net/mlx4_core: Remove duplicate code line from procedure mlx4_bf_alloc
[linux-2.6/btrfs-unstable.git] / block / blk-mq.c
blob9ee3b87c44984d336dbd4c82572fd3a4c3d35e90
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 unsigned int i;
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
48 return false;
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 static int blk_mq_queue_enter(struct request_queue *q)
82 while (true) {
83 int ret;
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
97 static void blk_mq_queue_exit(struct request_queue *q)
99 percpu_ref_put(&q->mq_usage_counter);
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
107 wake_up_all(&q->mq_freeze_wq);
110 void blk_mq_freeze_queue_start(struct request_queue *q)
112 bool freeze;
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
131 * Guarantee no request is in use, so we can change any data structure of
132 * the queue afterward.
134 void blk_mq_freeze_queue(struct request_queue *q)
136 blk_mq_freeze_queue_start(q);
137 blk_mq_freeze_queue_wait(q);
140 void blk_mq_unfreeze_queue(struct request_queue *q)
142 bool wake;
144 spin_lock_irq(q->queue_lock);
145 wake = !--q->mq_freeze_depth;
146 WARN_ON_ONCE(q->mq_freeze_depth < 0);
147 spin_unlock_irq(q->queue_lock);
148 if (wake) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155 void blk_mq_wake_waiters(struct request_queue *q)
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
169 wake_up_all(&q->mq_freeze_wq);
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
174 return blk_mq_has_free_tags(hctx->tags);
176 EXPORT_SYMBOL(blk_mq_can_queue);
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
209 rq->cmd = rq->__cmd;
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
229 struct request *rq;
230 unsigned int tag;
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
246 return NULL;
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
258 ret = blk_mq_queue_enter(q);
259 if (ret)
260 return ERR_PTR(ret);
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
284 return rq;
286 EXPORT_SYMBOL(blk_mq_alloc_request);
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
313 void blk_mq_free_request(struct request *rq)
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
323 inline void __blk_mq_end_request(struct request *rq, int error)
325 blk_account_io_done(rq);
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
335 EXPORT_SYMBOL(__blk_mq_end_request);
337 void blk_mq_end_request(struct request *rq, int error)
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
343 EXPORT_SYMBOL(blk_mq_end_request);
345 static void __blk_mq_complete_request_remote(void *data)
347 struct request *rq = data;
349 rq->q->softirq_done_fn(rq);
352 static void blk_mq_ipi_complete_request(struct request *rq)
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
375 put_cpu();
378 void __blk_mq_complete_request(struct request *rq)
380 struct request_queue *q = rq->q;
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
396 void blk_mq_complete_request(struct request *rq)
398 struct request_queue *q = rq->q;
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
405 EXPORT_SYMBOL(blk_mq_complete_request);
407 int blk_mq_request_started(struct request *rq)
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
413 void blk_mq_start_request(struct request *rq)
415 struct request_queue *q = rq->q;
417 trace_block_rq_issue(q, rq);
419 rq->resid_len = blk_rq_bytes(rq);
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
423 blk_add_timer(rq);
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
429 smp_mb__before_atomic();
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
448 rq->nr_phys_segments++;
451 EXPORT_SYMBOL(blk_mq_start_request);
453 static void __blk_mq_requeue_request(struct request *rq)
455 struct request_queue *q = rq->q;
457 trace_block_rq_requeue(q, rq);
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
465 void blk_mq_requeue_request(struct request *rq)
467 __blk_mq_requeue_request(rq);
469 BUG_ON(blk_queued_rq(rq));
470 blk_mq_add_to_requeue_list(rq, true);
472 EXPORT_SYMBOL(blk_mq_requeue_request);
474 static void blk_mq_requeue_work(struct work_struct *work)
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
505 blk_mq_start_hw_queues(q);
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
510 struct request_queue *q = rq->q;
511 unsigned long flags;
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
532 cancel_work_sync(&q->requeue_work);
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
536 void blk_mq_kick_requeue_list(struct request_queue *q)
538 kblockd_schedule_work(&q->requeue_work);
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
542 void blk_mq_abort_requeue_list(struct request_queue *q)
544 unsigned long flags;
545 LIST_HEAD(rq_list);
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 list_splice_init(&q->requeue_list, &rq_list);
549 spin_unlock_irqrestore(&q->requeue_lock, flags);
551 while (!list_empty(&rq_list)) {
552 struct request *rq;
554 rq = list_first_entry(&rq_list, struct request, queuelist);
555 list_del_init(&rq->queuelist);
556 rq->errors = -EIO;
557 blk_mq_end_request(rq, rq->errors);
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
562 static inline bool is_flush_request(struct request *rq,
563 struct blk_flush_queue *fq, unsigned int tag)
565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566 fq->flush_rq->tag == tag);
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
571 struct request *rq = tags->rqs[tag];
572 /* mq_ctx of flush rq is always cloned from the corresponding req */
573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
575 if (!is_flush_request(rq, fq, tag))
576 return rq;
578 return fq->flush_rq;
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
582 struct blk_mq_timeout_data {
583 unsigned long next;
584 unsigned int next_set;
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
589 struct blk_mq_ops *ops = req->q->mq_ops;
590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
593 * We know that complete is set at this point. If STARTED isn't set
594 * anymore, then the request isn't active and the "timeout" should
595 * just be ignored. This can happen due to the bitflag ordering.
596 * Timeout first checks if STARTED is set, and if it is, assumes
597 * the request is active. But if we race with completion, then
598 * we both flags will get cleared. So check here again, and ignore
599 * a timeout event with a request that isn't active.
601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 return;
604 if (ops->timeout)
605 ret = ops->timeout(req, reserved);
607 switch (ret) {
608 case BLK_EH_HANDLED:
609 __blk_mq_complete_request(req);
610 break;
611 case BLK_EH_RESET_TIMER:
612 blk_add_timer(req);
613 blk_clear_rq_complete(req);
614 break;
615 case BLK_EH_NOT_HANDLED:
616 break;
617 default:
618 printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 break;
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 struct request *rq, void *priv, bool reserved)
626 struct blk_mq_timeout_data *data = priv;
628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
630 * If a request wasn't started before the queue was
631 * marked dying, kill it here or it'll go unnoticed.
633 if (unlikely(blk_queue_dying(rq->q))) {
634 rq->errors = -EIO;
635 blk_mq_complete_request(rq);
637 return;
639 if (rq->cmd_flags & REQ_NO_TIMEOUT)
640 return;
642 if (time_after_eq(jiffies, rq->deadline)) {
643 if (!blk_mark_rq_complete(rq))
644 blk_mq_rq_timed_out(rq, reserved);
645 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 data->next = rq->deadline;
647 data->next_set = 1;
651 static void blk_mq_rq_timer(unsigned long priv)
653 struct request_queue *q = (struct request_queue *)priv;
654 struct blk_mq_timeout_data data = {
655 .next = 0,
656 .next_set = 0,
658 struct blk_mq_hw_ctx *hctx;
659 int i;
661 queue_for_each_hw_ctx(q, hctx, i) {
663 * If not software queues are currently mapped to this
664 * hardware queue, there's nothing to check
666 if (!blk_mq_hw_queue_mapped(hctx))
667 continue;
669 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
672 if (data.next_set) {
673 data.next = blk_rq_timeout(round_jiffies_up(data.next));
674 mod_timer(&q->timeout, data.next);
675 } else {
676 queue_for_each_hw_ctx(q, hctx, i)
677 blk_mq_tag_idle(hctx);
682 * Reverse check our software queue for entries that we could potentially
683 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
684 * too much time checking for merges.
686 static bool blk_mq_attempt_merge(struct request_queue *q,
687 struct blk_mq_ctx *ctx, struct bio *bio)
689 struct request *rq;
690 int checked = 8;
692 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
693 int el_ret;
695 if (!checked--)
696 break;
698 if (!blk_rq_merge_ok(rq, bio))
699 continue;
701 el_ret = blk_try_merge(rq, bio);
702 if (el_ret == ELEVATOR_BACK_MERGE) {
703 if (bio_attempt_back_merge(q, rq, bio)) {
704 ctx->rq_merged++;
705 return true;
707 break;
708 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
709 if (bio_attempt_front_merge(q, rq, bio)) {
710 ctx->rq_merged++;
711 return true;
713 break;
717 return false;
721 * Process software queues that have been marked busy, splicing them
722 * to the for-dispatch
724 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
726 struct blk_mq_ctx *ctx;
727 int i;
729 for (i = 0; i < hctx->ctx_map.map_size; i++) {
730 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
731 unsigned int off, bit;
733 if (!bm->word)
734 continue;
736 bit = 0;
737 off = i * hctx->ctx_map.bits_per_word;
738 do {
739 bit = find_next_bit(&bm->word, bm->depth, bit);
740 if (bit >= bm->depth)
741 break;
743 ctx = hctx->ctxs[bit + off];
744 clear_bit(bit, &bm->word);
745 spin_lock(&ctx->lock);
746 list_splice_tail_init(&ctx->rq_list, list);
747 spin_unlock(&ctx->lock);
749 bit++;
750 } while (1);
755 * Run this hardware queue, pulling any software queues mapped to it in.
756 * Note that this function currently has various problems around ordering
757 * of IO. In particular, we'd like FIFO behaviour on handling existing
758 * items on the hctx->dispatch list. Ignore that for now.
760 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
762 struct request_queue *q = hctx->queue;
763 struct request *rq;
764 LIST_HEAD(rq_list);
765 LIST_HEAD(driver_list);
766 struct list_head *dptr;
767 int queued;
769 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
771 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
772 return;
774 hctx->run++;
777 * Touch any software queue that has pending entries.
779 flush_busy_ctxs(hctx, &rq_list);
782 * If we have previous entries on our dispatch list, grab them
783 * and stuff them at the front for more fair dispatch.
785 if (!list_empty_careful(&hctx->dispatch)) {
786 spin_lock(&hctx->lock);
787 if (!list_empty(&hctx->dispatch))
788 list_splice_init(&hctx->dispatch, &rq_list);
789 spin_unlock(&hctx->lock);
793 * Start off with dptr being NULL, so we start the first request
794 * immediately, even if we have more pending.
796 dptr = NULL;
799 * Now process all the entries, sending them to the driver.
801 queued = 0;
802 while (!list_empty(&rq_list)) {
803 struct blk_mq_queue_data bd;
804 int ret;
806 rq = list_first_entry(&rq_list, struct request, queuelist);
807 list_del_init(&rq->queuelist);
809 bd.rq = rq;
810 bd.list = dptr;
811 bd.last = list_empty(&rq_list);
813 ret = q->mq_ops->queue_rq(hctx, &bd);
814 switch (ret) {
815 case BLK_MQ_RQ_QUEUE_OK:
816 queued++;
817 continue;
818 case BLK_MQ_RQ_QUEUE_BUSY:
819 list_add(&rq->queuelist, &rq_list);
820 __blk_mq_requeue_request(rq);
821 break;
822 default:
823 pr_err("blk-mq: bad return on queue: %d\n", ret);
824 case BLK_MQ_RQ_QUEUE_ERROR:
825 rq->errors = -EIO;
826 blk_mq_end_request(rq, rq->errors);
827 break;
830 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
831 break;
834 * We've done the first request. If we have more than 1
835 * left in the list, set dptr to defer issue.
837 if (!dptr && rq_list.next != rq_list.prev)
838 dptr = &driver_list;
841 if (!queued)
842 hctx->dispatched[0]++;
843 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
844 hctx->dispatched[ilog2(queued) + 1]++;
847 * Any items that need requeuing? Stuff them into hctx->dispatch,
848 * that is where we will continue on next queue run.
850 if (!list_empty(&rq_list)) {
851 spin_lock(&hctx->lock);
852 list_splice(&rq_list, &hctx->dispatch);
853 spin_unlock(&hctx->lock);
858 * It'd be great if the workqueue API had a way to pass
859 * in a mask and had some smarts for more clever placement.
860 * For now we just round-robin here, switching for every
861 * BLK_MQ_CPU_WORK_BATCH queued items.
863 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
865 if (hctx->queue->nr_hw_queues == 1)
866 return WORK_CPU_UNBOUND;
868 if (--hctx->next_cpu_batch <= 0) {
869 int cpu = hctx->next_cpu, next_cpu;
871 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
872 if (next_cpu >= nr_cpu_ids)
873 next_cpu = cpumask_first(hctx->cpumask);
875 hctx->next_cpu = next_cpu;
876 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
878 return cpu;
881 return hctx->next_cpu;
884 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
886 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
887 !blk_mq_hw_queue_mapped(hctx)))
888 return;
890 if (!async) {
891 int cpu = get_cpu();
892 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
893 __blk_mq_run_hw_queue(hctx);
894 put_cpu();
895 return;
898 put_cpu();
901 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
902 &hctx->run_work, 0);
905 void blk_mq_run_queues(struct request_queue *q, bool async)
907 struct blk_mq_hw_ctx *hctx;
908 int i;
910 queue_for_each_hw_ctx(q, hctx, i) {
911 if ((!blk_mq_hctx_has_pending(hctx) &&
912 list_empty_careful(&hctx->dispatch)) ||
913 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
914 continue;
916 blk_mq_run_hw_queue(hctx, async);
919 EXPORT_SYMBOL(blk_mq_run_queues);
921 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
923 cancel_delayed_work(&hctx->run_work);
924 cancel_delayed_work(&hctx->delay_work);
925 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
927 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
929 void blk_mq_stop_hw_queues(struct request_queue *q)
931 struct blk_mq_hw_ctx *hctx;
932 int i;
934 queue_for_each_hw_ctx(q, hctx, i)
935 blk_mq_stop_hw_queue(hctx);
937 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
939 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
941 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
943 blk_mq_run_hw_queue(hctx, false);
945 EXPORT_SYMBOL(blk_mq_start_hw_queue);
947 void blk_mq_start_hw_queues(struct request_queue *q)
949 struct blk_mq_hw_ctx *hctx;
950 int i;
952 queue_for_each_hw_ctx(q, hctx, i)
953 blk_mq_start_hw_queue(hctx);
955 EXPORT_SYMBOL(blk_mq_start_hw_queues);
958 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
960 struct blk_mq_hw_ctx *hctx;
961 int i;
963 queue_for_each_hw_ctx(q, hctx, i) {
964 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 continue;
967 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
968 blk_mq_run_hw_queue(hctx, async);
971 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
973 static void blk_mq_run_work_fn(struct work_struct *work)
975 struct blk_mq_hw_ctx *hctx;
977 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
979 __blk_mq_run_hw_queue(hctx);
982 static void blk_mq_delay_work_fn(struct work_struct *work)
984 struct blk_mq_hw_ctx *hctx;
986 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
988 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
989 __blk_mq_run_hw_queue(hctx);
992 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
994 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
995 return;
997 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
998 &hctx->delay_work, msecs_to_jiffies(msecs));
1000 EXPORT_SYMBOL(blk_mq_delay_queue);
1002 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1003 struct request *rq, bool at_head)
1005 struct blk_mq_ctx *ctx = rq->mq_ctx;
1007 trace_block_rq_insert(hctx->queue, rq);
1009 if (at_head)
1010 list_add(&rq->queuelist, &ctx->rq_list);
1011 else
1012 list_add_tail(&rq->queuelist, &ctx->rq_list);
1014 blk_mq_hctx_mark_pending(hctx, ctx);
1017 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1018 bool async)
1020 struct request_queue *q = rq->q;
1021 struct blk_mq_hw_ctx *hctx;
1022 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1024 current_ctx = blk_mq_get_ctx(q);
1025 if (!cpu_online(ctx->cpu))
1026 rq->mq_ctx = ctx = current_ctx;
1028 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1030 spin_lock(&ctx->lock);
1031 __blk_mq_insert_request(hctx, rq, at_head);
1032 spin_unlock(&ctx->lock);
1034 if (run_queue)
1035 blk_mq_run_hw_queue(hctx, async);
1037 blk_mq_put_ctx(current_ctx);
1040 static void blk_mq_insert_requests(struct request_queue *q,
1041 struct blk_mq_ctx *ctx,
1042 struct list_head *list,
1043 int depth,
1044 bool from_schedule)
1047 struct blk_mq_hw_ctx *hctx;
1048 struct blk_mq_ctx *current_ctx;
1050 trace_block_unplug(q, depth, !from_schedule);
1052 current_ctx = blk_mq_get_ctx(q);
1054 if (!cpu_online(ctx->cpu))
1055 ctx = current_ctx;
1056 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1059 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1060 * offline now
1062 spin_lock(&ctx->lock);
1063 while (!list_empty(list)) {
1064 struct request *rq;
1066 rq = list_first_entry(list, struct request, queuelist);
1067 list_del_init(&rq->queuelist);
1068 rq->mq_ctx = ctx;
1069 __blk_mq_insert_request(hctx, rq, false);
1071 spin_unlock(&ctx->lock);
1073 blk_mq_run_hw_queue(hctx, from_schedule);
1074 blk_mq_put_ctx(current_ctx);
1077 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1079 struct request *rqa = container_of(a, struct request, queuelist);
1080 struct request *rqb = container_of(b, struct request, queuelist);
1082 return !(rqa->mq_ctx < rqb->mq_ctx ||
1083 (rqa->mq_ctx == rqb->mq_ctx &&
1084 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1087 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1089 struct blk_mq_ctx *this_ctx;
1090 struct request_queue *this_q;
1091 struct request *rq;
1092 LIST_HEAD(list);
1093 LIST_HEAD(ctx_list);
1094 unsigned int depth;
1096 list_splice_init(&plug->mq_list, &list);
1098 list_sort(NULL, &list, plug_ctx_cmp);
1100 this_q = NULL;
1101 this_ctx = NULL;
1102 depth = 0;
1104 while (!list_empty(&list)) {
1105 rq = list_entry_rq(list.next);
1106 list_del_init(&rq->queuelist);
1107 BUG_ON(!rq->q);
1108 if (rq->mq_ctx != this_ctx) {
1109 if (this_ctx) {
1110 blk_mq_insert_requests(this_q, this_ctx,
1111 &ctx_list, depth,
1112 from_schedule);
1115 this_ctx = rq->mq_ctx;
1116 this_q = rq->q;
1117 depth = 0;
1120 depth++;
1121 list_add_tail(&rq->queuelist, &ctx_list);
1125 * If 'this_ctx' is set, we know we have entries to complete
1126 * on 'ctx_list'. Do those.
1128 if (this_ctx) {
1129 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1130 from_schedule);
1134 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1136 init_request_from_bio(rq, bio);
1138 if (blk_do_io_stat(rq))
1139 blk_account_io_start(rq, 1);
1142 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1144 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1145 !blk_queue_nomerges(hctx->queue);
1148 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1149 struct blk_mq_ctx *ctx,
1150 struct request *rq, struct bio *bio)
1152 if (!hctx_allow_merges(hctx)) {
1153 blk_mq_bio_to_request(rq, bio);
1154 spin_lock(&ctx->lock);
1155 insert_rq:
1156 __blk_mq_insert_request(hctx, rq, false);
1157 spin_unlock(&ctx->lock);
1158 return false;
1159 } else {
1160 struct request_queue *q = hctx->queue;
1162 spin_lock(&ctx->lock);
1163 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1164 blk_mq_bio_to_request(rq, bio);
1165 goto insert_rq;
1168 spin_unlock(&ctx->lock);
1169 __blk_mq_free_request(hctx, ctx, rq);
1170 return true;
1174 struct blk_map_ctx {
1175 struct blk_mq_hw_ctx *hctx;
1176 struct blk_mq_ctx *ctx;
1179 static struct request *blk_mq_map_request(struct request_queue *q,
1180 struct bio *bio,
1181 struct blk_map_ctx *data)
1183 struct blk_mq_hw_ctx *hctx;
1184 struct blk_mq_ctx *ctx;
1185 struct request *rq;
1186 int rw = bio_data_dir(bio);
1187 struct blk_mq_alloc_data alloc_data;
1189 if (unlikely(blk_mq_queue_enter(q))) {
1190 bio_endio(bio, -EIO);
1191 return NULL;
1194 ctx = blk_mq_get_ctx(q);
1195 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1197 if (rw_is_sync(bio->bi_rw))
1198 rw |= REQ_SYNC;
1200 trace_block_getrq(q, bio, rw);
1201 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1202 hctx);
1203 rq = __blk_mq_alloc_request(&alloc_data, rw);
1204 if (unlikely(!rq)) {
1205 __blk_mq_run_hw_queue(hctx);
1206 blk_mq_put_ctx(ctx);
1207 trace_block_sleeprq(q, bio, rw);
1209 ctx = blk_mq_get_ctx(q);
1210 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1211 blk_mq_set_alloc_data(&alloc_data, q,
1212 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1213 rq = __blk_mq_alloc_request(&alloc_data, rw);
1214 ctx = alloc_data.ctx;
1215 hctx = alloc_data.hctx;
1218 hctx->queued++;
1219 data->hctx = hctx;
1220 data->ctx = ctx;
1221 return rq;
1225 * Multiple hardware queue variant. This will not use per-process plugs,
1226 * but will attempt to bypass the hctx queueing if we can go straight to
1227 * hardware for SYNC IO.
1229 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1231 const int is_sync = rw_is_sync(bio->bi_rw);
1232 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1233 struct blk_map_ctx data;
1234 struct request *rq;
1236 blk_queue_bounce(q, &bio);
1238 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1239 bio_endio(bio, -EIO);
1240 return;
1243 rq = blk_mq_map_request(q, bio, &data);
1244 if (unlikely(!rq))
1245 return;
1247 if (unlikely(is_flush_fua)) {
1248 blk_mq_bio_to_request(rq, bio);
1249 blk_insert_flush(rq);
1250 goto run_queue;
1254 * If the driver supports defer issued based on 'last', then
1255 * queue it up like normal since we can potentially save some
1256 * CPU this way.
1258 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1259 struct blk_mq_queue_data bd = {
1260 .rq = rq,
1261 .list = NULL,
1262 .last = 1
1264 int ret;
1266 blk_mq_bio_to_request(rq, bio);
1269 * For OK queue, we are done. For error, kill it. Any other
1270 * error (busy), just add it to our list as we previously
1271 * would have done
1273 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1274 if (ret == BLK_MQ_RQ_QUEUE_OK)
1275 goto done;
1276 else {
1277 __blk_mq_requeue_request(rq);
1279 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1280 rq->errors = -EIO;
1281 blk_mq_end_request(rq, rq->errors);
1282 goto done;
1287 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1289 * For a SYNC request, send it to the hardware immediately. For
1290 * an ASYNC request, just ensure that we run it later on. The
1291 * latter allows for merging opportunities and more efficient
1292 * dispatching.
1294 run_queue:
1295 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1297 done:
1298 blk_mq_put_ctx(data.ctx);
1302 * Single hardware queue variant. This will attempt to use any per-process
1303 * plug for merging and IO deferral.
1305 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1307 const int is_sync = rw_is_sync(bio->bi_rw);
1308 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1309 unsigned int use_plug, request_count = 0;
1310 struct blk_map_ctx data;
1311 struct request *rq;
1314 * If we have multiple hardware queues, just go directly to
1315 * one of those for sync IO.
1317 use_plug = !is_flush_fua && !is_sync;
1319 blk_queue_bounce(q, &bio);
1321 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1322 bio_endio(bio, -EIO);
1323 return;
1326 if (use_plug && !blk_queue_nomerges(q) &&
1327 blk_attempt_plug_merge(q, bio, &request_count))
1328 return;
1330 rq = blk_mq_map_request(q, bio, &data);
1331 if (unlikely(!rq))
1332 return;
1334 if (unlikely(is_flush_fua)) {
1335 blk_mq_bio_to_request(rq, bio);
1336 blk_insert_flush(rq);
1337 goto run_queue;
1341 * A task plug currently exists. Since this is completely lockless,
1342 * utilize that to temporarily store requests until the task is
1343 * either done or scheduled away.
1345 if (use_plug) {
1346 struct blk_plug *plug = current->plug;
1348 if (plug) {
1349 blk_mq_bio_to_request(rq, bio);
1350 if (list_empty(&plug->mq_list))
1351 trace_block_plug(q);
1352 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1353 blk_flush_plug_list(plug, false);
1354 trace_block_plug(q);
1356 list_add_tail(&rq->queuelist, &plug->mq_list);
1357 blk_mq_put_ctx(data.ctx);
1358 return;
1362 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1364 * For a SYNC request, send it to the hardware immediately. For
1365 * an ASYNC request, just ensure that we run it later on. The
1366 * latter allows for merging opportunities and more efficient
1367 * dispatching.
1369 run_queue:
1370 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1373 blk_mq_put_ctx(data.ctx);
1377 * Default mapping to a software queue, since we use one per CPU.
1379 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1381 return q->queue_hw_ctx[q->mq_map[cpu]];
1383 EXPORT_SYMBOL(blk_mq_map_queue);
1385 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1386 struct blk_mq_tags *tags, unsigned int hctx_idx)
1388 struct page *page;
1390 if (tags->rqs && set->ops->exit_request) {
1391 int i;
1393 for (i = 0; i < tags->nr_tags; i++) {
1394 if (!tags->rqs[i])
1395 continue;
1396 set->ops->exit_request(set->driver_data, tags->rqs[i],
1397 hctx_idx, i);
1398 tags->rqs[i] = NULL;
1402 while (!list_empty(&tags->page_list)) {
1403 page = list_first_entry(&tags->page_list, struct page, lru);
1404 list_del_init(&page->lru);
1405 __free_pages(page, page->private);
1408 kfree(tags->rqs);
1410 blk_mq_free_tags(tags);
1413 static size_t order_to_size(unsigned int order)
1415 return (size_t)PAGE_SIZE << order;
1418 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1419 unsigned int hctx_idx)
1421 struct blk_mq_tags *tags;
1422 unsigned int i, j, entries_per_page, max_order = 4;
1423 size_t rq_size, left;
1425 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1426 set->numa_node);
1427 if (!tags)
1428 return NULL;
1430 INIT_LIST_HEAD(&tags->page_list);
1432 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1433 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1434 set->numa_node);
1435 if (!tags->rqs) {
1436 blk_mq_free_tags(tags);
1437 return NULL;
1441 * rq_size is the size of the request plus driver payload, rounded
1442 * to the cacheline size
1444 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1445 cache_line_size());
1446 left = rq_size * set->queue_depth;
1448 for (i = 0; i < set->queue_depth; ) {
1449 int this_order = max_order;
1450 struct page *page;
1451 int to_do;
1452 void *p;
1454 while (left < order_to_size(this_order - 1) && this_order)
1455 this_order--;
1457 do {
1458 page = alloc_pages_node(set->numa_node,
1459 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1460 this_order);
1461 if (page)
1462 break;
1463 if (!this_order--)
1464 break;
1465 if (order_to_size(this_order) < rq_size)
1466 break;
1467 } while (1);
1469 if (!page)
1470 goto fail;
1472 page->private = this_order;
1473 list_add_tail(&page->lru, &tags->page_list);
1475 p = page_address(page);
1476 entries_per_page = order_to_size(this_order) / rq_size;
1477 to_do = min(entries_per_page, set->queue_depth - i);
1478 left -= to_do * rq_size;
1479 for (j = 0; j < to_do; j++) {
1480 tags->rqs[i] = p;
1481 tags->rqs[i]->atomic_flags = 0;
1482 tags->rqs[i]->cmd_flags = 0;
1483 if (set->ops->init_request) {
1484 if (set->ops->init_request(set->driver_data,
1485 tags->rqs[i], hctx_idx, i,
1486 set->numa_node)) {
1487 tags->rqs[i] = NULL;
1488 goto fail;
1492 p += rq_size;
1493 i++;
1497 return tags;
1499 fail:
1500 blk_mq_free_rq_map(set, tags, hctx_idx);
1501 return NULL;
1504 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1506 kfree(bitmap->map);
1509 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1511 unsigned int bpw = 8, total, num_maps, i;
1513 bitmap->bits_per_word = bpw;
1515 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1516 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1517 GFP_KERNEL, node);
1518 if (!bitmap->map)
1519 return -ENOMEM;
1521 bitmap->map_size = num_maps;
1523 total = nr_cpu_ids;
1524 for (i = 0; i < num_maps; i++) {
1525 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1526 total -= bitmap->map[i].depth;
1529 return 0;
1532 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1534 struct request_queue *q = hctx->queue;
1535 struct blk_mq_ctx *ctx;
1536 LIST_HEAD(tmp);
1539 * Move ctx entries to new CPU, if this one is going away.
1541 ctx = __blk_mq_get_ctx(q, cpu);
1543 spin_lock(&ctx->lock);
1544 if (!list_empty(&ctx->rq_list)) {
1545 list_splice_init(&ctx->rq_list, &tmp);
1546 blk_mq_hctx_clear_pending(hctx, ctx);
1548 spin_unlock(&ctx->lock);
1550 if (list_empty(&tmp))
1551 return NOTIFY_OK;
1553 ctx = blk_mq_get_ctx(q);
1554 spin_lock(&ctx->lock);
1556 while (!list_empty(&tmp)) {
1557 struct request *rq;
1559 rq = list_first_entry(&tmp, struct request, queuelist);
1560 rq->mq_ctx = ctx;
1561 list_move_tail(&rq->queuelist, &ctx->rq_list);
1564 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1565 blk_mq_hctx_mark_pending(hctx, ctx);
1567 spin_unlock(&ctx->lock);
1569 blk_mq_run_hw_queue(hctx, true);
1570 blk_mq_put_ctx(ctx);
1571 return NOTIFY_OK;
1574 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1576 struct request_queue *q = hctx->queue;
1577 struct blk_mq_tag_set *set = q->tag_set;
1579 if (set->tags[hctx->queue_num])
1580 return NOTIFY_OK;
1582 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1583 if (!set->tags[hctx->queue_num])
1584 return NOTIFY_STOP;
1586 hctx->tags = set->tags[hctx->queue_num];
1587 return NOTIFY_OK;
1590 static int blk_mq_hctx_notify(void *data, unsigned long action,
1591 unsigned int cpu)
1593 struct blk_mq_hw_ctx *hctx = data;
1595 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1596 return blk_mq_hctx_cpu_offline(hctx, cpu);
1597 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1598 return blk_mq_hctx_cpu_online(hctx, cpu);
1600 return NOTIFY_OK;
1603 static void blk_mq_exit_hctx(struct request_queue *q,
1604 struct blk_mq_tag_set *set,
1605 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1607 unsigned flush_start_tag = set->queue_depth;
1609 blk_mq_tag_idle(hctx);
1611 if (set->ops->exit_request)
1612 set->ops->exit_request(set->driver_data,
1613 hctx->fq->flush_rq, hctx_idx,
1614 flush_start_tag + hctx_idx);
1616 if (set->ops->exit_hctx)
1617 set->ops->exit_hctx(hctx, hctx_idx);
1619 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1620 blk_free_flush_queue(hctx->fq);
1621 kfree(hctx->ctxs);
1622 blk_mq_free_bitmap(&hctx->ctx_map);
1625 static void blk_mq_exit_hw_queues(struct request_queue *q,
1626 struct blk_mq_tag_set *set, int nr_queue)
1628 struct blk_mq_hw_ctx *hctx;
1629 unsigned int i;
1631 queue_for_each_hw_ctx(q, hctx, i) {
1632 if (i == nr_queue)
1633 break;
1634 blk_mq_exit_hctx(q, set, hctx, i);
1638 static void blk_mq_free_hw_queues(struct request_queue *q,
1639 struct blk_mq_tag_set *set)
1641 struct blk_mq_hw_ctx *hctx;
1642 unsigned int i;
1644 queue_for_each_hw_ctx(q, hctx, i)
1645 free_cpumask_var(hctx->cpumask);
1648 static int blk_mq_init_hctx(struct request_queue *q,
1649 struct blk_mq_tag_set *set,
1650 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1652 int node;
1653 unsigned flush_start_tag = set->queue_depth;
1655 node = hctx->numa_node;
1656 if (node == NUMA_NO_NODE)
1657 node = hctx->numa_node = set->numa_node;
1659 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1660 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1661 spin_lock_init(&hctx->lock);
1662 INIT_LIST_HEAD(&hctx->dispatch);
1663 hctx->queue = q;
1664 hctx->queue_num = hctx_idx;
1665 hctx->flags = set->flags;
1667 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1668 blk_mq_hctx_notify, hctx);
1669 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1671 hctx->tags = set->tags[hctx_idx];
1674 * Allocate space for all possible cpus to avoid allocation at
1675 * runtime
1677 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1678 GFP_KERNEL, node);
1679 if (!hctx->ctxs)
1680 goto unregister_cpu_notifier;
1682 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1683 goto free_ctxs;
1685 hctx->nr_ctx = 0;
1687 if (set->ops->init_hctx &&
1688 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1689 goto free_bitmap;
1691 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1692 if (!hctx->fq)
1693 goto exit_hctx;
1695 if (set->ops->init_request &&
1696 set->ops->init_request(set->driver_data,
1697 hctx->fq->flush_rq, hctx_idx,
1698 flush_start_tag + hctx_idx, node))
1699 goto free_fq;
1701 return 0;
1703 free_fq:
1704 kfree(hctx->fq);
1705 exit_hctx:
1706 if (set->ops->exit_hctx)
1707 set->ops->exit_hctx(hctx, hctx_idx);
1708 free_bitmap:
1709 blk_mq_free_bitmap(&hctx->ctx_map);
1710 free_ctxs:
1711 kfree(hctx->ctxs);
1712 unregister_cpu_notifier:
1713 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1715 return -1;
1718 static int blk_mq_init_hw_queues(struct request_queue *q,
1719 struct blk_mq_tag_set *set)
1721 struct blk_mq_hw_ctx *hctx;
1722 unsigned int i;
1725 * Initialize hardware queues
1727 queue_for_each_hw_ctx(q, hctx, i) {
1728 if (blk_mq_init_hctx(q, set, hctx, i))
1729 break;
1732 if (i == q->nr_hw_queues)
1733 return 0;
1736 * Init failed
1738 blk_mq_exit_hw_queues(q, set, i);
1740 return 1;
1743 static void blk_mq_init_cpu_queues(struct request_queue *q,
1744 unsigned int nr_hw_queues)
1746 unsigned int i;
1748 for_each_possible_cpu(i) {
1749 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1750 struct blk_mq_hw_ctx *hctx;
1752 memset(__ctx, 0, sizeof(*__ctx));
1753 __ctx->cpu = i;
1754 spin_lock_init(&__ctx->lock);
1755 INIT_LIST_HEAD(&__ctx->rq_list);
1756 __ctx->queue = q;
1758 /* If the cpu isn't online, the cpu is mapped to first hctx */
1759 if (!cpu_online(i))
1760 continue;
1762 hctx = q->mq_ops->map_queue(q, i);
1763 cpumask_set_cpu(i, hctx->cpumask);
1764 hctx->nr_ctx++;
1767 * Set local node, IFF we have more than one hw queue. If
1768 * not, we remain on the home node of the device
1770 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1771 hctx->numa_node = cpu_to_node(i);
1775 static void blk_mq_map_swqueue(struct request_queue *q)
1777 unsigned int i;
1778 struct blk_mq_hw_ctx *hctx;
1779 struct blk_mq_ctx *ctx;
1781 queue_for_each_hw_ctx(q, hctx, i) {
1782 cpumask_clear(hctx->cpumask);
1783 hctx->nr_ctx = 0;
1787 * Map software to hardware queues
1789 queue_for_each_ctx(q, ctx, i) {
1790 /* If the cpu isn't online, the cpu is mapped to first hctx */
1791 if (!cpu_online(i))
1792 continue;
1794 hctx = q->mq_ops->map_queue(q, i);
1795 cpumask_set_cpu(i, hctx->cpumask);
1796 ctx->index_hw = hctx->nr_ctx;
1797 hctx->ctxs[hctx->nr_ctx++] = ctx;
1800 queue_for_each_hw_ctx(q, hctx, i) {
1802 * If no software queues are mapped to this hardware queue,
1803 * disable it and free the request entries.
1805 if (!hctx->nr_ctx) {
1806 struct blk_mq_tag_set *set = q->tag_set;
1808 if (set->tags[i]) {
1809 blk_mq_free_rq_map(set, set->tags[i], i);
1810 set->tags[i] = NULL;
1811 hctx->tags = NULL;
1813 continue;
1817 * Initialize batch roundrobin counts
1819 hctx->next_cpu = cpumask_first(hctx->cpumask);
1820 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1824 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1826 struct blk_mq_hw_ctx *hctx;
1827 struct request_queue *q;
1828 bool shared;
1829 int i;
1831 if (set->tag_list.next == set->tag_list.prev)
1832 shared = false;
1833 else
1834 shared = true;
1836 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1837 blk_mq_freeze_queue(q);
1839 queue_for_each_hw_ctx(q, hctx, i) {
1840 if (shared)
1841 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1842 else
1843 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1845 blk_mq_unfreeze_queue(q);
1849 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1851 struct blk_mq_tag_set *set = q->tag_set;
1853 mutex_lock(&set->tag_list_lock);
1854 list_del_init(&q->tag_set_list);
1855 blk_mq_update_tag_set_depth(set);
1856 mutex_unlock(&set->tag_list_lock);
1859 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1860 struct request_queue *q)
1862 q->tag_set = set;
1864 mutex_lock(&set->tag_list_lock);
1865 list_add_tail(&q->tag_set_list, &set->tag_list);
1866 blk_mq_update_tag_set_depth(set);
1867 mutex_unlock(&set->tag_list_lock);
1870 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1872 struct blk_mq_hw_ctx **hctxs;
1873 struct blk_mq_ctx __percpu *ctx;
1874 struct request_queue *q;
1875 unsigned int *map;
1876 int i;
1878 ctx = alloc_percpu(struct blk_mq_ctx);
1879 if (!ctx)
1880 return ERR_PTR(-ENOMEM);
1882 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1883 set->numa_node);
1885 if (!hctxs)
1886 goto err_percpu;
1888 map = blk_mq_make_queue_map(set);
1889 if (!map)
1890 goto err_map;
1892 for (i = 0; i < set->nr_hw_queues; i++) {
1893 int node = blk_mq_hw_queue_to_node(map, i);
1895 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1896 GFP_KERNEL, node);
1897 if (!hctxs[i])
1898 goto err_hctxs;
1900 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1901 node))
1902 goto err_hctxs;
1904 atomic_set(&hctxs[i]->nr_active, 0);
1905 hctxs[i]->numa_node = node;
1906 hctxs[i]->queue_num = i;
1909 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1910 if (!q)
1911 goto err_hctxs;
1914 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1915 * See blk_register_queue() for details.
1917 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1918 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1919 goto err_map;
1921 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1922 blk_queue_rq_timeout(q, 30000);
1924 q->nr_queues = nr_cpu_ids;
1925 q->nr_hw_queues = set->nr_hw_queues;
1926 q->mq_map = map;
1928 q->queue_ctx = ctx;
1929 q->queue_hw_ctx = hctxs;
1931 q->mq_ops = set->ops;
1932 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1934 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1935 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1937 q->sg_reserved_size = INT_MAX;
1939 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1940 INIT_LIST_HEAD(&q->requeue_list);
1941 spin_lock_init(&q->requeue_lock);
1943 if (q->nr_hw_queues > 1)
1944 blk_queue_make_request(q, blk_mq_make_request);
1945 else
1946 blk_queue_make_request(q, blk_sq_make_request);
1948 if (set->timeout)
1949 blk_queue_rq_timeout(q, set->timeout);
1952 * Do this after blk_queue_make_request() overrides it...
1954 q->nr_requests = set->queue_depth;
1956 if (set->ops->complete)
1957 blk_queue_softirq_done(q, set->ops->complete);
1959 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1961 if (blk_mq_init_hw_queues(q, set))
1962 goto err_hw;
1964 mutex_lock(&all_q_mutex);
1965 list_add_tail(&q->all_q_node, &all_q_list);
1966 mutex_unlock(&all_q_mutex);
1968 blk_mq_add_queue_tag_set(set, q);
1970 blk_mq_map_swqueue(q);
1972 return q;
1974 err_hw:
1975 blk_cleanup_queue(q);
1976 err_hctxs:
1977 kfree(map);
1978 for (i = 0; i < set->nr_hw_queues; i++) {
1979 if (!hctxs[i])
1980 break;
1981 free_cpumask_var(hctxs[i]->cpumask);
1982 kfree(hctxs[i]);
1984 err_map:
1985 kfree(hctxs);
1986 err_percpu:
1987 free_percpu(ctx);
1988 return ERR_PTR(-ENOMEM);
1990 EXPORT_SYMBOL(blk_mq_init_queue);
1992 void blk_mq_free_queue(struct request_queue *q)
1994 struct blk_mq_tag_set *set = q->tag_set;
1996 blk_mq_del_queue_tag_set(q);
1998 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1999 blk_mq_free_hw_queues(q, set);
2001 percpu_ref_exit(&q->mq_usage_counter);
2003 kfree(q->queue_hw_ctx);
2004 kfree(q->mq_map);
2006 q->queue_hw_ctx = NULL;
2007 q->mq_map = NULL;
2009 mutex_lock(&all_q_mutex);
2010 list_del_init(&q->all_q_node);
2011 mutex_unlock(&all_q_mutex);
2014 /* Basically redo blk_mq_init_queue with queue frozen */
2015 static void blk_mq_queue_reinit(struct request_queue *q)
2017 WARN_ON_ONCE(!q->mq_freeze_depth);
2019 blk_mq_sysfs_unregister(q);
2021 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2024 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2025 * we should change hctx numa_node according to new topology (this
2026 * involves free and re-allocate memory, worthy doing?)
2029 blk_mq_map_swqueue(q);
2031 blk_mq_sysfs_register(q);
2034 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2035 unsigned long action, void *hcpu)
2037 struct request_queue *q;
2040 * Before new mappings are established, hotadded cpu might already
2041 * start handling requests. This doesn't break anything as we map
2042 * offline CPUs to first hardware queue. We will re-init the queue
2043 * below to get optimal settings.
2045 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2046 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2047 return NOTIFY_OK;
2049 mutex_lock(&all_q_mutex);
2052 * We need to freeze and reinit all existing queues. Freezing
2053 * involves synchronous wait for an RCU grace period and doing it
2054 * one by one may take a long time. Start freezing all queues in
2055 * one swoop and then wait for the completions so that freezing can
2056 * take place in parallel.
2058 list_for_each_entry(q, &all_q_list, all_q_node)
2059 blk_mq_freeze_queue_start(q);
2060 list_for_each_entry(q, &all_q_list, all_q_node)
2061 blk_mq_freeze_queue_wait(q);
2063 list_for_each_entry(q, &all_q_list, all_q_node)
2064 blk_mq_queue_reinit(q);
2066 list_for_each_entry(q, &all_q_list, all_q_node)
2067 blk_mq_unfreeze_queue(q);
2069 mutex_unlock(&all_q_mutex);
2070 return NOTIFY_OK;
2073 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2075 int i;
2077 for (i = 0; i < set->nr_hw_queues; i++) {
2078 set->tags[i] = blk_mq_init_rq_map(set, i);
2079 if (!set->tags[i])
2080 goto out_unwind;
2083 return 0;
2085 out_unwind:
2086 while (--i >= 0)
2087 blk_mq_free_rq_map(set, set->tags[i], i);
2089 return -ENOMEM;
2093 * Allocate the request maps associated with this tag_set. Note that this
2094 * may reduce the depth asked for, if memory is tight. set->queue_depth
2095 * will be updated to reflect the allocated depth.
2097 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2099 unsigned int depth;
2100 int err;
2102 depth = set->queue_depth;
2103 do {
2104 err = __blk_mq_alloc_rq_maps(set);
2105 if (!err)
2106 break;
2108 set->queue_depth >>= 1;
2109 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2110 err = -ENOMEM;
2111 break;
2113 } while (set->queue_depth);
2115 if (!set->queue_depth || err) {
2116 pr_err("blk-mq: failed to allocate request map\n");
2117 return -ENOMEM;
2120 if (depth != set->queue_depth)
2121 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2122 depth, set->queue_depth);
2124 return 0;
2128 * Alloc a tag set to be associated with one or more request queues.
2129 * May fail with EINVAL for various error conditions. May adjust the
2130 * requested depth down, if if it too large. In that case, the set
2131 * value will be stored in set->queue_depth.
2133 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2135 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2137 if (!set->nr_hw_queues)
2138 return -EINVAL;
2139 if (!set->queue_depth)
2140 return -EINVAL;
2141 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2142 return -EINVAL;
2144 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2145 return -EINVAL;
2147 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2148 pr_info("blk-mq: reduced tag depth to %u\n",
2149 BLK_MQ_MAX_DEPTH);
2150 set->queue_depth = BLK_MQ_MAX_DEPTH;
2154 * If a crashdump is active, then we are potentially in a very
2155 * memory constrained environment. Limit us to 1 queue and
2156 * 64 tags to prevent using too much memory.
2158 if (is_kdump_kernel()) {
2159 set->nr_hw_queues = 1;
2160 set->queue_depth = min(64U, set->queue_depth);
2163 set->tags = kmalloc_node(set->nr_hw_queues *
2164 sizeof(struct blk_mq_tags *),
2165 GFP_KERNEL, set->numa_node);
2166 if (!set->tags)
2167 return -ENOMEM;
2169 if (blk_mq_alloc_rq_maps(set))
2170 goto enomem;
2172 mutex_init(&set->tag_list_lock);
2173 INIT_LIST_HEAD(&set->tag_list);
2175 return 0;
2176 enomem:
2177 kfree(set->tags);
2178 set->tags = NULL;
2179 return -ENOMEM;
2181 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2183 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2185 int i;
2187 for (i = 0; i < set->nr_hw_queues; i++) {
2188 if (set->tags[i])
2189 blk_mq_free_rq_map(set, set->tags[i], i);
2192 kfree(set->tags);
2193 set->tags = NULL;
2195 EXPORT_SYMBOL(blk_mq_free_tag_set);
2197 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2199 struct blk_mq_tag_set *set = q->tag_set;
2200 struct blk_mq_hw_ctx *hctx;
2201 int i, ret;
2203 if (!set || nr > set->queue_depth)
2204 return -EINVAL;
2206 ret = 0;
2207 queue_for_each_hw_ctx(q, hctx, i) {
2208 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2209 if (ret)
2210 break;
2213 if (!ret)
2214 q->nr_requests = nr;
2216 return ret;
2219 void blk_mq_disable_hotplug(void)
2221 mutex_lock(&all_q_mutex);
2224 void blk_mq_enable_hotplug(void)
2226 mutex_unlock(&all_q_mutex);
2229 static int __init blk_mq_init(void)
2231 blk_mq_cpu_init();
2233 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2235 return 0;
2237 subsys_initcall(blk_mq_init);