openvswitch: remove duplicated include from vport-gre.c
[linux-2.6/btrfs-unstable.git] / net / openvswitch / flow.c
blob410db90db73d32493a525a530cd04ad57a92fadf
1 /*
2 * Copyright (c) 2007-2013 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/sctp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ip_tunnels.h>
45 #include <net/ipv6.h>
46 #include <net/ndisc.h>
48 static struct kmem_cache *flow_cache;
50 static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
51 struct sw_flow_key_range *range, u8 val);
53 static void update_range__(struct sw_flow_match *match,
54 size_t offset, size_t size, bool is_mask)
56 struct sw_flow_key_range *range = NULL;
57 size_t start = rounddown(offset, sizeof(long));
58 size_t end = roundup(offset + size, sizeof(long));
60 if (!is_mask)
61 range = &match->range;
62 else if (match->mask)
63 range = &match->mask->range;
65 if (!range)
66 return;
68 if (range->start == range->end) {
69 range->start = start;
70 range->end = end;
71 return;
74 if (range->start > start)
75 range->start = start;
77 if (range->end < end)
78 range->end = end;
81 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
82 do { \
83 update_range__(match, offsetof(struct sw_flow_key, field), \
84 sizeof((match)->key->field), is_mask); \
85 if (is_mask) { \
86 if ((match)->mask) \
87 (match)->mask->key.field = value; \
88 } else { \
89 (match)->key->field = value; \
90 } \
91 } while (0)
93 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
94 do { \
95 update_range__(match, offsetof(struct sw_flow_key, field), \
96 len, is_mask); \
97 if (is_mask) { \
98 if ((match)->mask) \
99 memcpy(&(match)->mask->key.field, value_p, len);\
100 } else { \
101 memcpy(&(match)->key->field, value_p, len); \
103 } while (0)
105 static u16 range_n_bytes(const struct sw_flow_key_range *range)
107 return range->end - range->start;
110 void ovs_match_init(struct sw_flow_match *match,
111 struct sw_flow_key *key,
112 struct sw_flow_mask *mask)
114 memset(match, 0, sizeof(*match));
115 match->key = key;
116 match->mask = mask;
118 memset(key, 0, sizeof(*key));
120 if (mask) {
121 memset(&mask->key, 0, sizeof(mask->key));
122 mask->range.start = mask->range.end = 0;
126 static bool ovs_match_validate(const struct sw_flow_match *match,
127 u64 key_attrs, u64 mask_attrs)
129 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
130 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
132 /* The following mask attributes allowed only if they
133 * pass the validation tests. */
134 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
135 | (1 << OVS_KEY_ATTR_IPV6)
136 | (1 << OVS_KEY_ATTR_TCP)
137 | (1 << OVS_KEY_ATTR_UDP)
138 | (1 << OVS_KEY_ATTR_SCTP)
139 | (1 << OVS_KEY_ATTR_ICMP)
140 | (1 << OVS_KEY_ATTR_ICMPV6)
141 | (1 << OVS_KEY_ATTR_ARP)
142 | (1 << OVS_KEY_ATTR_ND));
144 /* Always allowed mask fields. */
145 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
146 | (1 << OVS_KEY_ATTR_IN_PORT)
147 | (1 << OVS_KEY_ATTR_ETHERTYPE));
149 /* Check key attributes. */
150 if (match->key->eth.type == htons(ETH_P_ARP)
151 || match->key->eth.type == htons(ETH_P_RARP)) {
152 key_expected |= 1 << OVS_KEY_ATTR_ARP;
153 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
154 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
157 if (match->key->eth.type == htons(ETH_P_IP)) {
158 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
159 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
160 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
162 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
163 if (match->key->ip.proto == IPPROTO_UDP) {
164 key_expected |= 1 << OVS_KEY_ATTR_UDP;
165 if (match->mask && (match->mask->key.ip.proto == 0xff))
166 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
169 if (match->key->ip.proto == IPPROTO_SCTP) {
170 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
171 if (match->mask && (match->mask->key.ip.proto == 0xff))
172 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
175 if (match->key->ip.proto == IPPROTO_TCP) {
176 key_expected |= 1 << OVS_KEY_ATTR_TCP;
177 if (match->mask && (match->mask->key.ip.proto == 0xff))
178 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
181 if (match->key->ip.proto == IPPROTO_ICMP) {
182 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
183 if (match->mask && (match->mask->key.ip.proto == 0xff))
184 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
189 if (match->key->eth.type == htons(ETH_P_IPV6)) {
190 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
191 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
192 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
194 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
195 if (match->key->ip.proto == IPPROTO_UDP) {
196 key_expected |= 1 << OVS_KEY_ATTR_UDP;
197 if (match->mask && (match->mask->key.ip.proto == 0xff))
198 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
201 if (match->key->ip.proto == IPPROTO_SCTP) {
202 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
203 if (match->mask && (match->mask->key.ip.proto == 0xff))
204 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
207 if (match->key->ip.proto == IPPROTO_TCP) {
208 key_expected |= 1 << OVS_KEY_ATTR_TCP;
209 if (match->mask && (match->mask->key.ip.proto == 0xff))
210 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
213 if (match->key->ip.proto == IPPROTO_ICMPV6) {
214 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
215 if (match->mask && (match->mask->key.ip.proto == 0xff))
216 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
218 if (match->key->ipv6.tp.src ==
219 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
220 match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
221 key_expected |= 1 << OVS_KEY_ATTR_ND;
222 if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
223 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
229 if ((key_attrs & key_expected) != key_expected) {
230 /* Key attributes check failed. */
231 OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
232 key_attrs, key_expected);
233 return false;
236 if ((mask_attrs & mask_allowed) != mask_attrs) {
237 /* Mask attributes check failed. */
238 OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
239 mask_attrs, mask_allowed);
240 return false;
243 return true;
246 static int check_header(struct sk_buff *skb, int len)
248 if (unlikely(skb->len < len))
249 return -EINVAL;
250 if (unlikely(!pskb_may_pull(skb, len)))
251 return -ENOMEM;
252 return 0;
255 static bool arphdr_ok(struct sk_buff *skb)
257 return pskb_may_pull(skb, skb_network_offset(skb) +
258 sizeof(struct arp_eth_header));
261 static int check_iphdr(struct sk_buff *skb)
263 unsigned int nh_ofs = skb_network_offset(skb);
264 unsigned int ip_len;
265 int err;
267 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
268 if (unlikely(err))
269 return err;
271 ip_len = ip_hdrlen(skb);
272 if (unlikely(ip_len < sizeof(struct iphdr) ||
273 skb->len < nh_ofs + ip_len))
274 return -EINVAL;
276 skb_set_transport_header(skb, nh_ofs + ip_len);
277 return 0;
280 static bool tcphdr_ok(struct sk_buff *skb)
282 int th_ofs = skb_transport_offset(skb);
283 int tcp_len;
285 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
286 return false;
288 tcp_len = tcp_hdrlen(skb);
289 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
290 skb->len < th_ofs + tcp_len))
291 return false;
293 return true;
296 static bool udphdr_ok(struct sk_buff *skb)
298 return pskb_may_pull(skb, skb_transport_offset(skb) +
299 sizeof(struct udphdr));
302 static bool sctphdr_ok(struct sk_buff *skb)
304 return pskb_may_pull(skb, skb_transport_offset(skb) +
305 sizeof(struct sctphdr));
308 static bool icmphdr_ok(struct sk_buff *skb)
310 return pskb_may_pull(skb, skb_transport_offset(skb) +
311 sizeof(struct icmphdr));
314 u64 ovs_flow_used_time(unsigned long flow_jiffies)
316 struct timespec cur_ts;
317 u64 cur_ms, idle_ms;
319 ktime_get_ts(&cur_ts);
320 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
321 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
322 cur_ts.tv_nsec / NSEC_PER_MSEC;
324 return cur_ms - idle_ms;
327 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
329 unsigned int nh_ofs = skb_network_offset(skb);
330 unsigned int nh_len;
331 int payload_ofs;
332 struct ipv6hdr *nh;
333 uint8_t nexthdr;
334 __be16 frag_off;
335 int err;
337 err = check_header(skb, nh_ofs + sizeof(*nh));
338 if (unlikely(err))
339 return err;
341 nh = ipv6_hdr(skb);
342 nexthdr = nh->nexthdr;
343 payload_ofs = (u8 *)(nh + 1) - skb->data;
345 key->ip.proto = NEXTHDR_NONE;
346 key->ip.tos = ipv6_get_dsfield(nh);
347 key->ip.ttl = nh->hop_limit;
348 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
349 key->ipv6.addr.src = nh->saddr;
350 key->ipv6.addr.dst = nh->daddr;
352 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
353 if (unlikely(payload_ofs < 0))
354 return -EINVAL;
356 if (frag_off) {
357 if (frag_off & htons(~0x7))
358 key->ip.frag = OVS_FRAG_TYPE_LATER;
359 else
360 key->ip.frag = OVS_FRAG_TYPE_FIRST;
363 nh_len = payload_ofs - nh_ofs;
364 skb_set_transport_header(skb, nh_ofs + nh_len);
365 key->ip.proto = nexthdr;
366 return nh_len;
369 static bool icmp6hdr_ok(struct sk_buff *skb)
371 return pskb_may_pull(skb, skb_transport_offset(skb) +
372 sizeof(struct icmp6hdr));
375 void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src,
376 const struct sw_flow_mask *mask)
378 const long *m = (long *)((u8 *)&mask->key + mask->range.start);
379 const long *s = (long *)((u8 *)src + mask->range.start);
380 long *d = (long *)((u8 *)dst + mask->range.start);
381 int i;
383 /* The memory outside of the 'mask->range' are not set since
384 * further operations on 'dst' only uses contents within
385 * 'mask->range'.
387 for (i = 0; i < range_n_bytes(&mask->range); i += sizeof(long))
388 *d++ = *s++ & *m++;
391 #define TCP_FLAGS_OFFSET 13
392 #define TCP_FLAG_MASK 0x3f
394 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
396 u8 tcp_flags = 0;
398 if ((flow->key.eth.type == htons(ETH_P_IP) ||
399 flow->key.eth.type == htons(ETH_P_IPV6)) &&
400 flow->key.ip.proto == IPPROTO_TCP &&
401 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
402 u8 *tcp = (u8 *)tcp_hdr(skb);
403 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
406 spin_lock(&flow->lock);
407 flow->used = jiffies;
408 flow->packet_count++;
409 flow->byte_count += skb->len;
410 flow->tcp_flags |= tcp_flags;
411 spin_unlock(&flow->lock);
414 struct sw_flow_actions *ovs_flow_actions_alloc(int size)
416 struct sw_flow_actions *sfa;
418 if (size > MAX_ACTIONS_BUFSIZE)
419 return ERR_PTR(-EINVAL);
421 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
422 if (!sfa)
423 return ERR_PTR(-ENOMEM);
425 sfa->actions_len = 0;
426 return sfa;
429 struct sw_flow *ovs_flow_alloc(void)
431 struct sw_flow *flow;
433 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
434 if (!flow)
435 return ERR_PTR(-ENOMEM);
437 spin_lock_init(&flow->lock);
438 flow->sf_acts = NULL;
439 flow->mask = NULL;
441 return flow;
444 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
446 hash = jhash_1word(hash, table->hash_seed);
447 return flex_array_get(table->buckets,
448 (hash & (table->n_buckets - 1)));
451 static struct flex_array *alloc_buckets(unsigned int n_buckets)
453 struct flex_array *buckets;
454 int i, err;
456 buckets = flex_array_alloc(sizeof(struct hlist_head),
457 n_buckets, GFP_KERNEL);
458 if (!buckets)
459 return NULL;
461 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
462 if (err) {
463 flex_array_free(buckets);
464 return NULL;
467 for (i = 0; i < n_buckets; i++)
468 INIT_HLIST_HEAD((struct hlist_head *)
469 flex_array_get(buckets, i));
471 return buckets;
474 static void free_buckets(struct flex_array *buckets)
476 flex_array_free(buckets);
479 static struct flow_table *__flow_tbl_alloc(int new_size)
481 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
483 if (!table)
484 return NULL;
486 table->buckets = alloc_buckets(new_size);
488 if (!table->buckets) {
489 kfree(table);
490 return NULL;
492 table->n_buckets = new_size;
493 table->count = 0;
494 table->node_ver = 0;
495 table->keep_flows = false;
496 get_random_bytes(&table->hash_seed, sizeof(u32));
497 table->mask_list = NULL;
499 return table;
502 static void __flow_tbl_destroy(struct flow_table *table)
504 int i;
506 if (table->keep_flows)
507 goto skip_flows;
509 for (i = 0; i < table->n_buckets; i++) {
510 struct sw_flow *flow;
511 struct hlist_head *head = flex_array_get(table->buckets, i);
512 struct hlist_node *n;
513 int ver = table->node_ver;
515 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
516 hlist_del(&flow->hash_node[ver]);
517 ovs_flow_free(flow, false);
521 BUG_ON(!list_empty(table->mask_list));
522 kfree(table->mask_list);
524 skip_flows:
525 free_buckets(table->buckets);
526 kfree(table);
529 struct flow_table *ovs_flow_tbl_alloc(int new_size)
531 struct flow_table *table = __flow_tbl_alloc(new_size);
533 if (!table)
534 return NULL;
536 table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL);
537 if (!table->mask_list) {
538 table->keep_flows = true;
539 __flow_tbl_destroy(table);
540 return NULL;
542 INIT_LIST_HEAD(table->mask_list);
544 return table;
547 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
549 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
551 __flow_tbl_destroy(table);
554 void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred)
556 if (!table)
557 return;
559 if (deferred)
560 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
561 else
562 __flow_tbl_destroy(table);
565 struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last)
567 struct sw_flow *flow;
568 struct hlist_head *head;
569 int ver;
570 int i;
572 ver = table->node_ver;
573 while (*bucket < table->n_buckets) {
574 i = 0;
575 head = flex_array_get(table->buckets, *bucket);
576 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
577 if (i < *last) {
578 i++;
579 continue;
581 *last = i + 1;
582 return flow;
584 (*bucket)++;
585 *last = 0;
588 return NULL;
591 static void __tbl_insert(struct flow_table *table, struct sw_flow *flow)
593 struct hlist_head *head;
595 head = find_bucket(table, flow->hash);
596 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
598 table->count++;
601 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
603 int old_ver;
604 int i;
606 old_ver = old->node_ver;
607 new->node_ver = !old_ver;
609 /* Insert in new table. */
610 for (i = 0; i < old->n_buckets; i++) {
611 struct sw_flow *flow;
612 struct hlist_head *head;
614 head = flex_array_get(old->buckets, i);
616 hlist_for_each_entry(flow, head, hash_node[old_ver])
617 __tbl_insert(new, flow);
620 new->mask_list = old->mask_list;
621 old->keep_flows = true;
624 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
626 struct flow_table *new_table;
628 new_table = __flow_tbl_alloc(n_buckets);
629 if (!new_table)
630 return ERR_PTR(-ENOMEM);
632 flow_table_copy_flows(table, new_table);
634 return new_table;
637 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
639 return __flow_tbl_rehash(table, table->n_buckets);
642 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
644 return __flow_tbl_rehash(table, table->n_buckets * 2);
647 static void __flow_free(struct sw_flow *flow)
649 kfree((struct sf_flow_acts __force *)flow->sf_acts);
650 kmem_cache_free(flow_cache, flow);
653 static void rcu_free_flow_callback(struct rcu_head *rcu)
655 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
657 __flow_free(flow);
660 void ovs_flow_free(struct sw_flow *flow, bool deferred)
662 if (!flow)
663 return;
665 ovs_sw_flow_mask_del_ref(flow->mask, deferred);
667 if (deferred)
668 call_rcu(&flow->rcu, rcu_free_flow_callback);
669 else
670 __flow_free(flow);
673 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
674 * The caller must hold rcu_read_lock for this to be sensible. */
675 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
677 kfree_rcu(sf_acts, rcu);
680 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
682 struct qtag_prefix {
683 __be16 eth_type; /* ETH_P_8021Q */
684 __be16 tci;
686 struct qtag_prefix *qp;
688 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
689 return 0;
691 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
692 sizeof(__be16))))
693 return -ENOMEM;
695 qp = (struct qtag_prefix *) skb->data;
696 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
697 __skb_pull(skb, sizeof(struct qtag_prefix));
699 return 0;
702 static __be16 parse_ethertype(struct sk_buff *skb)
704 struct llc_snap_hdr {
705 u8 dsap; /* Always 0xAA */
706 u8 ssap; /* Always 0xAA */
707 u8 ctrl;
708 u8 oui[3];
709 __be16 ethertype;
711 struct llc_snap_hdr *llc;
712 __be16 proto;
714 proto = *(__be16 *) skb->data;
715 __skb_pull(skb, sizeof(__be16));
717 if (ntohs(proto) >= ETH_P_802_3_MIN)
718 return proto;
720 if (skb->len < sizeof(struct llc_snap_hdr))
721 return htons(ETH_P_802_2);
723 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
724 return htons(0);
726 llc = (struct llc_snap_hdr *) skb->data;
727 if (llc->dsap != LLC_SAP_SNAP ||
728 llc->ssap != LLC_SAP_SNAP ||
729 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
730 return htons(ETH_P_802_2);
732 __skb_pull(skb, sizeof(struct llc_snap_hdr));
734 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
735 return llc->ethertype;
737 return htons(ETH_P_802_2);
740 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
741 int nh_len)
743 struct icmp6hdr *icmp = icmp6_hdr(skb);
745 /* The ICMPv6 type and code fields use the 16-bit transport port
746 * fields, so we need to store them in 16-bit network byte order.
748 key->ipv6.tp.src = htons(icmp->icmp6_type);
749 key->ipv6.tp.dst = htons(icmp->icmp6_code);
751 if (icmp->icmp6_code == 0 &&
752 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
753 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
754 int icmp_len = skb->len - skb_transport_offset(skb);
755 struct nd_msg *nd;
756 int offset;
758 /* In order to process neighbor discovery options, we need the
759 * entire packet.
761 if (unlikely(icmp_len < sizeof(*nd)))
762 return 0;
764 if (unlikely(skb_linearize(skb)))
765 return -ENOMEM;
767 nd = (struct nd_msg *)skb_transport_header(skb);
768 key->ipv6.nd.target = nd->target;
770 icmp_len -= sizeof(*nd);
771 offset = 0;
772 while (icmp_len >= 8) {
773 struct nd_opt_hdr *nd_opt =
774 (struct nd_opt_hdr *)(nd->opt + offset);
775 int opt_len = nd_opt->nd_opt_len * 8;
777 if (unlikely(!opt_len || opt_len > icmp_len))
778 return 0;
780 /* Store the link layer address if the appropriate
781 * option is provided. It is considered an error if
782 * the same link layer option is specified twice.
784 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
785 && opt_len == 8) {
786 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
787 goto invalid;
788 memcpy(key->ipv6.nd.sll,
789 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
790 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
791 && opt_len == 8) {
792 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
793 goto invalid;
794 memcpy(key->ipv6.nd.tll,
795 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
798 icmp_len -= opt_len;
799 offset += opt_len;
803 return 0;
805 invalid:
806 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
807 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
808 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
810 return 0;
814 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
815 * @skb: sk_buff that contains the frame, with skb->data pointing to the
816 * Ethernet header
817 * @in_port: port number on which @skb was received.
818 * @key: output flow key
820 * The caller must ensure that skb->len >= ETH_HLEN.
822 * Returns 0 if successful, otherwise a negative errno value.
824 * Initializes @skb header pointers as follows:
826 * - skb->mac_header: the Ethernet header.
828 * - skb->network_header: just past the Ethernet header, or just past the
829 * VLAN header, to the first byte of the Ethernet payload.
831 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
832 * on output, then just past the IP header, if one is present and
833 * of a correct length, otherwise the same as skb->network_header.
834 * For other key->eth.type values it is left untouched.
836 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
838 int error;
839 struct ethhdr *eth;
841 memset(key, 0, sizeof(*key));
843 key->phy.priority = skb->priority;
844 if (OVS_CB(skb)->tun_key)
845 memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
846 key->phy.in_port = in_port;
847 key->phy.skb_mark = skb->mark;
849 skb_reset_mac_header(skb);
851 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
852 * header in the linear data area.
854 eth = eth_hdr(skb);
855 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
856 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
858 __skb_pull(skb, 2 * ETH_ALEN);
859 /* We are going to push all headers that we pull, so no need to
860 * update skb->csum here.
863 if (vlan_tx_tag_present(skb))
864 key->eth.tci = htons(skb->vlan_tci);
865 else if (eth->h_proto == htons(ETH_P_8021Q))
866 if (unlikely(parse_vlan(skb, key)))
867 return -ENOMEM;
869 key->eth.type = parse_ethertype(skb);
870 if (unlikely(key->eth.type == htons(0)))
871 return -ENOMEM;
873 skb_reset_network_header(skb);
874 __skb_push(skb, skb->data - skb_mac_header(skb));
876 /* Network layer. */
877 if (key->eth.type == htons(ETH_P_IP)) {
878 struct iphdr *nh;
879 __be16 offset;
881 error = check_iphdr(skb);
882 if (unlikely(error)) {
883 if (error == -EINVAL) {
884 skb->transport_header = skb->network_header;
885 error = 0;
887 return error;
890 nh = ip_hdr(skb);
891 key->ipv4.addr.src = nh->saddr;
892 key->ipv4.addr.dst = nh->daddr;
894 key->ip.proto = nh->protocol;
895 key->ip.tos = nh->tos;
896 key->ip.ttl = nh->ttl;
898 offset = nh->frag_off & htons(IP_OFFSET);
899 if (offset) {
900 key->ip.frag = OVS_FRAG_TYPE_LATER;
901 return 0;
903 if (nh->frag_off & htons(IP_MF) ||
904 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
905 key->ip.frag = OVS_FRAG_TYPE_FIRST;
907 /* Transport layer. */
908 if (key->ip.proto == IPPROTO_TCP) {
909 if (tcphdr_ok(skb)) {
910 struct tcphdr *tcp = tcp_hdr(skb);
911 key->ipv4.tp.src = tcp->source;
912 key->ipv4.tp.dst = tcp->dest;
914 } else if (key->ip.proto == IPPROTO_UDP) {
915 if (udphdr_ok(skb)) {
916 struct udphdr *udp = udp_hdr(skb);
917 key->ipv4.tp.src = udp->source;
918 key->ipv4.tp.dst = udp->dest;
920 } else if (key->ip.proto == IPPROTO_SCTP) {
921 if (sctphdr_ok(skb)) {
922 struct sctphdr *sctp = sctp_hdr(skb);
923 key->ipv4.tp.src = sctp->source;
924 key->ipv4.tp.dst = sctp->dest;
926 } else if (key->ip.proto == IPPROTO_ICMP) {
927 if (icmphdr_ok(skb)) {
928 struct icmphdr *icmp = icmp_hdr(skb);
929 /* The ICMP type and code fields use the 16-bit
930 * transport port fields, so we need to store
931 * them in 16-bit network byte order. */
932 key->ipv4.tp.src = htons(icmp->type);
933 key->ipv4.tp.dst = htons(icmp->code);
937 } else if ((key->eth.type == htons(ETH_P_ARP) ||
938 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
939 struct arp_eth_header *arp;
941 arp = (struct arp_eth_header *)skb_network_header(skb);
943 if (arp->ar_hrd == htons(ARPHRD_ETHER)
944 && arp->ar_pro == htons(ETH_P_IP)
945 && arp->ar_hln == ETH_ALEN
946 && arp->ar_pln == 4) {
948 /* We only match on the lower 8 bits of the opcode. */
949 if (ntohs(arp->ar_op) <= 0xff)
950 key->ip.proto = ntohs(arp->ar_op);
951 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
952 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
953 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
954 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
956 } else if (key->eth.type == htons(ETH_P_IPV6)) {
957 int nh_len; /* IPv6 Header + Extensions */
959 nh_len = parse_ipv6hdr(skb, key);
960 if (unlikely(nh_len < 0)) {
961 if (nh_len == -EINVAL) {
962 skb->transport_header = skb->network_header;
963 error = 0;
964 } else {
965 error = nh_len;
967 return error;
970 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
971 return 0;
972 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
973 key->ip.frag = OVS_FRAG_TYPE_FIRST;
975 /* Transport layer. */
976 if (key->ip.proto == NEXTHDR_TCP) {
977 if (tcphdr_ok(skb)) {
978 struct tcphdr *tcp = tcp_hdr(skb);
979 key->ipv6.tp.src = tcp->source;
980 key->ipv6.tp.dst = tcp->dest;
982 } else if (key->ip.proto == NEXTHDR_UDP) {
983 if (udphdr_ok(skb)) {
984 struct udphdr *udp = udp_hdr(skb);
985 key->ipv6.tp.src = udp->source;
986 key->ipv6.tp.dst = udp->dest;
988 } else if (key->ip.proto == NEXTHDR_SCTP) {
989 if (sctphdr_ok(skb)) {
990 struct sctphdr *sctp = sctp_hdr(skb);
991 key->ipv6.tp.src = sctp->source;
992 key->ipv6.tp.dst = sctp->dest;
994 } else if (key->ip.proto == NEXTHDR_ICMP) {
995 if (icmp6hdr_ok(skb)) {
996 error = parse_icmpv6(skb, key, nh_len);
997 if (error)
998 return error;
1003 return 0;
1006 static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start,
1007 int key_end)
1009 u32 *hash_key = (u32 *)((u8 *)key + key_start);
1010 int hash_u32s = (key_end - key_start) >> 2;
1012 /* Make sure number of hash bytes are multiple of u32. */
1013 BUILD_BUG_ON(sizeof(long) % sizeof(u32));
1015 return jhash2(hash_key, hash_u32s, 0);
1018 static int flow_key_start(const struct sw_flow_key *key)
1020 if (key->tun_key.ipv4_dst)
1021 return 0;
1022 else
1023 return rounddown(offsetof(struct sw_flow_key, phy),
1024 sizeof(long));
1027 static bool __cmp_key(const struct sw_flow_key *key1,
1028 const struct sw_flow_key *key2, int key_start, int key_end)
1030 const long *cp1 = (long *)((u8 *)key1 + key_start);
1031 const long *cp2 = (long *)((u8 *)key2 + key_start);
1032 long diffs = 0;
1033 int i;
1035 for (i = key_start; i < key_end; i += sizeof(long))
1036 diffs |= *cp1++ ^ *cp2++;
1038 return diffs == 0;
1041 static bool __flow_cmp_masked_key(const struct sw_flow *flow,
1042 const struct sw_flow_key *key, int key_start, int key_end)
1044 return __cmp_key(&flow->key, key, key_start, key_end);
1047 static bool __flow_cmp_unmasked_key(const struct sw_flow *flow,
1048 const struct sw_flow_key *key, int key_start, int key_end)
1050 return __cmp_key(&flow->unmasked_key, key, key_start, key_end);
1053 bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
1054 const struct sw_flow_key *key, int key_end)
1056 int key_start;
1057 key_start = flow_key_start(key);
1059 return __flow_cmp_unmasked_key(flow, key, key_start, key_end);
1063 struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table,
1064 struct sw_flow_match *match)
1066 struct sw_flow_key *unmasked = match->key;
1067 int key_end = match->range.end;
1068 struct sw_flow *flow;
1070 flow = ovs_flow_lookup(table, unmasked);
1071 if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_end)))
1072 flow = NULL;
1074 return flow;
1077 static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table,
1078 const struct sw_flow_key *unmasked,
1079 struct sw_flow_mask *mask)
1081 struct sw_flow *flow;
1082 struct hlist_head *head;
1083 int key_start = mask->range.start;
1084 int key_end = mask->range.end;
1085 u32 hash;
1086 struct sw_flow_key masked_key;
1088 ovs_flow_key_mask(&masked_key, unmasked, mask);
1089 hash = ovs_flow_hash(&masked_key, key_start, key_end);
1090 head = find_bucket(table, hash);
1091 hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
1092 if (flow->mask == mask &&
1093 __flow_cmp_masked_key(flow, &masked_key,
1094 key_start, key_end))
1095 return flow;
1097 return NULL;
1100 struct sw_flow *ovs_flow_lookup(struct flow_table *tbl,
1101 const struct sw_flow_key *key)
1103 struct sw_flow *flow = NULL;
1104 struct sw_flow_mask *mask;
1106 list_for_each_entry_rcu(mask, tbl->mask_list, list) {
1107 flow = ovs_masked_flow_lookup(tbl, key, mask);
1108 if (flow) /* Found */
1109 break;
1112 return flow;
1116 void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow)
1118 flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start,
1119 flow->mask->range.end);
1120 __tbl_insert(table, flow);
1123 void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow)
1125 BUG_ON(table->count == 0);
1126 hlist_del_rcu(&flow->hash_node[table->node_ver]);
1127 table->count--;
1130 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
1131 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
1132 [OVS_KEY_ATTR_ENCAP] = -1,
1133 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
1134 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
1135 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
1136 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
1137 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
1138 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
1139 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
1140 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
1141 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
1142 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
1143 [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
1144 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
1145 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
1146 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
1147 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
1148 [OVS_KEY_ATTR_TUNNEL] = -1,
1151 static bool is_all_zero(const u8 *fp, size_t size)
1153 int i;
1155 if (!fp)
1156 return false;
1158 for (i = 0; i < size; i++)
1159 if (fp[i])
1160 return false;
1162 return true;
1165 static int __parse_flow_nlattrs(const struct nlattr *attr,
1166 const struct nlattr *a[],
1167 u64 *attrsp, bool nz)
1169 const struct nlattr *nla;
1170 u32 attrs;
1171 int rem;
1173 attrs = *attrsp;
1174 nla_for_each_nested(nla, attr, rem) {
1175 u16 type = nla_type(nla);
1176 int expected_len;
1178 if (type > OVS_KEY_ATTR_MAX) {
1179 OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n",
1180 type, OVS_KEY_ATTR_MAX);
1181 return -EINVAL;
1184 if (attrs & (1 << type)) {
1185 OVS_NLERR("Duplicate key attribute (type %d).\n", type);
1186 return -EINVAL;
1189 expected_len = ovs_key_lens[type];
1190 if (nla_len(nla) != expected_len && expected_len != -1) {
1191 OVS_NLERR("Key attribute has unexpected length (type=%d"
1192 ", length=%d, expected=%d).\n", type,
1193 nla_len(nla), expected_len);
1194 return -EINVAL;
1197 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
1198 attrs |= 1 << type;
1199 a[type] = nla;
1202 if (rem) {
1203 OVS_NLERR("Message has %d unknown bytes.\n", rem);
1204 return -EINVAL;
1207 *attrsp = attrs;
1208 return 0;
1211 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
1212 const struct nlattr *a[], u64 *attrsp)
1214 return __parse_flow_nlattrs(attr, a, attrsp, true);
1217 static int parse_flow_nlattrs(const struct nlattr *attr,
1218 const struct nlattr *a[], u64 *attrsp)
1220 return __parse_flow_nlattrs(attr, a, attrsp, false);
1223 int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr,
1224 struct sw_flow_match *match, bool is_mask)
1226 struct nlattr *a;
1227 int rem;
1228 bool ttl = false;
1229 __be16 tun_flags = 0;
1231 nla_for_each_nested(a, attr, rem) {
1232 int type = nla_type(a);
1233 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
1234 [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
1235 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
1236 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
1237 [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
1238 [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
1239 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
1240 [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
1243 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
1244 OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n",
1245 type, OVS_TUNNEL_KEY_ATTR_MAX);
1246 return -EINVAL;
1249 if (ovs_tunnel_key_lens[type] != nla_len(a)) {
1250 OVS_NLERR("IPv4 tunnel attribute type has unexpected "
1251 " length (type=%d, length=%d, expected=%d).\n",
1252 type, nla_len(a), ovs_tunnel_key_lens[type]);
1253 return -EINVAL;
1256 switch (type) {
1257 case OVS_TUNNEL_KEY_ATTR_ID:
1258 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
1259 nla_get_be64(a), is_mask);
1260 tun_flags |= TUNNEL_KEY;
1261 break;
1262 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
1263 SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
1264 nla_get_be32(a), is_mask);
1265 break;
1266 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
1267 SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
1268 nla_get_be32(a), is_mask);
1269 break;
1270 case OVS_TUNNEL_KEY_ATTR_TOS:
1271 SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
1272 nla_get_u8(a), is_mask);
1273 break;
1274 case OVS_TUNNEL_KEY_ATTR_TTL:
1275 SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
1276 nla_get_u8(a), is_mask);
1277 ttl = true;
1278 break;
1279 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
1280 tun_flags |= TUNNEL_DONT_FRAGMENT;
1281 break;
1282 case OVS_TUNNEL_KEY_ATTR_CSUM:
1283 tun_flags |= TUNNEL_CSUM;
1284 break;
1285 default:
1286 return -EINVAL;
1290 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
1292 if (rem > 0) {
1293 OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem);
1294 return -EINVAL;
1297 if (!is_mask) {
1298 if (!match->key->tun_key.ipv4_dst) {
1299 OVS_NLERR("IPv4 tunnel destination address is zero.\n");
1300 return -EINVAL;
1303 if (!ttl) {
1304 OVS_NLERR("IPv4 tunnel TTL not specified.\n");
1305 return -EINVAL;
1309 return 0;
1312 int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb,
1313 const struct ovs_key_ipv4_tunnel *tun_key,
1314 const struct ovs_key_ipv4_tunnel *output)
1316 struct nlattr *nla;
1318 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
1319 if (!nla)
1320 return -EMSGSIZE;
1322 if (output->tun_flags & TUNNEL_KEY &&
1323 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
1324 return -EMSGSIZE;
1325 if (output->ipv4_src &&
1326 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
1327 return -EMSGSIZE;
1328 if (output->ipv4_dst &&
1329 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
1330 return -EMSGSIZE;
1331 if (output->ipv4_tos &&
1332 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
1333 return -EMSGSIZE;
1334 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
1335 return -EMSGSIZE;
1336 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
1337 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
1338 return -EMSGSIZE;
1339 if ((output->tun_flags & TUNNEL_CSUM) &&
1340 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
1341 return -EMSGSIZE;
1343 nla_nest_end(skb, nla);
1344 return 0;
1347 static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
1348 const struct nlattr **a, bool is_mask)
1350 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1351 SW_FLOW_KEY_PUT(match, phy.priority,
1352 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1353 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1356 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1357 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1359 if (is_mask)
1360 in_port = 0xffffffff; /* Always exact match in_port. */
1361 else if (in_port >= DP_MAX_PORTS)
1362 return -EINVAL;
1364 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1365 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1366 } else if (!is_mask) {
1367 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1370 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1371 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1373 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1374 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1376 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1377 if (ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1378 is_mask))
1379 return -EINVAL;
1380 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1382 return 0;
1385 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
1386 const struct nlattr **a, bool is_mask)
1388 int err;
1389 u64 orig_attrs = attrs;
1391 err = metadata_from_nlattrs(match, &attrs, a, is_mask);
1392 if (err)
1393 return err;
1395 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1396 const struct ovs_key_ethernet *eth_key;
1398 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1399 SW_FLOW_KEY_MEMCPY(match, eth.src,
1400 eth_key->eth_src, ETH_ALEN, is_mask);
1401 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1402 eth_key->eth_dst, ETH_ALEN, is_mask);
1403 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1406 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1407 __be16 tci;
1409 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1410 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1411 if (is_mask)
1412 OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n");
1413 else
1414 OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n");
1416 return -EINVAL;
1419 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
1420 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1421 } else if (!is_mask)
1422 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1424 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1425 __be16 eth_type;
1427 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1428 if (is_mask) {
1429 /* Always exact match EtherType. */
1430 eth_type = htons(0xffff);
1431 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
1432 OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n",
1433 ntohs(eth_type), ETH_P_802_3_MIN);
1434 return -EINVAL;
1437 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1438 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1439 } else if (!is_mask) {
1440 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1443 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1444 const struct ovs_key_ipv4 *ipv4_key;
1446 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1447 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1448 OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n",
1449 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1450 return -EINVAL;
1452 SW_FLOW_KEY_PUT(match, ip.proto,
1453 ipv4_key->ipv4_proto, is_mask);
1454 SW_FLOW_KEY_PUT(match, ip.tos,
1455 ipv4_key->ipv4_tos, is_mask);
1456 SW_FLOW_KEY_PUT(match, ip.ttl,
1457 ipv4_key->ipv4_ttl, is_mask);
1458 SW_FLOW_KEY_PUT(match, ip.frag,
1459 ipv4_key->ipv4_frag, is_mask);
1460 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1461 ipv4_key->ipv4_src, is_mask);
1462 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1463 ipv4_key->ipv4_dst, is_mask);
1464 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1467 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1468 const struct ovs_key_ipv6 *ipv6_key;
1470 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1471 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1472 OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n",
1473 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1474 return -EINVAL;
1476 SW_FLOW_KEY_PUT(match, ipv6.label,
1477 ipv6_key->ipv6_label, is_mask);
1478 SW_FLOW_KEY_PUT(match, ip.proto,
1479 ipv6_key->ipv6_proto, is_mask);
1480 SW_FLOW_KEY_PUT(match, ip.tos,
1481 ipv6_key->ipv6_tclass, is_mask);
1482 SW_FLOW_KEY_PUT(match, ip.ttl,
1483 ipv6_key->ipv6_hlimit, is_mask);
1484 SW_FLOW_KEY_PUT(match, ip.frag,
1485 ipv6_key->ipv6_frag, is_mask);
1486 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1487 ipv6_key->ipv6_src,
1488 sizeof(match->key->ipv6.addr.src),
1489 is_mask);
1490 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1491 ipv6_key->ipv6_dst,
1492 sizeof(match->key->ipv6.addr.dst),
1493 is_mask);
1495 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1498 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1499 const struct ovs_key_arp *arp_key;
1501 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1502 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1503 OVS_NLERR("Unknown ARP opcode (opcode=%d).\n",
1504 arp_key->arp_op);
1505 return -EINVAL;
1508 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1509 arp_key->arp_sip, is_mask);
1510 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1511 arp_key->arp_tip, is_mask);
1512 SW_FLOW_KEY_PUT(match, ip.proto,
1513 ntohs(arp_key->arp_op), is_mask);
1514 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1515 arp_key->arp_sha, ETH_ALEN, is_mask);
1516 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1517 arp_key->arp_tha, ETH_ALEN, is_mask);
1519 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1522 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1523 const struct ovs_key_tcp *tcp_key;
1525 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1526 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1527 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1528 tcp_key->tcp_src, is_mask);
1529 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1530 tcp_key->tcp_dst, is_mask);
1531 } else {
1532 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1533 tcp_key->tcp_src, is_mask);
1534 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1535 tcp_key->tcp_dst, is_mask);
1537 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1540 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1541 const struct ovs_key_udp *udp_key;
1543 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1544 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1545 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1546 udp_key->udp_src, is_mask);
1547 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1548 udp_key->udp_dst, is_mask);
1549 } else {
1550 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1551 udp_key->udp_src, is_mask);
1552 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1553 udp_key->udp_dst, is_mask);
1555 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1558 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1559 const struct ovs_key_sctp *sctp_key;
1561 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1562 if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1563 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1564 sctp_key->sctp_src, is_mask);
1565 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1566 sctp_key->sctp_dst, is_mask);
1567 } else {
1568 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1569 sctp_key->sctp_src, is_mask);
1570 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1571 sctp_key->sctp_dst, is_mask);
1573 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1576 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1577 const struct ovs_key_icmp *icmp_key;
1579 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1580 SW_FLOW_KEY_PUT(match, ipv4.tp.src,
1581 htons(icmp_key->icmp_type), is_mask);
1582 SW_FLOW_KEY_PUT(match, ipv4.tp.dst,
1583 htons(icmp_key->icmp_code), is_mask);
1584 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1587 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1588 const struct ovs_key_icmpv6 *icmpv6_key;
1590 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1591 SW_FLOW_KEY_PUT(match, ipv6.tp.src,
1592 htons(icmpv6_key->icmpv6_type), is_mask);
1593 SW_FLOW_KEY_PUT(match, ipv6.tp.dst,
1594 htons(icmpv6_key->icmpv6_code), is_mask);
1595 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1598 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1599 const struct ovs_key_nd *nd_key;
1601 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1602 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1603 nd_key->nd_target,
1604 sizeof(match->key->ipv6.nd.target),
1605 is_mask);
1606 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1607 nd_key->nd_sll, ETH_ALEN, is_mask);
1608 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1609 nd_key->nd_tll, ETH_ALEN, is_mask);
1610 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1613 if (attrs != 0)
1614 return -EINVAL;
1616 return 0;
1620 * ovs_match_from_nlattrs - parses Netlink attributes into a flow key and
1621 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1622 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1623 * does not include any don't care bit.
1624 * @match: receives the extracted flow match information.
1625 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1626 * sequence. The fields should of the packet that triggered the creation
1627 * of this flow.
1628 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1629 * attribute specifies the mask field of the wildcarded flow.
1631 int ovs_match_from_nlattrs(struct sw_flow_match *match,
1632 const struct nlattr *key,
1633 const struct nlattr *mask)
1635 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1636 const struct nlattr *encap;
1637 u64 key_attrs = 0;
1638 u64 mask_attrs = 0;
1639 bool encap_valid = false;
1640 int err;
1642 err = parse_flow_nlattrs(key, a, &key_attrs);
1643 if (err)
1644 return err;
1646 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1647 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1648 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1649 __be16 tci;
1651 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1652 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1653 OVS_NLERR("Invalid Vlan frame.\n");
1654 return -EINVAL;
1657 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1658 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1659 encap = a[OVS_KEY_ATTR_ENCAP];
1660 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1661 encap_valid = true;
1663 if (tci & htons(VLAN_TAG_PRESENT)) {
1664 err = parse_flow_nlattrs(encap, a, &key_attrs);
1665 if (err)
1666 return err;
1667 } else if (!tci) {
1668 /* Corner case for truncated 802.1Q header. */
1669 if (nla_len(encap)) {
1670 OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n");
1671 return -EINVAL;
1673 } else {
1674 OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n");
1675 return -EINVAL;
1679 err = ovs_key_from_nlattrs(match, key_attrs, a, false);
1680 if (err)
1681 return err;
1683 if (mask) {
1684 err = parse_flow_mask_nlattrs(mask, a, &mask_attrs);
1685 if (err)
1686 return err;
1688 if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) {
1689 __be16 eth_type = 0;
1690 __be16 tci = 0;
1692 if (!encap_valid) {
1693 OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n");
1694 return -EINVAL;
1697 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1698 if (a[OVS_KEY_ATTR_ETHERTYPE])
1699 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1701 if (eth_type == htons(0xffff)) {
1702 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1703 encap = a[OVS_KEY_ATTR_ENCAP];
1704 err = parse_flow_mask_nlattrs(encap, a, &mask_attrs);
1705 } else {
1706 OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n",
1707 ntohs(eth_type));
1708 return -EINVAL;
1711 if (a[OVS_KEY_ATTR_VLAN])
1712 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1714 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1715 OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci));
1716 return -EINVAL;
1720 err = ovs_key_from_nlattrs(match, mask_attrs, a, true);
1721 if (err)
1722 return err;
1723 } else {
1724 /* Populate exact match flow's key mask. */
1725 if (match->mask)
1726 ovs_sw_flow_mask_set(match->mask, &match->range, 0xff);
1729 if (!ovs_match_validate(match, key_attrs, mask_attrs))
1730 return -EINVAL;
1732 return 0;
1736 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1737 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
1738 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1739 * sequence.
1741 * This parses a series of Netlink attributes that form a flow key, which must
1742 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1743 * get the metadata, that is, the parts of the flow key that cannot be
1744 * extracted from the packet itself.
1747 int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow,
1748 const struct nlattr *attr)
1750 struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
1751 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1752 u64 attrs = 0;
1753 int err;
1754 struct sw_flow_match match;
1756 flow->key.phy.in_port = DP_MAX_PORTS;
1757 flow->key.phy.priority = 0;
1758 flow->key.phy.skb_mark = 0;
1759 memset(tun_key, 0, sizeof(flow->key.tun_key));
1761 err = parse_flow_nlattrs(attr, a, &attrs);
1762 if (err)
1763 return -EINVAL;
1765 memset(&match, 0, sizeof(match));
1766 match.key = &flow->key;
1768 err = metadata_from_nlattrs(&match, &attrs, a, false);
1769 if (err)
1770 return err;
1772 return 0;
1775 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey,
1776 const struct sw_flow_key *output, struct sk_buff *skb)
1778 struct ovs_key_ethernet *eth_key;
1779 struct nlattr *nla, *encap;
1780 bool is_mask = (swkey != output);
1782 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1783 goto nla_put_failure;
1785 if ((swkey->tun_key.ipv4_dst || is_mask) &&
1786 ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key))
1787 goto nla_put_failure;
1789 if (swkey->phy.in_port == DP_MAX_PORTS) {
1790 if (is_mask && (output->phy.in_port == 0xffff))
1791 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1792 goto nla_put_failure;
1793 } else {
1794 u16 upper_u16;
1795 upper_u16 = !is_mask ? 0 : 0xffff;
1797 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1798 (upper_u16 << 16) | output->phy.in_port))
1799 goto nla_put_failure;
1802 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1803 goto nla_put_failure;
1805 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1806 if (!nla)
1807 goto nla_put_failure;
1809 eth_key = nla_data(nla);
1810 memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN);
1811 memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN);
1813 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1814 __be16 eth_type;
1815 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1816 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1817 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1818 goto nla_put_failure;
1819 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1820 if (!swkey->eth.tci)
1821 goto unencap;
1822 } else
1823 encap = NULL;
1825 if (swkey->eth.type == htons(ETH_P_802_2)) {
1827 * Ethertype 802.2 is represented in the netlink with omitted
1828 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1829 * 0xffff in the mask attribute. Ethertype can also
1830 * be wildcarded.
1832 if (is_mask && output->eth.type)
1833 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1834 output->eth.type))
1835 goto nla_put_failure;
1836 goto unencap;
1839 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1840 goto nla_put_failure;
1842 if (swkey->eth.type == htons(ETH_P_IP)) {
1843 struct ovs_key_ipv4 *ipv4_key;
1845 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1846 if (!nla)
1847 goto nla_put_failure;
1848 ipv4_key = nla_data(nla);
1849 ipv4_key->ipv4_src = output->ipv4.addr.src;
1850 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1851 ipv4_key->ipv4_proto = output->ip.proto;
1852 ipv4_key->ipv4_tos = output->ip.tos;
1853 ipv4_key->ipv4_ttl = output->ip.ttl;
1854 ipv4_key->ipv4_frag = output->ip.frag;
1855 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1856 struct ovs_key_ipv6 *ipv6_key;
1858 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1859 if (!nla)
1860 goto nla_put_failure;
1861 ipv6_key = nla_data(nla);
1862 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1863 sizeof(ipv6_key->ipv6_src));
1864 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1865 sizeof(ipv6_key->ipv6_dst));
1866 ipv6_key->ipv6_label = output->ipv6.label;
1867 ipv6_key->ipv6_proto = output->ip.proto;
1868 ipv6_key->ipv6_tclass = output->ip.tos;
1869 ipv6_key->ipv6_hlimit = output->ip.ttl;
1870 ipv6_key->ipv6_frag = output->ip.frag;
1871 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1872 swkey->eth.type == htons(ETH_P_RARP)) {
1873 struct ovs_key_arp *arp_key;
1875 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1876 if (!nla)
1877 goto nla_put_failure;
1878 arp_key = nla_data(nla);
1879 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1880 arp_key->arp_sip = output->ipv4.addr.src;
1881 arp_key->arp_tip = output->ipv4.addr.dst;
1882 arp_key->arp_op = htons(output->ip.proto);
1883 memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN);
1884 memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN);
1887 if ((swkey->eth.type == htons(ETH_P_IP) ||
1888 swkey->eth.type == htons(ETH_P_IPV6)) &&
1889 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1891 if (swkey->ip.proto == IPPROTO_TCP) {
1892 struct ovs_key_tcp *tcp_key;
1894 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1895 if (!nla)
1896 goto nla_put_failure;
1897 tcp_key = nla_data(nla);
1898 if (swkey->eth.type == htons(ETH_P_IP)) {
1899 tcp_key->tcp_src = output->ipv4.tp.src;
1900 tcp_key->tcp_dst = output->ipv4.tp.dst;
1901 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1902 tcp_key->tcp_src = output->ipv6.tp.src;
1903 tcp_key->tcp_dst = output->ipv6.tp.dst;
1905 } else if (swkey->ip.proto == IPPROTO_UDP) {
1906 struct ovs_key_udp *udp_key;
1908 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1909 if (!nla)
1910 goto nla_put_failure;
1911 udp_key = nla_data(nla);
1912 if (swkey->eth.type == htons(ETH_P_IP)) {
1913 udp_key->udp_src = output->ipv4.tp.src;
1914 udp_key->udp_dst = output->ipv4.tp.dst;
1915 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1916 udp_key->udp_src = output->ipv6.tp.src;
1917 udp_key->udp_dst = output->ipv6.tp.dst;
1919 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1920 struct ovs_key_sctp *sctp_key;
1922 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1923 if (!nla)
1924 goto nla_put_failure;
1925 sctp_key = nla_data(nla);
1926 if (swkey->eth.type == htons(ETH_P_IP)) {
1927 sctp_key->sctp_src = swkey->ipv4.tp.src;
1928 sctp_key->sctp_dst = swkey->ipv4.tp.dst;
1929 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1930 sctp_key->sctp_src = swkey->ipv6.tp.src;
1931 sctp_key->sctp_dst = swkey->ipv6.tp.dst;
1933 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1934 swkey->ip.proto == IPPROTO_ICMP) {
1935 struct ovs_key_icmp *icmp_key;
1937 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1938 if (!nla)
1939 goto nla_put_failure;
1940 icmp_key = nla_data(nla);
1941 icmp_key->icmp_type = ntohs(output->ipv4.tp.src);
1942 icmp_key->icmp_code = ntohs(output->ipv4.tp.dst);
1943 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1944 swkey->ip.proto == IPPROTO_ICMPV6) {
1945 struct ovs_key_icmpv6 *icmpv6_key;
1947 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1948 sizeof(*icmpv6_key));
1949 if (!nla)
1950 goto nla_put_failure;
1951 icmpv6_key = nla_data(nla);
1952 icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src);
1953 icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst);
1955 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1956 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1957 struct ovs_key_nd *nd_key;
1959 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1960 if (!nla)
1961 goto nla_put_failure;
1962 nd_key = nla_data(nla);
1963 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1964 sizeof(nd_key->nd_target));
1965 memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN);
1966 memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN);
1971 unencap:
1972 if (encap)
1973 nla_nest_end(skb, encap);
1975 return 0;
1977 nla_put_failure:
1978 return -EMSGSIZE;
1981 /* Initializes the flow module.
1982 * Returns zero if successful or a negative error code. */
1983 int ovs_flow_init(void)
1985 BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
1986 BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1988 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1989 0, NULL);
1990 if (flow_cache == NULL)
1991 return -ENOMEM;
1993 return 0;
1996 /* Uninitializes the flow module. */
1997 void ovs_flow_exit(void)
1999 kmem_cache_destroy(flow_cache);
2002 struct sw_flow_mask *ovs_sw_flow_mask_alloc(void)
2004 struct sw_flow_mask *mask;
2006 mask = kmalloc(sizeof(*mask), GFP_KERNEL);
2007 if (mask)
2008 mask->ref_count = 0;
2010 return mask;
2013 void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask)
2015 mask->ref_count++;
2018 void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred)
2020 if (!mask)
2021 return;
2023 BUG_ON(!mask->ref_count);
2024 mask->ref_count--;
2026 if (!mask->ref_count) {
2027 list_del_rcu(&mask->list);
2028 if (deferred)
2029 kfree_rcu(mask, rcu);
2030 else
2031 kfree(mask);
2035 static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a,
2036 const struct sw_flow_mask *b)
2038 u8 *a_ = (u8 *)&a->key + a->range.start;
2039 u8 *b_ = (u8 *)&b->key + b->range.start;
2041 return (a->range.end == b->range.end)
2042 && (a->range.start == b->range.start)
2043 && (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
2046 struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl,
2047 const struct sw_flow_mask *mask)
2049 struct list_head *ml;
2051 list_for_each(ml, tbl->mask_list) {
2052 struct sw_flow_mask *m;
2053 m = container_of(ml, struct sw_flow_mask, list);
2054 if (ovs_sw_flow_mask_equal(mask, m))
2055 return m;
2058 return NULL;
2062 * add a new mask into the mask list.
2063 * The caller needs to make sure that 'mask' is not the same
2064 * as any masks that are already on the list.
2066 void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask)
2068 list_add_rcu(&mask->list, tbl->mask_list);
2072 * Set 'range' fields in the mask to the value of 'val'.
2074 static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
2075 struct sw_flow_key_range *range, u8 val)
2077 u8 *m = (u8 *)&mask->key + range->start;
2079 mask->range = *range;
2080 memset(m, val, range_n_bytes(range));