mmc: mmci: Convert to devm functions
[linux-2.6/btrfs-unstable.git] / drivers / mmc / host / mmci.c
blob57cfd5f7cb24666bc07bc72de8156fe2e543cf0e
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
45 #include "mmci.h"
47 #define DRIVER_NAME "mmci-pl18x"
49 static unsigned int fmax = 515633;
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @datalength_bits: number of bits in the MMCIDATALENGTH register
56 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
57 * is asserted (likewise for RX)
58 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
59 * is asserted (likewise for RX)
60 * @sdio: variant supports SDIO
61 * @st_clkdiv: true if using a ST-specific clock divider algorithm
62 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
63 * @pwrreg_powerup: power up value for MMCIPOWER register
64 * @signal_direction: input/out direction of bus signals can be indicated
65 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
66 * @busy_detect: true if busy detection on dat0 is supported
67 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
69 struct variant_data {
70 unsigned int clkreg;
71 unsigned int clkreg_enable;
72 unsigned int datalength_bits;
73 unsigned int fifosize;
74 unsigned int fifohalfsize;
75 bool sdio;
76 bool st_clkdiv;
77 bool blksz_datactrl16;
78 u32 pwrreg_powerup;
79 bool signal_direction;
80 bool pwrreg_clkgate;
81 bool busy_detect;
82 bool pwrreg_nopower;
85 static struct variant_data variant_arm = {
86 .fifosize = 16 * 4,
87 .fifohalfsize = 8 * 4,
88 .datalength_bits = 16,
89 .pwrreg_powerup = MCI_PWR_UP,
92 static struct variant_data variant_arm_extended_fifo = {
93 .fifosize = 128 * 4,
94 .fifohalfsize = 64 * 4,
95 .datalength_bits = 16,
96 .pwrreg_powerup = MCI_PWR_UP,
99 static struct variant_data variant_arm_extended_fifo_hwfc = {
100 .fifosize = 128 * 4,
101 .fifohalfsize = 64 * 4,
102 .clkreg_enable = MCI_ARM_HWFCEN,
103 .datalength_bits = 16,
104 .pwrreg_powerup = MCI_PWR_UP,
107 static struct variant_data variant_u300 = {
108 .fifosize = 16 * 4,
109 .fifohalfsize = 8 * 4,
110 .clkreg_enable = MCI_ST_U300_HWFCEN,
111 .datalength_bits = 16,
112 .sdio = true,
113 .pwrreg_powerup = MCI_PWR_ON,
114 .signal_direction = true,
115 .pwrreg_clkgate = true,
116 .pwrreg_nopower = true,
119 static struct variant_data variant_nomadik = {
120 .fifosize = 16 * 4,
121 .fifohalfsize = 8 * 4,
122 .clkreg = MCI_CLK_ENABLE,
123 .datalength_bits = 24,
124 .sdio = true,
125 .st_clkdiv = true,
126 .pwrreg_powerup = MCI_PWR_ON,
127 .signal_direction = true,
128 .pwrreg_clkgate = true,
129 .pwrreg_nopower = true,
132 static struct variant_data variant_ux500 = {
133 .fifosize = 30 * 4,
134 .fifohalfsize = 8 * 4,
135 .clkreg = MCI_CLK_ENABLE,
136 .clkreg_enable = MCI_ST_UX500_HWFCEN,
137 .datalength_bits = 24,
138 .sdio = true,
139 .st_clkdiv = true,
140 .pwrreg_powerup = MCI_PWR_ON,
141 .signal_direction = true,
142 .pwrreg_clkgate = true,
143 .busy_detect = true,
144 .pwrreg_nopower = true,
147 static struct variant_data variant_ux500v2 = {
148 .fifosize = 30 * 4,
149 .fifohalfsize = 8 * 4,
150 .clkreg = MCI_CLK_ENABLE,
151 .clkreg_enable = MCI_ST_UX500_HWFCEN,
152 .datalength_bits = 24,
153 .sdio = true,
154 .st_clkdiv = true,
155 .blksz_datactrl16 = true,
156 .pwrreg_powerup = MCI_PWR_ON,
157 .signal_direction = true,
158 .pwrreg_clkgate = true,
159 .busy_detect = true,
160 .pwrreg_nopower = true,
163 static int mmci_card_busy(struct mmc_host *mmc)
165 struct mmci_host *host = mmc_priv(mmc);
166 unsigned long flags;
167 int busy = 0;
169 pm_runtime_get_sync(mmc_dev(mmc));
171 spin_lock_irqsave(&host->lock, flags);
172 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
173 busy = 1;
174 spin_unlock_irqrestore(&host->lock, flags);
176 pm_runtime_mark_last_busy(mmc_dev(mmc));
177 pm_runtime_put_autosuspend(mmc_dev(mmc));
179 return busy;
183 * Validate mmc prerequisites
185 static int mmci_validate_data(struct mmci_host *host,
186 struct mmc_data *data)
188 if (!data)
189 return 0;
191 if (!is_power_of_2(data->blksz)) {
192 dev_err(mmc_dev(host->mmc),
193 "unsupported block size (%d bytes)\n", data->blksz);
194 return -EINVAL;
197 return 0;
200 static void mmci_reg_delay(struct mmci_host *host)
203 * According to the spec, at least three feedback clock cycles
204 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
205 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
206 * Worst delay time during card init is at 100 kHz => 30 us.
207 * Worst delay time when up and running is at 25 MHz => 120 ns.
209 if (host->cclk < 25000000)
210 udelay(30);
211 else
212 ndelay(120);
216 * This must be called with host->lock held
218 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
220 if (host->clk_reg != clk) {
221 host->clk_reg = clk;
222 writel(clk, host->base + MMCICLOCK);
227 * This must be called with host->lock held
229 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
231 if (host->pwr_reg != pwr) {
232 host->pwr_reg = pwr;
233 writel(pwr, host->base + MMCIPOWER);
238 * This must be called with host->lock held
240 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
242 /* Keep ST Micro busy mode if enabled */
243 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
245 if (host->datactrl_reg != datactrl) {
246 host->datactrl_reg = datactrl;
247 writel(datactrl, host->base + MMCIDATACTRL);
252 * This must be called with host->lock held
254 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
256 struct variant_data *variant = host->variant;
257 u32 clk = variant->clkreg;
259 /* Make sure cclk reflects the current calculated clock */
260 host->cclk = 0;
262 if (desired) {
263 if (desired >= host->mclk) {
264 clk = MCI_CLK_BYPASS;
265 if (variant->st_clkdiv)
266 clk |= MCI_ST_UX500_NEG_EDGE;
267 host->cclk = host->mclk;
268 } else if (variant->st_clkdiv) {
270 * DB8500 TRM says f = mclk / (clkdiv + 2)
271 * => clkdiv = (mclk / f) - 2
272 * Round the divider up so we don't exceed the max
273 * frequency
275 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
276 if (clk >= 256)
277 clk = 255;
278 host->cclk = host->mclk / (clk + 2);
279 } else {
281 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
282 * => clkdiv = mclk / (2 * f) - 1
284 clk = host->mclk / (2 * desired) - 1;
285 if (clk >= 256)
286 clk = 255;
287 host->cclk = host->mclk / (2 * (clk + 1));
290 clk |= variant->clkreg_enable;
291 clk |= MCI_CLK_ENABLE;
292 /* This hasn't proven to be worthwhile */
293 /* clk |= MCI_CLK_PWRSAVE; */
296 /* Set actual clock for debug */
297 host->mmc->actual_clock = host->cclk;
299 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
300 clk |= MCI_4BIT_BUS;
301 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
302 clk |= MCI_ST_8BIT_BUS;
304 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
305 clk |= MCI_ST_UX500_NEG_EDGE;
307 mmci_write_clkreg(host, clk);
310 static void
311 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
313 writel(0, host->base + MMCICOMMAND);
315 BUG_ON(host->data);
317 host->mrq = NULL;
318 host->cmd = NULL;
320 mmc_request_done(host->mmc, mrq);
322 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
323 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
326 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
328 void __iomem *base = host->base;
330 if (host->singleirq) {
331 unsigned int mask0 = readl(base + MMCIMASK0);
333 mask0 &= ~MCI_IRQ1MASK;
334 mask0 |= mask;
336 writel(mask0, base + MMCIMASK0);
339 writel(mask, base + MMCIMASK1);
342 static void mmci_stop_data(struct mmci_host *host)
344 mmci_write_datactrlreg(host, 0);
345 mmci_set_mask1(host, 0);
346 host->data = NULL;
349 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
351 unsigned int flags = SG_MITER_ATOMIC;
353 if (data->flags & MMC_DATA_READ)
354 flags |= SG_MITER_TO_SG;
355 else
356 flags |= SG_MITER_FROM_SG;
358 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
362 * All the DMA operation mode stuff goes inside this ifdef.
363 * This assumes that you have a generic DMA device interface,
364 * no custom DMA interfaces are supported.
366 #ifdef CONFIG_DMA_ENGINE
367 static void mmci_dma_setup(struct mmci_host *host)
369 struct mmci_platform_data *plat = host->plat;
370 const char *rxname, *txname;
371 dma_cap_mask_t mask;
373 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
374 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
376 /* initialize pre request cookie */
377 host->next_data.cookie = 1;
379 /* Try to acquire a generic DMA engine slave channel */
380 dma_cap_zero(mask);
381 dma_cap_set(DMA_SLAVE, mask);
383 if (plat && plat->dma_filter) {
384 if (!host->dma_rx_channel && plat->dma_rx_param) {
385 host->dma_rx_channel = dma_request_channel(mask,
386 plat->dma_filter,
387 plat->dma_rx_param);
388 /* E.g if no DMA hardware is present */
389 if (!host->dma_rx_channel)
390 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
393 if (!host->dma_tx_channel && plat->dma_tx_param) {
394 host->dma_tx_channel = dma_request_channel(mask,
395 plat->dma_filter,
396 plat->dma_tx_param);
397 if (!host->dma_tx_channel)
398 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
403 * If only an RX channel is specified, the driver will
404 * attempt to use it bidirectionally, however if it is
405 * is specified but cannot be located, DMA will be disabled.
407 if (host->dma_rx_channel && !host->dma_tx_channel)
408 host->dma_tx_channel = host->dma_rx_channel;
410 if (host->dma_rx_channel)
411 rxname = dma_chan_name(host->dma_rx_channel);
412 else
413 rxname = "none";
415 if (host->dma_tx_channel)
416 txname = dma_chan_name(host->dma_tx_channel);
417 else
418 txname = "none";
420 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
421 rxname, txname);
424 * Limit the maximum segment size in any SG entry according to
425 * the parameters of the DMA engine device.
427 if (host->dma_tx_channel) {
428 struct device *dev = host->dma_tx_channel->device->dev;
429 unsigned int max_seg_size = dma_get_max_seg_size(dev);
431 if (max_seg_size < host->mmc->max_seg_size)
432 host->mmc->max_seg_size = max_seg_size;
434 if (host->dma_rx_channel) {
435 struct device *dev = host->dma_rx_channel->device->dev;
436 unsigned int max_seg_size = dma_get_max_seg_size(dev);
438 if (max_seg_size < host->mmc->max_seg_size)
439 host->mmc->max_seg_size = max_seg_size;
444 * This is used in or so inline it
445 * so it can be discarded.
447 static inline void mmci_dma_release(struct mmci_host *host)
449 struct mmci_platform_data *plat = host->plat;
451 if (host->dma_rx_channel)
452 dma_release_channel(host->dma_rx_channel);
453 if (host->dma_tx_channel && plat->dma_tx_param)
454 dma_release_channel(host->dma_tx_channel);
455 host->dma_rx_channel = host->dma_tx_channel = NULL;
458 static void mmci_dma_data_error(struct mmci_host *host)
460 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
461 dmaengine_terminate_all(host->dma_current);
462 host->dma_current = NULL;
463 host->dma_desc_current = NULL;
464 host->data->host_cookie = 0;
467 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
469 struct dma_chan *chan;
470 enum dma_data_direction dir;
472 if (data->flags & MMC_DATA_READ) {
473 dir = DMA_FROM_DEVICE;
474 chan = host->dma_rx_channel;
475 } else {
476 dir = DMA_TO_DEVICE;
477 chan = host->dma_tx_channel;
480 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
483 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
485 u32 status;
486 int i;
488 /* Wait up to 1ms for the DMA to complete */
489 for (i = 0; ; i++) {
490 status = readl(host->base + MMCISTATUS);
491 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
492 break;
493 udelay(10);
497 * Check to see whether we still have some data left in the FIFO -
498 * this catches DMA controllers which are unable to monitor the
499 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
500 * contiguous buffers. On TX, we'll get a FIFO underrun error.
502 if (status & MCI_RXDATAAVLBLMASK) {
503 mmci_dma_data_error(host);
504 if (!data->error)
505 data->error = -EIO;
508 if (!data->host_cookie)
509 mmci_dma_unmap(host, data);
512 * Use of DMA with scatter-gather is impossible.
513 * Give up with DMA and switch back to PIO mode.
515 if (status & MCI_RXDATAAVLBLMASK) {
516 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
517 mmci_dma_release(host);
520 host->dma_current = NULL;
521 host->dma_desc_current = NULL;
524 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
525 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
526 struct dma_chan **dma_chan,
527 struct dma_async_tx_descriptor **dma_desc)
529 struct variant_data *variant = host->variant;
530 struct dma_slave_config conf = {
531 .src_addr = host->phybase + MMCIFIFO,
532 .dst_addr = host->phybase + MMCIFIFO,
533 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
534 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
535 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
536 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
537 .device_fc = false,
539 struct dma_chan *chan;
540 struct dma_device *device;
541 struct dma_async_tx_descriptor *desc;
542 enum dma_data_direction buffer_dirn;
543 int nr_sg;
545 if (data->flags & MMC_DATA_READ) {
546 conf.direction = DMA_DEV_TO_MEM;
547 buffer_dirn = DMA_FROM_DEVICE;
548 chan = host->dma_rx_channel;
549 } else {
550 conf.direction = DMA_MEM_TO_DEV;
551 buffer_dirn = DMA_TO_DEVICE;
552 chan = host->dma_tx_channel;
555 /* If there's no DMA channel, fall back to PIO */
556 if (!chan)
557 return -EINVAL;
559 /* If less than or equal to the fifo size, don't bother with DMA */
560 if (data->blksz * data->blocks <= variant->fifosize)
561 return -EINVAL;
563 device = chan->device;
564 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
565 if (nr_sg == 0)
566 return -EINVAL;
568 dmaengine_slave_config(chan, &conf);
569 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
570 conf.direction, DMA_CTRL_ACK);
571 if (!desc)
572 goto unmap_exit;
574 *dma_chan = chan;
575 *dma_desc = desc;
577 return 0;
579 unmap_exit:
580 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
581 return -ENOMEM;
584 static inline int mmci_dma_prep_data(struct mmci_host *host,
585 struct mmc_data *data)
587 /* Check if next job is already prepared. */
588 if (host->dma_current && host->dma_desc_current)
589 return 0;
591 /* No job were prepared thus do it now. */
592 return __mmci_dma_prep_data(host, data, &host->dma_current,
593 &host->dma_desc_current);
596 static inline int mmci_dma_prep_next(struct mmci_host *host,
597 struct mmc_data *data)
599 struct mmci_host_next *nd = &host->next_data;
600 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
603 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
605 int ret;
606 struct mmc_data *data = host->data;
608 ret = mmci_dma_prep_data(host, host->data);
609 if (ret)
610 return ret;
612 /* Okay, go for it. */
613 dev_vdbg(mmc_dev(host->mmc),
614 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
615 data->sg_len, data->blksz, data->blocks, data->flags);
616 dmaengine_submit(host->dma_desc_current);
617 dma_async_issue_pending(host->dma_current);
619 datactrl |= MCI_DPSM_DMAENABLE;
621 /* Trigger the DMA transfer */
622 mmci_write_datactrlreg(host, datactrl);
625 * Let the MMCI say when the data is ended and it's time
626 * to fire next DMA request. When that happens, MMCI will
627 * call mmci_data_end()
629 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
630 host->base + MMCIMASK0);
631 return 0;
634 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
636 struct mmci_host_next *next = &host->next_data;
638 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
639 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
641 host->dma_desc_current = next->dma_desc;
642 host->dma_current = next->dma_chan;
643 next->dma_desc = NULL;
644 next->dma_chan = NULL;
647 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
648 bool is_first_req)
650 struct mmci_host *host = mmc_priv(mmc);
651 struct mmc_data *data = mrq->data;
652 struct mmci_host_next *nd = &host->next_data;
654 if (!data)
655 return;
657 BUG_ON(data->host_cookie);
659 if (mmci_validate_data(host, data))
660 return;
662 if (!mmci_dma_prep_next(host, data))
663 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
666 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
667 int err)
669 struct mmci_host *host = mmc_priv(mmc);
670 struct mmc_data *data = mrq->data;
672 if (!data || !data->host_cookie)
673 return;
675 mmci_dma_unmap(host, data);
677 if (err) {
678 struct mmci_host_next *next = &host->next_data;
679 struct dma_chan *chan;
680 if (data->flags & MMC_DATA_READ)
681 chan = host->dma_rx_channel;
682 else
683 chan = host->dma_tx_channel;
684 dmaengine_terminate_all(chan);
686 next->dma_desc = NULL;
687 next->dma_chan = NULL;
691 #else
692 /* Blank functions if the DMA engine is not available */
693 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
696 static inline void mmci_dma_setup(struct mmci_host *host)
700 static inline void mmci_dma_release(struct mmci_host *host)
704 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
708 static inline void mmci_dma_finalize(struct mmci_host *host,
709 struct mmc_data *data)
713 static inline void mmci_dma_data_error(struct mmci_host *host)
717 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
719 return -ENOSYS;
722 #define mmci_pre_request NULL
723 #define mmci_post_request NULL
725 #endif
727 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
729 struct variant_data *variant = host->variant;
730 unsigned int datactrl, timeout, irqmask;
731 unsigned long long clks;
732 void __iomem *base;
733 int blksz_bits;
735 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
736 data->blksz, data->blocks, data->flags);
738 host->data = data;
739 host->size = data->blksz * data->blocks;
740 data->bytes_xfered = 0;
742 clks = (unsigned long long)data->timeout_ns * host->cclk;
743 do_div(clks, 1000000000UL);
745 timeout = data->timeout_clks + (unsigned int)clks;
747 base = host->base;
748 writel(timeout, base + MMCIDATATIMER);
749 writel(host->size, base + MMCIDATALENGTH);
751 blksz_bits = ffs(data->blksz) - 1;
752 BUG_ON(1 << blksz_bits != data->blksz);
754 if (variant->blksz_datactrl16)
755 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
756 else
757 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
759 if (data->flags & MMC_DATA_READ)
760 datactrl |= MCI_DPSM_DIRECTION;
762 /* The ST Micro variants has a special bit to enable SDIO */
763 if (variant->sdio && host->mmc->card)
764 if (mmc_card_sdio(host->mmc->card)) {
766 * The ST Micro variants has a special bit
767 * to enable SDIO.
769 u32 clk;
771 datactrl |= MCI_ST_DPSM_SDIOEN;
774 * The ST Micro variant for SDIO small write transfers
775 * needs to have clock H/W flow control disabled,
776 * otherwise the transfer will not start. The threshold
777 * depends on the rate of MCLK.
779 if (data->flags & MMC_DATA_WRITE &&
780 (host->size < 8 ||
781 (host->size <= 8 && host->mclk > 50000000)))
782 clk = host->clk_reg & ~variant->clkreg_enable;
783 else
784 clk = host->clk_reg | variant->clkreg_enable;
786 mmci_write_clkreg(host, clk);
789 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
790 datactrl |= MCI_ST_DPSM_DDRMODE;
793 * Attempt to use DMA operation mode, if this
794 * should fail, fall back to PIO mode
796 if (!mmci_dma_start_data(host, datactrl))
797 return;
799 /* IRQ mode, map the SG list for CPU reading/writing */
800 mmci_init_sg(host, data);
802 if (data->flags & MMC_DATA_READ) {
803 irqmask = MCI_RXFIFOHALFFULLMASK;
806 * If we have less than the fifo 'half-full' threshold to
807 * transfer, trigger a PIO interrupt as soon as any data
808 * is available.
810 if (host->size < variant->fifohalfsize)
811 irqmask |= MCI_RXDATAAVLBLMASK;
812 } else {
814 * We don't actually need to include "FIFO empty" here
815 * since its implicit in "FIFO half empty".
817 irqmask = MCI_TXFIFOHALFEMPTYMASK;
820 mmci_write_datactrlreg(host, datactrl);
821 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
822 mmci_set_mask1(host, irqmask);
825 static void
826 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
828 void __iomem *base = host->base;
830 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
831 cmd->opcode, cmd->arg, cmd->flags);
833 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
834 writel(0, base + MMCICOMMAND);
835 udelay(1);
838 c |= cmd->opcode | MCI_CPSM_ENABLE;
839 if (cmd->flags & MMC_RSP_PRESENT) {
840 if (cmd->flags & MMC_RSP_136)
841 c |= MCI_CPSM_LONGRSP;
842 c |= MCI_CPSM_RESPONSE;
844 if (/*interrupt*/0)
845 c |= MCI_CPSM_INTERRUPT;
847 host->cmd = cmd;
849 writel(cmd->arg, base + MMCIARGUMENT);
850 writel(c, base + MMCICOMMAND);
853 static void
854 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
855 unsigned int status)
857 /* First check for errors */
858 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
859 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
860 u32 remain, success;
862 /* Terminate the DMA transfer */
863 if (dma_inprogress(host)) {
864 mmci_dma_data_error(host);
865 mmci_dma_unmap(host, data);
869 * Calculate how far we are into the transfer. Note that
870 * the data counter gives the number of bytes transferred
871 * on the MMC bus, not on the host side. On reads, this
872 * can be as much as a FIFO-worth of data ahead. This
873 * matters for FIFO overruns only.
875 remain = readl(host->base + MMCIDATACNT);
876 success = data->blksz * data->blocks - remain;
878 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
879 status, success);
880 if (status & MCI_DATACRCFAIL) {
881 /* Last block was not successful */
882 success -= 1;
883 data->error = -EILSEQ;
884 } else if (status & MCI_DATATIMEOUT) {
885 data->error = -ETIMEDOUT;
886 } else if (status & MCI_STARTBITERR) {
887 data->error = -ECOMM;
888 } else if (status & MCI_TXUNDERRUN) {
889 data->error = -EIO;
890 } else if (status & MCI_RXOVERRUN) {
891 if (success > host->variant->fifosize)
892 success -= host->variant->fifosize;
893 else
894 success = 0;
895 data->error = -EIO;
897 data->bytes_xfered = round_down(success, data->blksz);
900 if (status & MCI_DATABLOCKEND)
901 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
903 if (status & MCI_DATAEND || data->error) {
904 if (dma_inprogress(host))
905 mmci_dma_finalize(host, data);
906 mmci_stop_data(host);
908 if (!data->error)
909 /* The error clause is handled above, success! */
910 data->bytes_xfered = data->blksz * data->blocks;
912 if (!data->stop || host->mrq->sbc) {
913 mmci_request_end(host, data->mrq);
914 } else {
915 mmci_start_command(host, data->stop, 0);
920 static void
921 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
922 unsigned int status)
924 void __iomem *base = host->base;
925 bool sbc = (cmd == host->mrq->sbc);
926 bool busy_resp = host->variant->busy_detect &&
927 (cmd->flags & MMC_RSP_BUSY);
929 /* Check if we need to wait for busy completion. */
930 if (host->busy_status && (status & MCI_ST_CARDBUSY))
931 return;
933 /* Enable busy completion if needed and supported. */
934 if (!host->busy_status && busy_resp &&
935 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
936 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
937 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
938 base + MMCIMASK0);
939 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
940 return;
943 /* At busy completion, mask the IRQ and complete the request. */
944 if (host->busy_status) {
945 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
946 base + MMCIMASK0);
947 host->busy_status = 0;
950 host->cmd = NULL;
952 if (status & MCI_CMDTIMEOUT) {
953 cmd->error = -ETIMEDOUT;
954 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
955 cmd->error = -EILSEQ;
956 } else {
957 cmd->resp[0] = readl(base + MMCIRESPONSE0);
958 cmd->resp[1] = readl(base + MMCIRESPONSE1);
959 cmd->resp[2] = readl(base + MMCIRESPONSE2);
960 cmd->resp[3] = readl(base + MMCIRESPONSE3);
963 if ((!sbc && !cmd->data) || cmd->error) {
964 if (host->data) {
965 /* Terminate the DMA transfer */
966 if (dma_inprogress(host)) {
967 mmci_dma_data_error(host);
968 mmci_dma_unmap(host, host->data);
970 mmci_stop_data(host);
972 mmci_request_end(host, host->mrq);
973 } else if (sbc) {
974 mmci_start_command(host, host->mrq->cmd, 0);
975 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
976 mmci_start_data(host, cmd->data);
980 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
982 void __iomem *base = host->base;
983 char *ptr = buffer;
984 u32 status;
985 int host_remain = host->size;
987 do {
988 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
990 if (count > remain)
991 count = remain;
993 if (count <= 0)
994 break;
997 * SDIO especially may want to send something that is
998 * not divisible by 4 (as opposed to card sectors
999 * etc). Therefore make sure to always read the last bytes
1000 * while only doing full 32-bit reads towards the FIFO.
1002 if (unlikely(count & 0x3)) {
1003 if (count < 4) {
1004 unsigned char buf[4];
1005 ioread32_rep(base + MMCIFIFO, buf, 1);
1006 memcpy(ptr, buf, count);
1007 } else {
1008 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1009 count &= ~0x3;
1011 } else {
1012 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1015 ptr += count;
1016 remain -= count;
1017 host_remain -= count;
1019 if (remain == 0)
1020 break;
1022 status = readl(base + MMCISTATUS);
1023 } while (status & MCI_RXDATAAVLBL);
1025 return ptr - buffer;
1028 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1030 struct variant_data *variant = host->variant;
1031 void __iomem *base = host->base;
1032 char *ptr = buffer;
1034 do {
1035 unsigned int count, maxcnt;
1037 maxcnt = status & MCI_TXFIFOEMPTY ?
1038 variant->fifosize : variant->fifohalfsize;
1039 count = min(remain, maxcnt);
1042 * SDIO especially may want to send something that is
1043 * not divisible by 4 (as opposed to card sectors
1044 * etc), and the FIFO only accept full 32-bit writes.
1045 * So compensate by adding +3 on the count, a single
1046 * byte become a 32bit write, 7 bytes will be two
1047 * 32bit writes etc.
1049 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1051 ptr += count;
1052 remain -= count;
1054 if (remain == 0)
1055 break;
1057 status = readl(base + MMCISTATUS);
1058 } while (status & MCI_TXFIFOHALFEMPTY);
1060 return ptr - buffer;
1064 * PIO data transfer IRQ handler.
1066 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1068 struct mmci_host *host = dev_id;
1069 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1070 struct variant_data *variant = host->variant;
1071 void __iomem *base = host->base;
1072 unsigned long flags;
1073 u32 status;
1075 status = readl(base + MMCISTATUS);
1077 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1079 local_irq_save(flags);
1081 do {
1082 unsigned int remain, len;
1083 char *buffer;
1086 * For write, we only need to test the half-empty flag
1087 * here - if the FIFO is completely empty, then by
1088 * definition it is more than half empty.
1090 * For read, check for data available.
1092 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1093 break;
1095 if (!sg_miter_next(sg_miter))
1096 break;
1098 buffer = sg_miter->addr;
1099 remain = sg_miter->length;
1101 len = 0;
1102 if (status & MCI_RXACTIVE)
1103 len = mmci_pio_read(host, buffer, remain);
1104 if (status & MCI_TXACTIVE)
1105 len = mmci_pio_write(host, buffer, remain, status);
1107 sg_miter->consumed = len;
1109 host->size -= len;
1110 remain -= len;
1112 if (remain)
1113 break;
1115 status = readl(base + MMCISTATUS);
1116 } while (1);
1118 sg_miter_stop(sg_miter);
1120 local_irq_restore(flags);
1123 * If we have less than the fifo 'half-full' threshold to transfer,
1124 * trigger a PIO interrupt as soon as any data is available.
1126 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1127 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1130 * If we run out of data, disable the data IRQs; this
1131 * prevents a race where the FIFO becomes empty before
1132 * the chip itself has disabled the data path, and
1133 * stops us racing with our data end IRQ.
1135 if (host->size == 0) {
1136 mmci_set_mask1(host, 0);
1137 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1140 return IRQ_HANDLED;
1144 * Handle completion of command and data transfers.
1146 static irqreturn_t mmci_irq(int irq, void *dev_id)
1148 struct mmci_host *host = dev_id;
1149 u32 status;
1150 int ret = 0;
1152 spin_lock(&host->lock);
1154 do {
1155 struct mmc_command *cmd;
1156 struct mmc_data *data;
1158 status = readl(host->base + MMCISTATUS);
1160 if (host->singleirq) {
1161 if (status & readl(host->base + MMCIMASK1))
1162 mmci_pio_irq(irq, dev_id);
1164 status &= ~MCI_IRQ1MASK;
1168 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1169 * enabled) since the HW seems to be triggering the IRQ on both
1170 * edges while monitoring DAT0 for busy completion.
1172 status &= readl(host->base + MMCIMASK0);
1173 writel(status, host->base + MMCICLEAR);
1175 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1177 cmd = host->cmd;
1178 if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1179 MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1180 mmci_cmd_irq(host, cmd, status);
1182 data = host->data;
1183 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1184 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1185 MCI_DATABLOCKEND) && data)
1186 mmci_data_irq(host, data, status);
1188 /* Don't poll for busy completion in irq context. */
1189 if (host->busy_status)
1190 status &= ~MCI_ST_CARDBUSY;
1192 ret = 1;
1193 } while (status);
1195 spin_unlock(&host->lock);
1197 return IRQ_RETVAL(ret);
1200 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1202 struct mmci_host *host = mmc_priv(mmc);
1203 unsigned long flags;
1205 WARN_ON(host->mrq != NULL);
1207 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1208 if (mrq->cmd->error) {
1209 mmc_request_done(mmc, mrq);
1210 return;
1213 pm_runtime_get_sync(mmc_dev(mmc));
1215 spin_lock_irqsave(&host->lock, flags);
1217 host->mrq = mrq;
1219 if (mrq->data)
1220 mmci_get_next_data(host, mrq->data);
1222 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1223 mmci_start_data(host, mrq->data);
1225 if (mrq->sbc)
1226 mmci_start_command(host, mrq->sbc, 0);
1227 else
1228 mmci_start_command(host, mrq->cmd, 0);
1230 spin_unlock_irqrestore(&host->lock, flags);
1233 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1235 struct mmci_host *host = mmc_priv(mmc);
1236 struct variant_data *variant = host->variant;
1237 u32 pwr = 0;
1238 unsigned long flags;
1239 int ret;
1241 pm_runtime_get_sync(mmc_dev(mmc));
1243 if (host->plat->ios_handler &&
1244 host->plat->ios_handler(mmc_dev(mmc), ios))
1245 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1247 switch (ios->power_mode) {
1248 case MMC_POWER_OFF:
1249 if (!IS_ERR(mmc->supply.vmmc))
1250 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1252 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1253 regulator_disable(mmc->supply.vqmmc);
1254 host->vqmmc_enabled = false;
1257 break;
1258 case MMC_POWER_UP:
1259 if (!IS_ERR(mmc->supply.vmmc))
1260 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1263 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1264 * and instead uses MCI_PWR_ON so apply whatever value is
1265 * configured in the variant data.
1267 pwr |= variant->pwrreg_powerup;
1269 break;
1270 case MMC_POWER_ON:
1271 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1272 ret = regulator_enable(mmc->supply.vqmmc);
1273 if (ret < 0)
1274 dev_err(mmc_dev(mmc),
1275 "failed to enable vqmmc regulator\n");
1276 else
1277 host->vqmmc_enabled = true;
1280 pwr |= MCI_PWR_ON;
1281 break;
1284 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1286 * The ST Micro variant has some additional bits
1287 * indicating signal direction for the signals in
1288 * the SD/MMC bus and feedback-clock usage.
1290 pwr |= host->plat->sigdir;
1292 if (ios->bus_width == MMC_BUS_WIDTH_4)
1293 pwr &= ~MCI_ST_DATA74DIREN;
1294 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1295 pwr &= (~MCI_ST_DATA74DIREN &
1296 ~MCI_ST_DATA31DIREN &
1297 ~MCI_ST_DATA2DIREN);
1300 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1301 if (host->hw_designer != AMBA_VENDOR_ST)
1302 pwr |= MCI_ROD;
1303 else {
1305 * The ST Micro variant use the ROD bit for something
1306 * else and only has OD (Open Drain).
1308 pwr |= MCI_OD;
1313 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1314 * gating the clock, the MCI_PWR_ON bit is cleared.
1316 if (!ios->clock && variant->pwrreg_clkgate)
1317 pwr &= ~MCI_PWR_ON;
1319 spin_lock_irqsave(&host->lock, flags);
1321 mmci_set_clkreg(host, ios->clock);
1322 mmci_write_pwrreg(host, pwr);
1323 mmci_reg_delay(host);
1325 spin_unlock_irqrestore(&host->lock, flags);
1327 pm_runtime_mark_last_busy(mmc_dev(mmc));
1328 pm_runtime_put_autosuspend(mmc_dev(mmc));
1331 static int mmci_get_cd(struct mmc_host *mmc)
1333 struct mmci_host *host = mmc_priv(mmc);
1334 struct mmci_platform_data *plat = host->plat;
1335 unsigned int status = mmc_gpio_get_cd(mmc);
1337 if (status == -ENOSYS) {
1338 if (!plat->status)
1339 return 1; /* Assume always present */
1341 status = plat->status(mmc_dev(host->mmc));
1343 return status;
1346 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1348 int ret = 0;
1350 if (!IS_ERR(mmc->supply.vqmmc)) {
1352 pm_runtime_get_sync(mmc_dev(mmc));
1354 switch (ios->signal_voltage) {
1355 case MMC_SIGNAL_VOLTAGE_330:
1356 ret = regulator_set_voltage(mmc->supply.vqmmc,
1357 2700000, 3600000);
1358 break;
1359 case MMC_SIGNAL_VOLTAGE_180:
1360 ret = regulator_set_voltage(mmc->supply.vqmmc,
1361 1700000, 1950000);
1362 break;
1363 case MMC_SIGNAL_VOLTAGE_120:
1364 ret = regulator_set_voltage(mmc->supply.vqmmc,
1365 1100000, 1300000);
1366 break;
1369 if (ret)
1370 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1372 pm_runtime_mark_last_busy(mmc_dev(mmc));
1373 pm_runtime_put_autosuspend(mmc_dev(mmc));
1376 return ret;
1379 static struct mmc_host_ops mmci_ops = {
1380 .request = mmci_request,
1381 .pre_req = mmci_pre_request,
1382 .post_req = mmci_post_request,
1383 .set_ios = mmci_set_ios,
1384 .get_ro = mmc_gpio_get_ro,
1385 .get_cd = mmci_get_cd,
1386 .start_signal_voltage_switch = mmci_sig_volt_switch,
1389 #ifdef CONFIG_OF
1390 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1391 struct mmci_platform_data *pdata)
1393 int bus_width = 0;
1395 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1396 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1398 if (of_get_property(np, "cd-inverted", NULL))
1399 pdata->cd_invert = true;
1400 else
1401 pdata->cd_invert = false;
1403 of_property_read_u32(np, "max-frequency", &pdata->f_max);
1404 if (!pdata->f_max)
1405 pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1407 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1408 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1409 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1410 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1412 of_property_read_u32(np, "bus-width", &bus_width);
1413 switch (bus_width) {
1414 case 0 :
1415 /* No bus-width supplied. */
1416 break;
1417 case 4 :
1418 pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1419 break;
1420 case 8 :
1421 pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1422 break;
1423 default :
1424 pr_warn("%s: Unsupported bus width\n", np->full_name);
1427 #else
1428 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1429 struct mmci_platform_data *pdata)
1431 return;
1433 #endif
1435 static int mmci_probe(struct amba_device *dev,
1436 const struct amba_id *id)
1438 struct mmci_platform_data *plat = dev->dev.platform_data;
1439 struct device_node *np = dev->dev.of_node;
1440 struct variant_data *variant = id->data;
1441 struct mmci_host *host;
1442 struct mmc_host *mmc;
1443 int ret;
1445 /* Must have platform data or Device Tree. */
1446 if (!plat && !np) {
1447 dev_err(&dev->dev, "No plat data or DT found\n");
1448 return -EINVAL;
1451 if (!plat) {
1452 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1453 if (!plat)
1454 return -ENOMEM;
1457 if (np)
1458 mmci_dt_populate_generic_pdata(np, plat);
1460 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1461 if (!mmc)
1462 return -ENOMEM;
1464 host = mmc_priv(mmc);
1465 host->mmc = mmc;
1467 host->hw_designer = amba_manf(dev);
1468 host->hw_revision = amba_rev(dev);
1469 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1470 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1472 host->clk = devm_clk_get(&dev->dev, NULL);
1473 if (IS_ERR(host->clk)) {
1474 ret = PTR_ERR(host->clk);
1475 goto host_free;
1478 ret = clk_prepare_enable(host->clk);
1479 if (ret)
1480 goto host_free;
1482 host->plat = plat;
1483 host->variant = variant;
1484 host->mclk = clk_get_rate(host->clk);
1486 * According to the spec, mclk is max 100 MHz,
1487 * so we try to adjust the clock down to this,
1488 * (if possible).
1490 if (host->mclk > 100000000) {
1491 ret = clk_set_rate(host->clk, 100000000);
1492 if (ret < 0)
1493 goto clk_disable;
1494 host->mclk = clk_get_rate(host->clk);
1495 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1496 host->mclk);
1499 host->phybase = dev->res.start;
1500 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1501 if (IS_ERR(host->base)) {
1502 ret = PTR_ERR(host->base);
1503 goto clk_disable;
1507 * The ARM and ST versions of the block have slightly different
1508 * clock divider equations which means that the minimum divider
1509 * differs too.
1511 if (variant->st_clkdiv)
1512 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1513 else
1514 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1516 * If the platform data supplies a maximum operating
1517 * frequency, this takes precedence. Else, we fall back
1518 * to using the module parameter, which has a (low)
1519 * default value in case it is not specified. Either
1520 * value must not exceed the clock rate into the block,
1521 * of course.
1523 if (plat->f_max)
1524 mmc->f_max = min(host->mclk, plat->f_max);
1525 else
1526 mmc->f_max = min(host->mclk, fmax);
1527 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1529 /* Get regulators and the supported OCR mask */
1530 mmc_regulator_get_supply(mmc);
1531 if (!mmc->ocr_avail)
1532 mmc->ocr_avail = plat->ocr_mask;
1533 else if (plat->ocr_mask)
1534 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1536 mmc->caps = plat->capabilities;
1537 mmc->caps2 = plat->capabilities2;
1538 if (!plat->cd_invert)
1539 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1540 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1542 if (variant->busy_detect) {
1543 mmci_ops.card_busy = mmci_card_busy;
1544 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1545 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1546 mmc->max_busy_timeout = 0;
1549 mmc->ops = &mmci_ops;
1551 /* We support these PM capabilities. */
1552 mmc->pm_caps = MMC_PM_KEEP_POWER;
1555 * We can do SGIO
1557 mmc->max_segs = NR_SG;
1560 * Since only a certain number of bits are valid in the data length
1561 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1562 * single request.
1564 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1567 * Set the maximum segment size. Since we aren't doing DMA
1568 * (yet) we are only limited by the data length register.
1570 mmc->max_seg_size = mmc->max_req_size;
1573 * Block size can be up to 2048 bytes, but must be a power of two.
1575 mmc->max_blk_size = 1 << 11;
1578 * Limit the number of blocks transferred so that we don't overflow
1579 * the maximum request size.
1581 mmc->max_blk_count = mmc->max_req_size >> 11;
1583 spin_lock_init(&host->lock);
1585 writel(0, host->base + MMCIMASK0);
1586 writel(0, host->base + MMCIMASK1);
1587 writel(0xfff, host->base + MMCICLEAR);
1589 if (plat->gpio_cd == -EPROBE_DEFER) {
1590 ret = -EPROBE_DEFER;
1591 goto clk_disable;
1593 if (gpio_is_valid(plat->gpio_cd)) {
1594 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1595 if (ret)
1596 goto clk_disable;
1598 if (plat->gpio_wp == -EPROBE_DEFER) {
1599 ret = -EPROBE_DEFER;
1600 goto clk_disable;
1602 if (gpio_is_valid(plat->gpio_wp)) {
1603 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1604 if (ret)
1605 goto clk_disable;
1608 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1609 DRIVER_NAME " (cmd)", host);
1610 if (ret)
1611 goto clk_disable;
1613 if (!dev->irq[1])
1614 host->singleirq = true;
1615 else {
1616 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1617 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1618 if (ret)
1619 goto clk_disable;
1622 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1624 amba_set_drvdata(dev, mmc);
1626 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1627 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1628 amba_rev(dev), (unsigned long long)dev->res.start,
1629 dev->irq[0], dev->irq[1]);
1631 mmci_dma_setup(host);
1633 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1634 pm_runtime_use_autosuspend(&dev->dev);
1635 pm_runtime_put(&dev->dev);
1637 mmc_add_host(mmc);
1639 return 0;
1641 clk_disable:
1642 clk_disable_unprepare(host->clk);
1643 host_free:
1644 mmc_free_host(mmc);
1645 return ret;
1648 static int mmci_remove(struct amba_device *dev)
1650 struct mmc_host *mmc = amba_get_drvdata(dev);
1652 if (mmc) {
1653 struct mmci_host *host = mmc_priv(mmc);
1656 * Undo pm_runtime_put() in probe. We use the _sync
1657 * version here so that we can access the primecell.
1659 pm_runtime_get_sync(&dev->dev);
1661 mmc_remove_host(mmc);
1663 writel(0, host->base + MMCIMASK0);
1664 writel(0, host->base + MMCIMASK1);
1666 writel(0, host->base + MMCICOMMAND);
1667 writel(0, host->base + MMCIDATACTRL);
1669 mmci_dma_release(host);
1670 clk_disable_unprepare(host->clk);
1671 mmc_free_host(mmc);
1674 return 0;
1677 #ifdef CONFIG_PM
1678 static void mmci_save(struct mmci_host *host)
1680 unsigned long flags;
1682 spin_lock_irqsave(&host->lock, flags);
1684 writel(0, host->base + MMCIMASK0);
1685 if (host->variant->pwrreg_nopower) {
1686 writel(0, host->base + MMCIDATACTRL);
1687 writel(0, host->base + MMCIPOWER);
1688 writel(0, host->base + MMCICLOCK);
1690 mmci_reg_delay(host);
1692 spin_unlock_irqrestore(&host->lock, flags);
1695 static void mmci_restore(struct mmci_host *host)
1697 unsigned long flags;
1699 spin_lock_irqsave(&host->lock, flags);
1701 if (host->variant->pwrreg_nopower) {
1702 writel(host->clk_reg, host->base + MMCICLOCK);
1703 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1704 writel(host->pwr_reg, host->base + MMCIPOWER);
1706 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1707 mmci_reg_delay(host);
1709 spin_unlock_irqrestore(&host->lock, flags);
1712 static int mmci_runtime_suspend(struct device *dev)
1714 struct amba_device *adev = to_amba_device(dev);
1715 struct mmc_host *mmc = amba_get_drvdata(adev);
1717 if (mmc) {
1718 struct mmci_host *host = mmc_priv(mmc);
1719 pinctrl_pm_select_sleep_state(dev);
1720 mmci_save(host);
1721 clk_disable_unprepare(host->clk);
1724 return 0;
1727 static int mmci_runtime_resume(struct device *dev)
1729 struct amba_device *adev = to_amba_device(dev);
1730 struct mmc_host *mmc = amba_get_drvdata(adev);
1732 if (mmc) {
1733 struct mmci_host *host = mmc_priv(mmc);
1734 clk_prepare_enable(host->clk);
1735 mmci_restore(host);
1736 pinctrl_pm_select_default_state(dev);
1739 return 0;
1741 #endif
1743 static const struct dev_pm_ops mmci_dev_pm_ops = {
1744 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1745 pm_runtime_force_resume)
1746 SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1749 static struct amba_id mmci_ids[] = {
1751 .id = 0x00041180,
1752 .mask = 0xff0fffff,
1753 .data = &variant_arm,
1756 .id = 0x01041180,
1757 .mask = 0xff0fffff,
1758 .data = &variant_arm_extended_fifo,
1761 .id = 0x02041180,
1762 .mask = 0xff0fffff,
1763 .data = &variant_arm_extended_fifo_hwfc,
1766 .id = 0x00041181,
1767 .mask = 0x000fffff,
1768 .data = &variant_arm,
1770 /* ST Micro variants */
1772 .id = 0x00180180,
1773 .mask = 0x00ffffff,
1774 .data = &variant_u300,
1777 .id = 0x10180180,
1778 .mask = 0xf0ffffff,
1779 .data = &variant_nomadik,
1782 .id = 0x00280180,
1783 .mask = 0x00ffffff,
1784 .data = &variant_u300,
1787 .id = 0x00480180,
1788 .mask = 0xf0ffffff,
1789 .data = &variant_ux500,
1792 .id = 0x10480180,
1793 .mask = 0xf0ffffff,
1794 .data = &variant_ux500v2,
1796 { 0, 0 },
1799 MODULE_DEVICE_TABLE(amba, mmci_ids);
1801 static struct amba_driver mmci_driver = {
1802 .drv = {
1803 .name = DRIVER_NAME,
1804 .pm = &mmci_dev_pm_ops,
1806 .probe = mmci_probe,
1807 .remove = mmci_remove,
1808 .id_table = mmci_ids,
1811 module_amba_driver(mmci_driver);
1813 module_param(fmax, uint, 0444);
1815 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1816 MODULE_LICENSE("GPL");