ARM: mx31: Replace clk_register_clkdev with clock DT lookup
[linux-2.6/btrfs-unstable.git] / net / ceph / messenger.c
blob4d111fd2b4923f7fe7cd287de00029b19c61f274
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
81 * connection states
83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
91 * ceph_connection flag bits
93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
94 * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
110 * When skipping (ignoring) a block of input we read it into a "skip
111 * buffer," which is this many bytes in size.
113 #define SKIP_BUF_SIZE 1024
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
120 * Nicely render a sockaddr as a string. An array of formatted
121 * strings is used, to approximate reentrancy.
123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
131 static struct page *zero_page; /* used in certain error cases */
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
135 int i;
136 char *s;
137 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
140 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 s = addr_str[i];
143 switch (ss->ss_family) {
144 case AF_INET:
145 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 ntohs(in4->sin_port));
147 break;
149 case AF_INET6:
150 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 ntohs(in6->sin6_port));
152 break;
154 default:
155 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 ss->ss_family);
159 return s;
161 EXPORT_SYMBOL(ceph_pr_addr);
163 static void encode_my_addr(struct ceph_messenger *msgr)
165 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 ceph_encode_addr(&msgr->my_enc_addr);
170 * work queue for all reading and writing to/from the socket.
172 static struct workqueue_struct *ceph_msgr_wq;
174 void _ceph_msgr_exit(void)
176 if (ceph_msgr_wq) {
177 destroy_workqueue(ceph_msgr_wq);
178 ceph_msgr_wq = NULL;
181 BUG_ON(zero_page == NULL);
182 kunmap(zero_page);
183 page_cache_release(zero_page);
184 zero_page = NULL;
187 int ceph_msgr_init(void)
189 BUG_ON(zero_page != NULL);
190 zero_page = ZERO_PAGE(0);
191 page_cache_get(zero_page);
193 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 if (ceph_msgr_wq)
195 return 0;
197 pr_err("msgr_init failed to create workqueue\n");
198 _ceph_msgr_exit();
200 return -ENOMEM;
202 EXPORT_SYMBOL(ceph_msgr_init);
204 void ceph_msgr_exit(void)
206 BUG_ON(ceph_msgr_wq == NULL);
208 _ceph_msgr_exit();
210 EXPORT_SYMBOL(ceph_msgr_exit);
212 void ceph_msgr_flush(void)
214 flush_workqueue(ceph_msgr_wq);
216 EXPORT_SYMBOL(ceph_msgr_flush);
218 /* Connection socket state transition functions */
220 static void con_sock_state_init(struct ceph_connection *con)
222 int old_state;
224 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 printk("%s: unexpected old state %d\n", __func__, old_state);
227 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 CON_SOCK_STATE_CLOSED);
231 static void con_sock_state_connecting(struct ceph_connection *con)
233 int old_state;
235 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 printk("%s: unexpected old state %d\n", __func__, old_state);
238 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 CON_SOCK_STATE_CONNECTING);
242 static void con_sock_state_connected(struct ceph_connection *con)
244 int old_state;
246 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 printk("%s: unexpected old state %d\n", __func__, old_state);
249 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 CON_SOCK_STATE_CONNECTED);
253 static void con_sock_state_closing(struct ceph_connection *con)
255 int old_state;
257 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 old_state != CON_SOCK_STATE_CONNECTED &&
260 old_state != CON_SOCK_STATE_CLOSING))
261 printk("%s: unexpected old state %d\n", __func__, old_state);
262 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 CON_SOCK_STATE_CLOSING);
266 static void con_sock_state_closed(struct ceph_connection *con)
268 int old_state;
270 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 old_state != CON_SOCK_STATE_CLOSING &&
273 old_state != CON_SOCK_STATE_CONNECTING &&
274 old_state != CON_SOCK_STATE_CLOSED))
275 printk("%s: unexpected old state %d\n", __func__, old_state);
276 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 CON_SOCK_STATE_CLOSED);
281 * socket callback functions
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
287 struct ceph_connection *con = sk->sk_user_data;
288 if (atomic_read(&con->msgr->stopping)) {
289 return;
292 if (sk->sk_state != TCP_CLOSE_WAIT) {
293 dout("%s on %p state = %lu, queueing work\n", __func__,
294 con, con->state);
295 queue_con(con);
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
302 struct ceph_connection *con = sk->sk_user_data;
304 /* only queue to workqueue if there is data we want to write,
305 * and there is sufficient space in the socket buffer to accept
306 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
307 * doesn't get called again until try_write() fills the socket
308 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 * and net/core/stream.c:sk_stream_write_space().
311 if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 dout("%s %p queueing write work\n", __func__, con);
314 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 queue_con(con);
317 } else {
318 dout("%s %p nothing to write\n", __func__, con);
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
325 struct ceph_connection *con = sk->sk_user_data;
327 dout("%s %p state = %lu sk_state = %u\n", __func__,
328 con, con->state, sk->sk_state);
330 switch (sk->sk_state) {
331 case TCP_CLOSE:
332 dout("%s TCP_CLOSE\n", __func__);
333 case TCP_CLOSE_WAIT:
334 dout("%s TCP_CLOSE_WAIT\n", __func__);
335 con_sock_state_closing(con);
336 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 queue_con(con);
338 break;
339 case TCP_ESTABLISHED:
340 dout("%s TCP_ESTABLISHED\n", __func__);
341 con_sock_state_connected(con);
342 queue_con(con);
343 break;
344 default: /* Everything else is uninteresting */
345 break;
350 * set up socket callbacks
352 static void set_sock_callbacks(struct socket *sock,
353 struct ceph_connection *con)
355 struct sock *sk = sock->sk;
356 sk->sk_user_data = con;
357 sk->sk_data_ready = ceph_sock_data_ready;
358 sk->sk_write_space = ceph_sock_write_space;
359 sk->sk_state_change = ceph_sock_state_change;
364 * socket helpers
368 * initiate connection to a remote socket.
370 static int ceph_tcp_connect(struct ceph_connection *con)
372 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 struct socket *sock;
374 int ret;
376 BUG_ON(con->sock);
377 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 IPPROTO_TCP, &sock);
379 if (ret)
380 return ret;
381 sock->sk->sk_allocation = GFP_NOFS;
383 #ifdef CONFIG_LOCKDEP
384 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
387 set_sock_callbacks(sock, con);
389 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
391 con_sock_state_connecting(con);
392 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 O_NONBLOCK);
394 if (ret == -EINPROGRESS) {
395 dout("connect %s EINPROGRESS sk_state = %u\n",
396 ceph_pr_addr(&con->peer_addr.in_addr),
397 sock->sk->sk_state);
398 } else if (ret < 0) {
399 pr_err("connect %s error %d\n",
400 ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 sock_release(sock);
402 con->error_msg = "connect error";
404 return ret;
406 con->sock = sock;
407 return 0;
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
412 struct kvec iov = {buf, len};
413 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 int r;
416 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 if (r == -EAGAIN)
418 r = 0;
419 return r;
423 * write something. @more is true if caller will be sending more data
424 * shortly.
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 size_t kvlen, size_t len, int more)
429 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 int r;
432 if (more)
433 msg.msg_flags |= MSG_MORE;
434 else
435 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
437 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 if (r == -EAGAIN)
439 r = 0;
440 return r;
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 int offset, size_t size, int more)
446 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 int ret;
449 ret = kernel_sendpage(sock, page, offset, size, flags);
450 if (ret == -EAGAIN)
451 ret = 0;
453 return ret;
458 * Shutdown/close the socket for the given connection.
460 static int con_close_socket(struct ceph_connection *con)
462 int rc = 0;
464 dout("con_close_socket on %p sock %p\n", con, con->sock);
465 if (con->sock) {
466 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 sock_release(con->sock);
468 con->sock = NULL;
472 * Forcibly clear the SOCK_CLOSED flag. It gets set
473 * independent of the connection mutex, and we could have
474 * received a socket close event before we had the chance to
475 * shut the socket down.
477 clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
479 con_sock_state_closed(con);
480 return rc;
484 * Reset a connection. Discard all incoming and outgoing messages
485 * and clear *_seq state.
487 static void ceph_msg_remove(struct ceph_msg *msg)
489 list_del_init(&msg->list_head);
490 BUG_ON(msg->con == NULL);
491 msg->con->ops->put(msg->con);
492 msg->con = NULL;
494 ceph_msg_put(msg);
496 static void ceph_msg_remove_list(struct list_head *head)
498 while (!list_empty(head)) {
499 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 list_head);
501 ceph_msg_remove(msg);
505 static void reset_connection(struct ceph_connection *con)
507 /* reset connection, out_queue, msg_ and connect_seq */
508 /* discard existing out_queue and msg_seq */
509 ceph_msg_remove_list(&con->out_queue);
510 ceph_msg_remove_list(&con->out_sent);
512 if (con->in_msg) {
513 BUG_ON(con->in_msg->con != con);
514 con->in_msg->con = NULL;
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 con->ops->put(con);
520 con->connect_seq = 0;
521 con->out_seq = 0;
522 if (con->out_msg) {
523 ceph_msg_put(con->out_msg);
524 con->out_msg = NULL;
526 con->in_seq = 0;
527 con->in_seq_acked = 0;
531 * mark a peer down. drop any open connections.
533 void ceph_con_close(struct ceph_connection *con)
535 mutex_lock(&con->mutex);
536 dout("con_close %p peer %s\n", con,
537 ceph_pr_addr(&con->peer_addr.in_addr));
538 con->state = CON_STATE_CLOSED;
540 clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544 clear_bit(CON_FLAG_BACKOFF, &con->flags);
546 reset_connection(con);
547 con->peer_global_seq = 0;
548 cancel_delayed_work(&con->work);
549 con_close_socket(con);
550 mutex_unlock(&con->mutex);
552 EXPORT_SYMBOL(ceph_con_close);
555 * Reopen a closed connection, with a new peer address.
557 void ceph_con_open(struct ceph_connection *con,
558 __u8 entity_type, __u64 entity_num,
559 struct ceph_entity_addr *addr)
561 mutex_lock(&con->mutex);
562 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
564 BUG_ON(con->state != CON_STATE_CLOSED);
565 con->state = CON_STATE_PREOPEN;
567 con->peer_name.type = (__u8) entity_type;
568 con->peer_name.num = cpu_to_le64(entity_num);
570 memcpy(&con->peer_addr, addr, sizeof(*addr));
571 con->delay = 0; /* reset backoff memory */
572 mutex_unlock(&con->mutex);
573 queue_con(con);
575 EXPORT_SYMBOL(ceph_con_open);
578 * return true if this connection ever successfully opened
580 bool ceph_con_opened(struct ceph_connection *con)
582 return con->connect_seq > 0;
586 * initialize a new connection.
588 void ceph_con_init(struct ceph_connection *con, void *private,
589 const struct ceph_connection_operations *ops,
590 struct ceph_messenger *msgr)
592 dout("con_init %p\n", con);
593 memset(con, 0, sizeof(*con));
594 con->private = private;
595 con->ops = ops;
596 con->msgr = msgr;
598 con_sock_state_init(con);
600 mutex_init(&con->mutex);
601 INIT_LIST_HEAD(&con->out_queue);
602 INIT_LIST_HEAD(&con->out_sent);
603 INIT_DELAYED_WORK(&con->work, con_work);
605 con->state = CON_STATE_CLOSED;
607 EXPORT_SYMBOL(ceph_con_init);
611 * We maintain a global counter to order connection attempts. Get
612 * a unique seq greater than @gt.
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
616 u32 ret;
618 spin_lock(&msgr->global_seq_lock);
619 if (msgr->global_seq < gt)
620 msgr->global_seq = gt;
621 ret = ++msgr->global_seq;
622 spin_unlock(&msgr->global_seq_lock);
623 return ret;
626 static void con_out_kvec_reset(struct ceph_connection *con)
628 con->out_kvec_left = 0;
629 con->out_kvec_bytes = 0;
630 con->out_kvec_cur = &con->out_kvec[0];
633 static void con_out_kvec_add(struct ceph_connection *con,
634 size_t size, void *data)
636 int index;
638 index = con->out_kvec_left;
639 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
641 con->out_kvec[index].iov_len = size;
642 con->out_kvec[index].iov_base = data;
643 con->out_kvec_left++;
644 con->out_kvec_bytes += size;
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
650 if (!bio) {
651 *iter = NULL;
652 *seg = 0;
653 return;
655 *iter = bio;
656 *seg = bio->bi_idx;
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
661 if (*bio_iter == NULL)
662 return;
664 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
666 (*seg)++;
667 if (*seg == (*bio_iter)->bi_vcnt)
668 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
670 #endif
672 static void prepare_write_message_data(struct ceph_connection *con)
674 struct ceph_msg *msg = con->out_msg;
676 BUG_ON(!msg);
677 BUG_ON(!msg->hdr.data_len);
679 /* initialize page iterator */
680 con->out_msg_pos.page = 0;
681 if (msg->pages)
682 con->out_msg_pos.page_pos = msg->page_alignment;
683 else
684 con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686 if (msg->bio)
687 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689 con->out_msg_pos.data_pos = 0;
690 con->out_msg_pos.did_page_crc = false;
691 con->out_more = 1; /* data + footer will follow */
695 * Prepare footer for currently outgoing message, and finish things
696 * off. Assumes out_kvec* are already valid.. we just add on to the end.
698 static void prepare_write_message_footer(struct ceph_connection *con)
700 struct ceph_msg *m = con->out_msg;
701 int v = con->out_kvec_left;
703 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
705 dout("prepare_write_message_footer %p\n", con);
706 con->out_kvec_is_msg = true;
707 con->out_kvec[v].iov_base = &m->footer;
708 con->out_kvec[v].iov_len = sizeof(m->footer);
709 con->out_kvec_bytes += sizeof(m->footer);
710 con->out_kvec_left++;
711 con->out_more = m->more_to_follow;
712 con->out_msg_done = true;
716 * Prepare headers for the next outgoing message.
718 static void prepare_write_message(struct ceph_connection *con)
720 struct ceph_msg *m;
721 u32 crc;
723 con_out_kvec_reset(con);
724 con->out_kvec_is_msg = true;
725 con->out_msg_done = false;
727 /* Sneak an ack in there first? If we can get it into the same
728 * TCP packet that's a good thing. */
729 if (con->in_seq > con->in_seq_acked) {
730 con->in_seq_acked = con->in_seq;
731 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733 con_out_kvec_add(con, sizeof (con->out_temp_ack),
734 &con->out_temp_ack);
737 BUG_ON(list_empty(&con->out_queue));
738 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739 con->out_msg = m;
740 BUG_ON(m->con != con);
742 /* put message on sent list */
743 ceph_msg_get(m);
744 list_move_tail(&m->list_head, &con->out_sent);
747 * only assign outgoing seq # if we haven't sent this message
748 * yet. if it is requeued, resend with it's original seq.
750 if (m->needs_out_seq) {
751 m->hdr.seq = cpu_to_le64(++con->out_seq);
752 m->needs_out_seq = false;
754 #ifdef CONFIG_BLOCK
755 else
756 m->bio_iter = NULL;
757 #endif
759 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760 m, con->out_seq, le16_to_cpu(m->hdr.type),
761 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762 le32_to_cpu(m->hdr.data_len),
763 m->nr_pages);
764 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
766 /* tag + hdr + front + middle */
767 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
771 if (m->middle)
772 con_out_kvec_add(con, m->middle->vec.iov_len,
773 m->middle->vec.iov_base);
775 /* fill in crc (except data pages), footer */
776 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777 con->out_msg->hdr.crc = cpu_to_le32(crc);
778 con->out_msg->footer.flags = 0;
780 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781 con->out_msg->footer.front_crc = cpu_to_le32(crc);
782 if (m->middle) {
783 crc = crc32c(0, m->middle->vec.iov_base,
784 m->middle->vec.iov_len);
785 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786 } else
787 con->out_msg->footer.middle_crc = 0;
788 dout("%s front_crc %u middle_crc %u\n", __func__,
789 le32_to_cpu(con->out_msg->footer.front_crc),
790 le32_to_cpu(con->out_msg->footer.middle_crc));
792 /* is there a data payload? */
793 con->out_msg->footer.data_crc = 0;
794 if (m->hdr.data_len)
795 prepare_write_message_data(con);
796 else
797 /* no, queue up footer too and be done */
798 prepare_write_message_footer(con);
800 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
804 * Prepare an ack.
806 static void prepare_write_ack(struct ceph_connection *con)
808 dout("prepare_write_ack %p %llu -> %llu\n", con,
809 con->in_seq_acked, con->in_seq);
810 con->in_seq_acked = con->in_seq;
812 con_out_kvec_reset(con);
814 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
816 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817 con_out_kvec_add(con, sizeof (con->out_temp_ack),
818 &con->out_temp_ack);
820 con->out_more = 1; /* more will follow.. eventually.. */
821 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
825 * Prepare to write keepalive byte.
827 static void prepare_write_keepalive(struct ceph_connection *con)
829 dout("prepare_write_keepalive %p\n", con);
830 con_out_kvec_reset(con);
831 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
836 * Connection negotiation.
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840 int *auth_proto)
842 struct ceph_auth_handshake *auth;
844 if (!con->ops->get_authorizer) {
845 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846 con->out_connect.authorizer_len = 0;
847 return NULL;
850 /* Can't hold the mutex while getting authorizer */
851 mutex_unlock(&con->mutex);
852 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853 mutex_lock(&con->mutex);
855 if (IS_ERR(auth))
856 return auth;
857 if (con->state != CON_STATE_NEGOTIATING)
858 return ERR_PTR(-EAGAIN);
860 con->auth_reply_buf = auth->authorizer_reply_buf;
861 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862 return auth;
866 * We connected to a peer and are saying hello.
868 static void prepare_write_banner(struct ceph_connection *con)
870 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872 &con->msgr->my_enc_addr);
874 con->out_more = 0;
875 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
878 static int prepare_write_connect(struct ceph_connection *con)
880 unsigned int global_seq = get_global_seq(con->msgr, 0);
881 int proto;
882 int auth_proto;
883 struct ceph_auth_handshake *auth;
885 switch (con->peer_name.type) {
886 case CEPH_ENTITY_TYPE_MON:
887 proto = CEPH_MONC_PROTOCOL;
888 break;
889 case CEPH_ENTITY_TYPE_OSD:
890 proto = CEPH_OSDC_PROTOCOL;
891 break;
892 case CEPH_ENTITY_TYPE_MDS:
893 proto = CEPH_MDSC_PROTOCOL;
894 break;
895 default:
896 BUG();
899 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900 con->connect_seq, global_seq, proto);
902 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905 con->out_connect.global_seq = cpu_to_le32(global_seq);
906 con->out_connect.protocol_version = cpu_to_le32(proto);
907 con->out_connect.flags = 0;
909 auth_proto = CEPH_AUTH_UNKNOWN;
910 auth = get_connect_authorizer(con, &auth_proto);
911 if (IS_ERR(auth))
912 return PTR_ERR(auth);
914 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915 con->out_connect.authorizer_len = auth ?
916 cpu_to_le32(auth->authorizer_buf_len) : 0;
918 con_out_kvec_add(con, sizeof (con->out_connect),
919 &con->out_connect);
920 if (auth && auth->authorizer_buf_len)
921 con_out_kvec_add(con, auth->authorizer_buf_len,
922 auth->authorizer_buf);
924 con->out_more = 0;
925 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
927 return 0;
931 * write as much of pending kvecs to the socket as we can.
932 * 1 -> done
933 * 0 -> socket full, but more to do
934 * <0 -> error
936 static int write_partial_kvec(struct ceph_connection *con)
938 int ret;
940 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
941 while (con->out_kvec_bytes > 0) {
942 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
943 con->out_kvec_left, con->out_kvec_bytes,
944 con->out_more);
945 if (ret <= 0)
946 goto out;
947 con->out_kvec_bytes -= ret;
948 if (con->out_kvec_bytes == 0)
949 break; /* done */
951 /* account for full iov entries consumed */
952 while (ret >= con->out_kvec_cur->iov_len) {
953 BUG_ON(!con->out_kvec_left);
954 ret -= con->out_kvec_cur->iov_len;
955 con->out_kvec_cur++;
956 con->out_kvec_left--;
958 /* and for a partially-consumed entry */
959 if (ret) {
960 con->out_kvec_cur->iov_len -= ret;
961 con->out_kvec_cur->iov_base += ret;
964 con->out_kvec_left = 0;
965 con->out_kvec_is_msg = false;
966 ret = 1;
967 out:
968 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
969 con->out_kvec_bytes, con->out_kvec_left, ret);
970 return ret; /* done! */
973 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
974 size_t len, size_t sent, bool in_trail)
976 struct ceph_msg *msg = con->out_msg;
978 BUG_ON(!msg);
979 BUG_ON(!sent);
981 con->out_msg_pos.data_pos += sent;
982 con->out_msg_pos.page_pos += sent;
983 if (sent < len)
984 return;
986 BUG_ON(sent != len);
987 con->out_msg_pos.page_pos = 0;
988 con->out_msg_pos.page++;
989 con->out_msg_pos.did_page_crc = false;
990 if (in_trail)
991 list_move_tail(&page->lru,
992 &msg->trail->head);
993 else if (msg->pagelist)
994 list_move_tail(&page->lru,
995 &msg->pagelist->head);
996 #ifdef CONFIG_BLOCK
997 else if (msg->bio)
998 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
999 #endif
1003 * Write as much message data payload as we can. If we finish, queue
1004 * up the footer.
1005 * 1 -> done, footer is now queued in out_kvec[].
1006 * 0 -> socket full, but more to do
1007 * <0 -> error
1009 static int write_partial_msg_pages(struct ceph_connection *con)
1011 struct ceph_msg *msg = con->out_msg;
1012 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1013 size_t len;
1014 bool do_datacrc = !con->msgr->nocrc;
1015 int ret;
1016 int total_max_write;
1017 bool in_trail = false;
1018 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1019 const size_t trail_off = data_len - trail_len;
1021 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1022 con, msg, con->out_msg_pos.page, msg->nr_pages,
1023 con->out_msg_pos.page_pos);
1026 * Iterate through each page that contains data to be
1027 * written, and send as much as possible for each.
1029 * If we are calculating the data crc (the default), we will
1030 * need to map the page. If we have no pages, they have
1031 * been revoked, so use the zero page.
1033 while (data_len > con->out_msg_pos.data_pos) {
1034 struct page *page = NULL;
1035 int max_write = PAGE_SIZE;
1036 int bio_offset = 0;
1038 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1039 if (!in_trail)
1040 total_max_write = trail_off - con->out_msg_pos.data_pos;
1042 if (in_trail) {
1043 total_max_write = data_len - con->out_msg_pos.data_pos;
1045 page = list_first_entry(&msg->trail->head,
1046 struct page, lru);
1047 } else if (msg->pages) {
1048 page = msg->pages[con->out_msg_pos.page];
1049 } else if (msg->pagelist) {
1050 page = list_first_entry(&msg->pagelist->head,
1051 struct page, lru);
1052 #ifdef CONFIG_BLOCK
1053 } else if (msg->bio) {
1054 struct bio_vec *bv;
1056 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1057 page = bv->bv_page;
1058 bio_offset = bv->bv_offset;
1059 max_write = bv->bv_len;
1060 #endif
1061 } else {
1062 page = zero_page;
1064 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1065 total_max_write);
1067 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1068 void *base;
1069 u32 crc = le32_to_cpu(msg->footer.data_crc);
1070 char *kaddr;
1072 kaddr = kmap(page);
1073 BUG_ON(kaddr == NULL);
1074 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1075 crc = crc32c(crc, base, len);
1076 kunmap(page);
1077 msg->footer.data_crc = cpu_to_le32(crc);
1078 con->out_msg_pos.did_page_crc = true;
1080 ret = ceph_tcp_sendpage(con->sock, page,
1081 con->out_msg_pos.page_pos + bio_offset,
1082 len, 1);
1083 if (ret <= 0)
1084 goto out;
1086 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1089 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1091 /* prepare and queue up footer, too */
1092 if (!do_datacrc)
1093 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1094 con_out_kvec_reset(con);
1095 prepare_write_message_footer(con);
1096 ret = 1;
1097 out:
1098 return ret;
1102 * write some zeros
1104 static int write_partial_skip(struct ceph_connection *con)
1106 int ret;
1108 while (con->out_skip > 0) {
1109 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1111 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1112 if (ret <= 0)
1113 goto out;
1114 con->out_skip -= ret;
1116 ret = 1;
1117 out:
1118 return ret;
1122 * Prepare to read connection handshake, or an ack.
1124 static void prepare_read_banner(struct ceph_connection *con)
1126 dout("prepare_read_banner %p\n", con);
1127 con->in_base_pos = 0;
1130 static void prepare_read_connect(struct ceph_connection *con)
1132 dout("prepare_read_connect %p\n", con);
1133 con->in_base_pos = 0;
1136 static void prepare_read_ack(struct ceph_connection *con)
1138 dout("prepare_read_ack %p\n", con);
1139 con->in_base_pos = 0;
1142 static void prepare_read_tag(struct ceph_connection *con)
1144 dout("prepare_read_tag %p\n", con);
1145 con->in_base_pos = 0;
1146 con->in_tag = CEPH_MSGR_TAG_READY;
1150 * Prepare to read a message.
1152 static int prepare_read_message(struct ceph_connection *con)
1154 dout("prepare_read_message %p\n", con);
1155 BUG_ON(con->in_msg != NULL);
1156 con->in_base_pos = 0;
1157 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1158 return 0;
1162 static int read_partial(struct ceph_connection *con,
1163 int end, int size, void *object)
1165 while (con->in_base_pos < end) {
1166 int left = end - con->in_base_pos;
1167 int have = size - left;
1168 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1169 if (ret <= 0)
1170 return ret;
1171 con->in_base_pos += ret;
1173 return 1;
1178 * Read all or part of the connect-side handshake on a new connection
1180 static int read_partial_banner(struct ceph_connection *con)
1182 int size;
1183 int end;
1184 int ret;
1186 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1188 /* peer's banner */
1189 size = strlen(CEPH_BANNER);
1190 end = size;
1191 ret = read_partial(con, end, size, con->in_banner);
1192 if (ret <= 0)
1193 goto out;
1195 size = sizeof (con->actual_peer_addr);
1196 end += size;
1197 ret = read_partial(con, end, size, &con->actual_peer_addr);
1198 if (ret <= 0)
1199 goto out;
1201 size = sizeof (con->peer_addr_for_me);
1202 end += size;
1203 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1204 if (ret <= 0)
1205 goto out;
1207 out:
1208 return ret;
1211 static int read_partial_connect(struct ceph_connection *con)
1213 int size;
1214 int end;
1215 int ret;
1217 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1219 size = sizeof (con->in_reply);
1220 end = size;
1221 ret = read_partial(con, end, size, &con->in_reply);
1222 if (ret <= 0)
1223 goto out;
1225 size = le32_to_cpu(con->in_reply.authorizer_len);
1226 end += size;
1227 ret = read_partial(con, end, size, con->auth_reply_buf);
1228 if (ret <= 0)
1229 goto out;
1231 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1232 con, (int)con->in_reply.tag,
1233 le32_to_cpu(con->in_reply.connect_seq),
1234 le32_to_cpu(con->in_reply.global_seq));
1235 out:
1236 return ret;
1241 * Verify the hello banner looks okay.
1243 static int verify_hello(struct ceph_connection *con)
1245 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1246 pr_err("connect to %s got bad banner\n",
1247 ceph_pr_addr(&con->peer_addr.in_addr));
1248 con->error_msg = "protocol error, bad banner";
1249 return -1;
1251 return 0;
1254 static bool addr_is_blank(struct sockaddr_storage *ss)
1256 switch (ss->ss_family) {
1257 case AF_INET:
1258 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1259 case AF_INET6:
1260 return
1261 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1262 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1263 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1264 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1266 return false;
1269 static int addr_port(struct sockaddr_storage *ss)
1271 switch (ss->ss_family) {
1272 case AF_INET:
1273 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1274 case AF_INET6:
1275 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1277 return 0;
1280 static void addr_set_port(struct sockaddr_storage *ss, int p)
1282 switch (ss->ss_family) {
1283 case AF_INET:
1284 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1285 break;
1286 case AF_INET6:
1287 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1288 break;
1293 * Unlike other *_pton function semantics, zero indicates success.
1295 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1296 char delim, const char **ipend)
1298 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1299 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1301 memset(ss, 0, sizeof(*ss));
1303 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1304 ss->ss_family = AF_INET;
1305 return 0;
1308 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1309 ss->ss_family = AF_INET6;
1310 return 0;
1313 return -EINVAL;
1317 * Extract hostname string and resolve using kernel DNS facility.
1319 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1320 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1321 struct sockaddr_storage *ss, char delim, const char **ipend)
1323 const char *end, *delim_p;
1324 char *colon_p, *ip_addr = NULL;
1325 int ip_len, ret;
1328 * The end of the hostname occurs immediately preceding the delimiter or
1329 * the port marker (':') where the delimiter takes precedence.
1331 delim_p = memchr(name, delim, namelen);
1332 colon_p = memchr(name, ':', namelen);
1334 if (delim_p && colon_p)
1335 end = delim_p < colon_p ? delim_p : colon_p;
1336 else if (!delim_p && colon_p)
1337 end = colon_p;
1338 else {
1339 end = delim_p;
1340 if (!end) /* case: hostname:/ */
1341 end = name + namelen;
1344 if (end <= name)
1345 return -EINVAL;
1347 /* do dns_resolve upcall */
1348 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1349 if (ip_len > 0)
1350 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1351 else
1352 ret = -ESRCH;
1354 kfree(ip_addr);
1356 *ipend = end;
1358 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1359 ret, ret ? "failed" : ceph_pr_addr(ss));
1361 return ret;
1363 #else
1364 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1365 struct sockaddr_storage *ss, char delim, const char **ipend)
1367 return -EINVAL;
1369 #endif
1372 * Parse a server name (IP or hostname). If a valid IP address is not found
1373 * then try to extract a hostname to resolve using userspace DNS upcall.
1375 static int ceph_parse_server_name(const char *name, size_t namelen,
1376 struct sockaddr_storage *ss, char delim, const char **ipend)
1378 int ret;
1380 ret = ceph_pton(name, namelen, ss, delim, ipend);
1381 if (ret)
1382 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1384 return ret;
1388 * Parse an ip[:port] list into an addr array. Use the default
1389 * monitor port if a port isn't specified.
1391 int ceph_parse_ips(const char *c, const char *end,
1392 struct ceph_entity_addr *addr,
1393 int max_count, int *count)
1395 int i, ret = -EINVAL;
1396 const char *p = c;
1398 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1399 for (i = 0; i < max_count; i++) {
1400 const char *ipend;
1401 struct sockaddr_storage *ss = &addr[i].in_addr;
1402 int port;
1403 char delim = ',';
1405 if (*p == '[') {
1406 delim = ']';
1407 p++;
1410 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1411 if (ret)
1412 goto bad;
1413 ret = -EINVAL;
1415 p = ipend;
1417 if (delim == ']') {
1418 if (*p != ']') {
1419 dout("missing matching ']'\n");
1420 goto bad;
1422 p++;
1425 /* port? */
1426 if (p < end && *p == ':') {
1427 port = 0;
1428 p++;
1429 while (p < end && *p >= '0' && *p <= '9') {
1430 port = (port * 10) + (*p - '0');
1431 p++;
1433 if (port > 65535 || port == 0)
1434 goto bad;
1435 } else {
1436 port = CEPH_MON_PORT;
1439 addr_set_port(ss, port);
1441 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1443 if (p == end)
1444 break;
1445 if (*p != ',')
1446 goto bad;
1447 p++;
1450 if (p != end)
1451 goto bad;
1453 if (count)
1454 *count = i + 1;
1455 return 0;
1457 bad:
1458 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1459 return ret;
1461 EXPORT_SYMBOL(ceph_parse_ips);
1463 static int process_banner(struct ceph_connection *con)
1465 dout("process_banner on %p\n", con);
1467 if (verify_hello(con) < 0)
1468 return -1;
1470 ceph_decode_addr(&con->actual_peer_addr);
1471 ceph_decode_addr(&con->peer_addr_for_me);
1474 * Make sure the other end is who we wanted. note that the other
1475 * end may not yet know their ip address, so if it's 0.0.0.0, give
1476 * them the benefit of the doubt.
1478 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1479 sizeof(con->peer_addr)) != 0 &&
1480 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1481 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1482 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1483 ceph_pr_addr(&con->peer_addr.in_addr),
1484 (int)le32_to_cpu(con->peer_addr.nonce),
1485 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1486 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1487 con->error_msg = "wrong peer at address";
1488 return -1;
1492 * did we learn our address?
1494 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1495 int port = addr_port(&con->msgr->inst.addr.in_addr);
1497 memcpy(&con->msgr->inst.addr.in_addr,
1498 &con->peer_addr_for_me.in_addr,
1499 sizeof(con->peer_addr_for_me.in_addr));
1500 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1501 encode_my_addr(con->msgr);
1502 dout("process_banner learned my addr is %s\n",
1503 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1506 return 0;
1509 static void fail_protocol(struct ceph_connection *con)
1511 reset_connection(con);
1512 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1513 con->state = CON_STATE_CLOSED;
1516 static int process_connect(struct ceph_connection *con)
1518 u64 sup_feat = con->msgr->supported_features;
1519 u64 req_feat = con->msgr->required_features;
1520 u64 server_feat = le64_to_cpu(con->in_reply.features);
1521 int ret;
1523 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1525 switch (con->in_reply.tag) {
1526 case CEPH_MSGR_TAG_FEATURES:
1527 pr_err("%s%lld %s feature set mismatch,"
1528 " my %llx < server's %llx, missing %llx\n",
1529 ENTITY_NAME(con->peer_name),
1530 ceph_pr_addr(&con->peer_addr.in_addr),
1531 sup_feat, server_feat, server_feat & ~sup_feat);
1532 con->error_msg = "missing required protocol features";
1533 fail_protocol(con);
1534 return -1;
1536 case CEPH_MSGR_TAG_BADPROTOVER:
1537 pr_err("%s%lld %s protocol version mismatch,"
1538 " my %d != server's %d\n",
1539 ENTITY_NAME(con->peer_name),
1540 ceph_pr_addr(&con->peer_addr.in_addr),
1541 le32_to_cpu(con->out_connect.protocol_version),
1542 le32_to_cpu(con->in_reply.protocol_version));
1543 con->error_msg = "protocol version mismatch";
1544 fail_protocol(con);
1545 return -1;
1547 case CEPH_MSGR_TAG_BADAUTHORIZER:
1548 con->auth_retry++;
1549 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1550 con->auth_retry);
1551 if (con->auth_retry == 2) {
1552 con->error_msg = "connect authorization failure";
1553 return -1;
1555 con->auth_retry = 1;
1556 con_out_kvec_reset(con);
1557 ret = prepare_write_connect(con);
1558 if (ret < 0)
1559 return ret;
1560 prepare_read_connect(con);
1561 break;
1563 case CEPH_MSGR_TAG_RESETSESSION:
1565 * If we connected with a large connect_seq but the peer
1566 * has no record of a session with us (no connection, or
1567 * connect_seq == 0), they will send RESETSESION to indicate
1568 * that they must have reset their session, and may have
1569 * dropped messages.
1571 dout("process_connect got RESET peer seq %u\n",
1572 le32_to_cpu(con->in_reply.connect_seq));
1573 pr_err("%s%lld %s connection reset\n",
1574 ENTITY_NAME(con->peer_name),
1575 ceph_pr_addr(&con->peer_addr.in_addr));
1576 reset_connection(con);
1577 con_out_kvec_reset(con);
1578 ret = prepare_write_connect(con);
1579 if (ret < 0)
1580 return ret;
1581 prepare_read_connect(con);
1583 /* Tell ceph about it. */
1584 mutex_unlock(&con->mutex);
1585 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1586 if (con->ops->peer_reset)
1587 con->ops->peer_reset(con);
1588 mutex_lock(&con->mutex);
1589 if (con->state != CON_STATE_NEGOTIATING)
1590 return -EAGAIN;
1591 break;
1593 case CEPH_MSGR_TAG_RETRY_SESSION:
1595 * If we sent a smaller connect_seq than the peer has, try
1596 * again with a larger value.
1598 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1599 le32_to_cpu(con->out_connect.connect_seq),
1600 le32_to_cpu(con->in_reply.connect_seq));
1601 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1602 con_out_kvec_reset(con);
1603 ret = prepare_write_connect(con);
1604 if (ret < 0)
1605 return ret;
1606 prepare_read_connect(con);
1607 break;
1609 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1611 * If we sent a smaller global_seq than the peer has, try
1612 * again with a larger value.
1614 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1615 con->peer_global_seq,
1616 le32_to_cpu(con->in_reply.global_seq));
1617 get_global_seq(con->msgr,
1618 le32_to_cpu(con->in_reply.global_seq));
1619 con_out_kvec_reset(con);
1620 ret = prepare_write_connect(con);
1621 if (ret < 0)
1622 return ret;
1623 prepare_read_connect(con);
1624 break;
1626 case CEPH_MSGR_TAG_READY:
1627 if (req_feat & ~server_feat) {
1628 pr_err("%s%lld %s protocol feature mismatch,"
1629 " my required %llx > server's %llx, need %llx\n",
1630 ENTITY_NAME(con->peer_name),
1631 ceph_pr_addr(&con->peer_addr.in_addr),
1632 req_feat, server_feat, req_feat & ~server_feat);
1633 con->error_msg = "missing required protocol features";
1634 fail_protocol(con);
1635 return -1;
1638 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1639 con->state = CON_STATE_OPEN;
1641 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1642 con->connect_seq++;
1643 con->peer_features = server_feat;
1644 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1645 con->peer_global_seq,
1646 le32_to_cpu(con->in_reply.connect_seq),
1647 con->connect_seq);
1648 WARN_ON(con->connect_seq !=
1649 le32_to_cpu(con->in_reply.connect_seq));
1651 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1652 set_bit(CON_FLAG_LOSSYTX, &con->flags);
1654 con->delay = 0; /* reset backoff memory */
1656 prepare_read_tag(con);
1657 break;
1659 case CEPH_MSGR_TAG_WAIT:
1661 * If there is a connection race (we are opening
1662 * connections to each other), one of us may just have
1663 * to WAIT. This shouldn't happen if we are the
1664 * client.
1666 pr_err("process_connect got WAIT as client\n");
1667 con->error_msg = "protocol error, got WAIT as client";
1668 return -1;
1670 default:
1671 pr_err("connect protocol error, will retry\n");
1672 con->error_msg = "protocol error, garbage tag during connect";
1673 return -1;
1675 return 0;
1680 * read (part of) an ack
1682 static int read_partial_ack(struct ceph_connection *con)
1684 int size = sizeof (con->in_temp_ack);
1685 int end = size;
1687 return read_partial(con, end, size, &con->in_temp_ack);
1692 * We can finally discard anything that's been acked.
1694 static void process_ack(struct ceph_connection *con)
1696 struct ceph_msg *m;
1697 u64 ack = le64_to_cpu(con->in_temp_ack);
1698 u64 seq;
1700 while (!list_empty(&con->out_sent)) {
1701 m = list_first_entry(&con->out_sent, struct ceph_msg,
1702 list_head);
1703 seq = le64_to_cpu(m->hdr.seq);
1704 if (seq > ack)
1705 break;
1706 dout("got ack for seq %llu type %d at %p\n", seq,
1707 le16_to_cpu(m->hdr.type), m);
1708 m->ack_stamp = jiffies;
1709 ceph_msg_remove(m);
1711 prepare_read_tag(con);
1717 static int read_partial_message_section(struct ceph_connection *con,
1718 struct kvec *section,
1719 unsigned int sec_len, u32 *crc)
1721 int ret, left;
1723 BUG_ON(!section);
1725 while (section->iov_len < sec_len) {
1726 BUG_ON(section->iov_base == NULL);
1727 left = sec_len - section->iov_len;
1728 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1729 section->iov_len, left);
1730 if (ret <= 0)
1731 return ret;
1732 section->iov_len += ret;
1734 if (section->iov_len == sec_len)
1735 *crc = crc32c(0, section->iov_base, section->iov_len);
1737 return 1;
1740 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1742 static int read_partial_message_pages(struct ceph_connection *con,
1743 struct page **pages,
1744 unsigned int data_len, bool do_datacrc)
1746 void *p;
1747 int ret;
1748 int left;
1750 left = min((int)(data_len - con->in_msg_pos.data_pos),
1751 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1752 /* (page) data */
1753 BUG_ON(pages == NULL);
1754 p = kmap(pages[con->in_msg_pos.page]);
1755 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1756 left);
1757 if (ret > 0 && do_datacrc)
1758 con->in_data_crc =
1759 crc32c(con->in_data_crc,
1760 p + con->in_msg_pos.page_pos, ret);
1761 kunmap(pages[con->in_msg_pos.page]);
1762 if (ret <= 0)
1763 return ret;
1764 con->in_msg_pos.data_pos += ret;
1765 con->in_msg_pos.page_pos += ret;
1766 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1767 con->in_msg_pos.page_pos = 0;
1768 con->in_msg_pos.page++;
1771 return ret;
1774 #ifdef CONFIG_BLOCK
1775 static int read_partial_message_bio(struct ceph_connection *con,
1776 struct bio **bio_iter, int *bio_seg,
1777 unsigned int data_len, bool do_datacrc)
1779 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1780 void *p;
1781 int ret, left;
1783 left = min((int)(data_len - con->in_msg_pos.data_pos),
1784 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1786 p = kmap(bv->bv_page) + bv->bv_offset;
1788 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1789 left);
1790 if (ret > 0 && do_datacrc)
1791 con->in_data_crc =
1792 crc32c(con->in_data_crc,
1793 p + con->in_msg_pos.page_pos, ret);
1794 kunmap(bv->bv_page);
1795 if (ret <= 0)
1796 return ret;
1797 con->in_msg_pos.data_pos += ret;
1798 con->in_msg_pos.page_pos += ret;
1799 if (con->in_msg_pos.page_pos == bv->bv_len) {
1800 con->in_msg_pos.page_pos = 0;
1801 iter_bio_next(bio_iter, bio_seg);
1804 return ret;
1806 #endif
1809 * read (part of) a message.
1811 static int read_partial_message(struct ceph_connection *con)
1813 struct ceph_msg *m = con->in_msg;
1814 int size;
1815 int end;
1816 int ret;
1817 unsigned int front_len, middle_len, data_len;
1818 bool do_datacrc = !con->msgr->nocrc;
1819 u64 seq;
1820 u32 crc;
1822 dout("read_partial_message con %p msg %p\n", con, m);
1824 /* header */
1825 size = sizeof (con->in_hdr);
1826 end = size;
1827 ret = read_partial(con, end, size, &con->in_hdr);
1828 if (ret <= 0)
1829 return ret;
1831 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1832 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1833 pr_err("read_partial_message bad hdr "
1834 " crc %u != expected %u\n",
1835 crc, con->in_hdr.crc);
1836 return -EBADMSG;
1839 front_len = le32_to_cpu(con->in_hdr.front_len);
1840 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1841 return -EIO;
1842 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1843 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1844 return -EIO;
1845 data_len = le32_to_cpu(con->in_hdr.data_len);
1846 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1847 return -EIO;
1849 /* verify seq# */
1850 seq = le64_to_cpu(con->in_hdr.seq);
1851 if ((s64)seq - (s64)con->in_seq < 1) {
1852 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1853 ENTITY_NAME(con->peer_name),
1854 ceph_pr_addr(&con->peer_addr.in_addr),
1855 seq, con->in_seq + 1);
1856 con->in_base_pos = -front_len - middle_len - data_len -
1857 sizeof(m->footer);
1858 con->in_tag = CEPH_MSGR_TAG_READY;
1859 return 0;
1860 } else if ((s64)seq - (s64)con->in_seq > 1) {
1861 pr_err("read_partial_message bad seq %lld expected %lld\n",
1862 seq, con->in_seq + 1);
1863 con->error_msg = "bad message sequence # for incoming message";
1864 return -EBADMSG;
1867 /* allocate message? */
1868 if (!con->in_msg) {
1869 int skip = 0;
1871 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1872 con->in_hdr.front_len, con->in_hdr.data_len);
1873 ret = ceph_con_in_msg_alloc(con, &skip);
1874 if (ret < 0)
1875 return ret;
1876 if (skip) {
1877 /* skip this message */
1878 dout("alloc_msg said skip message\n");
1879 BUG_ON(con->in_msg);
1880 con->in_base_pos = -front_len - middle_len - data_len -
1881 sizeof(m->footer);
1882 con->in_tag = CEPH_MSGR_TAG_READY;
1883 con->in_seq++;
1884 return 0;
1887 BUG_ON(!con->in_msg);
1888 BUG_ON(con->in_msg->con != con);
1889 m = con->in_msg;
1890 m->front.iov_len = 0; /* haven't read it yet */
1891 if (m->middle)
1892 m->middle->vec.iov_len = 0;
1894 con->in_msg_pos.page = 0;
1895 if (m->pages)
1896 con->in_msg_pos.page_pos = m->page_alignment;
1897 else
1898 con->in_msg_pos.page_pos = 0;
1899 con->in_msg_pos.data_pos = 0;
1901 #ifdef CONFIG_BLOCK
1902 if (m->bio)
1903 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1904 #endif
1907 /* front */
1908 ret = read_partial_message_section(con, &m->front, front_len,
1909 &con->in_front_crc);
1910 if (ret <= 0)
1911 return ret;
1913 /* middle */
1914 if (m->middle) {
1915 ret = read_partial_message_section(con, &m->middle->vec,
1916 middle_len,
1917 &con->in_middle_crc);
1918 if (ret <= 0)
1919 return ret;
1922 /* (page) data */
1923 while (con->in_msg_pos.data_pos < data_len) {
1924 if (m->pages) {
1925 ret = read_partial_message_pages(con, m->pages,
1926 data_len, do_datacrc);
1927 if (ret <= 0)
1928 return ret;
1929 #ifdef CONFIG_BLOCK
1930 } else if (m->bio) {
1931 BUG_ON(!m->bio_iter);
1932 ret = read_partial_message_bio(con,
1933 &m->bio_iter, &m->bio_seg,
1934 data_len, do_datacrc);
1935 if (ret <= 0)
1936 return ret;
1937 #endif
1938 } else {
1939 BUG_ON(1);
1943 /* footer */
1944 size = sizeof (m->footer);
1945 end += size;
1946 ret = read_partial(con, end, size, &m->footer);
1947 if (ret <= 0)
1948 return ret;
1950 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1951 m, front_len, m->footer.front_crc, middle_len,
1952 m->footer.middle_crc, data_len, m->footer.data_crc);
1954 /* crc ok? */
1955 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1956 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1957 m, con->in_front_crc, m->footer.front_crc);
1958 return -EBADMSG;
1960 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1961 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1962 m, con->in_middle_crc, m->footer.middle_crc);
1963 return -EBADMSG;
1965 if (do_datacrc &&
1966 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1967 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1968 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1969 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1970 return -EBADMSG;
1973 return 1; /* done! */
1977 * Process message. This happens in the worker thread. The callback should
1978 * be careful not to do anything that waits on other incoming messages or it
1979 * may deadlock.
1981 static void process_message(struct ceph_connection *con)
1983 struct ceph_msg *msg;
1985 BUG_ON(con->in_msg->con != con);
1986 con->in_msg->con = NULL;
1987 msg = con->in_msg;
1988 con->in_msg = NULL;
1989 con->ops->put(con);
1991 /* if first message, set peer_name */
1992 if (con->peer_name.type == 0)
1993 con->peer_name = msg->hdr.src;
1995 con->in_seq++;
1996 mutex_unlock(&con->mutex);
1998 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1999 msg, le64_to_cpu(msg->hdr.seq),
2000 ENTITY_NAME(msg->hdr.src),
2001 le16_to_cpu(msg->hdr.type),
2002 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2003 le32_to_cpu(msg->hdr.front_len),
2004 le32_to_cpu(msg->hdr.data_len),
2005 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2006 con->ops->dispatch(con, msg);
2008 mutex_lock(&con->mutex);
2013 * Write something to the socket. Called in a worker thread when the
2014 * socket appears to be writeable and we have something ready to send.
2016 static int try_write(struct ceph_connection *con)
2018 int ret = 1;
2020 dout("try_write start %p state %lu\n", con, con->state);
2022 more:
2023 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2025 /* open the socket first? */
2026 if (con->state == CON_STATE_PREOPEN) {
2027 BUG_ON(con->sock);
2028 con->state = CON_STATE_CONNECTING;
2030 con_out_kvec_reset(con);
2031 prepare_write_banner(con);
2032 prepare_read_banner(con);
2034 BUG_ON(con->in_msg);
2035 con->in_tag = CEPH_MSGR_TAG_READY;
2036 dout("try_write initiating connect on %p new state %lu\n",
2037 con, con->state);
2038 ret = ceph_tcp_connect(con);
2039 if (ret < 0) {
2040 con->error_msg = "connect error";
2041 goto out;
2045 more_kvec:
2046 /* kvec data queued? */
2047 if (con->out_skip) {
2048 ret = write_partial_skip(con);
2049 if (ret <= 0)
2050 goto out;
2052 if (con->out_kvec_left) {
2053 ret = write_partial_kvec(con);
2054 if (ret <= 0)
2055 goto out;
2058 /* msg pages? */
2059 if (con->out_msg) {
2060 if (con->out_msg_done) {
2061 ceph_msg_put(con->out_msg);
2062 con->out_msg = NULL; /* we're done with this one */
2063 goto do_next;
2066 ret = write_partial_msg_pages(con);
2067 if (ret == 1)
2068 goto more_kvec; /* we need to send the footer, too! */
2069 if (ret == 0)
2070 goto out;
2071 if (ret < 0) {
2072 dout("try_write write_partial_msg_pages err %d\n",
2073 ret);
2074 goto out;
2078 do_next:
2079 if (con->state == CON_STATE_OPEN) {
2080 /* is anything else pending? */
2081 if (!list_empty(&con->out_queue)) {
2082 prepare_write_message(con);
2083 goto more;
2085 if (con->in_seq > con->in_seq_acked) {
2086 prepare_write_ack(con);
2087 goto more;
2089 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2090 &con->flags)) {
2091 prepare_write_keepalive(con);
2092 goto more;
2096 /* Nothing to do! */
2097 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2098 dout("try_write nothing else to write.\n");
2099 ret = 0;
2100 out:
2101 dout("try_write done on %p ret %d\n", con, ret);
2102 return ret;
2108 * Read what we can from the socket.
2110 static int try_read(struct ceph_connection *con)
2112 int ret = -1;
2114 more:
2115 dout("try_read start on %p state %lu\n", con, con->state);
2116 if (con->state != CON_STATE_CONNECTING &&
2117 con->state != CON_STATE_NEGOTIATING &&
2118 con->state != CON_STATE_OPEN)
2119 return 0;
2121 BUG_ON(!con->sock);
2123 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2124 con->in_base_pos);
2126 if (con->state == CON_STATE_CONNECTING) {
2127 dout("try_read connecting\n");
2128 ret = read_partial_banner(con);
2129 if (ret <= 0)
2130 goto out;
2131 ret = process_banner(con);
2132 if (ret < 0)
2133 goto out;
2135 BUG_ON(con->state != CON_STATE_CONNECTING);
2136 con->state = CON_STATE_NEGOTIATING;
2139 * Received banner is good, exchange connection info.
2140 * Do not reset out_kvec, as sending our banner raced
2141 * with receiving peer banner after connect completed.
2143 ret = prepare_write_connect(con);
2144 if (ret < 0)
2145 goto out;
2146 prepare_read_connect(con);
2148 /* Send connection info before awaiting response */
2149 goto out;
2152 if (con->state == CON_STATE_NEGOTIATING) {
2153 dout("try_read negotiating\n");
2154 ret = read_partial_connect(con);
2155 if (ret <= 0)
2156 goto out;
2157 ret = process_connect(con);
2158 if (ret < 0)
2159 goto out;
2160 goto more;
2163 BUG_ON(con->state != CON_STATE_OPEN);
2165 if (con->in_base_pos < 0) {
2167 * skipping + discarding content.
2169 * FIXME: there must be a better way to do this!
2171 static char buf[SKIP_BUF_SIZE];
2172 int skip = min((int) sizeof (buf), -con->in_base_pos);
2174 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2175 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2176 if (ret <= 0)
2177 goto out;
2178 con->in_base_pos += ret;
2179 if (con->in_base_pos)
2180 goto more;
2182 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2184 * what's next?
2186 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2187 if (ret <= 0)
2188 goto out;
2189 dout("try_read got tag %d\n", (int)con->in_tag);
2190 switch (con->in_tag) {
2191 case CEPH_MSGR_TAG_MSG:
2192 prepare_read_message(con);
2193 break;
2194 case CEPH_MSGR_TAG_ACK:
2195 prepare_read_ack(con);
2196 break;
2197 case CEPH_MSGR_TAG_CLOSE:
2198 con_close_socket(con);
2199 con->state = CON_STATE_CLOSED;
2200 goto out;
2201 default:
2202 goto bad_tag;
2205 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2206 ret = read_partial_message(con);
2207 if (ret <= 0) {
2208 switch (ret) {
2209 case -EBADMSG:
2210 con->error_msg = "bad crc";
2211 ret = -EIO;
2212 break;
2213 case -EIO:
2214 con->error_msg = "io error";
2215 break;
2217 goto out;
2219 if (con->in_tag == CEPH_MSGR_TAG_READY)
2220 goto more;
2221 process_message(con);
2222 if (con->state == CON_STATE_OPEN)
2223 prepare_read_tag(con);
2224 goto more;
2226 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2227 ret = read_partial_ack(con);
2228 if (ret <= 0)
2229 goto out;
2230 process_ack(con);
2231 goto more;
2234 out:
2235 dout("try_read done on %p ret %d\n", con, ret);
2236 return ret;
2238 bad_tag:
2239 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2240 con->error_msg = "protocol error, garbage tag";
2241 ret = -1;
2242 goto out;
2247 * Atomically queue work on a connection after the specified delay.
2248 * Bump @con reference to avoid races with connection teardown.
2249 * Returns 0 if work was queued, or an error code otherwise.
2251 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2253 if (!con->ops->get(con)) {
2254 dout("%s %p ref count 0\n", __func__, con);
2256 return -ENOENT;
2259 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2260 dout("%s %p - already queued\n", __func__, con);
2261 con->ops->put(con);
2263 return -EBUSY;
2266 dout("%s %p %lu\n", __func__, con, delay);
2268 return 0;
2271 static void queue_con(struct ceph_connection *con)
2273 (void) queue_con_delay(con, 0);
2276 static bool con_sock_closed(struct ceph_connection *con)
2278 if (!test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags))
2279 return false;
2281 #define CASE(x) \
2282 case CON_STATE_ ## x: \
2283 con->error_msg = "socket closed (con state " #x ")"; \
2284 break;
2286 switch (con->state) {
2287 CASE(CLOSED);
2288 CASE(PREOPEN);
2289 CASE(CONNECTING);
2290 CASE(NEGOTIATING);
2291 CASE(OPEN);
2292 CASE(STANDBY);
2293 default:
2294 pr_warning("%s con %p unrecognized state %lu\n",
2295 __func__, con, con->state);
2296 con->error_msg = "unrecognized con state";
2297 BUG();
2298 break;
2300 #undef CASE
2302 return true;
2306 * Do some work on a connection. Drop a connection ref when we're done.
2308 static void con_work(struct work_struct *work)
2310 struct ceph_connection *con = container_of(work, struct ceph_connection,
2311 work.work);
2312 int ret;
2314 mutex_lock(&con->mutex);
2315 restart:
2316 if (con_sock_closed(con))
2317 goto fault;
2319 if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2320 dout("con_work %p backing off\n", con);
2321 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2322 if (ret) {
2323 dout("con_work %p FAILED to back off %lu\n", con,
2324 con->delay);
2325 BUG_ON(ret == -ENOENT);
2326 set_bit(CON_FLAG_BACKOFF, &con->flags);
2328 goto done;
2331 if (con->state == CON_STATE_STANDBY) {
2332 dout("con_work %p STANDBY\n", con);
2333 goto done;
2335 if (con->state == CON_STATE_CLOSED) {
2336 dout("con_work %p CLOSED\n", con);
2337 BUG_ON(con->sock);
2338 goto done;
2340 if (con->state == CON_STATE_PREOPEN) {
2341 dout("con_work OPENING\n");
2342 BUG_ON(con->sock);
2345 ret = try_read(con);
2346 if (ret == -EAGAIN)
2347 goto restart;
2348 if (ret < 0) {
2349 con->error_msg = "socket error on read";
2350 goto fault;
2353 ret = try_write(con);
2354 if (ret == -EAGAIN)
2355 goto restart;
2356 if (ret < 0) {
2357 con->error_msg = "socket error on write";
2358 goto fault;
2361 done:
2362 mutex_unlock(&con->mutex);
2363 done_unlocked:
2364 con->ops->put(con);
2365 return;
2367 fault:
2368 ceph_fault(con); /* error/fault path */
2369 goto done_unlocked;
2374 * Generic error/fault handler. A retry mechanism is used with
2375 * exponential backoff
2377 static void ceph_fault(struct ceph_connection *con)
2378 __releases(con->mutex)
2380 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2381 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2382 dout("fault %p state %lu to peer %s\n",
2383 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2385 BUG_ON(con->state != CON_STATE_CONNECTING &&
2386 con->state != CON_STATE_NEGOTIATING &&
2387 con->state != CON_STATE_OPEN);
2389 con_close_socket(con);
2391 if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2392 dout("fault on LOSSYTX channel, marking CLOSED\n");
2393 con->state = CON_STATE_CLOSED;
2394 goto out_unlock;
2397 if (con->in_msg) {
2398 BUG_ON(con->in_msg->con != con);
2399 con->in_msg->con = NULL;
2400 ceph_msg_put(con->in_msg);
2401 con->in_msg = NULL;
2402 con->ops->put(con);
2405 /* Requeue anything that hasn't been acked */
2406 list_splice_init(&con->out_sent, &con->out_queue);
2408 /* If there are no messages queued or keepalive pending, place
2409 * the connection in a STANDBY state */
2410 if (list_empty(&con->out_queue) &&
2411 !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2412 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2413 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2414 con->state = CON_STATE_STANDBY;
2415 } else {
2416 /* retry after a delay. */
2417 con->state = CON_STATE_PREOPEN;
2418 if (con->delay == 0)
2419 con->delay = BASE_DELAY_INTERVAL;
2420 else if (con->delay < MAX_DELAY_INTERVAL)
2421 con->delay *= 2;
2422 set_bit(CON_FLAG_BACKOFF, &con->flags);
2423 queue_con(con);
2426 out_unlock:
2427 mutex_unlock(&con->mutex);
2429 * in case we faulted due to authentication, invalidate our
2430 * current tickets so that we can get new ones.
2432 if (con->auth_retry && con->ops->invalidate_authorizer) {
2433 dout("calling invalidate_authorizer()\n");
2434 con->ops->invalidate_authorizer(con);
2437 if (con->ops->fault)
2438 con->ops->fault(con);
2444 * initialize a new messenger instance
2446 void ceph_messenger_init(struct ceph_messenger *msgr,
2447 struct ceph_entity_addr *myaddr,
2448 u32 supported_features,
2449 u32 required_features,
2450 bool nocrc)
2452 msgr->supported_features = supported_features;
2453 msgr->required_features = required_features;
2455 spin_lock_init(&msgr->global_seq_lock);
2457 if (myaddr)
2458 msgr->inst.addr = *myaddr;
2460 /* select a random nonce */
2461 msgr->inst.addr.type = 0;
2462 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2463 encode_my_addr(msgr);
2464 msgr->nocrc = nocrc;
2466 atomic_set(&msgr->stopping, 0);
2468 dout("%s %p\n", __func__, msgr);
2470 EXPORT_SYMBOL(ceph_messenger_init);
2472 static void clear_standby(struct ceph_connection *con)
2474 /* come back from STANDBY? */
2475 if (con->state == CON_STATE_STANDBY) {
2476 dout("clear_standby %p and ++connect_seq\n", con);
2477 con->state = CON_STATE_PREOPEN;
2478 con->connect_seq++;
2479 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2480 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2485 * Queue up an outgoing message on the given connection.
2487 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2489 /* set src+dst */
2490 msg->hdr.src = con->msgr->inst.name;
2491 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2492 msg->needs_out_seq = true;
2494 mutex_lock(&con->mutex);
2496 if (con->state == CON_STATE_CLOSED) {
2497 dout("con_send %p closed, dropping %p\n", con, msg);
2498 ceph_msg_put(msg);
2499 mutex_unlock(&con->mutex);
2500 return;
2503 BUG_ON(msg->con != NULL);
2504 msg->con = con->ops->get(con);
2505 BUG_ON(msg->con == NULL);
2507 BUG_ON(!list_empty(&msg->list_head));
2508 list_add_tail(&msg->list_head, &con->out_queue);
2509 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2510 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2511 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2512 le32_to_cpu(msg->hdr.front_len),
2513 le32_to_cpu(msg->hdr.middle_len),
2514 le32_to_cpu(msg->hdr.data_len));
2516 clear_standby(con);
2517 mutex_unlock(&con->mutex);
2519 /* if there wasn't anything waiting to send before, queue
2520 * new work */
2521 if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2522 queue_con(con);
2524 EXPORT_SYMBOL(ceph_con_send);
2527 * Revoke a message that was previously queued for send
2529 void ceph_msg_revoke(struct ceph_msg *msg)
2531 struct ceph_connection *con = msg->con;
2533 if (!con)
2534 return; /* Message not in our possession */
2536 mutex_lock(&con->mutex);
2537 if (!list_empty(&msg->list_head)) {
2538 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2539 list_del_init(&msg->list_head);
2540 BUG_ON(msg->con == NULL);
2541 msg->con->ops->put(msg->con);
2542 msg->con = NULL;
2543 msg->hdr.seq = 0;
2545 ceph_msg_put(msg);
2547 if (con->out_msg == msg) {
2548 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2549 con->out_msg = NULL;
2550 if (con->out_kvec_is_msg) {
2551 con->out_skip = con->out_kvec_bytes;
2552 con->out_kvec_is_msg = false;
2554 msg->hdr.seq = 0;
2556 ceph_msg_put(msg);
2558 mutex_unlock(&con->mutex);
2562 * Revoke a message that we may be reading data into
2564 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2566 struct ceph_connection *con;
2568 BUG_ON(msg == NULL);
2569 if (!msg->con) {
2570 dout("%s msg %p null con\n", __func__, msg);
2572 return; /* Message not in our possession */
2575 con = msg->con;
2576 mutex_lock(&con->mutex);
2577 if (con->in_msg == msg) {
2578 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2579 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2580 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2582 /* skip rest of message */
2583 dout("%s %p msg %p revoked\n", __func__, con, msg);
2584 con->in_base_pos = con->in_base_pos -
2585 sizeof(struct ceph_msg_header) -
2586 front_len -
2587 middle_len -
2588 data_len -
2589 sizeof(struct ceph_msg_footer);
2590 ceph_msg_put(con->in_msg);
2591 con->in_msg = NULL;
2592 con->in_tag = CEPH_MSGR_TAG_READY;
2593 con->in_seq++;
2594 } else {
2595 dout("%s %p in_msg %p msg %p no-op\n",
2596 __func__, con, con->in_msg, msg);
2598 mutex_unlock(&con->mutex);
2602 * Queue a keepalive byte to ensure the tcp connection is alive.
2604 void ceph_con_keepalive(struct ceph_connection *con)
2606 dout("con_keepalive %p\n", con);
2607 mutex_lock(&con->mutex);
2608 clear_standby(con);
2609 mutex_unlock(&con->mutex);
2610 if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2611 test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2612 queue_con(con);
2614 EXPORT_SYMBOL(ceph_con_keepalive);
2618 * construct a new message with given type, size
2619 * the new msg has a ref count of 1.
2621 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2622 bool can_fail)
2624 struct ceph_msg *m;
2626 m = kmalloc(sizeof(*m), flags);
2627 if (m == NULL)
2628 goto out;
2629 kref_init(&m->kref);
2631 m->con = NULL;
2632 INIT_LIST_HEAD(&m->list_head);
2634 m->hdr.tid = 0;
2635 m->hdr.type = cpu_to_le16(type);
2636 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2637 m->hdr.version = 0;
2638 m->hdr.front_len = cpu_to_le32(front_len);
2639 m->hdr.middle_len = 0;
2640 m->hdr.data_len = 0;
2641 m->hdr.data_off = 0;
2642 m->hdr.reserved = 0;
2643 m->footer.front_crc = 0;
2644 m->footer.middle_crc = 0;
2645 m->footer.data_crc = 0;
2646 m->footer.flags = 0;
2647 m->front_max = front_len;
2648 m->front_is_vmalloc = false;
2649 m->more_to_follow = false;
2650 m->ack_stamp = 0;
2651 m->pool = NULL;
2653 /* middle */
2654 m->middle = NULL;
2656 /* data */
2657 m->nr_pages = 0;
2658 m->page_alignment = 0;
2659 m->pages = NULL;
2660 m->pagelist = NULL;
2661 m->bio = NULL;
2662 m->bio_iter = NULL;
2663 m->bio_seg = 0;
2664 m->trail = NULL;
2666 /* front */
2667 if (front_len) {
2668 if (front_len > PAGE_CACHE_SIZE) {
2669 m->front.iov_base = __vmalloc(front_len, flags,
2670 PAGE_KERNEL);
2671 m->front_is_vmalloc = true;
2672 } else {
2673 m->front.iov_base = kmalloc(front_len, flags);
2675 if (m->front.iov_base == NULL) {
2676 dout("ceph_msg_new can't allocate %d bytes\n",
2677 front_len);
2678 goto out2;
2680 } else {
2681 m->front.iov_base = NULL;
2683 m->front.iov_len = front_len;
2685 dout("ceph_msg_new %p front %d\n", m, front_len);
2686 return m;
2688 out2:
2689 ceph_msg_put(m);
2690 out:
2691 if (!can_fail) {
2692 pr_err("msg_new can't create type %d front %d\n", type,
2693 front_len);
2694 WARN_ON(1);
2695 } else {
2696 dout("msg_new can't create type %d front %d\n", type,
2697 front_len);
2699 return NULL;
2701 EXPORT_SYMBOL(ceph_msg_new);
2704 * Allocate "middle" portion of a message, if it is needed and wasn't
2705 * allocated by alloc_msg. This allows us to read a small fixed-size
2706 * per-type header in the front and then gracefully fail (i.e.,
2707 * propagate the error to the caller based on info in the front) when
2708 * the middle is too large.
2710 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2712 int type = le16_to_cpu(msg->hdr.type);
2713 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2715 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2716 ceph_msg_type_name(type), middle_len);
2717 BUG_ON(!middle_len);
2718 BUG_ON(msg->middle);
2720 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2721 if (!msg->middle)
2722 return -ENOMEM;
2723 return 0;
2727 * Allocate a message for receiving an incoming message on a
2728 * connection, and save the result in con->in_msg. Uses the
2729 * connection's private alloc_msg op if available.
2731 * Returns 0 on success, or a negative error code.
2733 * On success, if we set *skip = 1:
2734 * - the next message should be skipped and ignored.
2735 * - con->in_msg == NULL
2736 * or if we set *skip = 0:
2737 * - con->in_msg is non-null.
2738 * On error (ENOMEM, EAGAIN, ...),
2739 * - con->in_msg == NULL
2741 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2743 struct ceph_msg_header *hdr = &con->in_hdr;
2744 int type = le16_to_cpu(hdr->type);
2745 int front_len = le32_to_cpu(hdr->front_len);
2746 int middle_len = le32_to_cpu(hdr->middle_len);
2747 int ret = 0;
2749 BUG_ON(con->in_msg != NULL);
2751 if (con->ops->alloc_msg) {
2752 struct ceph_msg *msg;
2754 mutex_unlock(&con->mutex);
2755 msg = con->ops->alloc_msg(con, hdr, skip);
2756 mutex_lock(&con->mutex);
2757 if (con->state != CON_STATE_OPEN) {
2758 if (msg)
2759 ceph_msg_put(msg);
2760 return -EAGAIN;
2762 con->in_msg = msg;
2763 if (con->in_msg) {
2764 con->in_msg->con = con->ops->get(con);
2765 BUG_ON(con->in_msg->con == NULL);
2767 if (*skip) {
2768 con->in_msg = NULL;
2769 return 0;
2771 if (!con->in_msg) {
2772 con->error_msg =
2773 "error allocating memory for incoming message";
2774 return -ENOMEM;
2777 if (!con->in_msg) {
2778 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2779 if (!con->in_msg) {
2780 pr_err("unable to allocate msg type %d len %d\n",
2781 type, front_len);
2782 return -ENOMEM;
2784 con->in_msg->con = con->ops->get(con);
2785 BUG_ON(con->in_msg->con == NULL);
2786 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2788 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2790 if (middle_len && !con->in_msg->middle) {
2791 ret = ceph_alloc_middle(con, con->in_msg);
2792 if (ret < 0) {
2793 ceph_msg_put(con->in_msg);
2794 con->in_msg = NULL;
2798 return ret;
2803 * Free a generically kmalloc'd message.
2805 void ceph_msg_kfree(struct ceph_msg *m)
2807 dout("msg_kfree %p\n", m);
2808 if (m->front_is_vmalloc)
2809 vfree(m->front.iov_base);
2810 else
2811 kfree(m->front.iov_base);
2812 kfree(m);
2816 * Drop a msg ref. Destroy as needed.
2818 void ceph_msg_last_put(struct kref *kref)
2820 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2822 dout("ceph_msg_put last one on %p\n", m);
2823 WARN_ON(!list_empty(&m->list_head));
2825 /* drop middle, data, if any */
2826 if (m->middle) {
2827 ceph_buffer_put(m->middle);
2828 m->middle = NULL;
2830 m->nr_pages = 0;
2831 m->pages = NULL;
2833 if (m->pagelist) {
2834 ceph_pagelist_release(m->pagelist);
2835 kfree(m->pagelist);
2836 m->pagelist = NULL;
2839 m->trail = NULL;
2841 if (m->pool)
2842 ceph_msgpool_put(m->pool, m);
2843 else
2844 ceph_msg_kfree(m);
2846 EXPORT_SYMBOL(ceph_msg_last_put);
2848 void ceph_msg_dump(struct ceph_msg *msg)
2850 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2851 msg->front_max, msg->nr_pages);
2852 print_hex_dump(KERN_DEBUG, "header: ",
2853 DUMP_PREFIX_OFFSET, 16, 1,
2854 &msg->hdr, sizeof(msg->hdr), true);
2855 print_hex_dump(KERN_DEBUG, " front: ",
2856 DUMP_PREFIX_OFFSET, 16, 1,
2857 msg->front.iov_base, msg->front.iov_len, true);
2858 if (msg->middle)
2859 print_hex_dump(KERN_DEBUG, "middle: ",
2860 DUMP_PREFIX_OFFSET, 16, 1,
2861 msg->middle->vec.iov_base,
2862 msg->middle->vec.iov_len, true);
2863 print_hex_dump(KERN_DEBUG, "footer: ",
2864 DUMP_PREFIX_OFFSET, 16, 1,
2865 &msg->footer, sizeof(msg->footer), true);
2867 EXPORT_SYMBOL(ceph_msg_dump);