drm/exynos: g2d: let exynos_g2d_get_ver_ioctl fail
[linux-2.6/btrfs-unstable.git] / fs / ext4 / extents_status.c
blob3f5c188953a46012d7552feef11f3911f63aad3e
1 /*
2 * fs/ext4/extents_status.c
4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5 * Modified by
6 * Allison Henderson <achender@linux.vnet.ibm.com>
7 * Hugh Dickins <hughd@google.com>
8 * Zheng Liu <wenqing.lz@taobao.com>
10 * Ext4 extents status tree core functions.
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include "ext4.h"
15 #include "extents_status.h"
17 #include <trace/events/ext4.h>
20 * According to previous discussion in Ext4 Developer Workshop, we
21 * will introduce a new structure called io tree to track all extent
22 * status in order to solve some problems that we have met
23 * (e.g. Reservation space warning), and provide extent-level locking.
24 * Delay extent tree is the first step to achieve this goal. It is
25 * original built by Yongqiang Yang. At that time it is called delay
26 * extent tree, whose goal is only track delayed extents in memory to
27 * simplify the implementation of fiemap and bigalloc, and introduce
28 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
29 * delay extent tree at the first commit. But for better understand
30 * what it does, it has been rename to extent status tree.
32 * Step1:
33 * Currently the first step has been done. All delayed extents are
34 * tracked in the tree. It maintains the delayed extent when a delayed
35 * allocation is issued, and the delayed extent is written out or
36 * invalidated. Therefore the implementation of fiemap and bigalloc
37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 * The following comment describes the implemenmtation of extent
40 * status tree and future works.
42 * Step2:
43 * In this step all extent status are tracked by extent status tree.
44 * Thus, we can first try to lookup a block mapping in this tree before
45 * finding it in extent tree. Hence, single extent cache can be removed
46 * because extent status tree can do a better job. Extents in status
47 * tree are loaded on-demand. Therefore, the extent status tree may not
48 * contain all of the extents in a file. Meanwhile we define a shrinker
49 * to reclaim memory from extent status tree because fragmented extent
50 * tree will make status tree cost too much memory. written/unwritten/-
51 * hole extents in the tree will be reclaimed by this shrinker when we
52 * are under high memory pressure. Delayed extents will not be
53 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
57 * Extent status tree implementation for ext4.
60 * ==========================================================================
61 * Extent status tree tracks all extent status.
63 * 1. Why we need to implement extent status tree?
65 * Without extent status tree, ext4 identifies a delayed extent by looking
66 * up page cache, this has several deficiencies - complicated, buggy,
67 * and inefficient code.
69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
70 * block or a range of blocks are belonged to a delayed extent.
72 * Let us have a look at how they do without extent status tree.
73 * -- FIEMAP
74 * FIEMAP looks up page cache to identify delayed allocations from holes.
76 * -- SEEK_HOLE/DATA
77 * SEEK_HOLE/DATA has the same problem as FIEMAP.
79 * -- bigalloc
80 * bigalloc looks up page cache to figure out if a block is
81 * already under delayed allocation or not to determine whether
82 * quota reserving is needed for the cluster.
84 * -- writeout
85 * Writeout looks up whole page cache to see if a buffer is
86 * mapped, If there are not very many delayed buffers, then it is
87 * time comsuming.
89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
90 * bigalloc and writeout can figure out if a block or a range of
91 * blocks is under delayed allocation(belonged to a delayed extent) or
92 * not by searching the extent tree.
95 * ==========================================================================
96 * 2. Ext4 extent status tree impelmentation
98 * -- extent
99 * A extent is a range of blocks which are contiguous logically and
100 * physically. Unlike extent in extent tree, this extent in ext4 is
101 * a in-memory struct, there is no corresponding on-disk data. There
102 * is no limit on length of extent, so an extent can contain as many
103 * blocks as they are contiguous logically and physically.
105 * -- extent status tree
106 * Every inode has an extent status tree and all allocation blocks
107 * are added to the tree with different status. The extent in the
108 * tree are ordered by logical block no.
110 * -- operations on a extent status tree
111 * There are three important operations on a delayed extent tree: find
112 * next extent, adding a extent(a range of blocks) and removing a extent.
114 * -- race on a extent status tree
115 * Extent status tree is protected by inode->i_es_lock.
117 * -- memory consumption
118 * Fragmented extent tree will make extent status tree cost too much
119 * memory. Hence, we will reclaim written/unwritten/hole extents from
120 * the tree under a heavy memory pressure.
123 * ==========================================================================
124 * 3. Performance analysis
126 * -- overhead
127 * 1. There is a cache extent for write access, so if writes are
128 * not very random, adding space operaions are in O(1) time.
130 * -- gain
131 * 2. Code is much simpler, more readable, more maintainable and
132 * more efficient.
135 * ==========================================================================
136 * 4. TODO list
138 * -- Refactor delayed space reservation
140 * -- Extent-level locking
143 static struct kmem_cache *ext4_es_cachep;
145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
147 ext4_lblk_t end);
148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
149 int nr_to_scan);
150 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
151 struct ext4_inode_info *locked_ei);
153 int __init ext4_init_es(void)
155 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
156 sizeof(struct extent_status),
157 0, (SLAB_RECLAIM_ACCOUNT), NULL);
158 if (ext4_es_cachep == NULL)
159 return -ENOMEM;
160 return 0;
163 void ext4_exit_es(void)
165 if (ext4_es_cachep)
166 kmem_cache_destroy(ext4_es_cachep);
169 void ext4_es_init_tree(struct ext4_es_tree *tree)
171 tree->root = RB_ROOT;
172 tree->cache_es = NULL;
175 #ifdef ES_DEBUG__
176 static void ext4_es_print_tree(struct inode *inode)
178 struct ext4_es_tree *tree;
179 struct rb_node *node;
181 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
182 tree = &EXT4_I(inode)->i_es_tree;
183 node = rb_first(&tree->root);
184 while (node) {
185 struct extent_status *es;
186 es = rb_entry(node, struct extent_status, rb_node);
187 printk(KERN_DEBUG " [%u/%u) %llu %x",
188 es->es_lblk, es->es_len,
189 ext4_es_pblock(es), ext4_es_status(es));
190 node = rb_next(node);
192 printk(KERN_DEBUG "\n");
194 #else
195 #define ext4_es_print_tree(inode)
196 #endif
198 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
200 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
201 return es->es_lblk + es->es_len - 1;
205 * search through the tree for an delayed extent with a given offset. If
206 * it can't be found, try to find next extent.
208 static struct extent_status *__es_tree_search(struct rb_root *root,
209 ext4_lblk_t lblk)
211 struct rb_node *node = root->rb_node;
212 struct extent_status *es = NULL;
214 while (node) {
215 es = rb_entry(node, struct extent_status, rb_node);
216 if (lblk < es->es_lblk)
217 node = node->rb_left;
218 else if (lblk > ext4_es_end(es))
219 node = node->rb_right;
220 else
221 return es;
224 if (es && lblk < es->es_lblk)
225 return es;
227 if (es && lblk > ext4_es_end(es)) {
228 node = rb_next(&es->rb_node);
229 return node ? rb_entry(node, struct extent_status, rb_node) :
230 NULL;
233 return NULL;
237 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
238 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
240 * @inode: the inode which owns delayed extents
241 * @lblk: the offset where we start to search
242 * @end: the offset where we stop to search
243 * @es: delayed extent that we found
245 void ext4_es_find_delayed_extent_range(struct inode *inode,
246 ext4_lblk_t lblk, ext4_lblk_t end,
247 struct extent_status *es)
249 struct ext4_es_tree *tree = NULL;
250 struct extent_status *es1 = NULL;
251 struct rb_node *node;
253 BUG_ON(es == NULL);
254 BUG_ON(end < lblk);
255 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
257 read_lock(&EXT4_I(inode)->i_es_lock);
258 tree = &EXT4_I(inode)->i_es_tree;
260 /* find extent in cache firstly */
261 es->es_lblk = es->es_len = es->es_pblk = 0;
262 if (tree->cache_es) {
263 es1 = tree->cache_es;
264 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
265 es_debug("%u cached by [%u/%u) %llu %x\n",
266 lblk, es1->es_lblk, es1->es_len,
267 ext4_es_pblock(es1), ext4_es_status(es1));
268 goto out;
272 es1 = __es_tree_search(&tree->root, lblk);
274 out:
275 if (es1 && !ext4_es_is_delayed(es1)) {
276 while ((node = rb_next(&es1->rb_node)) != NULL) {
277 es1 = rb_entry(node, struct extent_status, rb_node);
278 if (es1->es_lblk > end) {
279 es1 = NULL;
280 break;
282 if (ext4_es_is_delayed(es1))
283 break;
287 if (es1 && ext4_es_is_delayed(es1)) {
288 tree->cache_es = es1;
289 es->es_lblk = es1->es_lblk;
290 es->es_len = es1->es_len;
291 es->es_pblk = es1->es_pblk;
294 read_unlock(&EXT4_I(inode)->i_es_lock);
296 trace_ext4_es_find_delayed_extent_range_exit(inode, es);
299 static struct extent_status *
300 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
301 ext4_fsblk_t pblk)
303 struct extent_status *es;
304 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
305 if (es == NULL)
306 return NULL;
307 es->es_lblk = lblk;
308 es->es_len = len;
309 es->es_pblk = pblk;
312 * We don't count delayed extent because we never try to reclaim them
314 if (!ext4_es_is_delayed(es)) {
315 EXT4_I(inode)->i_es_lru_nr++;
316 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
319 return es;
322 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
324 /* Decrease the lru counter when this es is not delayed */
325 if (!ext4_es_is_delayed(es)) {
326 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
327 EXT4_I(inode)->i_es_lru_nr--;
328 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
331 kmem_cache_free(ext4_es_cachep, es);
335 * Check whether or not two extents can be merged
336 * Condition:
337 * - logical block number is contiguous
338 * - physical block number is contiguous
339 * - status is equal
341 static int ext4_es_can_be_merged(struct extent_status *es1,
342 struct extent_status *es2)
344 if (ext4_es_status(es1) != ext4_es_status(es2))
345 return 0;
347 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
348 pr_warn("ES assertion failed when merging extents. "
349 "The sum of lengths of es1 (%d) and es2 (%d) "
350 "is bigger than allowed file size (%d)\n",
351 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
352 WARN_ON(1);
353 return 0;
356 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
357 return 0;
359 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
360 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
361 return 1;
363 if (ext4_es_is_hole(es1))
364 return 1;
366 /* we need to check delayed extent is without unwritten status */
367 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
368 return 1;
370 return 0;
373 static struct extent_status *
374 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
376 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
377 struct extent_status *es1;
378 struct rb_node *node;
380 node = rb_prev(&es->rb_node);
381 if (!node)
382 return es;
384 es1 = rb_entry(node, struct extent_status, rb_node);
385 if (ext4_es_can_be_merged(es1, es)) {
386 es1->es_len += es->es_len;
387 rb_erase(&es->rb_node, &tree->root);
388 ext4_es_free_extent(inode, es);
389 es = es1;
392 return es;
395 static struct extent_status *
396 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
398 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
399 struct extent_status *es1;
400 struct rb_node *node;
402 node = rb_next(&es->rb_node);
403 if (!node)
404 return es;
406 es1 = rb_entry(node, struct extent_status, rb_node);
407 if (ext4_es_can_be_merged(es, es1)) {
408 es->es_len += es1->es_len;
409 rb_erase(node, &tree->root);
410 ext4_es_free_extent(inode, es1);
413 return es;
416 #ifdef ES_AGGRESSIVE_TEST
417 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
419 static void ext4_es_insert_extent_ext_check(struct inode *inode,
420 struct extent_status *es)
422 struct ext4_ext_path *path = NULL;
423 struct ext4_extent *ex;
424 ext4_lblk_t ee_block;
425 ext4_fsblk_t ee_start;
426 unsigned short ee_len;
427 int depth, ee_status, es_status;
429 path = ext4_ext_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
430 if (IS_ERR(path))
431 return;
433 depth = ext_depth(inode);
434 ex = path[depth].p_ext;
436 if (ex) {
438 ee_block = le32_to_cpu(ex->ee_block);
439 ee_start = ext4_ext_pblock(ex);
440 ee_len = ext4_ext_get_actual_len(ex);
442 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
443 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
446 * Make sure ex and es are not overlap when we try to insert
447 * a delayed/hole extent.
449 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
450 if (in_range(es->es_lblk, ee_block, ee_len)) {
451 pr_warn("ES insert assertion failed for "
452 "inode: %lu we can find an extent "
453 "at block [%d/%d/%llu/%c], but we "
454 "want to add a delayed/hole extent "
455 "[%d/%d/%llu/%x]\n",
456 inode->i_ino, ee_block, ee_len,
457 ee_start, ee_status ? 'u' : 'w',
458 es->es_lblk, es->es_len,
459 ext4_es_pblock(es), ext4_es_status(es));
461 goto out;
465 * We don't check ee_block == es->es_lblk, etc. because es
466 * might be a part of whole extent, vice versa.
468 if (es->es_lblk < ee_block ||
469 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
470 pr_warn("ES insert assertion failed for inode: %lu "
471 "ex_status [%d/%d/%llu/%c] != "
472 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
473 ee_block, ee_len, ee_start,
474 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
475 ext4_es_pblock(es), es_status ? 'u' : 'w');
476 goto out;
479 if (ee_status ^ es_status) {
480 pr_warn("ES insert assertion failed for inode: %lu "
481 "ex_status [%d/%d/%llu/%c] != "
482 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
483 ee_block, ee_len, ee_start,
484 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
485 ext4_es_pblock(es), es_status ? 'u' : 'w');
487 } else {
489 * We can't find an extent on disk. So we need to make sure
490 * that we don't want to add an written/unwritten extent.
492 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
493 pr_warn("ES insert assertion failed for inode: %lu "
494 "can't find an extent at block %d but we want "
495 "to add a written/unwritten extent "
496 "[%d/%d/%llu/%x]\n", inode->i_ino,
497 es->es_lblk, es->es_lblk, es->es_len,
498 ext4_es_pblock(es), ext4_es_status(es));
501 out:
502 if (path) {
503 ext4_ext_drop_refs(path);
504 kfree(path);
508 static void ext4_es_insert_extent_ind_check(struct inode *inode,
509 struct extent_status *es)
511 struct ext4_map_blocks map;
512 int retval;
515 * Here we call ext4_ind_map_blocks to lookup a block mapping because
516 * 'Indirect' structure is defined in indirect.c. So we couldn't
517 * access direct/indirect tree from outside. It is too dirty to define
518 * this function in indirect.c file.
521 map.m_lblk = es->es_lblk;
522 map.m_len = es->es_len;
524 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
525 if (retval > 0) {
526 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
528 * We want to add a delayed/hole extent but this
529 * block has been allocated.
531 pr_warn("ES insert assertion failed for inode: %lu "
532 "We can find blocks but we want to add a "
533 "delayed/hole extent [%d/%d/%llu/%x]\n",
534 inode->i_ino, es->es_lblk, es->es_len,
535 ext4_es_pblock(es), ext4_es_status(es));
536 return;
537 } else if (ext4_es_is_written(es)) {
538 if (retval != es->es_len) {
539 pr_warn("ES insert assertion failed for "
540 "inode: %lu retval %d != es_len %d\n",
541 inode->i_ino, retval, es->es_len);
542 return;
544 if (map.m_pblk != ext4_es_pblock(es)) {
545 pr_warn("ES insert assertion failed for "
546 "inode: %lu m_pblk %llu != "
547 "es_pblk %llu\n",
548 inode->i_ino, map.m_pblk,
549 ext4_es_pblock(es));
550 return;
552 } else {
554 * We don't need to check unwritten extent because
555 * indirect-based file doesn't have it.
557 BUG_ON(1);
559 } else if (retval == 0) {
560 if (ext4_es_is_written(es)) {
561 pr_warn("ES insert assertion failed for inode: %lu "
562 "We can't find the block but we want to add "
563 "a written extent [%d/%d/%llu/%x]\n",
564 inode->i_ino, es->es_lblk, es->es_len,
565 ext4_es_pblock(es), ext4_es_status(es));
566 return;
571 static inline void ext4_es_insert_extent_check(struct inode *inode,
572 struct extent_status *es)
575 * We don't need to worry about the race condition because
576 * caller takes i_data_sem locking.
578 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
580 ext4_es_insert_extent_ext_check(inode, es);
581 else
582 ext4_es_insert_extent_ind_check(inode, es);
584 #else
585 static inline void ext4_es_insert_extent_check(struct inode *inode,
586 struct extent_status *es)
589 #endif
591 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
593 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
594 struct rb_node **p = &tree->root.rb_node;
595 struct rb_node *parent = NULL;
596 struct extent_status *es;
598 while (*p) {
599 parent = *p;
600 es = rb_entry(parent, struct extent_status, rb_node);
602 if (newes->es_lblk < es->es_lblk) {
603 if (ext4_es_can_be_merged(newes, es)) {
605 * Here we can modify es_lblk directly
606 * because it isn't overlapped.
608 es->es_lblk = newes->es_lblk;
609 es->es_len += newes->es_len;
610 if (ext4_es_is_written(es) ||
611 ext4_es_is_unwritten(es))
612 ext4_es_store_pblock(es,
613 newes->es_pblk);
614 es = ext4_es_try_to_merge_left(inode, es);
615 goto out;
617 p = &(*p)->rb_left;
618 } else if (newes->es_lblk > ext4_es_end(es)) {
619 if (ext4_es_can_be_merged(es, newes)) {
620 es->es_len += newes->es_len;
621 es = ext4_es_try_to_merge_right(inode, es);
622 goto out;
624 p = &(*p)->rb_right;
625 } else {
626 BUG_ON(1);
627 return -EINVAL;
631 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
632 newes->es_pblk);
633 if (!es)
634 return -ENOMEM;
635 rb_link_node(&es->rb_node, parent, p);
636 rb_insert_color(&es->rb_node, &tree->root);
638 out:
639 tree->cache_es = es;
640 return 0;
644 * ext4_es_insert_extent() adds information to an inode's extent
645 * status tree.
647 * Return 0 on success, error code on failure.
649 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
650 ext4_lblk_t len, ext4_fsblk_t pblk,
651 unsigned int status)
653 struct extent_status newes;
654 ext4_lblk_t end = lblk + len - 1;
655 int err = 0;
657 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
658 lblk, len, pblk, status, inode->i_ino);
660 if (!len)
661 return 0;
663 BUG_ON(end < lblk);
665 newes.es_lblk = lblk;
666 newes.es_len = len;
667 ext4_es_store_pblock_status(&newes, pblk, status);
668 trace_ext4_es_insert_extent(inode, &newes);
670 ext4_es_insert_extent_check(inode, &newes);
672 write_lock(&EXT4_I(inode)->i_es_lock);
673 err = __es_remove_extent(inode, lblk, end);
674 if (err != 0)
675 goto error;
676 retry:
677 err = __es_insert_extent(inode, &newes);
678 if (err == -ENOMEM && __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
679 EXT4_I(inode)))
680 goto retry;
681 if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
682 err = 0;
684 error:
685 write_unlock(&EXT4_I(inode)->i_es_lock);
687 ext4_es_print_tree(inode);
689 return err;
693 * ext4_es_cache_extent() inserts information into the extent status
694 * tree if and only if there isn't information about the range in
695 * question already.
697 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
698 ext4_lblk_t len, ext4_fsblk_t pblk,
699 unsigned int status)
701 struct extent_status *es;
702 struct extent_status newes;
703 ext4_lblk_t end = lblk + len - 1;
705 newes.es_lblk = lblk;
706 newes.es_len = len;
707 ext4_es_store_pblock_status(&newes, pblk, status);
708 trace_ext4_es_cache_extent(inode, &newes);
710 if (!len)
711 return;
713 BUG_ON(end < lblk);
715 write_lock(&EXT4_I(inode)->i_es_lock);
717 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
718 if (!es || es->es_lblk > end)
719 __es_insert_extent(inode, &newes);
720 write_unlock(&EXT4_I(inode)->i_es_lock);
724 * ext4_es_lookup_extent() looks up an extent in extent status tree.
726 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
728 * Return: 1 on found, 0 on not
730 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
731 struct extent_status *es)
733 struct ext4_es_tree *tree;
734 struct extent_status *es1 = NULL;
735 struct rb_node *node;
736 int found = 0;
738 trace_ext4_es_lookup_extent_enter(inode, lblk);
739 es_debug("lookup extent in block %u\n", lblk);
741 tree = &EXT4_I(inode)->i_es_tree;
742 read_lock(&EXT4_I(inode)->i_es_lock);
744 /* find extent in cache firstly */
745 es->es_lblk = es->es_len = es->es_pblk = 0;
746 if (tree->cache_es) {
747 es1 = tree->cache_es;
748 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
749 es_debug("%u cached by [%u/%u)\n",
750 lblk, es1->es_lblk, es1->es_len);
751 found = 1;
752 goto out;
756 node = tree->root.rb_node;
757 while (node) {
758 es1 = rb_entry(node, struct extent_status, rb_node);
759 if (lblk < es1->es_lblk)
760 node = node->rb_left;
761 else if (lblk > ext4_es_end(es1))
762 node = node->rb_right;
763 else {
764 found = 1;
765 break;
769 out:
770 if (found) {
771 BUG_ON(!es1);
772 es->es_lblk = es1->es_lblk;
773 es->es_len = es1->es_len;
774 es->es_pblk = es1->es_pblk;
777 read_unlock(&EXT4_I(inode)->i_es_lock);
779 trace_ext4_es_lookup_extent_exit(inode, es, found);
780 return found;
783 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
784 ext4_lblk_t end)
786 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
787 struct rb_node *node;
788 struct extent_status *es;
789 struct extent_status orig_es;
790 ext4_lblk_t len1, len2;
791 ext4_fsblk_t block;
792 int err;
794 retry:
795 err = 0;
796 es = __es_tree_search(&tree->root, lblk);
797 if (!es)
798 goto out;
799 if (es->es_lblk > end)
800 goto out;
802 /* Simply invalidate cache_es. */
803 tree->cache_es = NULL;
805 orig_es.es_lblk = es->es_lblk;
806 orig_es.es_len = es->es_len;
807 orig_es.es_pblk = es->es_pblk;
809 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
810 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
811 if (len1 > 0)
812 es->es_len = len1;
813 if (len2 > 0) {
814 if (len1 > 0) {
815 struct extent_status newes;
817 newes.es_lblk = end + 1;
818 newes.es_len = len2;
819 block = 0x7FDEADBEEFULL;
820 if (ext4_es_is_written(&orig_es) ||
821 ext4_es_is_unwritten(&orig_es))
822 block = ext4_es_pblock(&orig_es) +
823 orig_es.es_len - len2;
824 ext4_es_store_pblock_status(&newes, block,
825 ext4_es_status(&orig_es));
826 err = __es_insert_extent(inode, &newes);
827 if (err) {
828 es->es_lblk = orig_es.es_lblk;
829 es->es_len = orig_es.es_len;
830 if ((err == -ENOMEM) &&
831 __ext4_es_shrink(EXT4_SB(inode->i_sb), 1,
832 EXT4_I(inode)))
833 goto retry;
834 goto out;
836 } else {
837 es->es_lblk = end + 1;
838 es->es_len = len2;
839 if (ext4_es_is_written(es) ||
840 ext4_es_is_unwritten(es)) {
841 block = orig_es.es_pblk + orig_es.es_len - len2;
842 ext4_es_store_pblock(es, block);
845 goto out;
848 if (len1 > 0) {
849 node = rb_next(&es->rb_node);
850 if (node)
851 es = rb_entry(node, struct extent_status, rb_node);
852 else
853 es = NULL;
856 while (es && ext4_es_end(es) <= end) {
857 node = rb_next(&es->rb_node);
858 rb_erase(&es->rb_node, &tree->root);
859 ext4_es_free_extent(inode, es);
860 if (!node) {
861 es = NULL;
862 break;
864 es = rb_entry(node, struct extent_status, rb_node);
867 if (es && es->es_lblk < end + 1) {
868 ext4_lblk_t orig_len = es->es_len;
870 len1 = ext4_es_end(es) - end;
871 es->es_lblk = end + 1;
872 es->es_len = len1;
873 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
874 block = es->es_pblk + orig_len - len1;
875 ext4_es_store_pblock(es, block);
879 out:
880 return err;
884 * ext4_es_remove_extent() removes a space from a extent status tree.
886 * Return 0 on success, error code on failure.
888 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
889 ext4_lblk_t len)
891 ext4_lblk_t end;
892 int err = 0;
894 trace_ext4_es_remove_extent(inode, lblk, len);
895 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
896 lblk, len, inode->i_ino);
898 if (!len)
899 return err;
901 end = lblk + len - 1;
902 BUG_ON(end < lblk);
904 write_lock(&EXT4_I(inode)->i_es_lock);
905 err = __es_remove_extent(inode, lblk, end);
906 write_unlock(&EXT4_I(inode)->i_es_lock);
907 ext4_es_print_tree(inode);
908 return err;
911 static int ext4_inode_touch_time_cmp(void *priv, struct list_head *a,
912 struct list_head *b)
914 struct ext4_inode_info *eia, *eib;
915 eia = list_entry(a, struct ext4_inode_info, i_es_lru);
916 eib = list_entry(b, struct ext4_inode_info, i_es_lru);
918 if (ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
919 !ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
920 return 1;
921 if (!ext4_test_inode_state(&eia->vfs_inode, EXT4_STATE_EXT_PRECACHED) &&
922 ext4_test_inode_state(&eib->vfs_inode, EXT4_STATE_EXT_PRECACHED))
923 return -1;
924 if (eia->i_touch_when == eib->i_touch_when)
925 return 0;
926 if (time_after(eia->i_touch_when, eib->i_touch_when))
927 return 1;
928 else
929 return -1;
932 static int __ext4_es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
933 struct ext4_inode_info *locked_ei)
935 struct ext4_inode_info *ei;
936 struct list_head *cur, *tmp;
937 LIST_HEAD(skipped);
938 int nr_shrunk = 0;
939 int retried = 0, skip_precached = 1, nr_skipped = 0;
941 spin_lock(&sbi->s_es_lru_lock);
943 retry:
944 list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
945 int shrunk;
948 * If we have already reclaimed all extents from extent
949 * status tree, just stop the loop immediately.
951 if (percpu_counter_read_positive(&sbi->s_extent_cache_cnt) == 0)
952 break;
954 ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
957 * Skip the inode that is newer than the last_sorted
958 * time. Normally we try hard to avoid shrinking
959 * precached inodes, but we will as a last resort.
961 if ((sbi->s_es_last_sorted < ei->i_touch_when) ||
962 (skip_precached && ext4_test_inode_state(&ei->vfs_inode,
963 EXT4_STATE_EXT_PRECACHED))) {
964 nr_skipped++;
965 list_move_tail(cur, &skipped);
966 continue;
969 if (ei->i_es_lru_nr == 0 || ei == locked_ei)
970 continue;
972 write_lock(&ei->i_es_lock);
973 shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
974 if (ei->i_es_lru_nr == 0)
975 list_del_init(&ei->i_es_lru);
976 write_unlock(&ei->i_es_lock);
978 nr_shrunk += shrunk;
979 nr_to_scan -= shrunk;
980 if (nr_to_scan == 0)
981 break;
984 /* Move the newer inodes into the tail of the LRU list. */
985 list_splice_tail(&skipped, &sbi->s_es_lru);
986 INIT_LIST_HEAD(&skipped);
989 * If we skipped any inodes, and we weren't able to make any
990 * forward progress, sort the list and try again.
992 if ((nr_shrunk == 0) && nr_skipped && !retried) {
993 retried++;
994 list_sort(NULL, &sbi->s_es_lru, ext4_inode_touch_time_cmp);
995 sbi->s_es_last_sorted = jiffies;
996 ei = list_first_entry(&sbi->s_es_lru, struct ext4_inode_info,
997 i_es_lru);
999 * If there are no non-precached inodes left on the
1000 * list, start releasing precached extents.
1002 if (ext4_test_inode_state(&ei->vfs_inode,
1003 EXT4_STATE_EXT_PRECACHED))
1004 skip_precached = 0;
1005 goto retry;
1008 spin_unlock(&sbi->s_es_lru_lock);
1010 if (locked_ei && nr_shrunk == 0)
1011 nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1013 return nr_shrunk;
1016 static unsigned long ext4_es_count(struct shrinker *shrink,
1017 struct shrink_control *sc)
1019 unsigned long nr;
1020 struct ext4_sb_info *sbi;
1022 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1023 nr = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1024 trace_ext4_es_shrink_enter(sbi->s_sb, sc->nr_to_scan, nr);
1025 return nr;
1028 static unsigned long ext4_es_scan(struct shrinker *shrink,
1029 struct shrink_control *sc)
1031 struct ext4_sb_info *sbi = container_of(shrink,
1032 struct ext4_sb_info, s_es_shrinker);
1033 int nr_to_scan = sc->nr_to_scan;
1034 int ret, nr_shrunk;
1036 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
1037 trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
1039 if (!nr_to_scan)
1040 return ret;
1042 nr_shrunk = __ext4_es_shrink(sbi, nr_to_scan, NULL);
1044 trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
1045 return nr_shrunk;
1048 void ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1050 INIT_LIST_HEAD(&sbi->s_es_lru);
1051 spin_lock_init(&sbi->s_es_lru_lock);
1052 sbi->s_es_last_sorted = 0;
1053 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1054 sbi->s_es_shrinker.count_objects = ext4_es_count;
1055 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1056 register_shrinker(&sbi->s_es_shrinker);
1059 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1061 unregister_shrinker(&sbi->s_es_shrinker);
1064 void ext4_es_lru_add(struct inode *inode)
1066 struct ext4_inode_info *ei = EXT4_I(inode);
1067 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1069 ei->i_touch_when = jiffies;
1071 if (!list_empty(&ei->i_es_lru))
1072 return;
1074 spin_lock(&sbi->s_es_lru_lock);
1075 if (list_empty(&ei->i_es_lru))
1076 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
1077 spin_unlock(&sbi->s_es_lru_lock);
1080 void ext4_es_lru_del(struct inode *inode)
1082 struct ext4_inode_info *ei = EXT4_I(inode);
1083 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1085 spin_lock(&sbi->s_es_lru_lock);
1086 if (!list_empty(&ei->i_es_lru))
1087 list_del_init(&ei->i_es_lru);
1088 spin_unlock(&sbi->s_es_lru_lock);
1091 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1092 int nr_to_scan)
1094 struct inode *inode = &ei->vfs_inode;
1095 struct ext4_es_tree *tree = &ei->i_es_tree;
1096 struct rb_node *node;
1097 struct extent_status *es;
1098 unsigned long nr_shrunk = 0;
1099 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1100 DEFAULT_RATELIMIT_BURST);
1102 if (ei->i_es_lru_nr == 0)
1103 return 0;
1105 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1106 __ratelimit(&_rs))
1107 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1109 node = rb_first(&tree->root);
1110 while (node != NULL) {
1111 es = rb_entry(node, struct extent_status, rb_node);
1112 node = rb_next(&es->rb_node);
1114 * We can't reclaim delayed extent from status tree because
1115 * fiemap, bigallic, and seek_data/hole need to use it.
1117 if (!ext4_es_is_delayed(es)) {
1118 rb_erase(&es->rb_node, &tree->root);
1119 ext4_es_free_extent(inode, es);
1120 nr_shrunk++;
1121 if (--nr_to_scan == 0)
1122 break;
1125 tree->cache_es = NULL;
1126 return nr_shrunk;