090 int tmp;
5092 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5093 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5094 int aud_config = HSW_AUD_CFG(pipe);
5095 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5098 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5100 /* Audio output enable */
5101 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5102 tmp = I915_READ(aud_cntrl_st2);
5103 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5104 I915_WRITE(aud_cntrl_st2, tmp);
5106 /* Wait for 1 vertical blank */
5107 intel_wait_for_vblank(dev, pipe);
5109 /* Set ELD valid state */
5110 tmp = I915_READ(aud_cntrl_st2);
5111 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5112 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5113 I915_WRITE(aud_cntrl_st2, tmp);
5114 tmp = I915_READ(aud_cntrl_st2);
5115 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5117 /* Enable HDMI mode */
5118 tmp = I915_READ(aud_config);
5119 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5120 /* clear N_programing_enable and N_value_index */
5121 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5122 I915_WRITE(aud_config, tmp);
5124 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5126 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5128 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5129 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5130 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5131 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5132 } else
5133 I915_WRITE(aud_config, 0);
5135 if (intel_eld_uptodate(connector,
5136 aud_cntrl_st2, eldv,
5137 aud_cntl_st, IBX_ELD_ADDRESS,
5138 hdmiw_hdmiedid))
5139 return;
5141 i = I915_READ(aud_cntrl_st2);
5142 i &= ~eldv;
5143 I915_WRITE(aud_cntrl_st2, i);
5145 if (!eld[0])
5146 return;
5148 i = I915_READ(aud_cntl_st);
5149 i &= ~IBX_ELD_ADDRESS;
5150 I915_WRITE(aud_cntl_st, i);
5151 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5152 DRM_DEBUG_DRIVER("port num:%d\n", i);
5154 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5155 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5156 for (i = 0; i < len; i++)
5157 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5159 i = I915_READ(aud_cntrl_st2);
5160 i |= eldv;
5161 I915_WRITE(aud_cntrl_st2, i);
5165 static void ironlake_write_eld(struct drm_connector *connector,
5166 struct drm_crtc *crtc)
5168 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5169 uint8_t *eld = connector->eld;
5170 uint32_t eldv;
5171 uint32_t i;
5172 int len;
5173 int hdmiw_hdmiedid;
5174 int aud_config;
5175 int aud_cntl_st;
5176 int aud_cntrl_st2;
5177 int pipe = to_intel_crtc(crtc)->pipe;
5179 if (HAS_PCH_IBX(connector->dev)) {
5180 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5181 aud_config = IBX_AUD_CFG(pipe);
5182 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5183 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5184 } else {
5185 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5186 aud_config = CPT_AUD_CFG(pipe);
5187 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5188 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5191 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5193 i = I915_READ(aud_cntl_st);
5194 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5195 if (!i) {
5196 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5197 /* operate blindly on all ports */
5198 eldv = IBX_ELD_VALIDB;
5199 eldv |= IBX_ELD_VALIDB << 4;
5200 eldv |= IBX_ELD_VALIDB << 8;
5201 } else {
5202 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5203 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5206 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5207 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5208 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5209 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5210 } else
5211 I915_WRITE(aud_config, 0);
5213 if (intel_eld_uptodate(connector,
5214 aud_cntrl_st2, eldv,
5215 aud_cntl_st, IBX_ELD_ADDRESS,
5216 hdmiw_hdmiedid))
5217 return;
5219 i = I915_READ(aud_cntrl_st2);
5220 i &= ~eldv;
5221 I915_WRITE(aud_cntrl_st2, i);
5223 if (!eld[0])
5224 return;
5226 i = I915_READ(aud_cntl_st);
5227 i &= ~IBX_ELD_ADDRESS;
5228 I915_WRITE(aud_cntl_st, i);
5230 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5231 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5232 for (i = 0; i < len; i++)
5233 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5235 i = I915_READ(aud_cntrl_st2);
5236 i |= eldv;
5237 I915_WRITE(aud_cntrl_st2, i);
5240 void intel_write_eld(struct drm_encoder *encoder,
5241 struct drm_display_mode *mode)
5243 struct drm_crtc *crtc = encoder->crtc;
5244 struct drm_connector *connector;
5245 struct drm_device *dev = encoder->dev;
5246 struct drm_i915_private *dev_priv = dev->dev_private;
5248 connector = drm_select_eld(encoder, mode);
5249 if (!connector)
5250 return;
5252 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5253 connector->base.id,
5254 drm_get_connector_name(connector),
5255 connector->encoder->base.id,
5256 drm_get_encoder_name(connector->encoder));
5258 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5260 if (dev_priv->display.write_eld)
5261 dev_priv->display.write_eld(connector, crtc);
5264 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5265 void intel_crtc_load_lut(struct drm_crtc *crtc)
5267 struct drm_device *dev = crtc->dev;
5268 struct drm_i915_private *dev_priv = dev->dev_private;
5269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5270 int palreg = PALETTE(intel_crtc->pipe);
5271 int i;
5273 /* The clocks have to be on to load the palette. */
5274 if (!crtc->enabled || !intel_crtc->active)
5275 return;
5277 /* use legacy palette for Ironlake */
5278 if (HAS_PCH_SPLIT(dev))
5279 palreg = LGC_PALETTE(intel_crtc->pipe);
5281 for (i = 0; i < 256; i++) {
5282 I915_WRITE(palreg + 4 * i,
5283 (intel_crtc->lut_r[i] << 16) |
5284 (intel_crtc->lut_g[i] << 8) |
5285 intel_crtc->lut_b[i]);
5289 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5291 struct drm_device *dev = crtc->dev;
5292 struct drm_i915_private *dev_priv = dev->dev_private;
5293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5294 bool visible = base != 0;
5295 u32 cntl;
5297 if (intel_crtc->cursor_visible == visible)
5298 return;
5300 cntl = I915_READ(_CURACNTR);
5301 if (visible) {
5302 /* On these chipsets we can only modify the base whilst
5303 * the cursor is disabled.
5305 I915_WRITE(_CURABASE, base);
5307 cntl &= ~(CURSOR_FORMAT_MASK);
5308 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5309 cntl |= CURSOR_ENABLE |
5310 CURSOR_GAMMA_ENABLE |
5311 CURSOR_FORMAT_ARGB;
5312 } else
5313 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5314 I915_WRITE(_CURACNTR, cntl);
5316 intel_crtc->cursor_visible = visible;
5319 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5321 struct drm_device *dev = crtc->dev;
5322 struct drm_i915_private *dev_priv = dev->dev_private;
5323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5324 int pipe = intel_crtc->pipe;
5325 bool visible = base != 0;
5327 if (intel_crtc->cursor_visible != visible) {
5328 uint32_t cntl = I915_READ(CURCNTR(pipe));
5329 if (base) {
5330 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5331 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5332 cntl |= pipe << 28; /* Connect to correct pipe */
5333 } else {
5334 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5335 cntl |= CURSOR_MODE_DISABLE;
5337 I915_WRITE(CURCNTR(pipe), cntl);
5339 intel_crtc->cursor_visible = visible;
5341 /* and commit changes on next vblank */
5342 I915_WRITE(CURBASE(pipe), base);
5345 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5347 struct drm_device *dev = crtc->dev;
5348 struct drm_i915_private *dev_priv = dev->dev_private;
5349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5350 int pipe = intel_crtc->pipe;
5351 bool visible = base != 0;
5353 if (intel_crtc->cursor_visible != visible) {
5354 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5355 if (base) {
5356 cntl &= ~CURSOR_MODE;
5357 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5358 } else {
5359 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5360 cntl |= CURSOR_MODE_DISABLE;
5362 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5364 intel_crtc->cursor_visible = visible;
5366 /* and commit changes on next vblank */
5367 I915_WRITE(CURBASE_IVB(pipe), base);
5370 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5371 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5372 bool on)
5374 struct drm_device *dev = crtc->dev;
5375 struct drm_i915_private *dev_priv = dev->dev_private;
5376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5377 int pipe = intel_crtc->pipe;
5378 int x = intel_crtc->cursor_x;
5379 int y = intel_crtc->cursor_y;
5380 u32 base, pos;
5381 bool visible;
5383 pos = 0;
5385 if (on && crtc->enabled && crtc->fb) {
5386 base = intel_crtc->cursor_addr;
5387 if (x > (int) crtc->fb->width)
5388 base = 0;
5390 if (y > (int) crtc->fb->height)
5391 base = 0;
5392 } else
5393 base = 0;
5395 if (x < 0) {
5396 if (x + intel_crtc->cursor_width < 0)
5397 base = 0;
5399 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5400 x = -x;
5402 pos |= x << CURSOR_X_SHIFT;
5404 if (y < 0) {
5405 if (y + intel_crtc->cursor_height < 0)
5406 base = 0;
5408 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5409 y = -y;
5411 pos |= y << CURSOR_Y_SHIFT;
5413 visible = base != 0;
5414 if (!visible && !intel_crtc->cursor_visible)
5415 return;
5417 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5418 I915_WRITE(CURPOS_IVB(pipe), pos);
5419 ivb_update_cursor(crtc, base);
5420 } else {
5421 I915_WRITE(CURPOS(pipe), pos);
5422 if (IS_845G(dev) || IS_I865G(dev))
5423 i845_update_cursor(crtc, base);
5424 else
5425 i9xx_update_cursor(crtc, base);
5429 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5430 struct drm_file *file,
5431 uint32_t handle,
5432 uint32_t width, uint32_t height)
5434 struct drm_device *dev = crtc->dev;
5435 struct drm_i915_private *dev_priv = dev->dev_private;
5436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5437 struct drm_i915_gem_object *obj;
5438 uint32_t addr;
5439 int ret;
5441 DRM_DEBUG_KMS("\n");
5443 /* if we want to turn off the cursor ignore width and height */
5444 if (!handle) {
5445 DRM_DEBUG_KMS("cursor off\n");
5446 addr = 0;
5447 obj = NULL;
5448 mutex_lock(&dev->struct_mutex);
5449 goto finish;
5452 /* Currently we only support 64x64 cursors */
5453 if (width != 64 || height != 64) {
5454 DRM_ERROR("we currently only support 64x64 cursors\n");
5455 return -EINVAL;
5458 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5459 if (&obj->base == NULL)
5460 return -ENOENT;
5462 if (obj->base.size < width * height * 4) {
5463 DRM_ERROR("buffer is to small\n");
5464 ret = -ENOMEM;
5465 goto fail;
5468 /* we only need to pin inside GTT if cursor is non-phy */
5469 mutex_lock(&dev->struct_mutex);
5470 if (!dev_priv->info->cursor_needs_physical) {
5471 if (obj->tiling_mode) {
5472 DRM_ERROR("cursor cannot be tiled\n");
5473 ret = -EINVAL;
5474 goto fail_locked;
5477 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5478 if (ret) {
5479 DRM_ERROR("failed to move cursor bo into the GTT\n");
5480 goto fail_locked;
5483 ret = i915_gem_object_put_fence(obj);
5484 if (ret) {
5485 DRM_ERROR("failed to release fence for cursor");
5486 goto fail_unpin;
5489 addr = obj->gtt_offset;
5490 } else {
5491 int align = IS_I830(dev) ? 16 * 1024 : 256;
5492 ret = i915_gem_attach_phys_object(dev, obj,
5493 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5494 align);
5495 if (ret) {
5496 DRM_ERROR("failed to attach phys object\n");
5497 goto fail_locked;
5499 addr = obj->phys_obj->handle->busaddr;
5502 if (IS_GEN2(dev))
5503 I915_WRITE(CURSIZE, (height << 12) | width);
5505 finish:
5506 if (intel_crtc->cursor_bo) {
5507 if (dev_priv->info->cursor_needs_physical) {
5508 if (intel_crtc->cursor_bo != obj)
5509 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5510 } else
5511 i915_gem_object_unpin(intel_crtc->cursor_bo);
5512 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5515 mutex_unlock(&dev->struct_mutex);
5517 intel_crtc->cursor_addr = addr;
5518 intel_crtc->cursor_bo = obj;
5519 intel_crtc->cursor_width = width;
5520 intel_crtc->cursor_height = height;
5522 intel_crtc_update_cursor(crtc, true);
5524 return 0;
5525 fail_unpin:
5526 i915_gem_object_unpin(obj);
5527 fail_locked:
5528 mutex_unlock(&dev->struct_mutex);
5529 fail:
5530 drm_gem_object_unreference_unlocked(&obj->base);
5531 return ret;
5534 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5538 intel_crtc->cursor_x = x;
5539 intel_crtc->cursor_y = y;
5541 intel_crtc_update_cursor(crtc, true);
5543 return 0;
5546 /** Sets the color ramps on behalf of RandR */
5547 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5548 u16 blue, int regno)
5550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5552 intel_crtc->lut_r[regno] = red >> 8;
5553 intel_crtc->lut_g[regno] = green >> 8;
5554 intel_crtc->lut_b[regno] = blue >> 8;
5557 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5558 u16 *blue, int regno)
5560 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5562 *red = intel_crtc->lut_r[regno] << 8;
5563 *green = intel_crtc->lut_g[regno] << 8;
5564 *blue = intel_crtc->lut_b[regno] << 8;
5567 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5568 u16 *blue, uint32_t start, uint32_t size)
5570 int end = (start + size > 256) ? 256 : start + size, i;
5571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5573 for (i = start; i < end; i++) {
5574 intel_crtc->lut_r[i] = red[i] >> 8;
5575 intel_crtc->lut_g[i] = green[i] >> 8;
5576 intel_crtc->lut_b[i] = blue[i] >> 8;
5579 intel_crtc_load_lut(crtc);
5583 * Get a pipe with a simple mode set on it for doing load-based monitor
5584 * detection.
5586 * It will be up to the load-detect code to adjust the pipe as appropriate for
5587 * its requirements. The pipe will be connected to no other encoders.
5589 * Currently this code will only succeed if there is a pipe with no encoders
5590 * configured for it. In the future, it could choose to temporarily disable
5591 * some outputs to free up a pipe for its use.
5593 * \return crtc, or NULL if no pipes are available.
5596 /* VESA 640x480x72Hz mode to set on the pipe */
5597 static struct drm_display_mode load_detect_mode = {
5598 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5599 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5602 static struct drm_framebuffer *
5603 intel_framebuffer_create(struct drm_device *dev,
5604 struct drm_mode_fb_cmd2 *mode_cmd,
5605 struct drm_i915_gem_object *obj)
5607 struct intel_framebuffer *intel_fb;
5608 int ret;
5610 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5611 if (!intel_fb) {
5612 drm_gem_object_unreference_unlocked(&obj->base);
5613 return ERR_PTR(-ENOMEM);
5616 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5617 if (ret) {
5618 drm_gem_object_unreference_unlocked(&obj->base);
5619 kfree(intel_fb);
5620 return ERR_PTR(ret);
5623 return &intel_fb->base;
5626 static u32
5627 intel_framebuffer_pitch_for_width(int width, int bpp)
5629 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5630 return ALIGN(pitch, 64);
5633 static u32
5634 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5636 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5637 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5640 static struct drm_framebuffer *
5641 intel_framebuffer_create_for_mode(struct drm_device *dev,
5642 struct drm_display_mode *mode,
5643 int depth, int bpp)
5645 struct drm_i915_gem_object *obj;
5646 struct drm_mode_fb_cmd2 mode_cmd;
5648 obj = i915_gem_alloc_object(dev,
5649 intel_framebuffer_size_for_mode(mode, bpp));
5650 if (obj == NULL)
5651 return ERR_PTR(-ENOMEM);
5653 mode_cmd.width = mode->hdisplay;
5654 mode_cmd.height = mode->vdisplay;
5655 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5656 bpp);
5657 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5659 return intel_framebuffer_create(dev, &mode_cmd, obj);
5662 static struct drm_framebuffer *
5663 mode_fits_in_fbdev(struct drm_device *dev,
5664 struct drm_display_mode *mode)
5666 struct drm_i915_private *dev_priv = dev->dev_private;
5667 struct drm_i915_gem_object *obj;
5668 struct drm_framebuffer *fb;
5670 if (dev_priv->fbdev == NULL)
5671 return NULL;
5673 obj = dev_priv->fbdev->ifb.obj;
5674 if (obj == NULL)
5675 return NULL;
5677 fb = &dev_priv->fbdev->ifb.base;
5678 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5679 fb->bits_per_pixel))
5680 return NULL;
5682 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5683 return NULL;
5685 return fb;
5688 bool intel_get_load_detect_pipe(struct drm_connector *connector,
5689 struct drm_display_mode *mode,
5690 struct intel_load_detect_pipe *old)
5692 struct intel_crtc *intel_crtc;
5693 struct intel_encoder *intel_encoder =
5694 intel_attached_encoder(connector);
5695 struct drm_crtc *possible_crtc;
5696 struct drm_encoder *encoder = &intel_encoder->base;
5697 struct drm_crtc *crtc = NULL;
5698 struct drm_device *dev = encoder->dev;
5699 struct drm_framebuffer *old_fb;
5700 int i = -1;
5702 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5703 connector->base.id, drm_get_connector_name(connector),
5704 encoder->base.id, drm_get_encoder_name(encoder));
5707 * Algorithm gets a little messy:
5709 * - if the connector already has an assigned crtc, use it (but make
5710 * sure it's on first)
5712 * - try to find the first unused crtc that can drive this connector,
5713 * and use that if we find one
5716 /* See if we already have a CRTC for this connector */
5717 if (encoder->crtc) {
5718 crtc = encoder->crtc;
5720 old->dpms_mode = connector->dpms;
5721 old->load_detect_temp = false;
5723 /* Make sure the crtc and connector are running */
5724 if (connector->dpms != DRM_MODE_DPMS_ON)
5725 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
5727 return true;
5730 /* Find an unused one (if possible) */
5731 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5732 i++;
5733 if (!(encoder->possible_crtcs & (1 << i)))
5734 continue;
5735 if (!possible_crtc->enabled) {
5736 crtc = possible_crtc;
5737 break;
5742 * If we didn't find an unused CRTC, don't use any.
5744 if (!crtc) {
5745 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5746 return false;
5749 encoder->crtc = crtc;
5750 connector->encoder = encoder;
5752 intel_crtc = to_intel_crtc(crtc);
5753 old->dpms_mode = connector->dpms;
5754 old->load_detect_temp = true;
5755 old->release_fb = NULL;
5757 if (!mode)
5758 mode = &load_detect_mode;
5760 old_fb = crtc->fb;
5762 /* We need a framebuffer large enough to accommodate all accesses
5763 * that the plane may generate whilst we perform load detection.
5764 * We can not rely on the fbcon either being present (we get called
5765 * during its initialisation to detect all boot displays, or it may
5766 * not even exist) or that it is large enough to satisfy the
5767 * requested mode.
5769 crtc->fb = mode_fits_in_fbdev(dev, mode);
5770 if (crtc->fb == NULL) {
5771 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5772 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5773 old->release_fb = crtc->fb;
5774 } else
5775 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5776 if (IS_ERR(crtc->fb)) {
5777 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5778 goto fail;
5781 if (!intel_set_mode(crtc, mode, 0, 0, old_fb)) {
5782 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5783 if (old->release_fb)
5784 old->release_fb->funcs->destroy(old->release_fb);
5785 goto fail;
5788 /* let the connector get through one full cycle before testing */
5789 intel_wait_for_vblank(dev, intel_crtc->pipe);
5791 return true;
5792 fail:
5793 connector->encoder = NULL;
5794 encoder->crtc = NULL;
5795 crtc->fb = old_fb;
5796 return false;
5799 void intel_release_load_detect_pipe(struct drm_connector *connector,
5800 struct intel_load_detect_pipe *old)
5802 struct intel_encoder *intel_encoder =
5803 intel_attached_encoder(connector);
5804 struct drm_encoder *encoder = &intel_encoder->base;
5805 struct drm_device *dev = encoder->dev;
5807 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5808 connector->base.id, drm_get_connector_name(connector),
5809 encoder->base.id, drm_get_encoder_name(encoder));
5811 if (old->load_detect_temp) {
5812 connector->encoder = NULL;
5813 encoder->crtc = NULL;
5814 drm_helper_disable_unused_functions(dev);
5816 if (old->release_fb)
5817 old->release_fb->funcs->destroy(old->release_fb);
5819 return;
5822 /* Switch crtc and encoder back off if necessary */
5823 if (old->dpms_mode != DRM_MODE_DPMS_ON)
5824 connector->funcs->dpms(connector, old->dpms_mode);
5827 /* Returns the clock of the currently programmed mode of the given pipe. */
5828 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5830 struct drm_i915_private *dev_priv = dev->dev_private;
5831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5832 int pipe = intel_crtc->pipe;
5833 u32 dpll = I915_READ(DPLL(pipe));
5834 u32 fp;
5835 intel_clock_t clock;
5837 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5838 fp = I915_READ(FP0(pipe));
5839 else
5840 fp = I915_READ(FP1(pipe));
5842 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5843 if (IS_PINEVIEW(dev)) {
5844 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5845 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5846 } else {
5847 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5848 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5851 if (!IS_GEN2(dev)) {
5852 if (IS_PINEVIEW(dev))
5853 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5854 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5855 else
5856 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5857 DPLL_FPA01_P1_POST_DIV_SHIFT);
5859 switch (dpll & DPLL_MODE_MASK) {
5860 case DPLLB_MODE_DAC_SERIAL:
5861 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5862 5 : 10;
5863 break;
5864 case DPLLB_MODE_LVDS:
5865 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5866 7 : 14;
5867 break;
5868 default:
5869 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5870 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5871 return 0;
5874 /* XXX: Handle the 100Mhz refclk */
5875 intel_clock(dev, 96000, &clock);
5876 } else {
5877 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5879 if (is_lvds) {
5880 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5881 DPLL_FPA01_P1_POST_DIV_SHIFT);
5882 clock.p2 = 14;
5884 if ((dpll & PLL_REF_INPUT_MASK) ==
5885 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5886 /* XXX: might not be 66MHz */
5887 intel_clock(dev, 66000, &clock);
5888 } else
5889 intel_clock(dev, 48000, &clock);
5890 } else {
5891 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5892 clock.p1 = 2;
5893 else {
5894 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5895 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5897 if (dpll & PLL_P2_DIVIDE_BY_4)
5898 clock.p2 = 4;
5899 else
5900 clock.p2 = 2;
5902 intel_clock(dev, 48000, &clock);
5906 /* XXX: It would be nice to validate the clocks, but we can't reuse
5907 * i830PllIsValid() because it relies on the xf86_config connector
5908 * configuration being accurate, which it isn't necessarily.
5911 return clock.dot;
5914 /** Returns the currently programmed mode of the given pipe. */
5915 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5916 struct drm_crtc *crtc)
5918 struct drm_i915_private *dev_priv = dev->dev_private;
5919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5920 int pipe = intel_crtc->pipe;
5921 struct drm_display_mode *mode;
5922 int htot = I915_READ(HTOTAL(pipe));
5923 int hsync = I915_READ(HSYNC(pipe));
5924 int vtot = I915_READ(VTOTAL(pipe));
5925 int vsync = I915_READ(VSYNC(pipe));
5927 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5928 if (!mode)
5929 return NULL;
5931 mode->clock = intel_crtc_clock_get(dev, crtc);
5932 mode->hdisplay = (htot & 0xffff) + 1;
5933 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5934 mode->hsync_start = (hsync & 0xffff) + 1;
5935 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5936 mode->vdisplay = (vtot & 0xffff) + 1;
5937 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5938 mode->vsync_start = (vsync & 0xffff) + 1;
5939 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5941 drm_mode_set_name(mode);
5943 return mode;
5946 static void intel_increase_pllclock(struct drm_crtc *crtc)
5948 struct drm_device *dev = crtc->dev;
5949 drm_i915_private_t *dev_priv = dev->dev_private;
5950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5951 int pipe = intel_crtc->pipe;
5952 int dpll_reg = DPLL(pipe);
5953 int dpll;
5955 if (HAS_PCH_SPLIT(dev))
5956 return;
5958 if (!dev_priv->lvds_downclock_avail)
5959 return;
5961 dpll = I915_READ(dpll_reg);
5962 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5963 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5965 assert_panel_unlocked(dev_priv, pipe);
5967 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5968 I915_WRITE(dpll_reg, dpll);
5969 intel_wait_for_vblank(dev, pipe);
5971 dpll = I915_READ(dpll_reg);
5972 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5973 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5977 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5979 struct drm_device *dev = crtc->dev;
5980 drm_i915_private_t *dev_priv = dev->dev_private;
5981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5983 if (HAS_PCH_SPLIT(dev))
5984 return;
5986 if (!dev_priv->lvds_downclock_avail)
5987 return;
5990 * Since this is called by a timer, we should never get here in
5991 * the manual case.
5993 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5994 int pipe = intel_crtc->pipe;
5995 int dpll_reg = DPLL(pipe);
5996 int dpll;
5998 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6000 assert_panel_unlocked(dev_priv, pipe);
6002 dpll = I915_READ(dpll_reg);
6003 dpll |= DISPLAY_RATE_SELECT_FPA1;
6004 I915_WRITE(dpll_reg, dpll);
6005 intel_wait_for_vblank(dev, pipe);
6006 dpll = I915_READ(dpll_reg);
6007 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6008 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6013 void intel_mark_busy(struct drm_device *dev)
6015 i915_update_gfx_val(dev->dev_private);
6018 void intel_mark_idle(struct drm_device *dev)
6022 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6024 struct drm_device *dev = obj->base.dev;
6025 struct drm_crtc *crtc;
6027 if (!i915_powersave)
6028 return;
6030 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6031 if (!crtc->fb)
6032 continue;
6034 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6035 intel_increase_pllclock(crtc);
6039 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6041 struct drm_device *dev = obj->base.dev;
6042 struct drm_crtc *crtc;
6044 if (!i915_powersave)
6045 return;
6047 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6048 if (!crtc->fb)
6049 continue;
6051 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6052 intel_decrease_pllclock(crtc);
6056 static void intel_crtc_destroy(struct drm_crtc *crtc)
6058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6059 struct drm_device *dev = crtc->dev;
6060 struct intel_unpin_work *work;
6061 unsigned long flags;
6063 spin_lock_irqsave(&dev->event_lock, flags);
6064 work = intel_crtc->unpin_work;
6065 intel_crtc->unpin_work = NULL;
6066 spin_unlock_irqrestore(&dev->event_lock, flags);
6068 if (work) {
6069 cancel_work_sync(&work->work);
6070 kfree(work);
6073 drm_crtc_cleanup(crtc);
6075 kfree(intel_crtc);
6078 static void intel_unpin_work_fn(struct work_struct *__work)
6080 struct intel_unpin_work *work =
6081 container_of(__work, struct intel_unpin_work, work);
6083 mutex_lock(&work->dev->struct_mutex);
6084 intel_unpin_fb_obj(work->old_fb_obj);
6085 drm_gem_object_unreference(&work->pending_flip_obj->base);
6086 drm_gem_object_unreference(&work->old_fb_obj->base);
6088 intel_update_fbc(work->dev);
6089 mutex_unlock(&work->dev->struct_mutex);
6090 kfree(work);
6093 static void do_intel_finish_page_flip(struct drm_device *dev,
6094 struct drm_crtc *crtc)
6096 drm_i915_private_t *dev_priv = dev->dev_private;
6097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6098 struct intel_unpin_work *work;
6099 struct drm_i915_gem_object *obj;
6100 struct drm_pending_vblank_event *e;
6101 struct timeval tnow, tvbl;
6102 unsigned long flags;
6104 /* Ignore early vblank irqs */
6105 if (intel_crtc == NULL)
6106 return;
6108 do_gettimeofday(&tnow);
6110 spin_lock_irqsave(&dev->event_lock, flags);
6111 work = intel_crtc->unpin_work;
6112 if (work == NULL || !work->pending) {
6113 spin_unlock_irqrestore(&dev->event_lock, flags);
6114 return;
6117 intel_crtc->unpin_work = NULL;
6119 if (work->event) {
6120 e = work->event;
6121 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6123 /* Called before vblank count and timestamps have
6124 * been updated for the vblank interval of flip
6125 * completion? Need to increment vblank count and
6126 * add one videorefresh duration to returned timestamp
6127 * to account for this. We assume this happened if we
6128 * get called over 0.9 frame durations after the last
6129 * timestamped vblank.
6131 * This calculation can not be used with vrefresh rates
6132 * below 5Hz (10Hz to be on the safe side) without
6133 * promoting to 64 integers.
6135 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6136 9 * crtc->framedur_ns) {
6137 e->event.sequence++;
6138 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6139 crtc->framedur_ns);
6142 e->event.tv_sec = tvbl.tv_sec;
6143 e->event.tv_usec = tvbl.tv_usec;
6145 list_add_tail(&e->base.link,
6146 &e->base.file_priv->event_list);
6147 wake_up_interruptible(&e->base.file_priv->event_wait);
6150 drm_vblank_put(dev, intel_crtc->pipe);
6152 spin_unlock_irqrestore(&dev->event_lock, flags);
6154 obj = work->old_fb_obj;
6156 atomic_clear_mask(1 << intel_crtc->plane,
6157 &obj->pending_flip.counter);
6158 if (atomic_read(&obj->pending_flip) == 0)
6159 wake_up(&dev_priv->pending_flip_queue);
6161 schedule_work(&work->work);
6163 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6166 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6168 drm_i915_private_t *dev_priv = dev->dev_private;
6169 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6171 do_intel_finish_page_flip(dev, crtc);
6174 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6176 drm_i915_private_t *dev_priv = dev->dev_private;
6177 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6179 do_intel_finish_page_flip(dev, crtc);
6182 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6184 drm_i915_private_t *dev_priv = dev->dev_private;
6185 struct intel_crtc *intel_crtc =
6186 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6187 unsigned long flags;
6189 spin_lock_irqsave(&dev->event_lock, flags);
6190 if (intel_crtc->unpin_work) {
6191 if ((++intel_crtc->unpin_work->pending) > 1)
6192 DRM_ERROR("Prepared flip multiple times\n");
6193 } else {
6194 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6196 spin_unlock_irqrestore(&dev->event_lock, flags);
6199 static int intel_gen2_queue_flip(struct drm_device *dev,
6200 struct drm_crtc *crtc,
6201 struct drm_framebuffer *fb,
6202 struct drm_i915_gem_object *obj)
6204 struct drm_i915_private *dev_priv = dev->dev_private;
6205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6206 u32 flip_mask;
6207 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6208 int ret;
6210 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6211 if (ret)
6212 goto err;
6214 ret = intel_ring_begin(ring, 6);
6215 if (ret)
6216 goto err_unpin;
6218 /* Can't queue multiple flips, so wait for the previous
6219 * one to finish before executing the next.
6221 if (intel_crtc->plane)
6222 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6223 else
6224 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6225 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6226 intel_ring_emit(ring, MI_NOOP);
6227 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6228 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6229 intel_ring_emit(ring, fb->pitches[0]);
6230 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6231 intel_ring_emit(ring, 0); /* aux display base address, unused */
6232 intel_ring_advance(ring);
6233 return 0;
6235 err_unpin:
6236 intel_unpin_fb_obj(obj);
6237 err:
6238 return ret;
6241 static int intel_gen3_queue_flip(struct drm_device *dev,
6242 struct drm_crtc *crtc,
6243 struct drm_framebuffer *fb,
6244 struct drm_i915_gem_object *obj)
6246 struct drm_i915_private *dev_priv = dev->dev_private;
6247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6248 u32 flip_mask;
6249 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6250 int ret;
6252 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6253 if (ret)
6254 goto err;
6256 ret = intel_ring_begin(ring, 6);
6257 if (ret)
6258 goto err_unpin;
6260 if (intel_crtc->plane)
6261 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6262 else
6263 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6264 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6265 intel_ring_emit(ring, MI_NOOP);
6266 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6267 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6268 intel_ring_emit(ring, fb->pitches[0]);
6269 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6270 intel_ring_emit(ring, MI_NOOP);
6272 intel_ring_advance(ring);
6273 return 0;
6275 err_unpin:
6276 intel_unpin_fb_obj(obj);
6277 err:
6278 return ret;
6281 static int intel_gen4_queue_flip(struct drm_device *dev,
6282 struct drm_crtc *crtc,
6283 struct drm_framebuffer *fb,
6284 struct drm_i915_gem_object *obj)
6286 struct drm_i915_private *dev_priv = dev->dev_private;
6287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6288 uint32_t pf, pipesrc;
6289 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6290 int ret;
6292 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6293 if (ret)
6294 goto err;
6296 ret = intel_ring_begin(ring, 4);
6297 if (ret)
6298 goto err_unpin;
6300 /* i965+ uses the linear or tiled offsets from the
6301 * Display Registers (which do not change across a page-flip)
6302 * so we need only reprogram the base address.
6304 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6305 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6306 intel_ring_emit(ring, fb->pitches[0]);
6307 intel_ring_emit(ring,
6308 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6309 obj->tiling_mode);
6311 /* XXX Enabling the panel-fitter across page-flip is so far
6312 * untested on non-native modes, so ignore it for now.
6313 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6315 pf = 0;
6316 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6317 intel_ring_emit(ring, pf | pipesrc);
6318 intel_ring_advance(ring);
6319 return 0;
6321 err_unpin:
6322 intel_unpin_fb_obj(obj);
6323 err:
6324 return ret;
6327 static int intel_gen6_queue_flip(struct drm_device *dev,
6328 struct drm_crtc *crtc,
6329 struct drm_framebuffer *fb,
6330 struct drm_i915_gem_object *obj)
6332 struct drm_i915_private *dev_priv = dev->dev_private;
6333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6334 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6335 uint32_t pf, pipesrc;
6336 int ret;
6338 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6339 if (ret)
6340 goto err;
6342 ret = intel_ring_begin(ring, 4);
6343 if (ret)
6344 goto err_unpin;
6346 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6347 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6348 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6349 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6351 /* Contrary to the suggestions in the documentation,
6352 * "Enable Panel Fitter" does not seem to be required when page
6353 * flipping with a non-native mode, and worse causes a normal
6354 * modeset to fail.
6355 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6357 pf = 0;
6358 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6359 intel_ring_emit(ring, pf | pipesrc);
6360 intel_ring_advance(ring);
6361 return 0;
6363 err_unpin:
6364 intel_unpin_fb_obj(obj);
6365 err:
6366 return ret;
6370 * On gen7 we currently use the blit ring because (in early silicon at least)
6371 * the render ring doesn't give us interrpts for page flip completion, which
6372 * means clients will hang after the first flip is queued. Fortunately the
6373 * blit ring generates interrupts properly, so use it instead.
6375 static int intel_gen7_queue_flip(struct drm_device *dev,
6376 struct drm_crtc *crtc,
6377 struct drm_framebuffer *fb,
6378 struct drm_i915_gem_object *obj)
6380 struct drm_i915_private *dev_priv = dev->dev_private;
6381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6382 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6383 uint32_t plane_bit = 0;
6384 int ret;
6386 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6387 if (ret)
6388 goto err;
6390 switch(intel_crtc->plane) {
6391 case PLANE_A:
6392 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6393 break;
6394 case PLANE_B:
6395 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6396 break;
6397 case PLANE_C:
6398 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6399 break;
6400 default:
6401 WARN_ONCE(1, "unknown plane in flip command\n");
6402 ret = -ENODEV;
6403 goto err_unpin;
6406 ret = intel_ring_begin(ring, 4);
6407 if (ret)
6408 goto err_unpin;
6410 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6411 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6412 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6413 intel_ring_emit(ring, (MI_NOOP));
6414 intel_ring_advance(ring);
6415 return 0;
6417 err_unpin:
6418 intel_unpin_fb_obj(obj);
6419 err:
6420 return ret;
6423 static int intel_default_queue_flip(struct drm_device *dev,
6424 struct drm_crtc *crtc,
6425 struct drm_framebuffer *fb,
6426 struct drm_i915_gem_object *obj)
6428 return -ENODEV;
6431 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6432 struct drm_framebuffer *fb,
6433 struct drm_pending_vblank_event *event)
6435 struct drm_device *dev = crtc->dev;
6436 struct drm_i915_private *dev_priv = dev->dev_private;
6437 struct intel_framebuffer *intel_fb;
6438 struct drm_i915_gem_object *obj;
6439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6440 struct intel_unpin_work *work;
6441 unsigned long flags;
6442 int ret;
6444 /* Can't change pixel format via MI display flips. */
6445 if (fb->pixel_format != crtc->fb->pixel_format)
6446 return -EINVAL;
6449 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6450 * Note that pitch changes could also affect these register.
6452 if (INTEL_INFO(dev)->gen > 3 &&
6453 (fb->offsets[0] != crtc->fb->offsets[0] ||
6454 fb->pitches[0] != crtc->fb->pitches[0]))
6455 return -EINVAL;
6457 work = kzalloc(sizeof *work, GFP_KERNEL);
6458 if (work == NULL)
6459 return -ENOMEM;
6461 work->event = event;
6462 work->dev = crtc->dev;
6463 intel_fb = to_intel_framebuffer(crtc->fb);
6464 work->old_fb_obj = intel_fb->obj;
6465 INIT_WORK(&work->work, intel_unpin_work_fn);
6467 ret = drm_vblank_get(dev, intel_crtc->pipe);
6468 if (ret)
6469 goto free_work;
6471 /* We borrow the event spin lock for protecting unpin_work */
6472 spin_lock_irqsave(&dev->event_lock, flags);
6473 if (intel_crtc->unpin_work) {
6474 spin_unlock_irqrestore(&dev->event_lock, flags);
6475 kfree(work);
6476 drm_vblank_put(dev, intel_crtc->pipe);
6478 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6479 return -EBUSY;
6481 intel_crtc->unpin_work = work;
6482 spin_unlock_irqrestore(&dev->event_lock, flags);
6484 intel_fb = to_intel_framebuffer(fb);
6485 obj = intel_fb->obj;
6487 ret = i915_mutex_lock_interruptible(dev);
6488 if (ret)
6489 goto cleanup;
6491 /* Reference the objects for the scheduled work. */
6492 drm_gem_object_reference(&work->old_fb_obj->base);
6493 drm_gem_object_reference(&obj->base);
6495 crtc->fb = fb;
6497 work->pending_flip_obj = obj;
6499 work->enable_stall_check = true;
6501 /* Block clients from rendering to the new back buffer until
6502 * the flip occurs and the object is no longer visible.
6504 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6506 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6507 if (ret)
6508 goto cleanup_pending;
6510 intel_disable_fbc(dev);
6511 intel_mark_fb_busy(obj);
6512 mutex_unlock(&dev->struct_mutex);
6514 trace_i915_flip_request(intel_crtc->plane, obj);
6516 return 0;
6518 cleanup_pending:
6519 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6520 drm_gem_object_unreference(&work->old_fb_obj->base);
6521 drm_gem_object_unreference(&obj->base);
6522 mutex_unlock(&dev->struct_mutex);
6524 cleanup:
6525 spin_lock_irqsave(&dev->event_lock, flags);
6526 intel_crtc->unpin_work = NULL;
6527 spin_unlock_irqrestore(&dev->event_lock, flags);
6529 drm_vblank_put(dev, intel_crtc->pipe);
6530 free_work:
6531 kfree(work);
6533 return ret;
6536 static void intel_sanitize_modesetting(struct drm_device *dev,
6537 int pipe, int plane)
6539 struct drm_i915_private *dev_priv = dev->dev_private;
6540 u32 reg, val;
6541 int i;
6543 /* Clear any frame start delays used for debugging left by the BIOS */
6544 for_each_pipe(i) {
6545 reg = PIPECONF(i);
6546 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6549 if (HAS_PCH_SPLIT(dev))
6550 return;
6552 /* Who knows what state these registers were left in by the BIOS or
6553 * grub?
6555 * If we leave the registers in a conflicting state (e.g. with the
6556 * display plane reading from the other pipe than the one we intend
6557 * to use) then when we attempt to teardown the active mode, we will
6558 * not disable the pipes and planes in the correct order -- leaving
6559 * a plane reading from a disabled pipe and possibly leading to
6560 * undefined behaviour.
6563 reg = DSPCNTR(plane);
6564 val = I915_READ(reg);
6566 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6567 return;
6568 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6569 return;
6571 /* This display plane is active and attached to the other CPU pipe. */
6572 pipe = !pipe;
6574 /* Disable the plane and wait for it to stop reading from the pipe. */
6575 intel_disable_plane(dev_priv, plane, pipe);
6576 intel_disable_pipe(dev_priv, pipe);
6579 static void intel_crtc_reset(struct drm_crtc *crtc)
6581 struct drm_device *dev = crtc->dev;
6582 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6584 /* Reset flags back to the 'unknown' status so that they
6585 * will be correctly set on the initial modeset.
6587 intel_crtc->dpms_mode = -1;
6589 /* We need to fix up any BIOS configuration that conflicts with
6590 * our expectations.
6592 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6595 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6596 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6597 .load_lut = intel_crtc_load_lut,
6598 .disable = intel_crtc_disable,
6601 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6602 struct drm_crtc *crtc)
6604 struct drm_device *dev;
6605 struct drm_crtc *tmp;
6606 int crtc_mask = 1;
6608 WARN(!crtc, "checking null crtc?\n");
6610 dev = crtc->dev;
6612 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6613 if (tmp == crtc)
6614 break;
6615 crtc_mask <<= 1;
6618 if (encoder->possible_crtcs & crtc_mask)
6619 return true;
6620 return false;
6623 static int
6624 intel_crtc_helper_disable(struct drm_crtc *crtc)
6626 struct drm_device *dev = crtc->dev;
6627 struct drm_connector *connector;
6628 struct drm_encoder *encoder;
6630 /* Decouple all encoders and their attached connectors from this crtc */
6631 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6632 if (encoder->crtc != crtc)
6633 continue;
6635 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6636 if (connector->encoder != encoder)
6637 continue;
6639 connector->encoder = NULL;
6643 drm_helper_disable_unused_functions(dev);
6644 return 0;
6647 static void
6648 intel_crtc_prepare_encoders(struct drm_device *dev)
6650 struct intel_encoder *encoder;
6652 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6653 /* Disable unused encoders */
6654 if (encoder->base.crtc == NULL)
6655 encoder->disable(encoder);
6659 bool intel_set_mode(struct drm_crtc *crtc,
6660 struct drm_display_mode *mode,
6661 int x, int y, struct drm_framebuffer *old_fb)
6663 struct drm_device *dev = crtc->dev;
6664 drm_i915_private_t *dev_priv = dev->dev_private;
6665 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
6666 struct drm_encoder_helper_funcs *encoder_funcs;
6667 int saved_x, saved_y;
6668 struct drm_encoder *encoder;
6669 bool ret = true;
6671 crtc->enabled = drm_helper_crtc_in_use(crtc);
6672 if (!crtc->enabled)
6673 return true;
6675 adjusted_mode = drm_mode_duplicate(dev, mode);
6676 if (!adjusted_mode)
6677 return false;
6679 saved_hwmode = crtc->hwmode;
6680 saved_mode = crtc->mode;
6681 saved_x = crtc->x;
6682 saved_y = crtc->y;
6684 /* Update crtc values up front so the driver can rely on them for mode
6685 * setting.
6687 crtc->mode = *mode;
6688 crtc->x = x;
6689 crtc->y = y;
6691 /* Pass our mode to the connectors and the CRTC to give them a chance to
6692 * adjust it according to limitations or connector properties, and also
6693 * a chance to reject the mode entirely.
6695 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6697 if (encoder->crtc != crtc)
6698 continue;
6699 encoder_funcs = encoder->helper_private;
6700 if (!(ret = encoder_funcs->mode_fixup(encoder, mode,
6701 adjusted_mode))) {
6702 DRM_DEBUG_KMS("Encoder fixup failed\n");
6703 goto done;
6707 if (!(ret = intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6708 DRM_DEBUG_KMS("CRTC fixup failed\n");
6709 goto done;
6711 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6713 intel_crtc_prepare_encoders(dev);
6715 dev_priv->display.crtc_disable(crtc);
6717 /* Set up the DPLL and any encoders state that needs to adjust or depend
6718 * on the DPLL.
6720 ret = !intel_crtc_mode_set(crtc, mode, adjusted_mode, x, y, old_fb);
6721 if (!ret)
6722 goto done;
6724 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6726 if (encoder->crtc != crtc)
6727 continue;
6729 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6730 encoder->base.id, drm_get_encoder_name(encoder),
6731 mode->base.id, mode->name);
6732 encoder_funcs = encoder->helper_private;
6733 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
6736 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
6737 dev_priv->display.crtc_enable(crtc);
6739 /* Store real post-adjustment hardware mode. */
6740 crtc->hwmode = *adjusted_mode;
6742 /* Calculate and store various constants which
6743 * are later needed by vblank and swap-completion
6744 * timestamping. They are derived from true hwmode.
6746 drm_calc_timestamping_constants(crtc);
6748 /* FIXME: add subpixel order */
6749 done:
6750 drm_mode_destroy(dev, adjusted_mode);
6751 if (!ret) {
6752 crtc->hwmode = saved_hwmode;
6753 crtc->mode = saved_mode;
6754 crtc->x = saved_x;
6755 crtc->y = saved_y;
6758 return ret;
6761 static int intel_crtc_set_config(struct drm_mode_set *set)
6763 struct drm_device *dev;
6764 struct drm_crtc *save_crtcs, *new_crtc, *crtc;
6765 struct drm_encoder *save_encoders, *new_encoder, *encoder;
6766 struct drm_framebuffer *old_fb = NULL;
6767 bool mode_changed = false; /* if true do a full mode set */
6768 bool fb_changed = false; /* if true and !mode_changed just do a flip */
6769 struct drm_connector *save_connectors, *connector;
6770 int count = 0, ro;
6771 struct drm_mode_set save_set;
6772 int ret;
6773 int i;
6775 DRM_DEBUG_KMS("\n");
6777 if (!set)
6778 return -EINVAL;
6780 if (!set->crtc)
6781 return -EINVAL;
6783 if (!set->crtc->helper_private)
6784 return -EINVAL;
6786 if (!set->mode)
6787 set->fb = NULL;
6789 if (set->fb) {
6790 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
6791 set->crtc->base.id, set->fb->base.id,
6792 (int)set->num_connectors, set->x, set->y);
6793 } else {
6794 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
6795 return intel_crtc_helper_disable(set->crtc);
6798 dev = set->crtc->dev;
6800 /* Allocate space for the backup of all (non-pointer) crtc, encoder and
6801 * connector data. */
6802 save_crtcs = kzalloc(dev->mode_config.num_crtc *
6803 sizeof(struct drm_crtc), GFP_KERNEL);
6804 if (!save_crtcs)
6805 return -ENOMEM;
6807 save_encoders = kzalloc(dev->mode_config.num_encoder *
6808 sizeof(struct drm_encoder), GFP_KERNEL);
6809 if (!save_encoders) {
6810 kfree(save_crtcs);
6811 return -ENOMEM;
6814 save_connectors = kzalloc(dev->mode_config.num_connector *
6815 sizeof(struct drm_connector), GFP_KERNEL);
6816 if (!save_connectors) {
6817 kfree(save_crtcs);
6818 kfree(save_encoders);
6819 return -ENOMEM;
6822 /* Copy data. Note that driver private data is not affected.
6823 * Should anything bad happen only the expected state is
6824 * restored, not the drivers personal bookkeeping.
6826 count = 0;
6827 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6828 save_crtcs[count++] = *crtc;
6831 count = 0;
6832 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6833 save_encoders[count++] = *encoder;
6836 count = 0;
6837 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6838 save_connectors[count++] = *connector;
6841 save_set.crtc = set->crtc;
6842 save_set.mode = &set->crtc->mode;
6843 save_set.x = set->crtc->x;
6844 save_set.y = set->crtc->y;
6845 save_set.fb = set->crtc->fb;
6847 /* We should be able to check here if the fb has the same properties
6848 * and then just flip_or_move it */
6849 if (set->crtc->fb != set->fb) {
6850 /* If we have no fb then treat it as a full mode set */
6851 if (set->crtc->fb == NULL) {
6852 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
6853 mode_changed = true;
6854 } else if (set->fb == NULL) {
6855 mode_changed = true;
6856 } else if (set->fb->depth != set->crtc->fb->depth) {
6857 mode_changed = true;
6858 } else if (set->fb->bits_per_pixel !=
6859 set->crtc->fb->bits_per_pixel) {
6860 mode_changed = true;
6861 } else
6862 fb_changed = true;
6865 if (set->x != set->crtc->x || set->y != set->crtc->y)
6866 fb_changed = true;
6868 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
6869 DRM_DEBUG_KMS("modes are different, full mode set\n");
6870 drm_mode_debug_printmodeline(&set->crtc->mode);
6871 drm_mode_debug_printmodeline(set->mode);
6872 mode_changed = true;
6875 /* a) traverse passed in connector list and get encoders for them */
6876 count = 0;
6877 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6878 new_encoder = connector->encoder;
6879 for (ro = 0; ro < set->num_connectors; ro++) {
6880 if (set->connectors[ro] == connector) {
6881 new_encoder =
6882 &intel_attached_encoder(connector)->base;
6883 break;
6887 if (new_encoder != connector->encoder) {
6888 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
6889 mode_changed = true;
6890 /* If the encoder is reused for another connector, then
6891 * the appropriate crtc will be set later.
6893 if (connector->encoder)
6894 connector->encoder->crtc = NULL;
6895 connector->encoder = new_encoder;
6899 count = 0;
6900 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6901 if (!connector->encoder)
6902 continue;
6904 if (connector->encoder->crtc == set->crtc)
6905 new_crtc = NULL;
6906 else
6907 new_crtc = connector->encoder->crtc;
6909 for (ro = 0; ro < set->num_connectors; ro++) {
6910 if (set->connectors[ro] == connector)
6911 new_crtc = set->crtc;
6914 /* Make sure the new CRTC will work with the encoder */
6915 if (new_crtc &&
6916 !intel_encoder_crtc_ok(connector->encoder, new_crtc)) {
6917 ret = -EINVAL;
6918 goto fail;
6920 if (new_crtc != connector->encoder->crtc) {
6921 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
6922 mode_changed = true;
6923 connector->encoder->crtc = new_crtc;
6925 if (new_crtc) {
6926 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
6927 connector->base.id, drm_get_connector_name(connector),
6928 new_crtc->base.id);
6929 } else {
6930 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
6931 connector->base.id, drm_get_connector_name(connector));
6935 if (mode_changed) {
6936 set->crtc->enabled = drm_helper_crtc_in_use(set->crtc);
6937 if (set->crtc->enabled) {
6938 DRM_DEBUG_KMS("attempting to set mode from"
6939 " userspace\n");
6940 drm_mode_debug_printmodeline(set->mode);
6941 old_fb = set->crtc->fb;
6942 set->crtc->fb = set->fb;
6943 if (!intel_set_mode(set->crtc, set->mode,
6944 set->x, set->y, old_fb)) {
6945 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
6946 set->crtc->base.id);
6947 set->crtc->fb = old_fb;
6948 ret = -EINVAL;
6949 goto fail;
6951 DRM_DEBUG_KMS("Setting connector DPMS state to on\n");
6952 for (i = 0; i < set->num_connectors; i++) {
6953 DRM_DEBUG_KMS("\t[CONNECTOR:%d:%s] set DPMS on\n", set->connectors[i]->base.id,
6954 drm_get_connector_name(set->connectors[i]));
6955 set->connectors[i]->funcs->dpms(set->connectors[i], DRM_MODE_DPMS_ON);
6958 drm_helper_disable_unused_functions(dev);
6959 } else if (fb_changed) {
6960 set->crtc->x = set->x;
6961 set->crtc->y = set->y;
6963 old_fb = set->crtc->fb;
6964 if (set->crtc->fb != set->fb)
6965 set->crtc->fb = set->fb;
6966 ret = intel_pipe_set_base(set->crtc,
6967 set->x, set->y, old_fb);
6968 if (ret != 0) {
6969 set->crtc->fb = old_fb;
6970 goto fail;
6974 kfree(save_connectors);
6975 kfree(save_encoders);
6976 kfree(save_crtcs);
6977 return 0;
6979 fail:
6980 /* Restore all previous data. */
6981 count = 0;
6982 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6983 *crtc = save_crtcs[count++];
6986 count = 0;
6987 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
6988 *encoder = save_encoders[count++];
6991 count = 0;
6992 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6993 *connector = save_connectors[count++];
6996 /* Try to restore the config */
6997 if (mode_changed &&
6998 !intel_set_mode(save_set.crtc, save_set.mode,
6999 save_set.x, save_set.y, save_set.fb))
7000 DRM_ERROR("failed to restore config after modeset failure\n");
7002 kfree(save_connectors);
7003 kfree(save_encoders);
7004 kfree(save_crtcs);
7005 return ret;
7008 static const struct drm_crtc_funcs intel_crtc_funcs = {
7009 .reset = intel_crtc_reset,
7010 .cursor_set = intel_crtc_cursor_set,
7011 .cursor_move = intel_crtc_cursor_move,
7012 .gamma_set = intel_crtc_gamma_set,
7013 .set_config = intel_crtc_set_config,
7014 .destroy = intel_crtc_destroy,
7015 .page_flip = intel_crtc_page_flip,
7018 static void intel_pch_pll_init(struct drm_device *dev)
7020 drm_i915_private_t *dev_priv = dev->dev_private;
7021 int i;
7023 if (dev_priv->num_pch_pll == 0) {
7024 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7025 return;
7028 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7029 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7030 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7031 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7035 static void intel_crtc_init(struct drm_device *dev, int pipe)
7037 drm_i915_private_t *dev_priv = dev->dev_private;
7038 struct intel_crtc *intel_crtc;
7039 int i;
7041 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7042 if (intel_crtc == NULL)
7043 return;
7045 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7047 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7048 for (i = 0; i < 256; i++) {
7049 intel_crtc->lut_r[i] = i;
7050 intel_crtc->lut_g[i] = i;
7051 intel_crtc->lut_b[i] = i;
7054 /* Swap pipes & planes for FBC on pre-965 */
7055 intel_crtc->pipe = pipe;
7056 intel_crtc->plane = pipe;
7057 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7058 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7059 intel_crtc->plane = !pipe;
7062 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7063 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7064 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7065 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7067 intel_crtc_reset(&intel_crtc->base);
7068 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7069 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7071 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7074 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7075 struct drm_file *file)
7077 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7078 struct drm_mode_object *drmmode_obj;
7079 struct intel_crtc *crtc;
7081 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7082 return -ENODEV;
7084 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7085 DRM_MODE_OBJECT_CRTC);
7087 if (!drmmode_obj) {
7088 DRM_ERROR("no such CRTC id\n");
7089 return -EINVAL;
7092 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7093 pipe_from_crtc_id->pipe = crtc->pipe;
7095 return 0;
7098 static int intel_encoder_clones(struct intel_encoder *encoder)
7100 struct drm_device *dev = encoder->base.dev;
7101 struct intel_encoder *source_encoder;
7102 int index_mask = 0;
7103 int entry = 0;
7105 list_for_each_entry(source_encoder,
7106 &dev->mode_config.encoder_list, base.head) {
7108 if (encoder == source_encoder)
7109 index_mask |= (1 << entry);
7111 /* Intel hw has only one MUX where enocoders could be cloned. */
7112 if (encoder->cloneable && source_encoder->cloneable)
7113 index_mask |= (1 << entry);
7115 entry++;
7118 return index_mask;
7121 static bool has_edp_a(struct drm_device *dev)
7123 struct drm_i915_private *dev_priv = dev->dev_private;
7125 if (!IS_MOBILE(dev))
7126 return false;
7128 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7129 return false;
7131 if (IS_GEN5(dev) &&
7132 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7133 return false;
7135 return true;
7138 static void intel_setup_outputs(struct drm_device *dev)
7140 struct drm_i915_private *dev_priv = dev->dev_private;
7141 struct intel_encoder *encoder;
7142 bool dpd_is_edp = false;
7143 bool has_lvds;
7145 has_lvds = intel_lvds_init(dev);
7146 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7147 /* disable the panel fitter on everything but LVDS */
7148 I915_WRITE(PFIT_CONTROL, 0);
7151 if (HAS_PCH_SPLIT(dev)) {
7152 dpd_is_edp = intel_dpd_is_edp(dev);
7154 if (has_edp_a(dev))
7155 intel_dp_init(dev, DP_A, PORT_A);
7157 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7158 intel_dp_init(dev, PCH_DP_D, PORT_D);
7161 intel_crt_init(dev);
7163 if (IS_HASWELL(dev)) {
7164 int found;
7166 /* Haswell uses DDI functions to detect digital outputs */
7167 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7168 /* DDI A only supports eDP */
7169 if (found)
7170 intel_ddi_init(dev, PORT_A);
7172 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7173 * register */
7174 found = I915_READ(SFUSE_STRAP);
7176 if (found & SFUSE_STRAP_DDIB_DETECTED)
7177 intel_ddi_init(dev, PORT_B);
7178 if (found & SFUSE_STRAP_DDIC_DETECTED)
7179 intel_ddi_init(dev, PORT_C);
7180 if (found & SFUSE_STRAP_DDID_DETECTED)
7181 intel_ddi_init(dev, PORT_D);
7182 } else if (HAS_PCH_SPLIT(dev)) {
7183 int found;
7185 if (I915_READ(HDMIB) & PORT_DETECTED) {
7186 /* PCH SDVOB multiplex with HDMIB */
7187 found = intel_sdvo_init(dev, PCH_SDVOB, true);
7188 if (!found)
7189 intel_hdmi_init(dev, HDMIB, PORT_B);
7190 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7191 intel_dp_init(dev, PCH_DP_B, PORT_B);
7194 if (I915_READ(HDMIC) & PORT_DETECTED)
7195 intel_hdmi_init(dev, HDMIC, PORT_C);
7197 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7198 intel_hdmi_init(dev, HDMID, PORT_D);
7200 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7201 intel_dp_init(dev, PCH_DP_C, PORT_C);
7203 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7204 intel_dp_init(dev, PCH_DP_D, PORT_D);
7205 } else if (IS_VALLEYVIEW(dev)) {
7206 int found;
7208 if (I915_READ(SDVOB) & PORT_DETECTED) {
7209 /* SDVOB multiplex with HDMIB */
7210 found = intel_sdvo_init(dev, SDVOB, true);
7211 if (!found)
7212 intel_hdmi_init(dev, SDVOB, PORT_B);
7213 if (!found && (I915_READ(DP_B) & DP_DETECTED))
7214 intel_dp_init(dev, DP_B, PORT_B);
7217 if (I915_READ(SDVOC) & PORT_DETECTED)
7218 intel_hdmi_init(dev, SDVOC, PORT_C);
7220 /* Shares lanes with HDMI on SDVOC */
7221 if (I915_READ(DP_C) & DP_DETECTED)
7222 intel_dp_init(dev, DP_C, PORT_C);
7223 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7224 bool found = false;
7226 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7227 DRM_DEBUG_KMS("probing SDVOB\n");
7228 found = intel_sdvo_init(dev, SDVOB, true);
7229 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7230 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7231 intel_hdmi_init(dev, SDVOB, PORT_B);
7234 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7235 DRM_DEBUG_KMS("probing DP_B\n");
7236 intel_dp_init(dev, DP_B, PORT_B);
7240 /* Before G4X SDVOC doesn't have its own detect register */
7242 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7243 DRM_DEBUG_KMS("probing SDVOC\n");
7244 found = intel_sdvo_init(dev, SDVOC, false);
7247 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7249 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7250 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7251 intel_hdmi_init(dev, SDVOC, PORT_C);
7253 if (SUPPORTS_INTEGRATED_DP(dev)) {
7254 DRM_DEBUG_KMS("probing DP_C\n");
7255 intel_dp_init(dev, DP_C, PORT_C);
7259 if (SUPPORTS_INTEGRATED_DP(dev) &&
7260 (I915_READ(DP_D) & DP_DETECTED)) {
7261 DRM_DEBUG_KMS("probing DP_D\n");
7262 intel_dp_init(dev, DP_D, PORT_D);
7264 } else if (IS_GEN2(dev))
7265 intel_dvo_init(dev);
7267 if (SUPPORTS_TV(dev))
7268 intel_tv_init(dev);
7270 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7271 encoder->base.possible_crtcs = encoder->crtc_mask;
7272 encoder->base.possible_clones =
7273 intel_encoder_clones(encoder);
7276 /* disable all the possible outputs/crtcs before entering KMS mode */
7277 drm_helper_disable_unused_functions(dev);
7279 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7280 ironlake_init_pch_refclk(dev);
7283 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7285 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7287 drm_framebuffer_cleanup(fb);
7288 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7290 kfree(intel_fb);
7293 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7294 struct drm_file *file,
7295 unsigned int *handle)
7297 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7298 struct drm_i915_gem_object *obj = intel_fb->obj;
7300 return drm_gem_handle_create(file, &obj->base, handle);
7303 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7304 .destroy = intel_user_framebuffer_destroy,
7305 .create_handle = intel_user_framebuffer_create_handle,
7308 int intel_framebuffer_init(struct drm_device *dev,
7309 struct intel_framebuffer *intel_fb,
7310 struct drm_mode_fb_cmd2 *mode_cmd,
7311 struct drm_i915_gem_object *obj)
7313 int ret;
7315 if (obj->tiling_mode == I915_TILING_Y)
7316 return -EINVAL;
7318 if (mode_cmd->pitches[0] & 63)
7319 return -EINVAL;
7321 switch (mode_cmd->pixel_format) {
7322 case DRM_FORMAT_RGB332:
7323 case DRM_FORMAT_RGB565:
7324 case DRM_FORMAT_XRGB8888:
7325 case DRM_FORMAT_XBGR8888:
7326 case DRM_FORMAT_ARGB8888:
7327 case DRM_FORMAT_XRGB2101010:
7328 case DRM_FORMAT_ARGB2101010:
7329 /* RGB formats are common across chipsets */
7330 break;
7331 case DRM_FORMAT_YUYV:
7332 case DRM_FORMAT_UYVY:
7333 case DRM_FORMAT_YVYU:
7334 case DRM_FORMAT_VYUY:
7335 break;
7336 default:
7337 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7338 mode_cmd->pixel_format);
7339 return -EINVAL;
7342 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7343 if (ret) {
7344 DRM_ERROR("framebuffer init failed %d\n", ret);
7345 return ret;
7348 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7349 intel_fb->obj = obj;
7350 return 0;
7353 static struct drm_framebuffer *
7354 intel_user_framebuffer_create(struct drm_device *dev,
7355 struct drm_file *filp,
7356 struct drm_mode_fb_cmd2 *mode_cmd)
7358 struct drm_i915_gem_object *obj;
7360 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7361 mode_cmd->handles[0]));
7362 if (&obj->base == NULL)
7363 return ERR_PTR(-ENOENT);
7365 return intel_framebuffer_create(dev, mode_cmd, obj);
7368 static const struct drm_mode_config_funcs intel_mode_funcs = {
7369 .fb_create = intel_user_framebuffer_create,
7370 .output_poll_changed = intel_fb_output_poll_changed,
7373 /* Set up chip specific display functions */
7374 static void intel_init_display(struct drm_device *dev)
7376 struct drm_i915_private *dev_priv = dev->dev_private;
7378 /* We always want a DPMS function */
7379 if (HAS_PCH_SPLIT(dev)) {
7380 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7381 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7382 dev_priv->display.crtc_disable = ironlake_crtc_disable;
7383 dev_priv->display.off = ironlake_crtc_off;
7384 dev_priv->display.update_plane = ironlake_update_plane;
7385 } else {
7386 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7387 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7388 dev_priv->display.crtc_disable = i9xx_crtc_disable;
7389 dev_priv->display.off = i9xx_crtc_off;
7390 dev_priv->display.update_plane = i9xx_update_plane;
7393 /* Returns the core display clock speed */
7394 if (IS_VALLEYVIEW(dev))
7395 dev_priv->display.get_display_clock_speed =
7396 valleyview_get_display_clock_speed;
7397 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7398 dev_priv->display.get_display_clock_speed =
7399 i945_get_display_clock_speed;
7400 else if (IS_I915G(dev))
7401 dev_priv->display.get_display_clock_speed =
7402 i915_get_display_clock_speed;
7403 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7404 dev_priv->display.get_display_clock_speed =
7405 i9xx_misc_get_display_clock_speed;
7406 else if (IS_I915GM(dev))
7407 dev_priv->display.get_display_clock_speed =
7408 i915gm_get_display_clock_speed;
7409 else if (IS_I865G(dev))
7410 dev_priv->display.get_display_clock_speed =
7411 i865_get_display_clock_speed;
7412 else if (IS_I85X(dev))
7413 dev_priv->display.get_display_clock_speed =
7414 i855_get_display_clock_speed;
7415 else /* 852, 830 */
7416 dev_priv->display.get_display_clock_speed =
7417 i830_get_display_clock_speed;
7419 if (HAS_PCH_SPLIT(dev)) {
7420 if (IS_GEN5(dev)) {
7421 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7422 dev_priv->display.write_eld = ironlake_write_eld;
7423 } else if (IS_GEN6(dev)) {
7424 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7425 dev_priv->display.write_eld = ironlake_write_eld;
7426 } else if (IS_IVYBRIDGE(dev)) {
7427 /* FIXME: detect B0+ stepping and use auto training */
7428 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7429 dev_priv->display.write_eld = ironlake_write_eld;
7430 } else if (IS_HASWELL(dev)) {
7431 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7432 dev_priv->display.write_eld = haswell_write_eld;
7433 } else
7434 dev_priv->display.update_wm = NULL;
7435 } else if (IS_G4X(dev)) {
7436 dev_priv->display.write_eld = g4x_write_eld;
7439 /* Default just returns -ENODEV to indicate unsupported */
7440 dev_priv->display.queue_flip = intel_default_queue_flip;
7442 switch (INTEL_INFO(dev)->gen) {
7443 case 2:
7444 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7445 break;
7447 case 3:
7448 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7449 break;
7451 case 4:
7452 case 5:
7453 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7454 break;
7456 case 6:
7457 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7458 break;
7459 case 7:
7460 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7461 break;
7466 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7467 * resume, or other times. This quirk makes sure that's the case for
7468 * affected systems.
7470 static void quirk_pipea_force(struct drm_device *dev)
7472 struct drm_i915_private *dev_priv = dev->dev_private;
7474 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7475 DRM_INFO("applying pipe a force quirk\n");
7479 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7481 static void quirk_ssc_force_disable(struct drm_device *dev)
7483 struct drm_i915_private *dev_priv = dev->dev_private;
7484 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7485 DRM_INFO("applying lvds SSC disable quirk\n");
7489 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7490 * brightness value
7492 static void quirk_invert_brightness(struct drm_device *dev)
7494 struct drm_i915_private *dev_priv = dev->dev_private;
7495 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7496 DRM_INFO("applying inverted panel brightness quirk\n");
7499 struct intel_quirk {
7500 int device;
7501 int subsystem_vendor;
7502 int subsystem_device;
7503 void (*hook)(struct drm_device *dev);
7506 static struct intel_quirk intel_quirks[] = {
7507 /* HP Mini needs pipe A force quirk (LP: #322104) */
7508 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7510 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7511 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7513 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7514 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7516 /* 855 & before need to leave pipe A & dpll A up */
7517 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7518 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7519 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7521 /* Lenovo U160 cannot use SSC on LVDS */
7522 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7524 /* Sony Vaio Y cannot use SSC on LVDS */
7525 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7527 /* Acer Aspire 5734Z must invert backlight brightness */
7528 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7531 static void intel_init_quirks(struct drm_device *dev)
7533 struct pci_dev *d = dev->pdev;
7534 int i;
7536 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7537 struct intel_quirk *q = &intel_quirks[i];
7539 if (d->device == q->device &&
7540 (d->subsystem_vendor == q->subsystem_vendor ||
7541 q->subsystem_vendor == PCI_ANY_ID) &&
7542 (d->subsystem_device == q->subsystem_device ||
7543 q->subsystem_device == PCI_ANY_ID))
7544 q->hook(dev);
7548 /* Disable the VGA plane that we never use */
7549 static void i915_disable_vga(struct drm_device *dev)
7551 struct drm_i915_private *dev_priv = dev->dev_private;
7552 u8 sr1;
7553 u32 vga_reg;
7555 if (HAS_PCH_SPLIT(dev))
7556 vga_reg = CPU_VGACNTRL;
7557 else
7558 vga_reg = VGACNTRL;
7560 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7561 outb(SR01, VGA_SR_INDEX);
7562 sr1 = inb(VGA_SR_DATA);
7563 outb(sr1 | 1<<5, VGA_SR_DATA);
7564 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7565 udelay(300);
7567 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7568 POSTING_READ(vga_reg);
7571 void intel_modeset_init_hw(struct drm_device *dev)
7573 /* We attempt to init the necessary power wells early in the initialization
7574 * time, so the subsystems that expect power to be enabled can work.
7576 intel_init_power_wells(dev);
7578 intel_prepare_ddi(dev);
7580 intel_init_clock_gating(dev);
7582 mutex_lock(&dev->struct_mutex);
7583 intel_enable_gt_powersave(dev);
7584 mutex_unlock(&dev->struct_mutex);
7587 void intel_modeset_init(struct drm_device *dev)
7589 struct drm_i915_private *dev_priv = dev->dev_private;
7590 int i, ret;
7592 drm_mode_config_init(dev);
7594 dev->mode_config.min_width = 0;
7595 dev->mode_config.min_height = 0;
7597 dev->mode_config.preferred_depth = 24;
7598 dev->mode_config.prefer_shadow = 1;
7600 dev->mode_config.funcs = &intel_mode_funcs;
7602 intel_init_quirks(dev);
7604 intel_init_pm(dev);
7606 intel_init_display(dev);
7608 if (IS_GEN2(dev)) {
7609 dev->mode_config.max_width = 2048;
7610 dev->mode_config.max_height = 2048;
7611 } else if (IS_GEN3(dev)) {
7612 dev->mode_config.max_width = 4096;
7613 dev->mode_config.max_height = 4096;
7614 } else {
7615 dev->mode_config.max_width = 8192;
7616 dev->mode_config.max_height = 8192;
7618 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7620 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7621 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7623 for (i = 0; i < dev_priv->num_pipe; i++) {
7624 intel_crtc_init(dev, i);
7625 ret = intel_plane_init(dev, i);
7626 if (ret)
7627 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
7630 intel_pch_pll_init(dev);
7632 /* Just disable it once at startup */
7633 i915_disable_vga(dev);
7634 intel_setup_outputs(dev);
7637 void intel_modeset_gem_init(struct drm_device *dev)
7639 intel_modeset_init_hw(dev);
7641 intel_setup_overlay(dev);
7644 void intel_modeset_cleanup(struct drm_device *dev)
7646 struct drm_i915_private *dev_priv = dev->dev_private;
7647 struct drm_crtc *crtc;
7648 struct intel_crtc *intel_crtc;
7650 drm_kms_helper_poll_fini(dev);
7651 mutex_lock(&dev->struct_mutex);
7653 intel_unregister_dsm_handler();
7656 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7657 /* Skip inactive CRTCs */
7658 if (!crtc->fb)
7659 continue;
7661 intel_crtc = to_intel_crtc(crtc);
7662 intel_increase_pllclock(crtc);
7665 intel_disable_fbc(dev);
7667 intel_disable_gt_powersave(dev);
7669 ironlake_teardown_rc6(dev);
7671 if (IS_VALLEYVIEW(dev))
7672 vlv_init_dpio(dev);
7674 mutex_unlock(&dev->struct_mutex);
7676 /* Disable the irq before mode object teardown, for the irq might
7677 * enqueue unpin/hotplug work. */
7678 drm_irq_uninstall(dev);
7679 cancel_work_sync(&dev_priv->hotplug_work);
7680 cancel_work_sync(&dev_priv->rps.work);
7682 /* flush any delayed tasks or pending work */
7683 flush_scheduled_work();
7685 drm_mode_config_cleanup(dev);
7689 * Return which encoder is currently attached for connector.
7691 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7693 return &intel_attached_encoder(connector)->base;
7696 void intel_connector_attach_encoder(struct intel_connector *connector,
7697 struct intel_encoder *encoder)
7699 connector->encoder = encoder;
7700 drm_mode_connector_attach_encoder(&connector->base,
7701 &encoder->base);
7705 * set vga decode state - true == enable VGA decode
7707 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7709 struct drm_i915_private *dev_priv = dev->dev_private;
7710 u16 gmch_ctrl;
7712 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7713 if (state)
7714 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7715 else
7716 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7717 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7718 return 0;
7721 #ifdef CONFIG_DEBUG_FS
7722 #include <linux/seq_file.h>
7724 struct intel_display_error_state {
7725 struct intel_cursor_error_state {
7726 u32 control;
7727 u32 position;
7728 u32 base;
7729 u32 size;
7730 } cursor[I915_MAX_PIPES];
7732 struct intel_pipe_error_state {
7733 u32 conf;
7734 u32 source;
7736 u32 htotal;
7737 u32 hblank;
7738 u32 hsync;
7739 u32 vtotal;
7740 u32 vblank;
7741 u32 vsync;
7742 } pipe[I915_MAX_PIPES];
7744 struct intel_plane_error_state {
7745 u32 control;
7746 u32 stride;
7747 u32 size;
7748 u32 pos;
7749 u32 addr;
7750 u32 surface;
7751 u32 tile_offset;
7752 } plane[I915_MAX_PIPES];
7755 struct intel_display_error_state *
7756 intel_display_capture_error_state(struct drm_device *dev)
7758 drm_i915_private_t *dev_priv = dev->dev_private;
7759 struct intel_display_error_state *error;
7760 int i;
7762 error = kmalloc(sizeof(*error), GFP_ATOMIC);
7763 if (error == NULL)
7764 return NULL;
7766 for_each_pipe(i) {
7767 error->cursor[i].control = I915_READ(CURCNTR(i));
7768 error->cursor[i].position = I915_READ(CURPOS(i));
7769 error->cursor[i].base = I915_READ(CURBASE(i));
7771 error->plane[i].control = I915_READ(DSPCNTR(i));
7772 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7773 error->plane[i].size = I915_READ(DSPSIZE(i));
7774 error->plane[i].pos = I915_READ(DSPPOS(i));
7775 error->plane[i].addr = I915_READ(DSPADDR(i));
7776 if (INTEL_INFO(dev)->gen >= 4) {
7777 error->plane[i].surface = I915_READ(DSPSURF(i));
7778 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7781 error->pipe[i].conf = I915_READ(PIPECONF(i));
7782 error->pipe[i].source = I915_READ(PIPESRC(i));
7783 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7784 error->pipe[i].hblank = I915_READ(HBLANK(i));
7785 error->pipe[i].hsync = I915_READ(HSYNC(i));
7786 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7787 error->pipe[i].vblank = I915_READ(VBLANK(i));
7788 error->pipe[i].vsync = I915_READ(VSYNC(i));
7791 return error;
7794 void
7795 intel_display_print_error_state(struct seq_file *m,
7796 struct drm_device *dev,
7797 struct intel_display_error_state *error)
7799 drm_i915_private_t *dev_priv = dev->dev_private;
7800 int i;
7802 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
7803 for_each_pipe(i) {
7804 seq_printf(m, "Pipe [%d]:\n", i);
7805 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
7806 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
7807 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
7808 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
7809 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
7810 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
7811 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
7812 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
7814 seq_printf(m, "Plane [%d]:\n", i);
7815 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
7816 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
7817 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
7818 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
7819 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
7820 if (INTEL_INFO(dev)->gen >= 4) {
7821 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
7822 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
7825 seq_printf(m, "Cursor [%d]:\n", i);
7826 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
7827 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
7828 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
7831 #endif